
Computational Optimization Methods in Statistics, Econometrics and Finance

www.comisef.eu

COMISEF WORKING PAPERS SERIES

WPS-039  25/05/2010

M. Lyra

A. Onwunta

P. Winker

- Marie Curie Research and Training Network funded by the EU Commission through MRTN-CT-2006-034270 -



Threshold Accepting for Credit Risk

Assessment and Validation∗

Marianna Lyra† Akwum Onwunta‡ Peter Winker§

May 25, 2010

Abstract

According to the latest Basel framework of Banking Supervision,
financial institutions should internally assign their borrowers into a
number of homogeneous groups. Each group is assigned a probability
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determining the optimal number and size of groups that allow for sta-
tistical ex post validation of the efficiency of the credit risk assignment
system. Our credit risk assignment approach is based on Threshold
Accepting, a local search optimization technique, which has recently
performed reliably in credit risk clustering especially when considering
several realistic constraints. Using a relatively large real-world retail
credit portfolio, we propose a new technique to validate ex post the
precision of the grading system.
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1 Introduction

It is evident from the current financial and credit market crisis that credit
institutions should pursue a more valid approach to credit risk assignment
based on realistic assumptions. A core input for assigning bank clients into
credit classes are their default probabilities; that is, the probability that the
clients will not fulfill their credit obligations during the next, say, 1 year.
Having at hand these estimates, homogeneous clients are assigned into the
same class.1 The precise estimation, assignment and validation of credit
risk permit banks to retain an adequate capital level. This will ensure their
solvency not only under normal economic conditions, but also under more
extreme negative economic conditions with a given confidence level. In this
paper we deal with credit risk assignment and ex post validation.

The main contribution of this article is the determination of the optimal
number and size of groups necessary for the ex post validation of the effi-
ciency of a credit risk classification system. First, we grade borrowers using
as an indicator their default probability. The grading is made in such a way
as to minimize the within and maximize the between classes distance and
satisfy the constraints imposed by Basel Committee on Banking Supervision
(2006). Next, two validation techniques are compared that ensure the pre-
cision of the grading system. It is shown, that the precision level of the ex
post validation techniques is dependent on the portfolio size. The first vali-
dation technique relies on the precise statement of the number of defaults. A
lower and upper number of defaults in a bucket are defined using statistical
benchmarks. The second is based on the correct statement of the unexpected
losses, and hence the regulatory capital, as required by Basel Committee on
Banking Supervision (2006).

We validate our rating system by making the simplifying assumption
that default risks and actual defaults are independently and identically dis-
tributed. The independence assumption, to a reasonable extent, makes sense
particularly for retail credit portfolios (in the context of which we are doing
our empirical analysis) but does not hold in general. Obviously, defaults
are a two-state event and we therefore assume that they are binomially dis-
tributed.2

To classify borrowers into homogeneous buckets, we rely on Threshold

1We will be using the terms ’class’, ’grade’ and ’bucket’, interchangeably.
2To lessen the computational time though, in the empirical application we used the

normal approximation to the binomial distribution since our data set is relatively large.
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Accepting (TA) - an optimization technique suitable for the clustering of
credit risk. It originated in the early 1990s (Dueck and Scheuer (1990)) and
was established a few years later for applications in economics and finance
by Winker (2001). Under real world conditions, TA, as shown in Lyra et al.

(2010), grades borrowers more efficiently and effectively than other optimiza-
tion techniques such as differential evolution and genetic algorithm.

The paper proceeds as follows. Section 2 reports on credit risk assessment
under the framework of Basel II Capital Accord. Section 3 introduces the TA
heuristic optimization technique and its basic properties. Two techniques on
how to deal with Basel II constraints are also presented. Section 4 describes
the two validation techniques. Section 5 presents the data structure and
discusses the major results. Finally, Section 6 concludes and suggests further
possible improvements.

2 Basel II and Credit Risk Assignment

2.1 General Framework

The latest framework of Banking Supervision - Basel II (Basel Committee
on Banking Supervision, 2006) aims at maintaining the financial stability
of credit institutions. It allows for a new form of credit risk management
by providing the framework for internally estimating the capital level that
ensures bank solvency. The Basel II framework comprises three parts: mini-
mum capital requirements, authorities’ supervision of capital adequacy and
banks’ disclosures for market supervision. Of particular importance is the
adequate calculation of banks’ capital to account for credit, operational and
market risk. Our focus is on credit risk.

Under the new framework, there are two alternative approaches that a
bank can apply to determine the adequate capital level for credit risk, namely,
the standard approach and the internal rating-based approach (IRB). Insti-
tutions applying either approach should retain a minimum solvency ratio
greater than 8%. The solvency ratio is defined as the capital requirement for
assets’ credit risk divided by the ‘risk-weighted assets’:

Solvency ratio =
capital requirement

risk-weighted assets
≥ 8% . (1)

The standard approach requires credit risk ratings or risk weights for as-
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set values to be determined by an external credit rating agency. The IRB
approach allows the internal estimation of credit risk. This new risk assess-
ment practice allows for grading of small and medium bank clients, which
are not graded by (authorized) credit rating agencies. The IRB approach
classifies a bank’s assets into sovereign, bank, corporate, retail and equity.
For each asset category, a different capital is required. In our application, we
consider retail borrowers.

Banks are required to retain a minimum capital level to cover unexpected
losses from defaulted borrowers. Unexpected losses might result, for example,
from economic depression. While banks can cover expected losses through
pricing, provisions and write-offs, unexpected losses have to be covered with
capital charges on credit instruments (Basel Committee on Banking Super-
vision, 2005). Here, we assume that a bank’s stability is conditional only on
one factor, e.g. the general economic condition.

Next, to motivate the concept of conditional default probability which
we will often use in the rest of the paper, we adopt the structural (firm-
value) credit risk modeling approach based on a one-factor model. In a
structural model, a firm is said to default if its asset value (hereafter called
the ability-to-pay) falls below a certain threshold called the default threshold
(Merton (1974)). Let n be the number of borrowers in a given loan portfolio.
For a given borrower k ∈ {1, · · · , n} the expected loss amount, Lk, equals
the product of the exposure at default, EADk ∈ R, the loss given default,
LGDk ∈ [0, 1], and the default probability, pk ∈ [0, 1]; that is,

Lk = L(pk) = EADk · LGDk · pk.

Borrower k defaults when its ability-to-pay variable Ak has fallen below a
pre-specified threshold value, say, ck. More formally,

Ik = 1 ⇔ Ak ≤ ck, (2)

where Ik is the default indicator:

Ik = 1{Ak≤ck}. (3)

Here, we make the simplifying assumption that Ak is standardized and
normally distributed. Thus, the probability of default pk ∈ [0, 1] of the kth
obligor in the portfolio is given by

pk = P(Ak ≤ ck) = N(ck),
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where N is the cumulative standard normal distribution function. The de-
fault threshold ck is therefore linked to the default probability via

ck = N−1(pk). (4)

In order to aggregate the loss variables Lk of the individual obligors to a loss
variable L of the entire portfolio, the dependence structure of Ak needs to be
specified. Of course, obligors default and therefore the Bernoulli variables Ik
are generally not independent.3

Firms’ financial well-being depends on macroeconomic factors. This in-
duces cyclical default dependence. Consequently, a firm’s default probability
is a function of the realization of the state of the economy and is thus random.
This leads to the introduction of a factor model consisting of systematic and
idiosyncratic factors (see e.g. Bluhm et al. (2002)). More precisely, each
ability-to-pay variable Ak is decomposed into a sum of systematic factors
ψ1, . . . , ψm, with weights wk1, . . . , wkm, m < n and an idiosyncratic (or spe-
cific) factor εk, that is

Ak =
√
ρk

m
∑

i=1

wkiψi + εk

√

1 − ρk. (5)

Each systematic factor ψi is a centered random variable and it is assumed
that the vector ψ = (ψ1, . . . , ψm) follows am-dimensional normal distribution
with mean 0 = (0, . . . , 0) and covariance matrix Σ. The systematic weights
wk1, . . . , wkm ∈ R determine the impact of each systematic factor on the
ability-to-pay variable Ak. The systematic weights are scaled such that the
systematic component

φk :=
m
∑

i=1

wkiψi, (6)

as well as each idiosyncratic factor εk, are standardized normally distributed
variables. The idiosyncratic factors ε1, . . . , εn are independent of each other
as well as independent of the systematic factors.

An important instance of this model class is the homogeneous one-factor
model. One-factor models have the advantage of incorporating simple depen-
dence structures which are to a certain degree sufficient for a rudimentary

3In this analysis actual defaults are assumed to be independent. This is a rather sensible
assumption for retail loans. Further work will be focused on relaxing the independence
assumption and using a portfolio of corporate loans.
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form of credit risk management.4 In these models, obligors depend on a factor
representing the general state of the economy. In particular, (5) specializes
to

Ak = ψ
√
ρk + εk

√

1 − ρk. (7)

The dependency (or the asset correlation5) equals ρk. It represents the sensi-
tivity of a firm with respect to the systematic factor ψ. For retail portfolios,
it is given by (Basel Committee on Banking Supervision (2006), § 283)

ρk = 0.03

[

1 − exp(−35 · pk)

1 − exp(−35)

]

+ 0.16

[

1 − 1 − exp(−35 · pk)

1 − exp(−35)

]

. (8)

In the asset correlation function (8) above, the figures 0.03 and 0.16 are
the limit asset correlations for very high and very low default probabilities,
100% and 0%, respectively. Empirical findings in the literature, however,
reveal that there is sufficient variation in asset correlations as to make a con-
stant assumption inaccurate (Lopez (2002) and Roesch and Scheule (2010),
Chapter 10). Correlations between these limits are modeled by a decaying
exponential weighting function that displays the dependency on default prob-
ability. The rate of decay of the exponential function is determined by the
so-called ‘k-factor’ which is 35 for retail exposures. This line of argument
is motivated by empirical findings that there exists a negative relationship
between asset correlation and default probability.

However, the relationship between asset correlation and default probabil-
ity still remains a controversial issue since authors come to rather different
conclusions. For instance, Lopez (2002) finds that asset correlation is a de-
creasing function of default probability and an increasing function of the
firm’s asset size. The former result seems quite intuitive: the higher the de-
fault probability, the higher the idiosyncratic (individual) risk components of
a borrower. The default risk depends less on the overall state of the economy
and more on the individual risk drivers. Nevertheless, the empirical evidence
in Roesch and Scheule (2010), Chapter 10 and Dietsch and Petey (2004)

4However, it should be pointed out that portfolio models that use a single systematic
factor across all industries do not provide sufficient flexibility to capture the complex
dependence structure exhibited by the portfolio, see e.g. Roesch and Scheule (2010),
Chapter 10.

5A formal definition of asset correlation and its relationship with default correlation
are given in the Appendix.
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show that there is no systematic dependence between the asset correlation
and default probability.

Besides, Lee et al. (2009) find that the stylized relationship for retail ex-
posures is an increasing one instead and may underestimate portfolio risk for
high default probability portfolios. These findings therefore call for a review
of the use of this relationship by the Basel Committee in the calculation of
banks’ capital requirement. Observe that (8) does not take into account the
firm’s size although Lopez (2002) argues that the larger a firm, the higher its
dependency upon the overall state of the economy, and vice versa; smaller
firms are more likely to default for idiosyncratic reasons. The paper fur-
ther shows that the decline in ρk due to an increase in default probability
is faster in (8) than suggested by calibrated asset correlation. It finds, how-
ever, that for well-diversified portfolios, ρk and calibrated asset correlation
are reasonably comparable.

The variable ψ can be interpreted as a portfolio common factor, such as
an economic index. The term ψ

√
ρk is the obligor’s exposure to the common

factor and the term εk

√
1 − ρk represents the obligor’s specific risk. Condi-

tional on a given realization of ψ, one finds from (2), (4) and (7), that the
default probability of the k-th obligor is

pc,k = P(Ik = 1|ψ) = N

(

N−1(pk) − ψ
√
ρk√

1 − ρk

)

. (9)

Observe from (9) that the conditional probability pc,k depends on both
the asset correlation and the default probability. In particular, pc,k is a
decreasing function of ψ : positive realizations of the macroeconomic factor
correspond to a healthy economy whereas negative values imply a distressed
economy. Basel II requires banks to hold a regulatory capital in order to
ensure with confidence 99.9% that the total actual losses from extraordinary
events, in the subsequent year, will not exceed the provisions given by the
sum of expected loss among borrowers,

∑

k Lk. Thus, in the context of Basel
II, ψ is specified by N−1(0.001) so that Equation (9) becomes

pc,k = N

(

N−1(pk) −N−1(0.001)
√
ρk√

1 − ρk

)

. (10)
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2.2 Credit Risk Assignment

Banks can either estimate only the default probabilities using the foundation
IRB approach, or estimate internally the default probabilities and the LGDs
using the advanced IRB approach (Basel Committee on Banking Supervision,
2006). A qualifying IRB approach requires the design of a risk rating sys-
tem for credit risk assignment and validation, that fulfills specific minimum
requirements. Banks’ borrowers should be assigned to a number of grades
according to their default probabilities (pk). We seek the optimum number
of homogeneous but distinguishable grades with sufficient size to permit the
precise ex post validation of the grading system. The optimal bucket set-
ting is the one that minimizes the regulatory capital and satisfies the other
constraints imposed by Basel II.

In particular, for a retail portfolio, all borrowers in each grade g are
assigned the same default probability pg and loss-given-default LGDg. To
optimize the number of homogenous grades and to ensure that no structurally
similar buckets exist, alternative objective functions are minimized. Equation
(11) transforms mathematically paragraph 401 of Basel II, where the within
grades’ variance resulting from the deviation of pk from pg must be minimized:

min
∑

g

∑

k∈g

(

pk − pg

)2

. (11)

Alternatively, a bank can assess the accuracy of the credit risk assignment
system by minimizing the sum of the squared distance of individual condi-
tional probabilities pc,k from pooled ones:6

min
∑

g

∑

k∈g

(

pc,k − pc,g

)2

. (12)

Another way to evaluate the efficiency of a grading system is to make
sure that portfolio obligors with similar loss structure are placed in the same
grade. Thus, we can minimize the total absolute deviation of L(pk) from
L(pg).

min
∑

g

∑

k∈g

∣

∣L (pk) − L
(

pg

)
∣

∣ . (13)

6We point out here that we can get a trivial solution by equating the number of buckets
to the number of obligors in a portfolio. However, this practice is not admissible by Basel
II and does not satisfy the constraints it imposes (Section 3.2).
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In order to comply with Basel II regulatory capital requirements, a bank
should be concerned about keeping the adequate regulatory capital. Risk or
regulatory capital RC is the one that ensures solvency for credit institutions
in case the cumulative realized losses from extraordinary events

∑

k RLk

exceed the provisions
∑

k Lk. That is,

RC(pk) = 1.06 · [RL(pc,k) − L(pk)] ,

where7

RLk = RL(pc,k) = EADk · LGDk · pc,k, ,

and adjusting Equation 12 to comply with capital requirements

min
∑

g

∑

k∈g

∣

∣RC(pk) −RC(pg)
∣

∣ . (14)

To construct optimal classes (in terms of number and width) of homoge-
neous obligors, (14) implies that banks can grade borrowers to minimize the
distance between individual regulatory capital RC(pk) and regulatory capital
based on mean pg, RC(pg). To calculate RC(pg) we substitute pk with pg in
(10). Thus, (9) becomes,

pc,g = N

(

N−1(pg) −N−1(0.001)
√
ρk√

1 − ρk

)

. (15)

3 An Optimization Heuristic for Credit Risk

Assignment

In application to financial problems, heuristics are proven to be a reliable tool
not only for binary classification (Varetto (1998) and Shin and Lee (2002)),
but also for credit risk rating (Krink et al. (2007), Krink et al. (2008) and
Lyra et al. (2010)), portfolio performance improvement (Dueck and Winker
(1992) and Zhang and Maringer (2009)).

A diverse range of optimization heuristics have been used for credit risk
assignment. Some of them are Genetic Algorithms (GA), Differential Evo-
lution (DE) and Threshold Accepting (TA), introduced by Holland (1975),

7The multiplier 1.06 controls possible underestimation of RC(pk) in the advanced IRB
approach (Basel Committee on Banking Supervision (2006), § 14).
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Storn and Price (1997) and Dueck and Scheuer (1990), respectively. While
DE, has already shown better performance than GA and PSO in tackling
the credit risk bucketing problem (Krink et al. (2007)), TA outperforms DE
in terms of precision and computational time (Lyra et al. (2010)).

Our discussion in this paper is focused on TA. TA is part of a broad
class of optimization heuristics, called local search heuristics. Their basic
property is that they iteratively update a set of initial candidate solutions
that improve the objective function.

3.1 Threshold Accepting

A key feature of TA is that it enables the search to escape local minima by
accepting not only an improvement, but also an impairment of the objective
function value, as long as it does not exceed a certain threshold τ . Until the
stopping criterion I is met, the current candidate solution χ0, for a given ob-
jective function f, is compared with a neighboring solution χ1, the condition
∆ = (f(χ1)− f(χ0)) < τ is checked, where the threshold value τ determines
to what extent not only local improvements, but also local impairments are
accepted. A general outline of the TA implementation is presented in Algo-
rithm 1. For a comprehensive overview of TA see Winker (2001).

Algorithm 1 General description of TA algorithm.
1: Initialize I and τiter , iter = 1, 2,. . . ,I
2: Select at random a set of initial cluster thresholds χ0 ∈ pn

3: for iter = 1 to I do

4: Generate neighbor at random, χ1 ∈ N (χ0) (neighborhood of χ0)
5: if f(χ1) − f(χ0) < τiter then

6: χ0 = χ1

7: end if

8: end for

Winker and Fang (1997) suggest a data driven approach for the threshold
sequence τ that is constructed ex-ante based on the problem’s search space.
Local differences of the fitness function are sorted in a descending order
representing a diminishing threshold sequence. The reducing neighborhood
structure allows a wider search space at the beginning of the search and
a greedy search towards the end (see Gilli and Winker (2009) for a detail
review).
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Alternatively, Lyra et al. (2010) propose a threshold sequence based on
the differences in the fitness of candidate solutions that are found in the
area of the search space currently under consideration. Local differences
actually calculated during the optimization run are considered. As a result,
the threshold sequence adapts to the region of the search space to which
the current solution belongs and to the objective function used. By using
a moving average of 100 local differences, a smooth threshold sequence is
obtained. In addition, the threshold values are downweighted as a linear
function of the current number of iterations (iter), namely 1− iter/I. In our
empirical study we apply this threshold sequence generation approach.

3.2 Constraint Handling Techniques for TA

The design of a risk rating system for the assignment of borrowers into ho-
mogenous grades is subject to a number of constraints imposed by Basel
II. Apart from having at least seven clusters for non-defaulted borrowers (§
404 of Basel Committee on Banking Supervision (2006)), the EAD in each
bucket shall be no higher than 35% of the total borrowers’ exposure in a
given portfolio (Krink et al. (2007)). Thus, we avoid having high concentra-
tion of exposure in a given grade. Further, pg for each bucket g should exceed
0.03%, (§ 285 of Basel Committee on Banking Supervision (2006)). An addi-
tional constraint regarding a lower bound on the number of borrowers in each
bucket is necessary to ensure that no bucket is empty and that the number of
borrowers in each bucket is adequate to make statistical inferences.8 In this
contribution, this lower bound is set using statistical benchmarks presented
in Section 4.

Constraint handling techniques are applied to handle the constraints im-
posed by Basel II. Here we consider two techniques: the first technique ac-
cepts a new candidate solution considering first the number of constraint
violations and then the objective function value. More precisely, in every
iteration the algorithm selects between the old and the new solution the one
that violates fewer number of constraints and/or the one that satisfies ∆ < τ .
Once a feasible solution has been found, this technique limits the search to
the feasible region and avoids any infeasible ones.

The next technique is the so-called penalty technique, which is introduced

8Previous literature (Krink et al. (2007)) specifies that it should exceed a given per-
centage, e.g. 1%, of the total number of borrowers in a given portfolio.
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when TA with the previous constraint handling technique fails to reach the
feasible region. This approach allows for penalized infeasible solutions in
order for the algorithm to enter the unconstrained search space. For that a
penalty term is multiplied by the objective function (so as to ’force’ the TA
algorithm to enter eventually the feasible region again). Here, the candidate
solutions get punished according to the number of constraints they violate
(β). The exact derivation of β is given in the Appendix. The magnitude
of the penalty term increases as the number of iterations (iter) increases to
ensure that feasible solutions are obtained at the end (I).9

fc,g = fn,g · (1 + exp(iter/I))β. (16)

4 Optimal Number of Homogenous Grades

The central aim of an efficient grading system is to obtain an optimal number
of rather homogeneous grades. In what follows, we statistically verify that
our classification algorithm does exactly that. First, in Section 4.1, we pro-
pose a validation approach based on the actual number of defaults. In this
context, one is basically interested in knowing whether, at a given confidence
level, the observed actual number of defaults matches or is quite close to the
one predicted by the grading system. The confidence level must be chosen
meaningfully by regulation authorities and / or banks based on their objec-
tives. In the case of ex post validation of the actual number of defaults, not
all desired confidence levels are feasible for a given sample size. Moreover,
in the interest of supervisory authorities and banks, this verification can fur-
ther be extended to check whether or not the unexpected loss, and hence
the regulatory capital is adequately calculated. In this spirit, following Lyra
et al. (2010) we also validate our classification system based on unexpected
loss. This approach is discussed in Section 4.2.

4.1 Actual Number of Defaults Verification

To analyze the ex post validation of the actual number of defaults in a given
grade g, we compare the actual number of defaults Ma

g with the forecast Mf
g

9We have chosen an exponential function of iter to ensure that the penalty increases
very fast with the number of iterations so that the candidate solutions get punished more
as the number of iterations increases. In comparison to alterative functional forms, the
exponential function resulted more frequently in feasible solutions.
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based on the mean default probability pg and the number of borrowers in g
grades, ng:

Mf
g = ngpg .

To judge whether a deviation of Ma
g from Mf

g should be considered as being
significant, i.e. challenging the credit classification system, the distribution
of Mf

g has to be analyzed under the null hypothesis that pg is an unbiased
estimator. Furthermore, to statistically verify the grading system we shall
make sure, that the actual number of defaulted obligors in a grade does
not exceed the lower bound Mf

g,l and the upper bound Mf
g,u of the number

of forecasted defaulted obligors with more than a percentage ε. Thus, ε
indicates the precision level for which the grading system can be ex post
verified. Thus with a given probability 1 − α, α ∈ [0, 1],

Pint = P

(

Mf
g,l ≤Ma

g ≤Mf
g,u

)

≥ 1 − α . (17)

The corresponding confidence interval for the default rates, i.e. Ma
g /ng

will shrink with a growing number of borrowers ng in bucket g, all other
conditions being equal. Thus, any requirement on the size of the confidence
interval will impose a lower bound on ng. We consider symmetric confidence
intervals around Mf

g of size 2ε as long as the confidence interval falls in the
interval [0, 1], otherwise, the confidence interval is censored, i.e.,

Mf
g,l = ng · max(pg − ε, 0), (18)

Mf
g,u = ng · min(pg + ε, 1). (19)

The choice of an absolute definition of approximation errors rather than
imposing a relative error margin is motivated by its economic impact. In
fact, any deviation of the actual ex post default rates from the estimated
ones by, e.g., one percentage point will have the same effect on actual defaults
independent from the level of the estimated default rate ceteris paribus.

Given that the actual default on a given loan is a binary variable, the
number of actual defaults within a bucket can be modeled by the binomial
distribution.10 Hence, for a given α, a (1 − α) confidence interval for Ma

g is
modeled by:

10Here, we made the simplifying assumption that that actual defaults are independent,
which might be a sensible assumption for retail loans, but might be challenged for other
segments of the loan market. In such a case, the statistical model would have to be
adjusted.
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Pint =

M
f
g,u
∑

k=M
f
g,l

(

ng

k

)

· pk
g ·
(

1 − pg

)ng−k ≥ 1 − α. (20)

Given that we impose a minimum constraint on the precision, we do not
have to solve Equation (20) for the number of elements in the grade ng.
Instead, we need to confirm that Pint ≥ 1 − α for all grades. Thus, the
grading mechanism is efficient if we can verify with accuracy α and ε that
(17) is satisfied.

However, not all combinations of α and ε will be feasible for a given total
number of loans to be considered, taking into account the other constraints
imposed by the Basel II framework. In fact, a rough calculation shows that
for our data with a mean p of around 6% in the last bucket, values of α = 5%
and ε = 1% would require around 3 000 observations in that bucket. With
a small sample size this is not feasible given the constraints imposed, in
particular the constraint that no more than 35% of total exposure at default
should belong to one bucket. Yet, our sample of roughly 95 000 observations
is sufficient for reporting feasible results even for α = 1.5% and ε = 1%.

4.2 Unexpected Losses Verification

As an alternative to our new approach, we also validate our model based on
the correct statement of unexpected loss UL, and hence, regulatory capital
RC, since RC = 1.06 ·UL.11 We use the unexpected loss constraint because
Basel II emphasizes it. Moreover, we would like to compare this validation
approach with the validation of the actual number of defaults.

For validation based on unexpected losses, however, the lower bound Mf
g,l

and the upper boundMf
g,u of the number of forecasted defaulted obligors from

(17) are transformed in such a way that we obtain

ng · pg ·
(

1 − ε · UL
ULg

)

≤Ma
g ≤ ng · pg ·

(

1 + ε · UL
ULg

)

, (21)

11UL equals [RL(pc,k) − L(pk)]
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where

UL =
∑

k

(EADk · LGDk · (pc,k − pk)), (22)

ULg =
∑

k∈g

(EADk · LGDk · (pc,g − pg)) (23)

for some predefined ε (see Appendix). UL is the mean unexpected loss of
the entire portfolio whereas, ULg is the mean value of the grade unexpected
loss ULg. Since defaults are binomially distributed, the above idea can be

expressed in terms of (20) but with Mf
g,l and Mf

g,u replaced by

Mf
g,l = ng · pg ·

(

1 − ε · UL
ULg

)

(24)

Mf
g,u = ng · pg ·

(

1 + ε · UL
ULg

)

, (25)

respectively. Equations (17) and (21) simply guarantee a sufficient number of
borrowers in each bucket g so that, with a certain confidence level 1−α, one
can ex ante state that the actual number of defaults lies within the interval
[Mf

g,l;M
f
g,u]. Observe that this interval increases with the number of obligors

and the pooled probability of the bucket, as well as ε.12

Since a high number of buckets reduces the precision error resulting from
substituting the individual default probabilities by the ’pooled’ ones, we
choose an optimum number of buckets that is consistent with some pre-
defined values for α and ε. In practice both α and ε are chosen meaningfully
by regulation authorities and / or banks based on their objectives. As noted
before in the case of ex post validation of the actual number of defaults, not
all combinations of α and ε are feasible for a given sample size.

5 Empirical Analysis

5.1 Data

We use a real-world test portfolio consisting of 93 580 retail borrowers. The
LGDs range between 0.17 and 1. The default probabilities vary between

12The above specification replaces the constraint to have at least 1% of all borrowers in
each bucket.
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0.000001% and 30%. Figure 1 shows the distribution of the default proba-
bilities. The distribution is highly skewed to the right (as expected), with
mean and variance of 2.1% and 0.14%, respectively. The expected loss of the
portfolio amounts to 0.877% of the total exposure.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Probabilities of default

F
re

qu
en

cy

Figure 1: The distribution of the PDs

5.2 Discussion of Empirical Results

In this section we report the ex post validity of the credit risk grading system.
Figure 2 shows, for over 10 restarts of the algorithm, the evolution of the mean
values of the objective function minimizing the within grades variance (12)
as the number of grades g changes, whereas Figure 3 depicts the same for the
objective function value minimizing RC (14). In both cases, the left graph
represents the mean value using the validation approach discussed in Section
4.1 (see equations (18) and (19)) while the right one is for the approach in
Section 4.2 (see equations (24) and (25)). Detailed results are reported in
the Appendix, Tables 1 and 2. In these experiments, the grading system is
considered valid if it ensures, at a given confidence level13, that the actual

13In the Appendix a grid search for determining the optimal precision level is provided.
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number of defaults neither falls below the lower bound nor exceeds the upper
bound specified in Equations (18) and (19), (24) and (25).
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Figure 2: Mean value for objective (12) as a function of grade number (g)
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Figure 3: Mean value for objective (14) as a function of grade number (g)

For the objective function minimizing the within grades variance (12), a
general finding is that our proposed validation approach using the number
of defaults (Section 4.1) results, for most bucket settings, in better mean
objective function values with lower variation for 10 restarts than the unex-
pected loss approach (Section 4.2). For this specific objective function and
the proposed technique, the optimum bucket setting seemed to be at g = 30
for α = 1.5% and ε = 1%.14 For the unexpected loss validation technique

14When α = 2.5% and ε = 3% the grading system resulted in an optimum bucket setting
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(Section 4.2), the optimal bucket number is found at g = 17.15

In Table 2, for the objective function value minimizing RC (14), the new
simple validation technique based on actual number of defaults (Section 4.1)
results in an optimum bucket number of g = 35. For the unexpected loss
validation (Section 4.2) approach the optimum number of grades is 17. After
this number of buckets no feasible solutions could be found.

The two validation techniques result in different optimum number of ho-
mogeneous buckets. This is not surprising since the unexpected loss valida-
tion imposes stricter constraints and hence only a smaller number of larger
buckets satisfies them. By applying a simple, computationally less demand-
ing, validation technique based on the number of borrowers in the buckets,
we can validate ex post the precision of a grading system. However, the
precision level is a function of the portfolio size. Hence, the bucket size is
a determinant factor for the precise validation of a credit risk grading tech-
nique. According to the objectives of each credit institution either validation
approaches can be applied to determine the optimal number of buckets. This
contradicts the usual practices of many credit institutions, where the num-
ber of buckets and hence their size is fixed. This number varies from bank
to bank; for instance, Deutsche Bank uses 26 buckets. Although by fixing
the number and size of buckets makes the clustering simpler and consistent
through time, it endangers possible under or over estimation of RC.

6 Conclusion

We have studied the use of Threshold Accepting (TA) for an optimal clus-
tering of banks’ borrowers based on their default probabilities. We have
also proposed a new computationally tractable technique based on the ac-
tual number of defaults in each homogeneous bucket to validate ex post the
precision of the grading system. In particular, this is achieved by making
the simplifying assumption that the defaults are independent and identically
distributed. This assumption makes sense in the case of retail portfolios and
yields reasonable results. The validation approach based on the unexpected

above 55. This is a result of less strict constraints. Since, such relaxed bounds do not
result in a reasonable bucket setting, we do not further discuss these findings.

15In all results no feasible solutions could be found after the reported bucket number
even after applying the penalty technique (Section 3.2) and after increasing the iteration
number to 1 000 000 and the restarts to 20.
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loss constraint is computationally more intensive and time-consuming than
the approach we have proposed.

Depending on the objectives of the credit institution, either of the two
validation approaches are applied. Furthermore, the size of the portfolio, the
parameters (i.e. α and ε), and hence the bucket size, are determining factors
for the precise validation of a credit risk grading technique. In particular,
with a relatively large data set of a real-world credit portfolio, we find that the
validation approach based on the actual number of defaults generally yields
better mean values of the objective functions considered in this paper than
its unexpected loss counterpart. However, for small portfolios the ex post
validation based on the actual number of defaults approach is not feasible at
a reasonable level of precision.

The optimal number of grades, suggested by the TA classification algo-
rithm, is only applicable for one period window (here for one year). It also
depends on the objective functions and the associated constraints faced by
the bank. In a dynamic framework, TA might result in a different num-
ber of grades for optimal classification. However, different number of grades
over two periods can make the calculation of credit migration matrices very
difficult, if not impossible. As it is often desirable by credit institutions to
calculate how the obligors ‘migrate’ over time with respect to their PDs, it
is an open challenge to apply TA for several time periods for the calculation
of credit migration matrices.

Another challenge is the relaxation of the independence assumption among
actual defaults. It is indeed a rather simplistic assumption for modeling de-
faults in general. Thus, a more complex distributional assumption (such
as heavy tailed multivariate t-distributions) may be required to model the
dependence structure of defaults, especially for other loan types such as cor-
porate. Finally, one can further investigate the possible relationship between
sample size and confidence and precision levels.
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Appendix

Asset and Default Correlation

Since correlation is our measure of dependence, we proceed to discuss default
and asset correlations. The dependence structure of the default indicators as
defined in (2) and (3) is specified through the factor model (5).

The default or event correlation ρD
jk of obligors j and k is defined as the

correlation of the respective default indicators. Since

Var(Ik) = E(I2

k) − (E(Ik))
2 = E(Ik) − (E(Ik))

2 = pk − p2

k,

we have that the default correlation equals

ρD
jk = Corr(Ij , Ik) =

E(IjIk) − pjpk
√

(pj − p2

k)(pj − p2

k)
. (26)

There exists an obvious link between default correlation ρD
jk and asset

correlation ρjk. For given default probabilities, the default correlations ρD
jk

are determined by joint default probability E(IjIk) according to (26). It
follows from (2) and (3) that

E(IjIk) = P(Aj ≤ cj, Ak ≤ ck) =

∫ cj

−∞

∫ ck

−∞

fjk(u, v)dudv,

where fjk(u, v) is the joint density function of Aj and Ak. Hence, default
correlations depend on the joint distribution of Aj and Ak. If (Aj, Ak) is
bivariate normal the correlation of Aj and Ak determines the copula of their
joint distribution and hence the default correlation:

E(IjIk) =
1

2π
√

1 − ρjk
2

∫ cj

−∞

∫ ck

−∞

exp

(

−u
2 − 2ρjkuv + v2

2(1 − ρjk
2)

)

dudv. (27)

Using historical ratings data one can compute default correlation ρD
jk and as-

set correlation ρjk from (26) and (27), see, e.g., in Roesch and Scheule (2010),
Chapter 10, the contribution on validating structural credit risk portfolio
models. Note that for general ability-to-pay variables outside the multivari-
ate normal class, the asset correlations do not fully determine the default
correlations, McNeil et al. (2005).
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Penalty Function

To calculate the exponent β in (16) the candidate solutions get punished
according to the number of constraints they violate.

β =

(

0.5 ·
∑

g

DEAD,g ·
∑

k∈g EADk,g − 35% ·∑g

∑

k∈g EADk,g

65%
∑

g

∑

k∈g EADk,g

)

(28)

+

(

0.5 ·
∑

g Dn,g · 1−α−Pint

1−α
∑

g Dn,g

)

,

and fc,g is the current value of the objective function in a specific grade.
The probability Pint is as defined in Equation (20). If no constraints are
violated, then β = 0; if the number and magnitude of constraints violated is
maximum, then β = 1. The first component of the exponent β refers to the
EAD constraint, whereas the second component constrains the actual default
number so as to maintain the statistical validity of the classification system.
It checks whether the actual default number in each grade stays inside a
predefine lower and upper bound. A detailed explanation and derivation of
Pint are given in Section 4.1. Both components of the exponent β are equally
penalized. More precisely, the indicator variables DEAD,g and Dn,g are given,
respectively, by

DEAD,g =

{

1, if
∑

k∈g EADk,g > 35% ·∑g

∑

k∈g EADk,g

0, otherwise

and

Dn,g =

{

1, if Pint < 1 − α

0, otherwise.

Grid Search

We extend the previous literature by investigating what levels of precision
can be achieved with a relatively large dataset. In an attempt to determine
the optimal precision level we run the algorithm for 7, 11 and 13 bucket
settings, changing every time the precision parameters α and ε. The results
depict the feasible region as we alter the two parameters.
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Figures 4 and 5 illustrate the boundaries of the feasible search space
for objectives (12) and (14) when considering the actual number of defaults
constraint (left hand side) and the unexpected loss constraint (right hand
side), explained in Sections 4.1 and 4.2, respectively. With about 95 000
observations the proposed classification system could be validated with the
following precision levels: For objective (12) and the actual number of de-
faults constraint (equations (18) and (19)) with precision close to α = 2.5%
and ε = 3%. In this application we test the possible ex post validation of
the grading system using also α = 1.5% and ε = 1%.16

The optimal α and ε for the unexpected loss constraint constraint (equa-
tions (24) and (25)) are α = 5% and ε = 20%. These are the minimum
accuracy levels for which a feasible solution can be found. For objective
(14) the minimum precision levels are α = 1.5% and ε = 1% for the actual
number of defaults constraint and α = 5% and ε = 22% for unexpected loss
constraint, respectively. It should be specified that these values are optimal
only for the specific dataset length.
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Figure 4: Feasible region for different confidence and precision levels for
objective 12

Results for Optimal Number of Grades

Table 1 presents results for the objective function minimizing within grades
variance (12) and Table 2 for the objective function minimizing RC (14),

16The precision level of α = 2.5% and ε = 3% imposes a less strict constraint. Such
relax bounds are may not be desirable by a credit institution.
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both for the two validation techniques. TA is run for 1 000 000 iterations
for both objective functions. (12), whereas for objective function (14) only
500 000 iterations are run. Since objective function (14) is computationally
more demanding, we decided to limit its iterations to keep the computational
time at the same level. TA was restarted 10 times for each objective function
and some descriptive results are presented in Tables 1 and 2. These include
the best objective value obtained over 10 restarts of the algorithm, the mean,
the worst value, the standard deviation, the 80th and 90th percentiles and
the frequency the best value appears over the 10 restarts.
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Table 1: Objective function for minimizing within grades variance (12) with
it = 1 000 000

Best Mean Worst s.d. q80% q90% Freq

g = 7

TAa 18.6836 18.6836 18.6836 3.6731 · 10−8 18.6836 18.6836 8/10
TAb 18.6552 24.4809 46.2984 8.2478 24.8204 24.8221 1/10
TAc 49.0847 49.0849 49.0852 0.0002 49.0852 49.0852 1/10

g = 10

TAa 9.7293 9.7293 9.7293 5.3490 · 10−7 9.7293 9.7293 1/10
TAb 9.1118 10.3545 10.9233 0.8520 10.8863 10.9108 1/10
TAc 45.9783 46.0478 46.1033 0.0408 46.0769 46.0862 1/8

g = 13

TAa 6.6716 6.6716 6.6716 2.9353 · 10−6 6.6716 6.6716 1/10
TAb 6.5974 10.0515 14.5469 2.7151 10.4310 12.4890 1/6
TAc 44.7501 44.8534 44.9603 0.0749 44.9027 44.9315 1/4

g = 16

TAa 5.2454 5.2454 5.2454 1.9032 · 10−6 5.2454 5.2454 1/10
TAb 10.3647 10.3647 10.3647 0.0000 10.3647 10.3647 1/1
TAc 44.3419 44.3771 44.4123 0.0352 44.3982 44.4052 1/2

g = 17

TAa 4.9268 4.9268 4.9268 2.3253 · 10−6 4.9268 4.9268 1/10
TAb 12.6106 16.3882 20.1657 3.7775 18.6547 19.4102 1/2
TAc 44.2395 44.2461 44.2527 0.0066 44.2500 44.2513 1/2

g = 20

TAa 4.2859 4.2871 4.2921 0.0024 4.2859 4.2912 1/10
TAc 44.0334 44.0334 44.0334 0.00 44.0334 44.0334 1/1

g = 30

TAa 3.4613 3.4617 3.4623 3.3069 · 10−4 3.4613 3.4614 1/10
TAc 43.7280 43.7280 43.7280 0.00 43.7280 43.7280 1/1

g = 35

TAa 3.3043 3.3111 3.3170 0.0038 3.3128 3.3149 1/6

g = 40

TAa 3.2202 3.2210 3.2239 0.0016 3.2218 3.2228 1/5

g = 45

TAa 3.1456 3.1501 3.1523 0.0024 3.1521 3.1522 1/5

g = 50

TAa 3.0979 3.1095 3.1196 0.0070 3.1150 3.1177 1/8

g = 55

TAa 3.0707 3.0824 3.0771 0.0044 3.0808 3.0816 1/6

aActual number of defaults constraint, α = 2.5% and ε = 3%
bUnexpected loss constraint, α = 5% and ε = 20%. After g = 17 no feasible solution

could be found.
cActual number of defaults constraint, α = 1.5% and ε = 1%. After g = 30 no feasible

solution could be found.
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Table 2: Objective function for minimizing RC (14) with it = 500 000

Best Mean Worst s.d. q80% q90% Freq

g = 7

TAa 6,228,874 6,228,874 6,228,874 9.82 · 10−10 6,228,874 6,228,874 10/10
TAb 6,419,727 6,423,788 6,426,403 2,052.62 6,419,727 6,420,826 1/10

g = 11

TAa 4,165,257 4,167,952 4,182,902 5, 998.45 4,165,257 4,165,257 7/10
TAb 5,534,072 5,636,388 5,814,094 101,283.20 5,534,072 5,538,839 1/10

g = 13

TAa 3,425,092 3,435,627 3,436,798 3,701.71 3,425,092 3,436,798 1/10
TAb 5,192,944 5,608,280 5,929,156 230,629.77 5,809,236 5,846,709 1/9

g = 15

TAa 3,245,441 3,245,636 3,247,260 571.05 3,245,441 3,245,445 1/10
TAb 5,627,306 6,285,472 7,166,148 647,632 6,724,873 6,945,510 1/3

g = 17

TAa 3,183,949 3,268,412 3,471,793 76,331.08 3,292,805 3,316,323 1/10
TAb 5,564,546 7,639,295 9,055,551 1,499,331 8,752,446 8,903,999 1/3

g = 19

TAa 2,331,271 2,484,098 2,713,301 197,258.90 2,331,271 2,331,273 1/10

g = 21

TAa 2,541,485 2,551,267 2,561,056 9,764.05 2,561,027 2,561,042 1/4

g = 24

TAa 2,343,282 2,343,283 2,343,283 0.66 2,343,283 2,343,283 1/2

g = 27

TAa 2,201,570 2,201,575 2,201,579 4.66 2,201,577 2,201,578 1/2

g = 30

TAa 2,094,821 2,095,378 2,095,934 556.07 2,095,711 2,095,822 1/2

g = 35

TAa 1,977,254 1,977,425 1,977,596 171.08 1,977,528 1,977,562 1/2

g = 41

TAa 2,653,114 2,885,592 3,118,070 232,478.22 3,025,079 3,071,575 1/2

g = 45

TAa 2,651,825 2,651,825 2,651,825 0.00 2,651,825 2,651,825 1/1

aActual number of defaults constraint, α = 1.5% and ε = 1%
bUnexpected loss constraint, α = 5% and ε = 22%. After g = 17 no feasible solution

could be found.
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