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For many crops, the estimation of supply
response is complicated by the existence of
government programs. Traditionally, farm programs
have provided farmers with price guarantees and/or
subsidies in exchange for limitations on planting, In
this manner, the programs affect both the expected
returns and the variance of these returns. Even for
crops, such as soybeans, in which d]rcct government
involvement is minimal, Cdrm program prowsions
can strongly affect acreage response in an indirect
fashion by making alternative crops either more or
less attractive to the producer,

The primary purpose of this paper N to
estimate the supply response of three major
government program crops grown in the Southeast:
cotton, corn and soybeans. Most recent estimates of
supply-response elasticities have been at the national
level, while little recent empirical work has focused
on supply response elasticities for the Southeast.
Because the Southeast differs significantly from the
rest of the nation in terms of climate and soils,

elasticity estimates developed for the country as a
whole may not be accurate in this region for
predicting acreage response to changing farm
program provisions or market conditions.

To the best of our knowledge, no previous
empirical work has examined the issue of changing
supply response over time. BeUduWof changes in
technology and changes in farm program provisions,
it is possible that supply schedules have changed
over time, becoming either more or less elastic.
Accordingly, in this paper, the possibility of time-
varymg supply response is investigated, as a
secondary objeclivc.

Basic Model Formulation

The general behavioral model assumed here
is the onc hypothesized by Chavas and HoIt.
Because a full dmmssion of this model is provided
in their arliclc, only a brief summary is provided
here.’ First, it is assumed that the farm household
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has preferences rcprcscnted by a von Ncumann-
Morgenstern utility function, and that the household
maxmizes expected uhlity subject to a budget
constraint in which income is determined both by
nonfarm sources (or wealth) and net returns from
farming. These assumptions lead to a maximlztttion
problem expressed as:

(1) Max{ EU[w + Zrc, A,]} s.t,
A,

(2) ,flA) = O

where EU is expected utility, A, is lhc number of

acres devoted to the ith crop, A is a vector
representing all the A,, w is normalmd initial

wealth, n, is norrnaltized profit per acre of the ith

crop, and the constraint serves to limit plantings to
acreage available. For normalization, all prices arc
deflated by a price index,

The per acre profits, r-c,,depend on price,
yield, and cost, Of these, price and yield arc
unknown at the time decisions arc rnadc. The
expectation in ( 1) therefore must bc bawd on the
information available when decisions are made.
Further, if the household is not risk neutral, optimal
acreage decisions will depend not only on cxpectcd
normalized profits, but also on higher moments of
the profit distributions, so that A“, the vector of
optimal acreage decisions, can be expressed as
,4”(w; R; o), where R is the expected profits vector,
and o represents higher moments of the profit
distribution,

From (1) and (2), and with reference to the
work of Sandmo, Chavas and Holt work out the
imphcahons for econometric estirndtions of acreage
response. By considering the compensation
function, C, defined implicitly by:

(3) Max{ IIJ[w+C+ Zn, Jr]=U) }
A,

where C is the compensation (change m wealth)
needed to keep utility constant at U), the following
syrnmetly restrictions can be derived (Chavas):

(4) aA</sit= f3’4”/a 7t-((3.4”/(3w). A”

where A“ 1s the wealth-compensated acreage
decision found by solving (3). The rmrtrlx of

compensated effects dAc/dii in expression (4) 1s
symmetric and positive scmidefinite (Chavas;
(,’havas and IIolt), If the wealth effect is zero,
&t*/&t is symmetric.

l}worporating Govawnrar( Pollcy into the Return
Fu}7cfio}7

To estimate the model posited by Chavas
and IIolt, a consistent sel of pohcy variables must
bc developed for Southeastern field crops. While
some analysts have preferred to estimate separate
supply or acreage response functions for different
pohcy regimes (Mornch et al.; Lee and
Hclmbcrger), others have followed the method
outlined by Houck and Subotnik, defining an
cffcctwc support price (F’,’7)in a gcncml enough
manner that alternative policy regimes can be
represented by one variable, The effective support
price depends on both the announced support price
and the rrxtrlctlvc conditions (r) required of the
farmer for prog~dm ptallicipation:

(5) PSW= I-PA

where PA is the announced government price (loan
rdtc or target price), The adjustment factor, r“,
embodies plantlng constraints. When the
government price is available without restrictions,
}=1. As restrictions become tighter, r moves toward
0. In some instances, r is relatively easy to
calculate. Other times, the calculation of r is more
difficult, 13ccausesoybean programs have involved
only a loan program, with no acrcagc restrictions,
the effective support price for soybeans is the loan
rate itself.

Chavm and Ilolt stated that they followed
Gallagher’s general methods in developing the
effective price support for corn, but did not provide
details of the series construction; nor, of course, did
they develop a series for cotton. A detailed
description of the development of an effective
support price series for cotton, also based on
Gallagher’s general methods, is found in Duffy et
al. This series was used here, with updates for the
years since their scncs ended, For consistency, the
corn effective support prlcc series used her-c was
developed using the guidclmes established in Duffy
ct al.
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In the literature, expected market price has
been calculated in a number of ways. One method
involves simply using a one-period lag (Duffy et
al.). Alternatively, a more complicated lag structure
may be used (Shumway). Chavas and Holt used
one-period lagged price, plus a constant, where the
constant was the mean sample difference between
current and lagged prices, Implicitly, the Chavas
and Holt specification of expectation at time 1-1,E,.
~, of the normalized rndrket price at time t, P,, is
detined by the equation:

(6) E,.,(I’,) = u + P p,.,

with ~ constrained to equal 1,

There is no theoretical reason to Justify
restricting ~ to 1. Hence, in this study, rather than
restrict (6), direct estimation was employed to find
the value of ~. Additionally, because real prices
have trended downwards over time (corresponding
to a downward trend in real per umt costs of
production), a trend vanablc (2’)was included in the
equation to be estimated, so that:

Unlike the ad hoc methods used by others,
the Chavas and Holt method is grounded in
previous statistical work on the effecls of truncating
the normal distribution (Johnson and Kotz,
Maddala).’ Because government programs
essentially provide a minimum price, they serve to
truncate the distribution of expected prices received
by farmers, Thus, the truncated distribution has
both a different mean and a different variance from
those associated with the untnmcxdteddistribution.

The variance of the untruncatcd normalized
prices, F’,,was defined following Chavas and Holt:

3

(8) VAR(P,,) = o,,,,,, = z A, [F’,,,.,- ~,j.l U’z,,.,)lz
,=1

where the weights, L,, are ,5, ,33, and ,17, and t is
a time subscript, This result, along with (7), was
then used to find the mean and variance of the
truncated price distribution. Letting p, represent the
expected mean price of the ith crop from the
truncated distribution and 6P,,represent the variance
of the truncated distribution:

(7) E,.,(P,) = ~ + p f’,., + y ~
(%) p,, = PS,; W,) + ap,,,,’’’+(k,,)+ P,i[l -Will,)]

was directly estimated using OLS. Roth linear and
double-log versions of(7) were estimated. In terms
of predictive power as measured by R-square and
mean square error, the double-log regression
outperformed both the linear regression model and
the constrained expression in (6). Thus, the double-
log version of (7) was used to generate expected
market prices in this study,2

Various methods have been used to
incorporate the effective support price and the
expected market price into one “supply-inducing”
price, Shumway, for example, chose the higher of
the effective support price or the expected market
price. Bailey and Womack, among others, used a
weighting scheme based on government program
participation. Duffy et al. used an altcrrmtive
nonlinear weighting scheme first proposed by
Remain, Chavas and Holt, however, follow a
substantially different scheme, In this paper, the
Chavas and Holt method is employed for
incorporating government programs into price
expectations.

+ 2P,,oF,,,,,’’’($(h,,) + (F’,:

+ aJ*( 1 - (D(}/,,)) - p,;

with;

(9C) h,, = (Ps,: - P,,)/ap,,,,”2

where @(O) and $(.) are the standard normal
density function and the distribution function
respectively. The dcnvation of (9) is provided by
Chavas and Holt.4 Because expectations are not
static across tlmc, (9) must bc computed for each
year of the estimation period. The formula for
covariance Malso presented in Chavas and IIolt, but
not reproduced here.

Once the mean and variance of the
truncated price distribution arc calculated, an
expression for expc~ted pro~its can be derived. To
get expected yields, Chavas and IIolt used a
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regression on trend, In this study, expected yields
were calculated in the same manner as expected
prices, with the natural log of yield regressed on the
natural log of lagged yield and a time trend. This
formulation was found to give more accurate
predictions of expected yield for the Southeast (as
measured by R-squares and mean square errors)
than were generated by a simple trend.

Following Chdvas and 1Iolt, cxpectcd profit
of the ith crop in year t, fir,,is defined as:

(lo) n,, = E,., { P,*”L,- c,, I P,, > Ps; }

where, Y,,is yield, and C,, is normalized per acre
costs (assumed known at planting), Because of
covanance between yields and prices, (10) is
calculated using:

(11) fir, = P,,.y,

+ ((1 - @(hZ,))‘py,,p, “ ay,, 1/267,,,,’’2))- C,f

where GY,,is the standard deviation of yield, 6P,,, is
the variance of the truncated price distribution, and
P,,,P,is the correlation between yield and pncc.

Data and Estimation

Given the economic hypotheses in (1) and
the formula for expected profit in (11), the optimal
acreage equations ,4’(w, it, o) were then specified
from a Taylor-series expansion of an arbitrary
functional form, After substitutions, following
Chavas and HoIt, the form of the model to be
estimated is:s

Because the ~,, represent the compensated
slopes, tM,C/i37tY,then the symmetry condition in (4)
requires that 13Y= ~,,, for i #j, In the Chavas and
Holt paper, only two crops, soybeans and corn were
examined. In the Southeast, however, cotton,
soybeans and corn are all widely grown. While the
Chavas and Holt model can theoretically be

extended to cover multi-crop situations, a practical
difficulty lies in estimation. To extend the model to
three crops would require an additional four
pammeters in each equation, exceeding the pmctical
limit on the ratio of parameters to observations
suggested by Belslcy et al. In our study, therefore,
three sets of equations were estimated; corn and
soybeans, cotton and corn, and cotton and soybeans,

The Southeastern states considered in this
analysis were Alabama, Georgia, North Carolina
and South Carolina. Cotton, soybeans, and corn
annual time-series data were used m the estimations.
Because of the need for lagged information for
some of the independent variables, data were
collected for the period 1955-1988. In actual
estimation, however, the dependent variables span
the period 1958-1988. Acreages planted to each
crop and the prices received by farmers were
obtained from various issues of U.S. Department of
Agriculture (USDA publications). The costs of
production used in this study were variable costs of
production, originally reported by Gallagher and
Green and upckdtedby Taylor. Yields per acre were
obtamcd from USDA publications. The consumer
pncc index, used to normalize all prices, is reported
by the Bureau of Labor Statistics. Initial wealth, w,.
,, was measured by farmers’ equity as reported in
various issues of Economic Indicators of ~he Farm
SecWr weighted by the ratio of the state’s acreage
in the crops of interest to the national acreage.b

In estimation, the version of equation (12)
used for acreage supply was moditied to include a
dummy variable for PIK programs (1983) and a
measure of the effective diversion payments for
cotton and corn. A similar modification was made
in Chavas and Holt, As in Chavas and Holt,
aggregated data are used, with all the attendant
problems, although the extent of the aggregation
problems may be lessened by using rcgiond rather
than national data.

Empirical Results

The parameter estimates for the acreage
supply equations, with symmetry imposed, are
reported in tables 1 through 3, Equations were
estimated as SUR systems, with symmet~ of cross-
revenue effects imposed, Data were corrected for
autocorrelation problems before final estimation, if
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Table 1. Estimated Southeastern Corn and Soybeans Acreage Equations
with Symmetry Imwsed, 1958-1988
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Notation Independent Parameter Parameter
Variables Est]mate Estimate

Corn Soybean

0, Intereept 7777944*” -4210446**
(9,38) (4.99)

nl($/acre) Corn expected 12239.51** -13697.1**
revenue (2.35) (-3.90)

nz(flacre) Soybeans expected -13697.1** 16298.3**
revenue (-3.90) (3.74)

all Corn price -1494889 2518811
variance (-0.84) (1.39)

% Soybeans price 177383.1** -121093**
variance (5.15) (-3.04)

512 Com-Soyb. price 54159.4 209856.9
covarmnce (0.10) (0.37)

w + E/,rt, Adjusted wealth .0000655** .0001626**
(5.43) (14.10)

DPCN Corn dwerslon -1366694**
payment (4.36)

DUA4 PIK Dummy variable -897953** -818799”
(-2.16) (-1,80)

T Trend variable -200934** 164007,6**
(-11.51) (8.59)

Number of observations: 31 31
R-Square, 0.95 0.98
D,w, 2.54 2.36

‘ t-statistics are mbraekets below the parameters estimates. R-Square arrdDurbin-Watson are from
single equation OLS estimates. Final equations estimated as SLJRsystem with symmetry imposed.
Dependent variables are aercsof comandsoybeans in the Southeast (Alabama, Oeorgia, North Carolina,
and South Carolina).

** sig~lcantatthe95percent (* 90 percent) level ofcontidence.

necessary, R-square and Durbin-Watson values
reported in the tables are from the first-stage OLS
estimates.

Statistical results for the corn and soybean
model (table 1) were generally strong in terms of
statistical significance of parameters and the overall
model fit. Corn own-revenue elasticity
(compensated) at the mean is 0.095, 40 percent
higher than the value of 0.068 found by Chavas and
Holt, Soybeans own-revenue elasticity
(compensated) is 0.560, approximately double the
value of 0.279 for national acreage computed by
Chavw and Holt, Compensated own-price
elasticities are 0.317 and 0.727 for corn and
soybeans, respectively. The higher elasticities for

the Southeastern region probably reflect the greater
number of crop options available in the region,
including cotton, and in some areas peanuts,
tobacco, and horticultural crops. The wider
availability of production substitutes for the
Southeast, as opposed to the other regions of the
country, would make producers more responsive to
changes in profitability. In addition, given the
number of alternative crops, soybeans are not as
important in rotational considerations here as they
are in the Midwest (see Mires et al,).

For the corn-soybean model, a test of the
symmetry restriction yielded a borderline
F( 1,43)=5,87. Given the evidence of the Chavas-
Holt paper in which the F value for this test was



372 DuJfi, Wrilshah and Kmnucan, Acreage Respattse Under Faint Programs

Table 2. Eshmated Southeastern Cotton and Soybeans Acreage Equations with Symmetry Imposed,
1958-1988

Notahon Independent Parameter Parameter
Variables Estimate Estimate

Cotton Soybeans

a, Interecpt 2405586”” -2619675+
(3.07y (-1.99)

rr,($/acre) Cotton expected 2123.31 -2672.1
rcvcnuc (1,21) (-1.11)

rc2($/acre) Soybeans expected -2672,1 13316.44**
revenue (-1.08) (2.16)

~11 Cotton price 762071.9 8182745
variance (0.12) (0.76)

~22 Soybeansprice -59358.5 53394,7
variance (-1.59) (0.86)

512 Cotton-Soy. price 1196737 -5903751”
covanancc (0.62) (-1.93)

w + qq’r, Adjusted wealth -0.0000268” 0.000255**
(-2.01) (13.11)

DPC Cotton dwerslon -45404.10
payment (-1,71)

DUM PIK Dummy variable -92393.2 -1360257**
(-0,32) (-2.37)

T Trend vanablc -36597,1 901O4,13**
(-1.72) (2.57)

Number of observations: 31 31
R-Square, 0.88 0.97
D,W, 0.97 1.38

nI-statumcs are mbraekets below the parameters estimates. R-Squa~ and Durbrn-Watsonare from
single equation OLS estimates. Final equations estimated as SUR system with syrnrnetryimposed.
Cotton equabon corrected for serial correlation before final estimation,

** Sigtilcant at the 9S percent (* 90 percent) level of confidence.

highly significant, the restrictions were maintamed
here, With symmetry imposed, a test for risk
neutrality was conducted through an F-test for all
yy~= O and rx, = O, yielding an 1“(8,43) = 56.71.
Risk neutrality can thus be rejected at the 0.0001
level of significance. In both equations, the
soybean-price variance is slgniticant, while the corn-
price variance is not. Because corn is protected by
more extensive program provisions than soybeans,
these results are not surprising, In both equations
the wealth variable is positive and significant,
indicating that corn and soybean farmers in the
Southeast exhibit decreasing absolute risk averston
(D.ARA), the same finding that Chavas and }Iolt
report at the national level.

The second model pairs cotton and
soybeans (table 2). Srdtistical results are less
satisfactory than in the corn-soybean case in that the
cotton own-revenue parameter is not statistically
significant at the usual levels of confidence, Nor
are the cross-rcvcnuc cff’ccts significant. The
wealth effect is positive and significant in the
soybean equation, but negative and insignificant in
the cotton equation, a finding contra~ to the DARA
hypothesis. The low Durbin-Watson for the cotton
equation can indicate a problem with auto-
corrclation, which was corrected before final
estimation, but may alternatively indicate improper
specification, further evidence that the Chavm and
IIolt model does not explain acreage response for
cotton.
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Table 3. Estimated Southeastern Cotton and Corn Acreage Equations
with Symmetry Imposed, 1958-1988

Notation Independent Parameter Parameter
Variables Estimate Estimate

Cotton Corn

ai

rrl($/acre)

n2($/acre)

511

022

~lz

w + ~lAizri

DPCN

DPC

DUM

T

Intercept

Cotton expected
revenue

Corn expected
revenue

Cotton price
variance

Corn price
variance

Cotton-Corn price
covariance

Adjusted wealth

Corn diversion
payment

Cotton diversion
payment

PIK Dummy variable

Trend variable

2584156**
[2.95]’

2846.43
[1.63]

1302,33
[0.54]

-72626 16*
[-1.85]

-2730467
[-1.67]

-2105924
[-0.97]

-0,000046
[-1,49]

-56443.2**
[-2.31]

-296596
[-0.86]

-54357,8**
[-2.68]

2395257
[1.46]

1302.33
[0.54]

8510.54
[1.18]

2720814
[0.41]

-1647866
[-0.56]

3387524
[0.87]

0.000157**
[2.75]

-1540155**
[-3.07]

107372,9
[0.17]

-47157
[-1.32]
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Number of observations: 31 31
R-Square: 0.88 0.89
D.W. 1.38 1.72

a f-statistics are in brackets below the parameters estimates. R-Square and Durbin-Watson
from single equation OLS estimates. Final equations estimated as SUR system with
symmetry imposed. Dependent variables are acres of cotton and corn in the Southeast
(Alabama, Georiga, North Carolina, and South Carolina).

** significant at the 95 percent (* 90 percent) level of confidence.

The test for symmetry in the cotton-
soybean model yielded an F( 1,42) = 0,190,
indicating that symmetry cannot be rejected. As the
cross-revenue effect is not significantly different
from zero, this result is not surprising. The test for
risk neutrality led to an F(8,42)=23,71, indicating
that risk neutrality cannot be rejected,

The cotton and corn model (table 3) also
yielded disappointing results in terms of t-values on
important parameters, The test for symmetry in the
cotton-corn model yielded an F( 1,43) = 2.94,
indicating that symmetry should not be rejected;
however, given that the cross-revenue effects are not

significantly diffcreru from zero, this test is not very
meaningful. The test for risk neutrality yielded an
F’(8,43) = 2,82, a borderline value that contrasts
sharply to the high F-values for the other models.
Here, cotton and corn, two crops extensively
covered by government programs, are paired. If the
government programs are effective in reducing
price-risk, it is not surprising that the acreages of
these commodities would show little response to
these price risk variables,

In general, results for the Southeast indicate
that the expected utdity model fits the corn-
soybeans data fairly well, but not the cotton data.
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This statistical lack of response may reflect a
genuine characteristic of cotton producers, but it
might alternatively be explained by the diversity of
crops in the area. Given the many possible
substitutes, it is difficult to isolate one alternative
crop with a significant influence on cotton acreage
in the aggregate. In Georgia, for example, cotton
is most often grown on farms where soybeans, corn,
and peanuts are also produced. Cotton can be used
as a rotation crop with peanuts; thus, decisions
regarding cotton planting my be affcctcd by fiactors
outside the cotton market. Because of the nature of
the farm program provisions for peanuts, peanuts
could not be easily modeled in the fr%dmeworkused
here, Further work, probably involving farm-level
decision models, is needed to trace the interaction of
cotton and peanuts,

Another possible explanation for the lack of
revenue response in the cotton equation involves the
possibility of a response that has changed over time.
A static parameter may test as insignificant because
the supply schedule has rotated over time, becoming
either more or less elastic. Some economists have
argued that supply should be more e]astic now than
previously because of greater relimce on purchased
inputs (Tomek and Robinson, p. 362); alternatively,
mechanization and the reliance on crop-specific
equipment could make the supply schedule less
elastic,

Time-Varying Parameters

Time-varying parameter models can allow
for both systematic and stochastic changes in
parameter values, Systematic changes involve
nonrandom changes in parameter values, while
stochastic changes can take place either around a
stationa~ or a nonstationary (time-varying) mean
parameter value. Singh et al, developed a model in
which regression coefficients arc specified as
stochastic functions of calendar time, so that:

(13) l+,= P,*+.IXO’W,*+ L

where P* represents the “base” value of the
parameter, ~(t) is a function vector containing time
(t), (P,* is a parameter vector, and ~, is an error
term, The Singh et al. model is intuitively

appealing because time is used to represent
unobservable or unmeasurable factors that
systematically alter parameter values.

Incorpomting ( 13) into the supply response

equations, and assuming J(t) = t,7 the equations to

bc estlmatcd are:

where ~,, =<,,(fil, + fi,l)+ u,, is a heteroscedastic
disturbance term. If the disturbance term is not, in
fact, heteroscedastic the model reduces to Stone’s
dynamic model.

The model in (14) was estimated and the
error terms were tested for heteroscedasticity of
three possible forms using the Glesjer and the
Brcusch-Pagan tests. Results of the Glesjer test
indicated no heteroscedasticity in any cases, while
one of the three versions of the Breusch-Pagan
indicated possible heteroscedasticity problems in
cotton. Because the Glesjcr test is more powerful,
and because the sample size is small, we assumed
homoscedasticity for the final estimation. (Greene
indicates that correcting for heteroscedasticity can
be more harmful than helpful when sample size is
small.)

All three sets of equations were re-
estimated allowing for time variance on the revenue
effects. The most dramatic change in results
occurred in the cotton-corn pair, table 4. Here, the
own-revenue parameter for cotton was significant,
as was the cross-revenue effect, Results indicate
that over time acreage response has become more
inelastic for cotton, perhaps because investment in
machinery has increased, A compensated own-
rcvenuc supply elasticity for cotton of 0.570 at the
mean (with t = 16) was computed using the time-
varying parameter model results. The compensated
own-price elasticity from this model was 0.915.8
The Durbin- Watson statistic for the cotton
equation, which had previously been low, is now
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Table 4. Estimated Southeastern Cotton and Corn Acreage with Symmetry
Imposed and Time-Varying Parameters, 1958-1988

Notation Independent Parameter Parameter
Variables Estimate Estimate

Cotton Corn

ai

rrl($/acre)

rrJ$/acre]

B11

822

Ulz

w + ~iAirri

DPC

DPCN

DUM

rrl*T

rr2*T

T

Intercept

Cotton expected
revenue

Corn expected
revenue

Cotton price
variance

Corn price
variance

Cot-Corn price
covariance

Adjusted wealth

Cotton diversion
payment

Corn diversion
payment

PIK Dummy
variable

First interaction term

Second interaction
term

Trend variable

2079705**
[3.53]

6728.49**
[4.21]

-9032.82**
[-2.68]

-4303940
[-1.67]

-1174110
[- 1.08]

-820849
[-0.62]

-.000051**
[-2.68]

-51890.7**
[-3.58]

-241711
[-1.10]

-225.04**
[-3.13]

408.03**
[2.49]

-26114.8
[-1.421

4204737
[2.51]

-9302.82**
[-2,68]

22719,76
[1.43]

395481.5
[0.06]

-3773084
[-1.21]

1821185
[0.47]

.000190**
[3.31]

-1332514**
[-2.41]

-87479
[-0.12]

408.03**
[2.49]

-569.00
[-0.70]

- 128489**

Number of observations: 31 31
R-Square 0.96 0.90
D.W, 2.05 1.81

a t-statistics are in brackets below the parameters estimates. R-Square and D.W. from OLS
estimates. Equations estimated as SUR system with symmetry imposed.

** Significant at the 95cx0(* 900/0)level of confidence.

approximately 2.00, If this statistic WW, in fact, although the own-revenue parameter for cotton was
signifying an underlying problem with specification positive and significant,
rather than autocorrelation, it would appear that the
problem has been corrected through allowing time-
varying elasticities of supply. Conclusions

Incorporating time-varying parameters into
the corn-soybean model yielded very poor results in The present paper focused on corn,
terms of significance on the revenue parameters and soybeans, and cotton acreage decisions in the
the interaction terms, although the expected signs Southeast, Systems of acreage equations under
were largely maintained, The cotton-soybean expected utility maximization were developed
pairing under time-varying parameters for the following a general model proposed by Chavas and
revenue variables was also somewhat disappointing, Holt, The application of the model to a three crop
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system was limited by the problem of over-
parameterization, so that the model had to be fitted
in’’piecewise” two by two fashion,

Overall, our study results indicate that the
model fits the corn-soybean data fairly well, but that
cotton acreage cannot be adequately modeled in this
framework. The regional corn-soybeans model
generally mirrored results found by Chavas et al. at
the national level, but the estimated elasticities were
considerably higher, indicating that Southeastern
farmers are more responsive to changes in
profitability,

Neither the cotton-corn or cotton-soybeans
models gave satisfactory results in terms of
significant revenue parameters. In addition, the
cotton-corn model showed little evidence of risk
aversion on the part of producers. Given the
extensive government program provisions to reduce
price risk for these commodities, these results are
not surprising.

When the hypothesis of changing supply
response over time was tested, the cotton equation

yielded evidence that elasticity of supply had been
decreasing over time, For corn and soybeans, no
indication of time changes in parameter values wrus
found. One explanation for this phenomenon is that
machinery for cotton has become highly specialized,
while corn and soybean equipment has remained
largely interchangeable. Thus, one would expect
over time to see a reduction in acreage response for
cotton, but not for the other crops.

Overall, our results indicate that risk
variability of soybeans appears to affect acreage of
soybeans and corn, and possibly cotton, but that
price variability in corn and cotton has little effect
on planting decisions. Because the extensive farm
program provisions for corn and cotton are largely
designed to mitigate against the effects of market
price volatility, these results indicate that the
programs are working to that end.

Further research in time-varying supply
elasticity for other crops and other regions of the
country is warranted given our results for cotton. In
particular, crops such as cotton in which machinery
complements have become more specialized should
be investigated.
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Endnotes

1. The authors gratefully acknowledge the assistance of Matt Holt, who provided us with copies of the
computer programs used in estimating the Chavas and Holt model. These progmms, along with additional
information he provided, were extremely helpful and saved us a great deal of effort in estimating the models
presented here.

2. Expectation functions for prices and yields were “well-behaved” in that they had reasonable R-square
values and exhibited no problems with nonstationarity, as tested by Durbin-h test and Durbin’s alternative
test.

3. Normality of prices could not bc rejected using the Kolmogorov-Smirnov test,

4. The formulas presented here for expected prices and variance are not found in exactly this form in
Chavas and Holt, who presented a more general version of the effects of truncation, These formulas were
obtained by private communications with Matt Holt.

5. We note that this specification of wealth involves use of the dependent variables, leading to possible
simultaneous equation bias. An alternative model, using instrumental variables to calculate the wealth
variable, was also estimated, Results were not affected to any noticeable agree. To keep our results most
readily comparable to those of Chavas and I+olt, wc retain the original specification for reporting purposes.

6. This specification follows the Chavas and Holt method of scaling wealth by acreage.

7. A simple linear function was selected because more complicated functions involving multiple terms
would reduce the degrees of freedom in the equations to a point where results are not reliable.

8, For the time-varying pammeter estimates, the own-revenue response becomes negative in the last two
years of the data period (t = 30 and t = 31). The problem, here, is likely related to the linear specification
of the time function.


