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Abstract

Measurement invariance is an important assumption in the Rasch model and mixture
models constitute a flexible way of checking for a violation of this assumption by detecting
unobserved heterogeneity in item response data. Here, a general class of Rasch mixture
models is established and implemented in R, using conditional maximum likelihood esti-
mation of the item parameters (given the raw scores) along with flexible specification of
two model building blocks: (1) Mixture weights for the unobserved classes can be treated
as model parameters or based on covariates in a concomitant variable model. (2) The
distribution of raw score probabilities can be parametrized in two possible ways, either
using a saturated model or a specification through mean and variance. The function
raschmix() in the R package psychomix provides these models, leveraging the general
infrastructure for fitting mixture models in the flexmix package. Usage of the function
and its associated methods is illustrated on artificial data as well as empirical data from
a study of verbally aggressive behavior.

Keywords: mixed Rasch model, Rost model, mixture model, flexmix, R.

1. Introduction

In item response theory (IRT), latent traits are usually measured by employing probabilis-
tic models for responses to sets of items. One of the most prominent examples for such an
approach is the Rasch model (Rasch 1960) which captures the difficulty (or equivalently eas-
iness) of binary items and the respondent’s trait level on a single common scale. Generally, a
central assumption of most IRT models (including the Rasch model) is measurement invari-
ance, i.e., that all items measure the latent trait in the same way for all subjects. If violated,
measurements obtained from such a model provide no fair comparisons of the subjects. A
typical violation of measurement invariance in the Rasch model is differential item functioning
(DIF), see Ackerman (1992).

Therefore, assessing the assumption of measurement invariance and checking for DIF is crucial
when establishing a Rasch model for measurements of latent traits. Hence, various approaches
have been suggested in the literature that try to assess heterogeneity in (groups of) subjects
either based on observed covariates or unobserved latent classes. If covariates are available,
classical tests like the Wald or likelihood ratio test can be employed to compare model fits
between some reference group and one or more focal groups (Fischer and Molenaar 1995).
Typically, these groups are defined by the researcher based on categorical covariates or arbi-
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trary splits in either numerical covariates or the raw scores (Andersen 1972). More recently,
extensions of these classical tests have also been embedded into a mixed model representation
(Van den Noortgate and De Boeck 2005). Another recently suggested technique is to recur-
sively define and assess groupings in a data-driven way based on all available covariates (both
numerical and categorical) in so-called Rasch trees (Strobl, Kopf, and Zeileis 2011).

Heterogeneity occuring in latent classes only (i.e., not observed or captured by covariates),
however, is typically addressed by mixtures of IRT models. Specifically, Rost (1990) combined
a mixture model approach with the Rasch model. If any covariates are present, they can be
used to predict the latent classes (as opposed to the item parameters themselves) in a second
step (Cohen and Bolt 2005). More recently, extensions to this mixture model approach have
been suggested that encompass this prediction, see Tay, Newman, and Vermunt (2011) for a
unifying framework.

In this paper, we introduce the psychomix package for the R system for statistical computing
(R Development Core Team 2011) that provides software for fitting a general and flexible class
of Rasch mixture models along with comprehensive methods for model selection, assessment,
and visualization. The package leverages the general and object-oriented infrastructre for
fitting mixture models from the flexmix package (Leisch 2004; Grün and Leisch 2008), com-
bining it with the function RaschModel.fit() from the psychotools package (Zeileis, Strobl,
and Wickelmaier 2011) for the estimation of Rasch models. All packages are freely available
from the Comprehensive R Archive Network at http://CRAN.R-project.org/.

The reason for using RaschModel.fit() as opposed to other previously existing (and much
more powerful and flexible) R packages for Rasch modeling – such as ltm (Rizopoulos 2006) or
eRm (Mair and Hatzinger 2007) – is reduced computational complexity: RaschModel.fit() is
intended to provide a “no frills” implementation of simple Rasch models, useful when refitting
a model multiple times in mixtures or recursive partitions (see also Strobl et al. 2011).

While psychomix was under development, another R implementation of the Rost (1990) model
became available in package mRm (Preinerstorfer 2011). As this builds on specialized C++
code, it runs considerably faster than the generic flexmix approach – however, it only covers
this one particular type of model and offers fewer methods for specifying, inspecting, and as-
sessing (fitted) models. In psychomix, both approaches are reconciled by optionally employing
the mRm solution as an input to the flexmix routines.

In the following, we first briefly review both Rasch and mixture models and combine them
in a general Rasch mixture framework (Section 2). Subsequently, the R implementation in
psychomix is introduced (Section 3), illustrated by means of simulated data, and applied
in practice to a study of verbally aggressive behavior (Section 4). Concluding remarks are
provided in Section 5.

2. Rasch mixture models

In the following, we first provide a short introduction to the Rasch model, subsequently outline
the basics of mixture models in general, and finally introduce a general class of Rasch mixture
models along with the corresponding estimation techniques.

2.1. The Rasch model

Latent traits can be measured through a set of items to which binary responses are given.

http://CRAN.R-project.org/
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Sucess of solving an item or agreeing with it is coded as “1”, while “0” codes the opposite
response. The model suggested by Rasch (1960) uses the person’s ability θi (i = 1, . . . , n) and
the item’s difficulty βj (j = 1, . . . ,m) to model the response yij of person i to item j:

P (Yij = yij |θi, βj) =
exp{yij(θi − βj)}
1 + exp{θi − βj}

. (1)

Under the assumption of independence – both across persons and items within persons (see
Fischer and Molenaar 1995, Chapter 1) – the likelihood for the whole sample y = (yij)n×m
can be written as the product of the likelihood contributions from Equation 1 for all com-
binations of subjects and items. It is parameterized by the vector of all person parameters
θ = (θ1, . . . , θn)> and the vector of all item parameters β = (β1, . . . , βm)> (see Equation 2).
On the basis of the number of correctly solved items, the so-called “raw” scores ri =

∑m
j=1 yij ,

it can be factorized into a conditional likelihood of the item parameters h(·) and the score
probabilties g(·) (Equation 3). Because the scores r are sufficient statistics for the person
parameters θ, the likelihood of the item parameters β conditional on the scores r does not
depend on the person parameters θ (Equation 4).

L(θ, β) = f(y|θ, β) (2)

= h(y|r, θ, β)g(r|θ, β) (3)

= h(y|r, β)g(r|θ, β). (4)

The conditional likelihood of the item parameters takes the form

h(y|r, β) =
n∏
i=1

exp{−
∑m

j=1 yijβj}
γri(β)

(5)

where γri(·) is the elementary symmetric function of order ri, capturing all possible response
patterns leading to a certain score (see Fischer and Molenaar 1995, Chapter 3, for details).

There are several approaches to estimating the Rasch model: Joint maximum likelihood (ML)
estimation of β and θ is inconsistent, thus two other approaches have been established. Both
are two-step approaches but differ in the way the person parameters θ are handled. For
marginal ML estimation a distribution for θ is assumed and integrated out in L(θ, β), or
equivalently in g(r|θ, β). In the conditional ML approach only the conditional likelihood of the
item parameters h(y|r, β) from Equation 5 is maximized for estimating the item parameters.
Technically, this is equivalent to maximizing L(θ, β) with respect to β if one assumes that
g(r|δ) = g(r|θ, β) does not depend on θ or β, but potentially other parameters δ.

In R, the ltm package (Rizopoulos 2006) uses the marginal ML approach while the eRm
package (Mair and Hatzinger 2007) employs the conditional ML approach, i.e., uses and
reports only the conditional part of the likelihood in the estimation of β. The latter approach
is also taken by the RaschModel.fit() function in the psychotools package (Zeileis et al.
2011).

2.2. Mixture models

Mixture models are a generic approach for modeling data that is assumed to stem from
different groups (or clusters) but group membership is unknown.
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The likelihood f(·) of such a mixture model is a weighted sum (with prior weights πk) of the
likelihood from several components fk(·) representing the different groups:

f(yi) =

K∑
k=1

πkfk(yi).

Generally, the components fk(·) can be densities or (regression) models. Typically, all
k components fk(·) are assumed to be of the same type f(y|ξk), distinguished through their
component-specific parameter vector ξk.

If variables are present which do not influence the components fk(·) themselves but rather
the prior class membership probabilities πk, they can be incorporated in the model as so-
called concomitant variables (Dayton and Macready 1988). In the psychometric literature,
such covariates predicting latent information are also employed, e.g., by Tay et al. (2011)
who advocate a unifying IRT framework that also optionally encompasses concomitant infor-
mation (labeled MM-IRT-C for mixed-measurement IRT with covariates). To embed such
concomitant variables xi into the general mixture model notation, a model for the component
membership probability π(k|xi, α) with parameters α is employed:

f(yi|xi, α, ξ1, . . . , ξK) =
K∑
k=1

π(k|xi, α)f(yi|ξk) (6)

where commonly a multinomial logit model is chosen to parametrize π(k|xi, α) (see e.g., Grün
and Leisch 2008; Tay et al. 2011). Note that the multinomial model collapses to separate πk
(k = 1, . . . ,K) if there is only an intercept and not real concomitants in xi.

2.3. Flavors of Rasch mixture models

When combining the general mixture model framework from Equation 6 with the Rasch model
based on Equation 1, several options are conceivable for two of the building blocks. First,
the component weights can be estimated via a separate parameter πk for each component or
via a concomitant variable model π(k|xi, α) with parameters α. Second, the full likelihood
function f(yi|ξk) of the components needs to be defined. If a conditional ML approach is
adopted, it is clear that the conditional likelihood h(yi|ri, β) from Equation 5 should be one
part, but various choices for modeling the score probabilities are available. One option is
to model each score probability with its own parameter g(ri) = ψri , while another (more
parsimonious) option would be to adopt a parametric distribution with fewer parameters
(Rost and von Davier 1995). Note that while for a single-component model, the estimates of
the item parameters β̂ are invariant to the choice of the score probabilities (as long as it is
independent from β), this is no longer the case for a mixture model with K ≥ 2.

Rost’s original parametrization

One of these possible mixtures – the so-called “mixed Rasch model” introduced by Rost
(1990) – is already well-established in the psychometric literature. It models the score proba-
bilities through separate parameters g(ri) = ψri (under the restriction that they sum to unity)
and does not employ concomitant variables. The likelihood of Rost’s mixture model can thus
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be written as

f(y|π, ψ, β) =

n∏
i=1

K∑
k=1

πkh(yi|ri, βk)ψri,k. (7)

This particular parametrization is implemented in the R package mRm (Preinerstorfer 2011).

Since subjects who solve either none or all items (i.e., ri = 0 or m, respectively) do not
contribute to the conditional likelihood of the item parameters they cannot be allocated to
any of the components in this parametrization. Hence, Rost (1990) proposed to remove those
“extreme scorers” from the analysis entirely and fix the corresponding score probabilities ψ0

and ψm at 0. However, if one wishes to include these extreme scorers in the analysis, the
corresponding score probabilities can be estimated through their relative frequency (across all
components) and the remaining score probabilites within each component are rescaled to sum
to unity together with those extreme score probabilties. Nevertheless, the extreme scorers
still do not contribute to the estimation of the mixture itself.

Other score distributions

As noted by Rost and von Davier (1995), the disadvantage of this saturated model for the
raw score probabilities is that many parameters need to be estimated (K × (m − 2), not
counting potential extreme scorers) that are typically not of interest. To check for DIF, the
item parameters are of prime importance while the raw score distribution can be regarded as
a nuisance term. This problem can be alleviated by embedding the model from Equation 7
into a more general framework that also encompasses more parsimonious parametrizations.
More specifically, a conditional logit model can be established

g(r|δ) =
exp{z>r δ}∑m−1
j=1 exp{z>j δ}

, (8)

containing some auxiliary regressors zi with coefficients δ.

The saturated g(ri) = ψri model is a special case when constructing the auxiliary regressor
from indicator/dummy variables for the raw scores 2, . . . ,m− 1: zi = (I2(ri), . . . , Im−1(ri))

>.
Then δ = (log(ψ2)− log(ψ1), . . . , log(ψm−1)− log(ψ1))

> is a simple logit transformation of ψ.

As an alternative Rost and von Davier (1995) suggests a specification with only two param-
eters that link to mean and variance of the score distribution, respectively. More specifically,
the auxiliary regessor is zi = (ri/m, 4ri(m − ri)/m

2)> so that δ pertains to the vector of
location and dispersion parameters of the score distribution.

General Rasch mixture model

Combining all elements of the likelihood this yields a more general specification of the Rasch
mixture model

f(y|π, α, β, δ) =

n∏
i=1

K∑
k=1

π(k|xi, α) h(yi|ri, βk) g(ri|δk). (9)

with (a) the concomitant model π(k|xi, α) for modeling component membership, (b) the
component-specific conditional likelihood of the item parameters given the scores h(yi|ri, βk),
and (c) the component-specific score distribution g(ri|δk).
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2.4. Parameter estimation

Parameter estimation for mixture models is usually done via the expectation-maximization
(EM) algorithm (Dempster, Laird, and Rubin 1977). It treats group membership as unknown
and optimizes the full likelihood including the group membership on basis of the observed
values only. It iterates between two steps until convergence: estimation of group membership
(E-step) and estimation of the components (M-step).

In the E-step, the posterior probabilities of each observation for the k components is estimated
through:

p̂ik =
π̂kf(yi|ξ̂k)∑K
g=1 π̂gf(yi|ξ̂g)

(10)

using the parameter estimates for π and ξ from the previous iteration. In the case of con-
comitant variables, the component weights are π̂ik = π(k|xi, α̂).

In the M-step, the parameters of the mixture are re-estimated with the posterior probabilites
as weights. Thus, observations deemed unlikely to belong to a certain component have lit-
tle influence on estimation within this component. For each component, the weighted ML
estimation can be written as

ξ̂k = argmax
ξk

n∑
i=1

p̂ik log f(yi|ξk) (k = 1, . . . ,K) (11)

=

{
argmax

βk

n∑
i=1

p̂ik log h(yi|ri, βk); argmax
δk

n∑
i=1

p̂ik log g(ri|δk)

}

which for the Rasch model amounts to separately maximizing the weighted conditional log-
likelihood for the item parameters and the weighted score log-likelihood.

The concomitant model can be estimated seperately from the posterior probabilities, e.g., for
a multinomial model:

α̂ = argmax
α

n∑
i=1

K∑
k=1

p̂ik log(π(k|xi, α)). (12)

Finally, note that the number of components K is not a standard model parameter (because
the likelihood regularity conditions do not apply) and thus it is not estimated through the EM
algorithm. Either it needs to be chosen by the practitioner or by model selection techniques
such as information criteria, as illustrated in the following examples.

3. Implementation in R

3.1. User interface

The function raschmix() can be used to fit the different flavors of Rasch mixture models de-
scribed in Section 2.3: with or without concomitant variables in π(k|xi, α), and with different
score distributions g(ri|δk) (saturated vs. mean/variance parametrization). The function’s
synopsis is
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raschmix(formula, data, k, subset, weights, scores = "saturated",

nrep = 3, cluster = NULL, control = NULL,

verbose = TRUE, drop = TRUE, unique = FALSE, which = NULL,

gradtol = 1e-6, deriv = "sum", hessian = FALSE, ...)

where the lines of arguments pertain to (1) data/model specification processed within
raschmix(), (2) control arguments for fitting a single mixture model, (3) control argu-
ments for iterating across mixtures over a range of numbers of components K, all passed
to stepFlexmix(), and (4) control arguments for fitting each model component within a
mixture (i.e., the M-step) passed to RaschModel.fit(). Details are provided below, focusing
on usage in practice first.

A formula interface with the usual formula, data, subset, and weights arguments is used:
The left-hand side of the formula sets up the response matrix y and the right-hand side
the concomitant variables x (if any). The response may be provided by a single matrix or
a set of individual dummy vectors, both of which may be contained in an optional data
frame. Example usages are raschmix(resp ~ 1, ...) if the matrix resp is an object in the
working environment or raschmix(item1 + item2 + item3 ~ 1, data = d, ...) if the
item* vectors are in the data frame d. In both cases, ~ 1 signals that there are no concomitant
variables – if there were, they could be specified as raschmix(resp ~ conc1 + conc2, ...).
As an additional convenience, the formula may be omitted entirely if there are no concomitant
variables, i.e., raschmix(data = resp, ...) or alternatively raschmix(resp, ...).

The scores of the model can be set to either "saturated" (see Equation 7) or "meanvar"

for the mean/variance specification of Rost and von Davier (1995). Finally, the number of
components K of the mixture is specified through k, which may be a vector resulting in a
mixture model being fitted for each element.

To control the EM algorithm for fitting the specified mixture models, cluster may optionally
specificy starting probabilities p̂ik and control can set certain control arguments through
a named list or an object of class “FLXcontrol”. One of these control arguments named
minprior sets the minimum prior probability for every component. If in an iteration of the
EM algorithm, any component has a prior probability smaller then minprior, it is removed
from the mixture in the next iteration. The default is 0, i.e., avoiding such shrinkage of
the model. If cluster is not provided, nrep different random initializations are employed,
keeping only the best solution (to avoid local optima). Finally, cluster can be set to "mrm"

in which case the fast C++ implementation from mRm (Preinerstorfer 2011) can be leveraged
to generate optimized starting values. Again, the best solution of nrep runs of mrm() is used.
Note that as of version 1.0 of mRm only the model from Equation 7 is supported in mrm(),
resulting in suboptimal – but potentially still useful – posterior probabilities p̂ik for any other
model flavor.

Internally, stepFlexmix() is called to fit all individual mixture models and takes control
arguments verbose, drop, and unique. If k is a vector, the whole set of models is returned by
default but one may choose to select only the best model according to an information criterion.
For example, raschmix(resp, k = 1:3, which = "AIC", ...) or raschmix(resp ~ 1,

data = d, k = 1:4, which = "BIC", ...).

The arguments gradtol, deriv and hessian are used to control the estimation of the item
parameters in each M-step (Equation 11) carried out via RaschModel.fit().



8 Flexible Rasch Mixture Models with Package psychomix

Function Class Description

summary() “raschmix” display information about the posterior probabili-
ties and item parameters; returns an object of class
“summary.raschmix” containing the relevant sum-
mary statistics (which has a print() method)

parameters() “raschmix” extract estimated parameters of the model for all or
specified components, extact either parameters α of
concomitant model or item parameters β and/or score
parameters δ

worth() “raschmix” extract the item parameters β under the restriction∑m
j=1 βj = 0

scoreProbs() “raschmix” extract the score probabilities g(r|δ)
plot() “raschmix” base graph of item parameter profiles in all or specified

components
xyplot() “raschmix” lattice graph of item parameter profiles of all or spec-

ified components in a single or multiple panels
histogram() “raschmix” lattice rootogram or histogram of posterior probabili-

ties

print() “stepFlexmix” simple printed display of number of components, log-
likelihoods, and information criteria

plot() “stepFlexmix” plot information criteria against number of compo-
nents

getModel() “stepFlexmix” select model according to either an information crite-
rion or the number of components

print() “flexmix” simple printed display with cluster sizes and conver-
gence

clusters() “flexmix” extract predicted class memberships
posterior() “flexmix” extract posterior class probabilities
logLik() “flexmix” extract fitted log-likelihood
AIC(); BIC() “flexmix” compute information criteria AIC, BIC

Table 1: Methods for objects of class “raschmix”.

Function raschmix() returns objects of class “raschmix” or “stepRaschmix”, respectively,
depending on whether a single or multiple mixture models are fitted. These classes extend
“flexmix” and “stepFlexmix”, respectively, for more technical details see the next section.
For standard methods for extracting or displaying information, either for “raschmix” directly
or by inheritance, see Table 1 for an overview.

3.2. Internal structure

As briefly mentioned above, raschmix() leverages the flexmix package (Leisch 2004; Grün
and Leisch 2008) and particularly its stepFlexmix() function for the estimation of (sets of)
mixture models.

The flexmix package is designed specifically to provide the infrastructure for flexible mixture
modelling via the EM algorithm, where the type of a mixture model is determined through
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the model employed in the components. In the estimation process, this component model
definition corresponds to the definition of the M-step (Equation 11). Consequently, the flexmix
package provides the framework for fitting mixture models by leveraging the modular structure
of the EM algorithm. Provided with the right M-step, flexmix takes care of the data handling
and iterating estimation through both E-step and M-step.

The M-step needs to be provided in the form of a flexmix driver inheriting from class “FLXM”
(see Grün and Leisch 2008, for details). The psychomix package includes such a driver func-
tion: FLXMCrasch() relies on the function RaschModel.fit() from the psychotools package
for estimation of the item parameters (i.e., maximization of the conditional likelihood from
Equation 5) and adds different estimates of raw score probabilities depending on their pa-
rameterization.

The reason for employing RaschModel.fit() rather than one of the more established Rasch
model packages such as eRm or ltm is speed: RaschModel.fit() has been designed with
reduced flexibility in order to save time when refitted multiple times as in Rasch mixture
models or also Rasch trees in the psychotree package (Strobl et al. 2011).

In the flexmix package, two fitting functions are provided. flexmix() is designed for fitting
one model once and returns an object of class “flexmix”. stepFlexmix() extends this so
that either a single model or several models can be fitted. It also provides the functionality
to fit each model repeatedly to avoid local optima.

When fitting models repeatedly, only the solution with the highest likelihood is returned.
Thus, if stepFlexmix() is used to repeatedly fit a single model, it returns an object of class
“flexmix”. If stepFlexmix() is used to fit several models (repeatedly or just once), it returns
an object of class “stepFlexmix”.

This principle extends to raschmix(): If it is used to fit a single model, the returned object
is of class “raschmix”. If used for fitting multiple models, raschmix() returns an object of
class “stepRaschmix”. Both classes extend their flemix counterparts.

3.3. Illustrations

For illustrating the flexible usage of raschmix(), we employ an artificial data set drawn from
one of the three data generating processes (DGPs) suggested by Rost (1990) for the introduc-
tion of Rasch mixture models. All three DPGs are provided in the function simRaschmix()

setting the design to "rost1", "rost2", or "rost3", respectively. The DPGs contain mix-
tures of K = 1, and 2, and 3 components, respectively, all with m = 10 items.

The DPG "rost1" is intended to illustrate the model’s capacity to correctly determine when
no DIF is present. Thus, it includes only one latent class with item parameters β(1) =
(2.7, 2.1, 1.5, 0.9, 0.3,−0.3,−0.9,−1.5,−2.1,−2.7)>. (Rost originally used opposite signs to
reflect item easiness parameters but since difficulty parameters are estimated by raschmix()

the signs have been reversed.) The DGP "rost2" draws observations from two latent classes
of equal sizes with item parameters of opposite signs: β(1) and β(2) = −β(1), respectively
(see Figure 2 for an example). Finally, the DGP "rost3" adds a third component of smaller
size with item parameters β(3) = (−0.5, 0.5,−0.5, 0.5,−0.5, 0.5,−0.5, 0.5,−0.5, 0.5)>. In all
three DGPs, the person parameters θ are drawn from a discrete uniform distribution on
{2.7, 0.9,−0.9,−2.7}, except for the third class of DGP "rost3" which uses only one level
of ability, {0}. In all DGPs, response vectors for 1800 subjects are initially drawn but the
extreme scorers who solved either none or all items are excluded.
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Here, a dataset from the second DGP is generated along with two artificial covariates x1

and x2. Covariate x1 is an informative binary variable (i.e., correlated with the true group
membership) while x2 is an uninformative continuous variable.

R> set.seed(1)

R> r2 <- simRaschmix(design = "rost2")

R> d <- data.frame(

+ x1 = rbinom(nrow(r2), prob = c(0.4, 0.6)[attr(r2, "group")], size = 1),

+ x2 = rnorm(nrow(r2))

+ )

R> d$resp <- r2

The Rost (1990) version of the Rasch mixture model – i.e., with a saturated score model and
without concomitant variables – is fitted for one to three components. As no concomitants are
employed in this model flavor, the matrix r2 can be passed to raschmix() without formula:

R> m1 <- raschmix(r2, k = 1:3)

R> m1

Call:

raschmix(formula = r2, k = 1:3)

iter converged k k0 logLik AIC BIC ICL

1 2 TRUE 1 1 -10409.177 20852.35 20944.07 20944.07

2 8 TRUE 2 2 -8738.606 17547.21 17736.04 17809.87

3 105 TRUE 3 3 -8724.237 17554.47 17840.42 18247.37

To inspect the results, the returned object can either be printed, as illustrated above, or
plotted yielding a visualization of information criteria (see Figure 1). Both printed display
and visualization show a big difference in information criteria across numer of components K,
with the minimum always being assumed for K = 2, thus correctly recovering the two latent
classes constructed in the underlying DGP.

The values of the information criteria can also be accessed directly via the functions of the cor-
responding names. To select a certain model from a “stepRaschmix” object, the getModel()

function from the flexmix package can be employed. The specification of which model is to
be selected can either be an information criterion, or the number of components as a string,
or the index of the model in the original vector k. In this particular case, which = "BIC",
which = "2", and which = 2 would all return the model with K = 2 components.

R> BIC(m1)

1 2 3

20944.07 17736.04 17840.42

R> m1b <- getModel(m1, which = "BIC")

R> summary(m1b)
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Figure 1: Information criteria for Rost’s model with K = 1, 2, 3 components for the artifical
scenario 2 data.

Call:

raschmix(formula = r2, k = 2)

prior size post>0 ratio

Comp.1 0.498 808 1262 0.640

Comp.2 0.502 820 1264 0.649

Item Parameters:

Comp.1 Comp.2

Item01 -2.5574826 2.4538561

Item02 -2.1844001 2.1573277

Item03 -1.4524543 1.6382597

Item04 -1.0042438 0.9254200

Item05 -0.3639643 0.2675059

Item06 0.3074967 -0.3868124

Item07 0.8828234 -0.8563867

Item08 1.5048074 -1.4900729

Item09 2.1186345 -2.0921240

Item10 2.7487831 -2.6169734

'log Lik.' -8738.606 (df=35)

AIC: 17547.21 BIC: 17736.04

To inspect the main properties of the model, summary() can be called. The information about
the components of the mixture includes a priori component weights πk and sizes as well as
the estimated item parameters β̂ per component. Additionally, the fitted log-likelihood and
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the information criteria AIC and BIC are reported. As one of the item parameters in the
Rasch model is not identified, a restriction needs to be applied to the item parameters. In
the output of the summary() function, the item parameters of each component are scaled to
sum to zero.

Two other functions, worth() and parameters(), can be used to access the item parameters.
The sum restriction employed in the summary() output is also applied by worth(). Addi-
tionally, worth() provides the possibilities to select several or just one specific component

and to transform item difficulty parameters to item easiness parameters. The function
parameters() also offers these two options but restricts the first item parameter to be zero
(rather than the sum of item parameters), as this restriction is used in the internal com-
putations. Thus, for the illustrative dataset with 10 items, parameters() returns 9 item
parameters, leaving out the first item parameter restricted to zero while worth() returns 10
item parameters summing to zero. The latter corresponds to the parametrization employed
by Rost (1990) and simRaschmix(). For convenience reasons, the true parameters are at-
tached to the simulated dataset as an attribute named "item". These are printed below and
visualized in Figure 2 (left), showing that all item parameters are recovered rather well. Note
that the ordering of the components in mixture models is generally arbitrary.

R> parameters(m1b, "item")

Comp.1 Comp.2

item.Item02 0.3730825 -0.2965283

item.Item03 1.1050282 -0.8155963

item.Item04 1.5532388 -1.5284360

item.Item05 2.1935182 -2.1863502

item.Item06 2.8649793 -2.8406685

item.Item07 3.4403060 -3.3102427

item.Item08 4.0622900 -3.9439290

item.Item09 4.6761171 -4.5459800

item.Item10 5.3062656 -5.0708294

R> worth(m1b)

Comp.1 Comp.2

Item01 -2.5574826 2.4538561

Item02 -2.1844001 2.1573277

Item03 -1.4524543 1.6382597

Item04 -1.0042438 0.9254200

Item05 -0.3639643 0.2675059

Item06 0.3074967 -0.3868124

Item07 0.8828234 -0.8563867

Item08 1.5048074 -1.4900729

Item09 2.1186345 -2.0921240

Item10 2.7487831 -2.6169734

R> attr(r2, "item")
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beta1 beta2

1 2.7 -2.7

2 2.1 -2.1

3 1.5 -1.5

4 0.9 -0.9

5 0.3 -0.3

6 -0.3 0.3

7 -0.9 0.9

8 -1.5 1.5

9 -2.1 2.1

10 -2.7 2.7

In addition to the item parameters, the parameters() function can also return the parameters
of the "score" model and the "concomitant" model (if any). The type of parameters can
be set via the which argument. Per default parameters() returns both item and score
parameters.

A comparison between estimated and true class membership can be conducted using the
clusters() function and the corresponding attribute of the data, respectively. As already
noticeable from the item parameters, the first component of the mixture matches the second
true group of the data and vice versa. This label-switching property of mixture models in
general can also be seen in the cross-table of class memberships. We thus have 38 misclassi-
fications among the 1628 observations.

R> table(model = clusters(m1b), true = attr(r2, "group"))

true

model 1 2

1 16 792

2 798 22

For comparison, a Rasch mixture model with mean/variance parametrization for the score
probabilites, as introduced in Section 2.3, is fitted with one to three components and the best
BIC model is selected.

R> m2 <- raschmix(data = r2, k = 1:3, scores = "meanvar")

R> m2

Call:

raschmix(data = r2, k = 1:3, scores = "meanvar")

iter converged k k0 logLik AIC BIC ICL

1 2 TRUE 1 1 -10416.199 20854.40 20913.74 20913.74

2 8 TRUE 2 2 -8747.084 17540.17 17664.25 17737.65

3 60 TRUE 3 3 -8738.314 17546.63 17735.46 17939.80

R> m2b <- getModel(m2, which = "BIC")
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Figure 2: True (black) and estimated (blue/red) item parameters for the two model specifi-
cations, "saturated" (left) and "meanvar" (right), for the artifical scenario 2 data.

As in the saturated version of the Rasch mixture model, all three information criteria prefer
the two-component model. Thus, this version of a Rasch mixture model is also capable of
recognizing the two latent classes in the data while using a more parsimonious parametrization
with 23 instead of 35 parameters.

R> logLik(m2b)

'log Lik.' -8747.084 (df=23)

R> logLik(m1b)

'log Lik.' -8738.606 (df=35)

The estimated parameters of the distribution of the score probabililities can be accessed
through parameters() while the full set of score probabilities is returned by scoreProbs().
The estimated score probabilites of the illustrative model are approximately equal across
components and roughly uniform.

R> parameters(m2b, which = "score")

Comp.1 Comp.2

score.location -0.10292905 -0.04187548

score.dispersion -0.09456975 -0.07905495

R> scoreProbs(m2b)
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Comp.1 Comp.2

0 0.0000000 0.0000000

1 0.1198694 0.1163454

2 0.1155415 0.1133228

3 0.1122157 0.1110791

4 0.1098133 0.1095705

5 0.1082785 0.1087681

6 0.1075758 0.1086567

7 0.1076895 0.1092340

8 0.1086219 0.1105110

9 0.1103944 0.1125124

10 0.0000000 0.0000000

The resulting item parameters for this particular data set are virtually identical to those from
the saturated version, as can be seen in Figure 2.

To demonstrate the use of a concomitant variable model for the weights of the mixture, the
two artificial variables x1 and x2 are employed. They are added on the right-hand side of the
formula, yielding a multinomial logit model for the weights (only if k = 2 or more components
are specified).

R> cm2 <- raschmix(resp ~ x1 + x2, data = d, k = 2:3, scores = "meanvar")

The BIC is used to compare the models with and without concomitant variables. In both cases,
the two true groups are recognized correctly, while the model with concomitants manages to
employ the additional information and reaches a somewhat improved model fit.

R> rbind(m2 = BIC(m2), cm2 = c(NA, BIC(cm2)))

1 2 3

m2 20913.74 17664.25 17735.46

cm2 NA 17611.05 17691.59

As mentioned above, the parameters of the concomitant model can be accessed via the
parameters() function, setting which = "concomitant". The influence of the informative
covariate x1 is reflected in the large absolute coefficient while the estimated coefficient for the
noninformative covariate x2 is close to zero.

R> cm2b <- getModel(cm2, which = "BIC")

R> parameters(cm2b, which = "concomitant")

1 2

(Intercept) 0 0.43688740

x1 0 -0.85033332

x2 0 0.03043432

The corresponding estimated item parameters parameters(cm2b, "item") are not very dif-
ferent from the previous models (and are hence not shown here). This illustrative application
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shows that the inclusion of concomitant variables can provide additional information, e.g.,
that x1 but not x2 is associated with the class membership. Note also that this is picked up
although a rather weak association was simulated here.

R> table(x1 = d$x1, clusters = clusters(cm2b))

clusters

x1 1 2

0 320 494

1 486 328

4. Empirical application: Verbal aggression

The verbal aggression dataset (De Boeck and Wilson 2004) contains item response data from
316 first-year psychology students along with gender and trait anger (assessed by the Dutch
adaptation of the state-trait anger scale) as covariates (Smits, De Boeck, and Vansteelandt
2004). The 243 women and 73 men responded to 24 items constructed the following way:
Following the description of a frustrating situation, subjects are asked to agree or disagree
with a possible reaction. The situations are described by the following four sentences:

� S1: A bus fails to stop for me.

� S2: I miss a train because a clerk gave me faulty information.

� S3: The grocery store closes just as I am about to enter.

� S4: The operator disconnects me when I had used up my last 10 cents for a call.

Each reaction begins with either “I want to” or “I do” and is followed by one of the three
verbally aggressive reactions “curse”, “scold”, or “shout”, e.g., “I want to curse”, “I do curse”,
“I want to scold”, or “I do scold”.

For our illustration, we use only the first two sentences which describe situations in which the
others are to blame. Extreme-scoring subjects agreeing with either none or all responses are
removed.

R> data("VerbalAggression", package = "psychotools")

R> VerbalAggression$resp2 <- VerbalAggression$resp2[, 1:12]

R> va12 <- subset(VerbalAggression,

+ rowSums(resp2) > 0 & rowSums(resp2) < 12)

R> colnames(va12$resp2)

[1] "S1WantCurse" "S1DoCurse" "S1WantScold" "S1DoScold"

[5] "S1WantShout" "S1DoShout" "S2WantCurse" "S2DoCurse"

[9] "S2WantScold" "S2DoScold" "S2WantShout" "S2DoShout"

We fit Rasch mixture models with the mean/variance score model, one to four components,
and with and without the two concomitant variables, respectively (the single component
model being only fitted without covariates).
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Figure 3: Rootogram of posterior probabilties in the 3-component Rasch mixture model on
verbal aggression data.

R> set.seed(1)

R> va12_mix1 <- raschmix(resp2 ~ 1, data = va12, k = 1:4, scores = "meanvar")

R> va12_mix2 <- raschmix(resp2 ~ gender + anger, data = va12, k = 2:4,

+ scores = "meanvar")

The correspondig BIC for all considered models can be computed by

R> rbind(BIC(va12_mix1), c(NA, BIC(va12_mix2)))

1 2 3 4

[1,] 3874.632 3857.567 3854.350 3887.361

[2,] NA 3859.119 3854.822 3880.484

R> va12_mix3 <- getModel(va12_mix1, which = "3")

showing that three components are preferred regardless of whether or not concomitant vari-
ables are used. In this case, they do not lead to a better model fit, thus the 3-class model
without concomitant variables is chosen.

The posterior probabilities for the three components can be visualized via
histogram(va12_mix3) – by default using a square-root scale, yielding a so-called rootogram
– as shown in Figure 3. In the ideal case, posterior probilities of the observations for each
component are either high or low, yielding a U-shape in all panels. In this case here, the
components are separated acceptably well.

The item profiles in three components can be visualized via plot(va12_mix3) or
xyplot(va12_mix3) with the output of the latter being shown in Figure 4. The first six
items are responses to the first sentence (bus), the remaining six refer to the second sentence
(train). The six reactions are grouped in “want”/“do” pairs: first for “curse”, then “scold”, and
finally “shout”.
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Figure 4: Item profiles for the 3-component Rasch mixture model on verbal agression data.
Items 1–6 pertain to situation S1 (bus), items 7–12 to situation S2 (train), each in the following
order: want to curse, do curse, want to scold, do scold, want to shout, do shout.

The third component displays a zigzag pattern which indicates that subjects in this component
always find it easier or less extreme to “want to” react a certain way rather than to actually
“do”react that way. In the other two components this want/do relationship is reversed, except
for the shouting response (to either situation).

In the first component, there are no big differences in the estimated item parameters. Neither
the situation (S1 or S2) nor the type of verbal response (curse, scold, or shout) is particularly
hard to agree to for subjects in this component. In components 2 and 3, the situation is
also not very relevant but subjects differentiate between the three verbal responses. This is
best visible in component 2 where item difficulty is clearly increasing from response “curse”
to response “shout”. Thus, shouting is preceived as the most extreme verbal response while
cursing is considered a comparably moderate response. In component 3 this pattern is also
visible albeit not as prominently as in component 2.

One could also consider the 3-component model with concomitant variables as its BIC was
almost equivalent to that of the model without concomitant variables. The estimated item
parameters are virtually identical between both models and are hence not shown here. Nev-
ertheless, the link between the concomitant variables and the latent classes may still be of
interest:

R> parameters(getModel(va12_mix2, which = "3"), which = "concomitant")

1 2 3

(Intercept) 0 -0.76040110 -3.6721134

gendermale 0 1.66471685 1.4177908

anger 0 0.01155322 0.1268023

The absolute sizes of the cofficients reflect that there may be some association with gender but
less with the anger score. However, as there is a slight increase in BIC compared to the model
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without concomitants, the association with the covariates appears to be relatively weak. In
comparison to other approaches exploring the association of class membership with covariates
ex post (e.g., as in Cohen and Bolt 2005), the main advantage of the concomitant variables
model lies in the simulataneous estimation of the mixture and the influence of covariates.

5. Summary

Mixtures of Rasch models are a flexible means of checking measurement invariance and testing
for differential item functioning. Here, we establish a rather general unifying conceptual
framework for Rasch mixture models along with the corresponding computational tools in
the R package psychomix. In particular, this includes the original model specification of Rost
(1990) as well as more parsimoneous parameterizations (Rost and von Davier 1995), along
with the possibility to incorporate concomitant variables predicting the latent classes (as in
Tay et al. 2011).

The R implementation is based on the infrastructure provided by the flexmix package, al-
lowing for convenient model specification and selection. The rich set of methods for flexmix
objects is complemented by additional functions specifically designed for Rasch models, e.g.,
extracting different types of parameters in different transformations and visualizing the esti-
mated component-specific item parameters in various ways. Optionally, speed gains can be
obtained from utilizing the C++ implementation in the mRm package for selecting optimal
starting values. Thus, psychomix provides a comprehensive and convenient toolbox for the
application of Rasch mixture models in psychometric research practice.
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Abstract
Measurement invariance is an important assumption in the Rasch model and mixture
models constitute a flexible way of checking for a violation of this assumption by
detecting unobserved heterogeneity in item response data. Here, a general class
of Rasch mixture models is established and implemented in R, using conditional
maximum likelihood estimation of the item parameters (given the raw scores) along
with flexible specification of two model building blocks: (1) Mixture weights for
the unobserved classes can be treated as model parameters or based on covariates
in a concomitant variable model. (2) The distribution of raw score probabilities
can be parametrized in two possible ways, either using a saturated model or a
specification through mean and variance. The function raschmix() in the R package
”psychomix”provides these models, leveraging the general infrastructure for fitting
mixture models in the ”flexmix”package. Usage of the function and its associated
methods is illustrated on artificial data as well as empirical data from a study of
verbally aggressive behavior.
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