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Abstract

A good description of the dynamics of interest rates is crucial to price deriva-
tives and to hedge corresponding risk. Interest rate modelling in an unstable
macroeconomic context motivates one factor models with time varying param-
eters. In this paper, the local parameter approach is introduced to adaptively
estimate interest rate models. This method can be generally used in time vary-
ing coefficient parametric models. It is used not only to detect the jumps and
structural breaks, but also to choose the largest time homogeneous interval
for each time point, such that in this interval, the coefficients are statistically
constant. We use this adaptive approach and apply it in simulations and real
data. Using the three month treasure bill rate as a proxy of the short rate,
we find that our method can detect both structural changes and stable inter-
vals for homogeneous modelling of the interest rate process. In more unstable
macroeconomy periods, the time homogeneous interval can not last long. Fur-
thermore, our approach performs well in long horizon forecasting.
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1 Introduction

Interest rate risk, caused by the variability of interest rates, is the risk borne by an

interest-bearing asset, such as a loan or a bond. It is commonly measured by the

bond’s duration. Interest rate risk causes credit risk, which in turn may induce fur-

ther risks (subprime crisis). For hedging purposes, however, it is important to price

the interest rate derivatives which of course depend on the dynamic process of the

interest rate. If the macroeconomy is unstable, the variation of interest rate will be

larger, and vice versa. For instance, in 2002, bubbles existed in the stock market. In

2003, the war in Iraq influenced the macroeconomy. Since 2007, the macroeconomy

has been depressed by the subprime crisis. We find the short rate in these periods

more fluctuating. On the other hand, changes in business cycle conditions may influ-

ence the dynamics, and they may differ from one period to another. The stochastics

of short rates are impacted by these facts, which return shock reverting behaviour

of stochastic interest rate volatility less persistent to economic shocks. These shocks

or news are dominated by central bank announcements of base rate changes. The

short rates respond quickly to these unanticipated announcements. This conclusion

can be supported by Jones, Lmont, and Lumsdaine (1998) who documented that

volatility shocks to U.S. treasure bonds arising from scheduled macroeconomic an-

nouncements are not persistent at all. A large number of empirical studies have

demonstrated the unstable property of the interest rate process. The instability can

be induced by structural breaks, or regime switchings, even the process can be a

smooth function of time.

Due to this instability in statistical modelling, a wide variety of interest rate models

have been introduced. Three main strands of literature exist to describe the dy-

namics. On one hand, the instability is induced by the structural breaks, which are

captured by jump diffusion models. In this kind of model, it is assumed that several

jumps exist in the diffusion function to capture the structural breaks. Das (2002)

incorporated jumps into the Vasicek model and found strong evidence of jumps in

the daily federal funds rate. Johannes (2003) used a nonparametric diffusion model

to study the secondary three month treasury bills. He concluded that jumps are

generally generated by the arrival of news about the macroeconomy. A common

conclusion is that the nonlinearity exists in the dynamics of short rates. Another

strand of literature uses regime switching models to capture the business cycle char-

acter of interest rates, see Ang and Bekaert (2002), Bansal and Zhou (2002). They
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found that the interest rate has significant changes and its variation performs dif-

ferently in different regimes. In the third kind of model, the process parameters

(drift or volatility) are assumed to be a function of time, Hull-White (1990), Black-

Karasinski (1991), Aı̈t-Sahalia (1996) and Stanton (1997), Fan et al (2003) and

Arapis and Gao (2006). The conclusion of them is that the coefficients in the CIR

model are time varying, moreover they proved that the drift function is nonlinear.

Generally speaking, a one factor short rate model with constant parameters may

not be valid for a long period of time in reality.

In this paper, we introduce a time varying CIR model and estimate it from a novel

point of view - the local parametric approach (LPA). Our aim is to find the longest

stable “time homogeneous” interval for each time point t, where the parameters in

the CIR model can be safely assumed to be constant. More attractively, by this

method, we can detect jumps and structural break points. Furthermore, this ap-

proach includes regime switching models and it also describes the time variation of

coefficients. Based on the parameters inside the selected interval, one may distin-

guish blooming and declining regimes of the economy.

The proposed approach may be applied to different problems. Giacomini, Härdle

and Spokoiny (2009) considered time varying copulae estimation, Č́ıžek, Härdle and

Spokoiny (2009) applied it to compare the performance of global and time varying

ARCH and GARCH specifications, Härdle, Okhrin and Okhrin (2010) applied this

method to hierarchical archimedean copulae, and found that the LPA can be used

to detect both adaptive copulae parameters and local dependency structures.

To assess the performance of the LPA, we do both simulations and empirical studies.

In the simulation exercise, we show that the proposed LPA detects the structural

breaks very well, and the true parameters are located in the pointwise confidence

intervals of the estimators. In the empirical study, we use three month treasure bill

rate as a proxy of the short rate and investigate the performance of the LPA by both

in sample fitting and out of sample forecasting via comparing with moving window

estimators.

The rest of this paper is organized as follows. In Section 2, we give a short re-

call about one factor interest rate models, later we explain the LPA in detail in

Section 3. In Section 4, we present our simulation results. Empirical studies are

3



presented in Section 5. We conclude in Section 6.

2 Interest Rate Models

We give a short review about one factor interest rate models. Note that we need

the essential properties:

• Mean reversion: the interests rates always tend to return to an average level.

• The interest rate r(t) is non negative.

Vasicek Model

dr(t) = a{b− r(t)}dt+ σdWt

where a, b and σ are constants, Wt is a standard Brownian process. It is consistent

with the mean reversion feature with a reversion speed a to the long run mean level

b. However, in this model r(t) can be negative.

Cox, Ingersoll and Ross (CIR) Model

dr(t) = a{b− r(t)}dt+ σ
√
r(t)dWt (1)

The drift function µ{r(t)} = a{b − r(t)} is linear and possesses a mean reverting

property, i.e. r(t) moves in the direction of its long run mean b at speed a. The

diffusion function σ2{r(t)} = r(t)σ2 is proportional to the interest rate r(t) and

ensures that the process stays on a positive domain. Here r(t) has a positive impact

on the standard deviation through (1).

Hull-White Model

dr(t) = {δ(t)− ar(t)}dt+ σdWt

This is an extended Vasicek model, where a and σ are constant, δ(t) is a determin-

istic function of time. Moreover, this model uses the time dependent reversion level

δ(t)/a instead of the constant b in Vasicek model.

Black-Karasinski Model

d log r(t) = δ(t){log µ(t)− log r(t)}dt+ σ(t)dWt

4



with δ(t), µ(t) and σ(t) as a deterministic function of time, where µ(t) as the target

interest rate. A drawback of this model is that no closed form formula for valuing

bonds in terms of r(t) can be derived by this model.

3 Methodology

In the Vasicek model, the interest rate r(t) can be negative. As an improvement

of the Vasicek model, the CIR model guarantees the interest rate is not negative.

In the Hull-White model, the volatility is a constant. The Black-Karasinski model

assumes δ(t) and µ(t) are deterministic function of time. However, all these mod-

els are too restrictive due to the unstable macroeconomy. In this section, a new

method - the LPA for time varying CIR model is introduced. The method allows

the parameters vary over time as the time homogeneous interval changes with t.

Discontinuities and jumps may be detected and used to identify structural changes.

The time varying CIR model is expressed as:

dr(t) = at{bt − r(t)}dt+ σt
√
r(t)dWt (2)

where, Wt is the standard Wiener Process. Denote the time varying parameters as

θt = (at, bt, σt)
>. This CIR model (2) includes all of the aforementioned parametric

models, such as jump diffusion models, regime switching models, and also the non-

parametric specified time varying interest rate models.

The discrete version of (2) is:

Yi = rti+1
− rti = at{bt − rti}∆t+ σt

√
rtiZi (3)

Where {Zi}Ti=1 are normally distributed with zero mean and variance ∆t = ti+1− ti,
(more generally, Zi can be a white noise process). The time unit may be one year,

∆t = 1
250

for daily data, or for weekly data, ∆t = 1
52

.

3.1 Likelihood Function of CIR Process

If a, b, σ are all positive, and 2ab ≥ σ2 holds, then the CIR model is well defined

and has a steady state distribution. Given rt at time t, the density of rt+∆t at time

point t+ ∆t is:

p(rt+∆t|rt; θ,∆t) = ce−u−v(
v

u
)
q
2 Iq(a

√
uv) (4)
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where

c =
2a

σ2(1− e−a∆t)

u = crte
−a∆t

v = crt+∆t

q =
2ab

σ2

and Iq(2
√
uv) is the modified Bessel function of the first kind with order q. The log

likelihood function is given by:

L(θ) =
T−1∑
i=1

log p(rti+1
|rti ; θ,∆t) (5)

Fix now t, the MLE estimator θ̃Ik in any interval Ik = [t−mk, t] is:

θ̃Ik = arg maxLIk(θ) = arg max
∑
i∈Ik

log p(rti+1
|rti ; θ,∆t)

The accuracy of the estimation for a locally constant model with parameter θ0 is

measured via the log likelihood ratio LIk(θ̃Ik , θ0) = LIk(θ̃Ik) − LIk(θ0). In Č́ıžek,

Härdle and Spokoiny (2009), it is proved that if Yi follows a nonlinear process (2),

then given Ik for any r > 0, there exists a constant <r(θ0), such that:

Eθ0 |LIk(θ̃Ik , θ0)|r ≤ <r(θ0) (6)

Thus, <r(θ0) can be treated as the parametric risk bound. It enables testing the

parametric hypothesis on the basis of the fitted log likelihood LIk(θ̃Ik , θ0).

3.2 Test of Homogeneous Intervals

Mercurio and Spokoiny (2004), Č́ıžek, Härdle and Spokoiny (2009) and Spokoiny

(2009) are informative references for the LPA. The general idea can be described as

follows: suppose we have K (historical) candidate intervals with a starting interval

I0, i.e. I0 ⊂ I1 ⊂ · · · ⊂ IK , Ik = [t − mk, t] with 0 < mk < t. We increase the

length from mk to mk+1, and test over the larger interval Ik+1 whether θ̃k+1 is still

consistent with θ̃k. To test an interval Ik = [t−mk, t], we set the null (2) with a fixed

parameter θ. The alternative is to find an unknown change point τ in the interval Ik,

i.e. Yl follows one process when t
′ ∈ J = [τ + 1, t] with parameter θJ , and it follows

another process when t
′ ∈ J c = [t −mk+1, τ ] with parameter θJc , where θJ 6= θJc .
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Figure 1: Construction of the Test Statistics for LPA: the involved interval Ik and
Jk.

With this alternative, the likelihood can be expressed as LJ(θ̃J) + LJc(θ̃Jc), giving

the test statistics:

TIk+1,τ = LJ(θ̃J) + LJc(θ̃Jc)− LIk+1
(θ̃Ik+1

) (7)

where τ ∈ Jk = Ik\Ik−1, see Figure 1. Since the change point τ ∈ Ik is unknown,

we consider the maximum of the test statistics over Jk:

Tk = max
τ∈Jk

TIk+1,τ (8)

The selected longest time homogeneous interval satisfies

Tk ≤ zk, for k ≤ k̂ (9)

and Tk̂+1 > zk̂+1. Then Ik̂ is the longest time homogeneous interval for time point

t, and the local adaptive estimator θ̂t = θ̂Ik̂ . The event {Ik is rejected} means that

T` > z` for some ` < k, and hence a change point has been detected in the first k

steps within Ik. zk is the critical value (depending on the interval sequence Ik) to

be introduced later.

3.3 The Local Parametric Approach (LPA)

For any given t with the intervals I0 ⊂ I1 ⊂ · · · ⊂ IK , following the idea mentioned

above, the algorithm is described into four steps.

1. We estimate θ̃I0 using the observations from the smallest interval I0 = [t −
m0, t], θ̃I0 is always accepted.

2. We increase the interval to Ik, (k ≥ 1), get the estimator θ̃Ik by MLE, and test

homogeneity via (7), i.e. we test whether there is a change point in Ik. If (9)

is fulfilled, we go on to step 3, otherwise we go to step 4.
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3. Let θ̂Ik = θ̃Ik , then further set k = k + 1, and go to step 2.

4. Accept as the longest time homogeneous interval Ik̂ = Ik−1, and define the

local adaptive estimator as θ̂Ik̂ = θ̃Ik−1
. Additionally set θ̂Ik̂ = θ̂Ik = · · · = θ̂IK

for all k > k̂.

For a change point τ in Ik, we obtain k̂ = k−1, and Ik̂ = Ik−1 is the selected longest

time homogenous interval. We compare the test statistics with the critical values, if

it is smaller than the critical value zk, we accept Ik as the time homogeneous interval,

then we increase the interval to Ik+1, and do the test again. We sequentially repeat

this procedure until we stop at some k < K or we exhaust all the chosen intervals.

For each time point t, we use the same algorithm, and we do not to calculate the

critical values a second time, since they depend on only the parametric specification

and the length of interval mk, not on t.

To investigate the performance of the adaptive estimator, we introduce the small

modelling bias (SMB). The SMB for interval Ik is:

∆Ik(θ) =
∑
t∈Ik

K{r(t), r(t; θ)} (10)

with K the Kullback-Leibler (KL) divergence,

K{r(t), r(t; θ)} = E log
p{r(t)}
p{r(t; θ)}

(11)

where p(.) and p(.; θ) are the probability density functions of r(t) and r(t; θ) respec-

tively. The SMB measures in terms of KL divergence the closeness of a constant

parametric model with p(.; θ) to a time varying model with p(.). Suppose now that

for a fixed ∆ > 0:

E∆Ik(θ) ≤ ∆ (12)

(12) simply means that for some θ ∈ Θ, ∆Ik(θ) is bounded by a small constant with

a high probability, which implies the time varying model can be well approximated

over Ik by the parametric model with fixed parameter θ.

Under this SMB condition for some interval Ik and θ ∈ Θ, one has the property:

E log{1 +
|LIk(θ̃Ik , θ)|r

Rr(θ)
} ≤ 1 + ∆ (13)

If ∆ is not large, (13) extends the parametric risk bounds to the nonparametric

situation under the SMB condition, see Č́ıžek, Härdle and Spokoiny (2009). An
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“oracle” choice Ik∗ from the set I0, · · · , IK exists, which is defined as the largest

interval satisfying (12). We denote the corresponding “oracle” parameter as θIk∗ .

However, two types of errors occur in this algorithm: the first type is to reject

the time homogeneous interval earlier than the “oracle” step, which means k̂ ≤ k∗.

The other type is to reject the homogeneous interval later than the “oracle” step, i.e.

k̂ > k∗. The first type of error can be treated as a “false alarm”, i.e. the algorithm

stops earlier than the “oracle” interval Ik∗ , which leads to selecting an estimate with

a larger variation than θIk∗ . The second type of the error arises if k̂ > k∗. Outside

the oracle interval we are exploiting data which does not support the SMB condi-

tion. Both errors will be specified in a propagation and stability condition in the

next section.

3.4 Choice of Critical Values

The accuracy of the estimator can be measured by the log likelihood ratio LIk(θ̃Ik , θ0)

between the MLE estimator and the true parameters in parametric specification,

which is stochastically bounded by the exponential moments (13). In general, θ̃Ik
differs from θ̂Ik only if a change point is detected at the first k steps. A small value

of the likelihood ratio means that θ̂Ik belongs to the confidence set based on the

estimate of θ̃Ik , i.e. statistically we accept θ̂Ik = θ̃Ik . If the procedure stops at some

k ≤ K by a false alarm, i.e. a change point is detected in interval Ik with the

adaptive estimator θ̂Ik , then the accuracy of the estimator can be expressed

Eθ0 |LIk(θ̃Ik , θ̂Ik)|r ≤ ρ<r(θ0) (14)

which is to be referred as the “propagation” condition. We choose the critical value

zl based on (14). The situation at the first k steps can be distinguished into two

cases. One is that a change point is detected at some step l ≤ k, otherwise there is

no change point in the first k intervals. We denote by Bl the event of rejection at

step l, that is,

Bl = {T1 ≤ z1, · · · , Tl−1 ≤ zl−1, Tl > zl} (15)

and θ̂Ik = θ̃Il−1
on Bl, l = 1, 2, · · · , k. We choose z1 by minimizing the following

equation:

max
k=1,··· ,K

Eθ0 |L(θ̃Ik , θ̃I0)|r1(B1) ≤ ρRr(θ0)/K
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For zl, l ≥ 2, We use the same algorithm to calculate them. The event Bl only

depends on z1, · · · , zl. Since z1, · · · , zl−1 have been fixed by previous steps, the event

Bl is controlled by zl. Hence, the minimal value of zl should ensure

max
k≥l

Eθ0 |mkK(θ̃k, θ̃l−1)|r1(Bl) = ρRr(θ0)/K (16)

or we can express the criteria via the log likelihood ratio:

max
k≥l

Eθ0 |L(θ̃Ik , θ̃Il−1
)|r1(Bl) = ρRr(θ0)/K (17)

where ρ and r are two global parameters, and mk denotes the number of points in

Ik. The role of ρ is similar to the level of the test in the hypothesis testing problem,

while r describes the power of the loss function. We apply r = 1/2 in both the

simulation and the real data analysis, since it makes the procedure more stable and

robust against outliers. We also choose ρ = 0.2, however other values in the range

[0.1, 1] leads to similar results, see Spokoiny (2009).

The critical value zl which satisfies (17) can be found numerically by Monte Carlo

simulations from the parametric model. It is a decreasing function with respect to

the log length of interval. When the interval is small, it is easier to accept it as

the time homogeneous interval, since there are not many jumps due to the short

interval, while if we increase the length of interval, as the sample size increases, it

contains more uncertain information, especially when big jumps or visible structural

changes exist in the interval, therefore it tends to reject the homogeneous interval

test statistics for larger interval, correspondingly the critical value should decrease.

The length of the intervals is assumed to geometrically increase with mk = [m0a
k].

m0 is the initial length of I0, which is time homogeneous as default. a can be chosen

from 1.1 to 1.3. However, the experiments reveal that the results are not sensitive

to the choice of a. In the time varying CIR model, three parameters need to be

estimated. To guarantee a reasonable quality of the estimation, large sample size

is required. Therefore, we choose the length of the initial interval I0 as m0 = 40

and also choose a = 1.25. As already discussed, the interest rates are influenced by

macroeconomic variables, and may also be subject to regime shifts. Therefore the

longest interval we choose should cover one regime, and at least one change point

will exist between the expansion and recession regimes. Referring to a business cycle

of around 4 years, we choose the number of intervals K = 15, so that mK = 1136 is

the longest tested time homogeneous interval used in both simulation and empirical

exercises in this paper.
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3.5 “Oracle” Property of The Estimators

In this section, we discuss the “oracle” properties of the LPA estimators. Recall that

for the “oracle” choice k∗, (12) holds, and it also holds for every k ≤ k∗, while it does

not hold for any k ≥ k∗. The “oracle” choice Ik∗ and θIk∗ are of course unknown.

The LPA algorithm tries to mimic this oracle value. In Č́ıžek, Härdle and Spokoiny

(2009), it is proved that under the SMB condition, the “oracle” property of the LPA

estimator θ̂Ik̂ satisfies the following property:

For θ ∈ Θ and let maxk≤k∗ E |L(θ̃Ik∗ , θ)|r1(B1) ≤ Rr(θ), one has:

E log{1 +
|LIk∗ (θ̃Ik∗ , θ)|r

Rr(θ)
} ≤ 1 + ∆ (18)

Further, we can obtain

E log{1 +
|LIk∗ (θ̃Ik∗ , θ̂Ik̂ )|r

Rr(θ)
} ≤ ρ+ ∆ (19)

This theorem tells us that although the false alarm occurs before the “oracle” choice,

i.e. k̂ ≤ k∗, under the SMB condition, the adaptive estimator θ̂Ik̂ does not go far

from the oracle value, which implies the LPA estimator does not induce large errors

into the estimations.

The SMB condition doesn’t hold if k̂ > k∗, which means the detected interval is

bigger than the “oracle” interval. However, the LPA estimator θ̂Ik̂ satisfies Theorem

4.3 in Č́ıžek, Härdle and Spokoiny (2009):

Let E∆Ik∗ (θ) ≤ ∆ for k∗ ≤ K, then LIk∗ (θ̃Ik∗ , θ̂)1(k̂ ≥ k∗) ≤ zk∗ ,

E log{1 +
|LIk∗ (θ̃Ik∗ , θ̂Ik̂)|r

Rr(θ)
} ≤ ρ+ ∆ + log{1 +

zrk∗

Rr(θ)
} (20)

It means θ̂Ik̂ belongs with a high probability to the confidence interval of the oracle

estimate θ̃Ik∗ , i.e. it is still a reliable approximation for the oracle value θIk∗ .

4 Simulation Study

We evaluate the performance of the LPA for the CIR model via simulations first.

We simultaneously change all three parameters (at, bt, σt)
> and assume there are

11



t a b σ
t ∈ [1, 500] 0.2 0.04 0.03

t ∈ [501, 1000] 0.5 0.06 0.1
t ∈ [1001, 1500] 0.8 0.01 0.07

Table 1: The parameter settings for simulations of the CIR process

two change points for each parameter in the process. Further, the structural breaks

occur at the same time in all three parameters. We simulate the CIR path 100 times

with the sample size T = 1500. Table 1 summarizes the parameter settings for the

simulations of the CIR model, the chosen values are in the range of parameters from

the globally CIR estimators.

0 300 600 900 1200

0

30

60

90

E
st

. a

Figure 2: LPA estimator â with simulated CIR paths. The dotted red lines are the
5%–95% pointwise confidence intervals of â, the blue line is the mean of â, and the
black line stands for the true process as set in Table 1.

The estimators â, b̂, and σ̂ are described in Figures 2 to 5. The blue lines respec-

tively depict the means of the corresponding estimators from the 100 simulations,

and the two dotted red lines are the 5%–95% pointwise confidence intervals for the

estimators. The black lines describe the respective real parameters. We use the first

250 data points as the training set referring to the moving window estimator, then

we estimate the CIR model by the LPA from the time point 251 to 1500. One can
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0 300 600 900 1200
−0.05

0

0.05

0.1

0.15

E
st

. b

Figure 3: LPA estimator b̂ with simulated CIR paths.The dotted red lines are the
5%–95% confidence interval of b̂, the blue line is the mean of b̂, and the black line
stands for the true process as set in Table 1.

see that for the mean reversion speed a, the LPA under the null contains the true

parameter.

Figure 3 presents the performance of the LPA estimator b̂. Its performance is rea-

sonable. One can obviously detect there are two jump points, which respectively

locate around time point 300 and 800. Taking the delay time into consideration, the

performance of b̂ coincides with the true process.

It is worth noting that the performance of the LPA estimator σ̂ is preferable to

that of â and b̂. The structural break points is obvious in Figure 4. Both the mean

value and the confidence intervals have the same trend as the true parameter path,

which indicates the LPA can capture more precise information for volatilities.

Figure 5 depicts the selected longest time homogeneous interval for each time point.

One can compare the selected homogeneous intervals with the LPA estimators, all of

which provide evidence for the performance of the LPA. In the initial setting, we have

two jumps respectively at 250, and 750. It is obvious in this figure that two jump

points locate respectively round 300 and 800. Both the 5%–95% pointwise confidence

13
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Figure 4: LPA estimator σ̂ with simulated CIR paths. The dotted red lines are the
5%–95% confidence interval of σ̂, the blue line is the mean of σ̂, and the black line
stands for true process as set in Table 1.

Mean SD Skewness Kurtosis
rt 0.0319 0.0176 -0.1159 -1.4104
drt −1.764× 10−5 0.0006 -0.7467 34.4856

Table 2: Statistical summary of three month treasury bill rate (daily data) with the
period from 2 January,1998 to 13 May, 2009

intervals and the mean of the length of intervals coincide with the parameter settings.

5 Empirical Study

5.1 Data Description

We use the three month treasury bill rate from Federal Reserve Bank of St. Louis

as a proxy for the short rate. It has been used frequently in the term structure lit-

eratures. The data consists of 2840 daily observations, ranging from 2 January,1998

to 13 May, 2009. The summary statistics are shown in Table 2.

The short rate and its daily change are displayed in Figure 6. Obviously, the volatil-
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Figure 5: The length of time homogenous intervals for simulated CIR paths. The
dotted red lines are the 5%–95% confidence interval, the blue lines is the mean of
the estimators length of time homogeneous intervals.

ity of interest rate is changing over time. Without doubt, there are jumps and break

points during the whole period; the interest rate from 1999 to 2001 is little volatile,

while from mid 2007 to 2009, the volatility of interest rate is higher than that in

other periods. On the basis of the phenomenon we observe from the figure that the

variation of interest rate is time varying, we fit the CIR model separately with three

different scenarios, the first estimation is using the whole sample, another is with

the observations from the beginning of 1998 to the end of July 2007, and the last

estimated period is from August 2007 to May 2009. The results are presented in

Table 3. All of the three parameters differ significantly during the three different

periods. For instance, the speed of mean reversion â is around 0.26 when using the

whole sample, and it changes to 0.14 with the data from 1998 to 2007, and in the

last period, it jumps to 3.69. Similar performance can be detected for the long run

mean b̂. Interestingly, for the volatility, it is relative low from 1998 to 2007, while it

increases to 0.228 in the last period, which can be verified by Figure 6.

Firstly, we use the moving window estimation to investigate the stability of the

coefficients in the CIR model. We specify three different window sizes as l = 250,

l = 500, l = 750. Figure 7, 8 and 9 separately presents the moving window esti-

mates â, b̂ and σ̂. Quite similar performances are illustrated both in â and b̂. One
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Figure 6: Three month treasure bill rate: 19980102—20090513. Top panel: Daily
yields; Bottom panel: Changes of daily yields.

Sample Size â b̂ σ̂
19980102–20090513 0.2657 0.0153 0.0944
19980102–20070731 0.1424 0.0252 0.0428
20070731–20090513 3.6792 0.0081 0.2280

Table 3: Estimated parameters of CIR model by MLE with three different time
periods.
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can find that Large variations exist in the process. The moving window estimator

â with a very large variation is shown in Figure 7. It is not surprising that â as

in the simulation is very sensitive to the data and the length of interval, even for

the window size 750, it is somewhat unstable. Similarly, big jumps exist in b̂. It

can be negative at some point, and always fluctuates a lot in the different periods.

However, the volatility σ̂ performs in a much more stable way. It keeps almost the

same value except in the last periods, where it jumps to a high volatility level.
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Figure 7: Moving window estimator â with window sizes 250, 500 and 750 (from left
to right).
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Figure 8: Moving window estimator b̂ with window sizes 250, 500 and 750 (from left
to right).
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Figure 9: Moving window estimator σ̂ with window sizes 250, 500 and 750 (from
left to right).

For the LPA algorithm, we calculate the critical values from 500 Monte Carlo runs.

We simulate the CIR path with different combinations of â, b̂, σ̂ which are chosen

from the estimators using different subsamples of the real data. The performance of

the critical values is described in Figure 10. One can notice, the critical value is a de-

creasing function with respect to the log length of intervals, which is consistent with

the theory mentioned above. Moreover, although we change the parameter settings

for the simulation, under the null, there are not very significant differences between

the critical values. We therefore choose the critical values based on the combination

of the values globally estimated from data, i.e. θ>0 = (0.2657, 0.0153, 0.0944)>.

The test results are shown from Figures 11 to 14. The â performs very similarly

to the moving window estimators. The interest rate volatility is characterized by a

fast mean reverting behaviour reflecting the impact of transient economic shocks,

such as central bank announcements of base rate changes. b̂ performs volatile in

different periods, which is consistent with the behaviour of the length of selected

time homogeneous interval, Figure 14. It is stable from 1999 to 2000, while the

variation becomes larger in 2001 to 2003. From 2003 to 2007, it turns to be stable

again, however in the last part, it reverts to a large variation again.

σ̂ performs relatively stable compared with the other two CIR estimators. We again

find three different regimes: from 2001 to 2003, the fluctuation of σ is increased;

from mid 2007, the variance jumps to a high level, which is also reflected in the
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Figure 10: Critical values for four combinations of θ, changing one or two from a,
b, σ with m0 = 40, K = 15 and initial value r0 = 0.05 referred by the real data.

length of the intervals Ik̂, Figure 14.

Figure 14 describes the time homogeneous intervals for each time point t, here

we evaluate from 1999, and we assume the first year is a time homogeneous inter-

val. We then compare the performance of the LPA with the moving window method.

It is worth noting that the length of the selected time interval has a close rela-

tionship with the regimes of the macroeconomy. On one hand, the recession regime

induces shorter homogeneous intervals, and on the other hand, the length is ex-

tended in blooming periods, where the macroeconomy is in a stable state. Let us

first analyze the interest rate before 2001. In that period, the economic activity

continued to expand briskly, and the variation was relatively small. We go on to

compare the short rate in 2001-2003 with the selected time homogeneous interval. In

this period, the US economy went into recession. It was influenced by the terrorist

attack on 11 September, 2001, the stock market crash in 2002 and the war in Iraq in

2003, which induced an instable macroeconomy: increased oil prices, overstretched

investment, too high productivity. All of these factors led to short selected intervals.

From 2004 to 2006, the economy headed towards a stable state again. The selected

intervals last longer than before. From 2007, the situation reversed, another global
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Figure 11: Estimated â for CIR model using three month treasure bill rate by LPA.

recession came. Again it can be confirmed by the shorter length of the selected

intervals.

Figure 15 depicts the in sample fitting. The data is described by the black line, and

the two red dashed lines stand for 10%–90% pointwise confidence intervals from the

simulated data, which is the same as calculating the critical values. The blue line is

the in sample fitting path with the values estimated by LPA, and the purple one is

a randomly selected CIR path from the simulation. One may notice that the LPA

estimated sample path matches the real data path very well, i.e. the LPA has an

acceptable performance for in sample fitting. The structural break points from the

fitted LPA path occur very closely to the real data path.

We further evaluate the forecasting performance of the LPA. We compare the fore-

casting result with the moving window estimators by means of absolute predic-

tion errors (APE). It is defined over a prediction period horizon H, APE(t) =∑
h∈H |rt+h − r̂t+h|t|/|H|, where r̂t+h|t represents the interest rate prediction by a

particular model. Both one-day and ten-day ahead forecasting are considered. Fig-

ures 16 to 18 present the performance. In each figure, the left panel stands for the

ratio from the forecasting with horizon of one day, and the right panel presents the

ten days ahead forecasting. It is clear to see that the LPA performs well especially
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Figure 12: Estimated b̂ for CIR model using three month treasure bill rate by LPA.
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Figure 13: Estimated σ̂ for CIR model using three month treasure bill rate by LPA.
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Figure 14: The selected longest time-homogeneous intervals using three month trea-
sure bill rate with ρ = 0.2, and r = 0.5. The first reported time period is in 1999.

1999 2001 2003 2005 2007 2009
0

0.02

0.04

0.06

Year

In
te

re
st

 R
at

e

Figure 15: In-sample fitting for CIR model using three month treasure bill rate. The
black line is the real data; The blue line is the fitted CIR path with the estimators
by LPA; The two red lines are 10%–90% confidence intervals simulated with the
global estimators; The purple line is a random selected CIR path.
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in the long horizon forecasting.

First, let us consider the result from one-step ahead forecasting. One sees that,

in general, the LPA is more preferable than the moving window estimation. Fur-

thermore, as we increase the moving window size, the variation of the ratio becomes

smaller, it is therefore obvious that the LPA performs relatively better, but when the

economy is in an unstable state, the LPA for one step forecasting can not perform

very precisely.

Next, we discuss the prediction results with the horizon of ten days (i.e. 2 weeks).

The results are very interesting. In comparison with one-step forecasting, the vari-

ation becomes smaller, and the ratios are more stable. Secondly, the LPA shows

a superior prediction performance. It is worthy noting that generally for ten-day

ahead forecasting, the LPA outperforms the moving window estimate in the whole

period. Additionally, the LPA forecasting performance improves as we compare

with longer moving window estimators, because it is not reasonable to assume the

parameter remains the same in a long period. The prediction is clearly better no

matter if it is in the stable state or in the volatile state, which indicates the proposed

LPA method shows advantages of forecasting. Additionally, we can confirm that the

moving window estimations can not be valid in long horizon forecasting.

Table 4 summaries the prediction performance for the LPA and moving window

(MW) estimations with the forecasting horizon of one day and ten days. We con-

sider the mean of absolute forecasting errors (MAE) for each method. Note that

for one-day ahead forecasting, there is no significant difference between the LPA

and the MW, and both of their MAE are quite small. However, in ten-day ahead

forecasting, the difference becomes huge. The accuracy of the MW decreases a lot

compared with the LPA, especially if we increase the window size, it is more obvious.

6 Conclusion

There are both considerable statistical evidence and economic reasons to believe

that the short interest rate is not stable. We apply a modern statistical method to

describe the dynamics of the short rate. With the simple CIR model, and by the

LPA method, we detect structural break points for the interest rate process, which

is consistent with the conclusion from the existing literature that the dynamics of
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Figure 16: The ratio of the absolute prediction errors between the estimators by
LPA (numerator)and moving window estimator (denominator) with window size
250. The left panel: One-day ahead forecasting; The right panel: Ten-day ahead
forecasting.

Forecasting Horizon MAE
l = 250 l = 500 l = 750

One Day LPA 4.7409×10−4 4.8516×10−4 4.9649×10−4

MW 4.7851×10−4 4.4181×10−4 4.1681×10−4

Ten Days LPA 0.0201 0.0215 0.0232
MW 0.1868 1.0032 1.8054

Table 4: The table reports the forecast evaluation criteria for one day ahead and ten
days ahead forecast of the short rate based on the LPA and moving window (MW)
estimation. The first column refers to the forecasting horizon. The second column
represents the mean absolute forecast errors according to different moving window
sizes.

interest rate is not stable. We obtain the time homogenous intervals, which is useful

to explain the regime switching point. We also compare our results with the moving

window estimators, and the results show that the LPA performs better in both in

sample fitting and out of sample forecasting, independent of it being in a stable or

unstable period.
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