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Abstract:  The El Niños Southern Oscillations (ENSO) is a periodical phenomenon 
of climatic interannual variability, which could be measured through either the 
Southern Oscillation Index (SOI) or the Sea Surface Temperature (SST) Index. The 
main purpose of this paper is to analyze these two indexes in order to capture the 
volatility inherent in ENSO. The empirical results show that both the ARMA(1,1)-
GARCH(1,1) and ARMA(3,2)-GJR(1,1) models are suitable for modelling ENSO 
volatility accurately. The empirical results show that 1998 is a turning point, which 
indicates that the ENSO strength has increased since 1998. Moreover, the increasing 
ENSO strength is due to the increase in greenhouse gas emissions. The ENSO 
strengths for SST are predicted for the year 2030 to increase from 29.62% to 81.5% if 
global CO2 emissions increase by 40% to 110%, respectively. This indicates that we 
will be faced with an even stronger El Nino or La Nina in the future if global 
greenhouse gas emissions continue to increase unabated. 
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WORKING PAPER No. 31/2010  
 

How Volatile is ENSO? 

 

1. Introduction 

The El Niños Southern Oscillations (ENSO) is a periodical phenomenon of 

climatic interannual variability which has been found to be associated with regional 

variations in climate throughout the world.  ENSO includes three phases, El Niños, La 

Niña, and Neutral, which could be defined through either the Southern Oscillation 

Index (SOI) or the Sea Surface Temperature (SST) Index.  These ENSO phases have 

been found to have significant impacts on global/local agriculture, water, and fishery 

sectors during alternative ENSO phases, strength, and frequency.  For instance, the 

relationship between ENSO and precipitation, stream flow, floods and droughts has 

been investigated and analyzed (McBride and Nicholls, 1983; Ropelewski and 

Halpert, 1989; Dracup and Kahya, 1994; Moss et al., 1994; Piechota and Dracup, 

1996) in recent years, reflecting the importance of this topical issue. 

There is an extensive literature devoted to estimating the economic impacts of 

ENSO on the agricultural and water sectors, such as Handler (1983), Adams et al. 

(1995), Adams et al. (1999), Solow et al. (1998), Chen et al. (2001), Chen, McCarl 

and Hill (2002), Dilley (1997), Naylor et al. (2001), Rosenzweig et al. (2000), and 

Brunner (2002). These studies provide not only the importance of ENSO information 

to the agricultural economy, but are also linked to fluctuations in ENSO and the 

macro-economy (Debelle and Stevens, 1995; Brian et. al., 2008).  

During the past decade, some attention has been transferred to issues of food 

safety and public health.  Some notable examples, including Davis (2001), have been 
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devoted to the relationship between ENSO events and famine, while Kovats et al. 

(2003) investigated the variation in cholera risk in Bangladesh, and malaria epidemics 

in South Asia and South America. Other investigations suggest that hurricane losses 

are much greater during a La Niña year in the U.S.A. (Pielke and Landsea, 1999), 

while Chen et al. (2005) used ENSO frequency data to investigate Edwards Aquifer 

water and agricultural management on the phases of ENSO. 

The above suggests that the damage of ENSO events could be mitigated if ENSO 

information could be forecasted accurately.  This implies that ENSO information, 

including the strength and frequency of ENSO phases, need to be obtained.  However, 

ENSO strength and frequency have shifted (Timmermann et al., 1999), and 

greenhouse gas emissions may be one such cause.  In other words, ENSO volatility 

varies over time. The first purpose of this paper is to investigate ENSO volatility 

using generalized autoregressive conditional heteroskedasticity (GARCH) time series 

models. Such empirical findings will provide important information regarding ENSO 

volatility. The second purpose of the paper is to link the relationship between ENSO 

strength and greenhouse gas emissions, and to predict the future ENSO strength based 

on alternative climate change scenarios from IPCC (2007). Such empirical findings 

will provide critical information regarding the impact of the possibly stronger El Nino 

and La Nina occurrences in the near future on greenhouse gas emissions.  

The remainder of the paper is organized as follows. Section 2 presents the 

empirical models, while Section 3 discusses the data and descriptive statistics.  

Section 4 analyzes the empirical results.  The linkages between the ENSO strength 

and greenhouse gas emissions are estimated in Section 5. Some concluding remarks 

are given in the final section. 

2. The Models 
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Modeling ENSO phases using ARMA and/or ARCH models has been considered 

by Chu and Katz (1985), Trenberth and Hoar (1996), and Ahn and Kim (2005).  Chu 

and Katz (1985) found that monthly SOI can be modeled adequately by AR(3) 

processes, while Trenberth and Hoar (1996) found that ARMA(3,1) can be fitted for 

SST by using maximum likelihood and Akaike’s Information Criterion (AIC).  Ahn 

and Kim (2005) found that ARCH is a more suitable model for SOI series.  Each of 

these studies paid attention either to the SOI or SST index, but not both, which may 

misrepresent ENSO characteristics as both of these indexes can be used to define 

ENSO phases.  On the other hand, although empirical research has used time series 

models, including ARMA, ARCH, and GARCH, to analyze the ENSO index, the 

model adequacy of ENSO volatility has not yet been examined. 

In order to answer these two questions, the generalized autoregressive 

conditional heteroskedasticity (GARCH) model will be applied to the SOI and SST 

indexes. Bai and Perron’s (1998, 2003) approach will be adopted in order to capture 

the structural break point of the ENSO series, which could identify alternative time 

periods for purposes of estimating ENSO volatility.   

2.1 Conditional Mean and Conditional Volatility Models 

Based on the pioneering work of Engle (1982) in capturing time-varying 

volatility, the autoregressive conditional heteroskedasticity (ARCH) model, and 

subsequent developments forming the generalized ARCH (GARCH) model of 

Bollerslev (1986), has been used to capture volatility.  The GARCH model is most 

wildly used for symmetric shocks, but when asymmetric shocks exist, the GJR model 

of Glosten et al. (1992), or the EGARCH model of Nelson (1991), are also popular. 

Some further theoretical developments have been suggested by Wong and Li (1997), 

and Ling and McAleer (2002a, 2002b, 2003a, 2003b) and McAleer (2005). The 
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volatility models to be used in this section have been discussed by, among others, 

McAleer et al. (2007) and Divino and McAleer (2010).   

In this paper, we consider the stationary AR(1)-GARCH(1,1) or ARMA(p,q)-

GARCH(1,1) models for the SOI and SST series data, namely ty : 

1 2 1 ,t t ty yφ φ ε−= + +     for 1,..., ,t n=                           (1) 

( , )t ty ARMA p q ε= +  

where tε  is unconditional shocks (or movements in the indices of SOI or SST) are 

given by: 

    
2

1 1

, ~ (0,1),

,
t t t t

t t t

h iid

h h

ε η η

ω αε β− −

=

= + +
                                        (2) 

and ω ≥ 0, 0α ≥ , 0β ≥  are sufficient conditions to ensure that the conditional 

variance 0th ≥ . Ling and McAleer (2003b) indicated equation (2)  could be modified 

to incorporate a non-stationary ARMA(p,q) conditional mean and a stationary 

GARCH(r,s) conditional variance. In (2), the α  (or ARCH) effect indicates the short 

run persistence of shocks, while the β  (or GARCH) effect indicates the contribution 

of shocks to long run persistence (namely,α β+ ).  

    As the GARCH process in equation (2) is a function of the unconditional shocks, 

the moments of tε  need to be investigated. Based on the studies of  Ling and Li 

(1997) and Ling and McAleer (2002a, 2002b) (see also Bollerslev (1986) and Nelson 

(1990), the necessary and sufficient condition for the existence of the second moment 

of tε  for GARCH(1,1) is 1α β+ <  and, under normality, the necessary and sufficient 

condition for the existence of the fourth moment is 2 2( ) 2 1α β α+ + < . 

    The effects of a positive shock on the conditional variance, th , is assumed to be the 

same as a negative shock of a similar magnitude in the symmetric GARCH model. In 
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order to accommodate asymmetric behavior, Glosten et al. (1992) proposed the GJR 

model, for which GJR(1,1) is defined as follows: 

2
1 1 1( ( )) ,t t t th I hω α γ η ε β− − −= + + +                                     () 

where 0ω > , 0α ≥ , 0α γ+ ≥ , 0β ≥  are sufficient conditions for 0th >  and ( )tI η is 

an indicator variable defined by 

    
1

( )
0tI η 

= 


     
0.

0,
t

t

ε

ε

<

≥
 

as tη  has the same sign as tε . The indicator variable differentiates between positive 

and negative shocks, so that asymmetric effects in the data are captured by the 

coefficient γ , with the expectation that γ ≥0. The asymmetric effect, γ , measures the 

contribution of shocks to both short run persistence, / 2α γ+ , and to long run 

persistence, / 2α β γ+ + . 

Ling and McAleer (2002b) derived the unique strictly stationary and ergodic 

solution of a family of GARCH processes, which includes GJR(1,1) as a special case, 

a simple sufficient condition for the existence of the solution, and the necessary and 

sufficient condition for the existence of the moments. For the special case of 

GJR(1,1), Ling and McAleer (2002b) showed that the regularity condition for the 

existence of the second moment under symmetry of tη  is 

1 1,
2

α β+ + <                                                    (4) 

and the condition for the existence of the fourth moment under normality of tη  is 

2 232 3 3 1,
2

β αβ α βγ αβ γ+ + + + + <                                 (5) 

while McAleer et al. (2007) showed that the weaker log-moment condition for 

GJR(1,1) was given by 

0])))((ln[( 2 <++ βηηγα ttIE ,                                      (6) 
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which involves the expectation of a function of a random variable and unknown 

parameters. 

An alternative model to capture asymmetric behavior in the conditional variance 

is the Exponential GARCH (EGARCH(1,1)) model of Nelson (1991), namely: 

1 1 1log log ,t t t th hω α η γη β− − −= + + + 1β <                          (7) 

where the parameters α , β  and γ  have different interpretations from those in the 

GARCH(1,1) and GJR(1,1) models. 

As noted in McAleer et al. (2007), there are some important differences between 

EGARCH and the previous two models, as follows: (i) EGARCH is a model of the 

logarithm of the conditional variance, which implies that no restrictions on the 

parameters are required to ensure 0th > ; (ii) Nelson (1991) showed that 1β <  

ensures stationarity and ergodicity for EGARCH(1,1); (iii) Shephard (1996) observed 

that 1β <  is likely to be a sufficient condition for consistency of QMLE for 

EGARCH(1,1); (iv) as the conditional (or standardized) shocks appear in equation (3), 

1β <  would seem to be a sufficient condition for the existence of moments; and (v) 

in addition to being a sufficient condition for consistency, 1β <  is also likely to be 

sufficient for asymptotic normality of the QMLE of EGARCH(1,1). 

Furthermore, EGARCH captures asymmetries differently from GJR. The 

parameters α and γ  in EGARCH(1,1) represent the magnitude (or size) and sign 

effects of the conditional (or standardized) shocks, respectively, on the conditional 

variance, whereas α  and α γ+  represent the effects of positive and negative shocks, 

respectively, of a similar magnitude on the conditional variance in GJR(1,1). 

2.2 Modelling Structural Breaks 
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The strength, duration, and frequency of ENSO phases have increased during the 

last two decades (Trenberth and Hoar, 1996; Hall et al., 2001), which suggests that 

there may have been structural breaks in ENSO.  Much research related to structural 

breakpoints have been undertaken by Quandt (1958), Chow (1960) Andrews (1993), 

and Hansen (2001), which need a priori break points before implementation.  

However, the approach by Bai and Perron (1998, 2003) (hereafter BP) does not need 

the a priori assumption of break points. 

The BP method provides a comprehensive treatment based on the following 

steps. First, consider the supF( i | 0 ) type tests (that is, a series of Wald tests) of a 

non- structural break (i=0) against i=k breaks. This test requires a pre-specification of 

a number of breaks for inference, and then to use the double maximum test (UDmax 

and WDmax) of the null hypothesis of no structural break against an unknown number 

of breaks. These tests are used to determine if there is at least one structural break, 

while the structural break is determined endogenously.  In this paper, the maximum 

number of breaks (i) is chosen to be 5, which is based on the Liu, Wu and Zidek 

(LWZ) criterion.  Following the estimation approach of Bai and Perron (1998, 2003), 

if these tests show evidence of at least one structural break, then the number of breaks 

can be determined by using the supF( i+1| i) test, which performs parameter constancy 

tests for every subsample obtained by cutting off at the estimated breaks, and then by 

adding a break to a sub-sample associated with a rejection. This process is repeated by 

increasing i sequentially until the test fails to reject the null hypothesis of no 

additional structural breaks.   

3. Data and Descriptive Statistics  

The most comment indexes to describe ENSO phases are referred to as the 

Southern Oscillation Index (SOI) and Sea Surface Temperature (SST) Index, which 

are monthly data sets.  SOI is calculated from the monthly inverse variations in the air 
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pressure difference between Tahiti (17.5̊S, 149.6˚W) in the South Pacific Ocean and 

Darwin (12.4̊S, 130.9˚W) in northern Austral ia. Positive values of the SOI are 

popularly known as a La Niña phase, while negative values are called El Niño. SST is 

the water temperature close to the surface in the Equatorial Pacific Ocean (that is, 4 

for the region 5°N–5°S, 120°– 170°W).  If the periods during 5-month rolling means 

of the monthly SST anomalies in the above-mentioned area are C05+  or more for at 

least six consecutive months, this is called a Niño year (Trenberth, 1997).  

Figure 1 plots the time series data set for SOI and SST.  These two graphs 

indicate periods of high volatility followed by others of relatively low volatility, 

which implies that using homoskedastic residuals to model volatility behaviour is 

inappropriate. Furthermore, we also find that volatility in the most recent periods is 

higher than in the earlier periods, as shown in the left graph of Figure 1, which 

implies that ENSO volatility has been increasing.   

The data sets for the SOI and SST observations are collected from the Climate 

Prediction Center from January 1933 to July 2007 and January 1950 to April 2007, 

respectively.  Table 1 displays the descriptive statistics for the SOI and SST series.  

The SOI series has a larger variance than the SST series. The Ljung-Box Q-statistics 

for SOI and SST are given as Q(12)=1290.20 and Q(12)=2149.50, respectively, which 

correspond to p-values of the two test statistics of less than 5%, thereby suggesting 

that SOI and SST are correlated.  In order to test normality, the JB Lagrange 

multiplier test statistic is used. Table 1 shows that SOI and SST are not normally 

distributed, as the p-values of the JB statistics are less than 5%.  

    Before establishing the volatility model for the SOI and SSI series, unit roots tests 

have to be implemented to ensure the data of the SOI and SSI series are stationary. 

The most common unit root tests are those of Dickey and Fuller (1979, 1981), who 

developed tests of the null hypothesis of a unit root against the alternative of 
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stationarity. In this paper, the augmented Dickey-Fuller (ADF) unit root test is 

calculated for the SOI and SST series. The results of the unit root tests are reported in 

Table 2, which indicate that both SOI and SST are stationary at the 1% significance 

level.  

4. Empirical Results 

4.1 AR(p) and ARMA(p,q) Processes 

In order to investigate ENSO volatility, a suitable time series model needs to be 

determined that satisfies appropriate regularity conditions. The first task is to 

determine the processes for the mean equation. From Tables 3, the ARMA(1,1) 

process for the SOI series has the smallest Schwarz Bayesian Information Criterion 

(BIC), while ARMA(3,2) has the smallest BIC for the SST series. The p-values of the 

Ljung-Box Q statistics of the residuals from the fitted models indicate that there is no 

autocorrelation at the 5% level. The estimated ARMA(1,1) and ARMA(3,2) models 

are seen to be appropriate models for the SOI and SST series, respectively.  Therefore, 

the specification of the mean and variance equations for SOI and SST are given as 

follows: 

    (1,1) ,tSOI ARMA ε= +   

conditional volatility ={ }GARCH(1,1), GJR(1,1) or EGARCH(1,1) ,  

    (3, 2) ,tSST ARMA ε= +  

conditional volatility ={GARCH(1,1), GJR(1,1) or EGARCH(1,1)}. 

4.2 Alternative Volatility Models for SOI and SST 

    The empirical estimates for alternative volatility models for the SOI and SST series 

are shown in Tables 4 and 5. The estimated model for the SOI and SST series for 

GARCH(1,1) shows that all the estimated coefficients satisfy the sufficient regularity 
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conditions for the conditional variance to be positive ( 0th ≥ ). Moreover, the log-

moment and second moment conditions are satisfied for SOI, so the QMLE for the 

two series are consistent and asymptotically normal. The estimates for the GJR(1,1) 

model show that SOI and SST satisfy the sufficient conditions for conditional 

volatility and the log-moment condition, which indicates that the QMLE of the 

parameters of the conditional volatility models for SOI and SST are consistent and 

asymptotically normal. 

  All the β  estimates from the EGARCH(1,1) model for SOI and SST are less 

than one in absolute value, which indicates that the estimates are likely to be 

consistent and asymptotically normal. As EGARCH(1,1) is a model of the logarithm 

of the conditional variance, there is no parametric restriction for conditional volatility 

to be positive. The size effects for the SOI and SST series have positive impacts on 

the conditional variance. These estimation results indicate that the sign effects have 

larger impacts than the size effects on the conditional variance.  Furthermore, the 

appropriate model for the SOI series could be chosen by the BIC criterion and the 

regularity conditions. The GARCH (1,1) model for the SOI and SST series is the 

optimal model as it has the smallest BIC value. 

4.3 Structural Change  

    In order to examine whether structural change exists for the SOI series, the BP 

approach is implemented, and the estimates are shown in Table 6. The Table shows 

that the values of UDmax and WDmax are greater than the 5% critical value, which 

indicates the probable existence of structural breaks. As the values of F(1|0), F(2|0), 

F(3|0), F(4|0), F(5|0) exceed the critical value at the 5% significance level, while the 

sequential supF(i+1|i) exhibits significance only for i=1, this suggests there is only 

one break in the SOI series, which occurs at 1998(4).. 
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The empirical results show there is a structural break for the SOI series in 1998. 

Based on either the SOI or SST index, the 1997-98 El Nino year was the strongest on 

record for any El Nino over the past 40 years. For instance, there were 14 El Nino 

years from 1950 to 1998, based on the definition of ENSO using the SST index. The 

3-month rolling means of the SST anomalies in the El Niño 3.4 region (5oN-5oS, 

120o-170oW)] for 1997-98 is 1.841, which is greater than for any other El Nino year. 

Such evidence explains why there is a structural break in 1998. The strongest SST 

index in 1997-98 could be the result of global greenhouse gases emissions. For 

instance, Timmermann et al. (1999) have shown that global warming may cause the 

strength and frequency of ENSO events to change. In other words, the continuous 

growth of greenhouse gas emissions shifts the probability of strong El Nino and La 

Nina events. Such a relationship between ENSO strength and global greenhouse gas 

emissions will be examined later.  

4.4 Estimating the ENSO Volatility between two Different Structural Breaks  

    The section investigates and compares the ENSO volatility before and after the 

structural breakpoint. From the estimates of structural change, the breakpoint is 

located at April 1998, which will be treated as a boundary to split the sample into two 

periods for the SOI and SST series. In other words, the first period is from January 

1950 to April 1998, while the second period is from May 1998 to July 2007. We 

estimated the ARMA(1,1)-GARCH(1,1) model for SOI and the ARMA(3,2)-

GARCH(1,1) model for SST.   

    The empirical results of volatility for SOI and SST are presented in Table 7. The 

ARMA(1,1)-GARCH(1,1) estimates for SOI suggest that the short run persistence of 

shocks in periods 1 and 2 are 0.008 and 0.438, respectively, while the long run 

persistence of shocks in periods 1 and 2 are 0.359 and 0.530, respectively. The 

ARMA(3,2)-GARCH(1,1) estimates for SST suggest that the short run persistence of 
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shocks in periods 1 and 2 are 0.255 and 0.046, respectively, while the long run 

persistence of shocks in periods 1 and 2 are 0.402 and 0.706, respectively. Both SOI 

and SST have larger long run persistence of shocks during the second period from 

May 1998. The estimates show that ENSO volatility has increased since 1998, which 

implies that the ENSO strength and frequency have increased recently. In other 

words, the ENSO strength using SOI and SST during the period 1998 to 2007 has 

increased by 47% and 75%, respectively, which is consistent with the findings in 

Timmermann et al. (1999).  

5. The Strength of ENSO and Greenhouse Gas Emissions 

Greenhouse gas emissions increase as the economy grows, with carbon dioxide being 

the major greenhouse gas. Increasing carbon dioxide will lead to increasing greenhouse gases. The increasing 

concentrations of these greenhouse gases is called thergreenhouse effect that will lead 

to global climate change as the average temperature of the Earth’s surface increases 

(and hence global warming). Such an abnormal increase in temperatures is correlated 

with ENSO events. Based on this, we will analyze the relationship between the 

strength of ENSO and greenhouse gas emissions, and examine how these gases affect 

the frequency and strength of El Ni o. 

A quantitative definition of El Ni o, originally proposed by the Japan 

Meteorological Agency (JMA), and modified by the Climate Variability and 

Predictability (CLIVAR) project, gives five-month rolling means of SST anomalies in 

the Nino 3.4 region (5°N-5°S, 170°W-120°W) that exceed 0.4°C for six months or 

more, based on accepted concepts and designed to be consistent with previous 

recognized events.  Conversely, La Ni a occurs when this index is lower than -0.4oC 

for at least six consecutive months.  If the value of the index lies between -0.4oC and 

0.4oC, it represents a normal state. Figure 1 represents a plot of SST from January 

1950 to March 2005. From the right graph of Figure 1, we can easily distinguish 
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which are the El Ni o / La Ni a years. For example, for the period 1982 to 1983, El 

Ni o was in its warm phase, with the Sea Surface temperature above normal.  From 

this plot, we observe that SST seems to have gained greater strength recently. 

  In order to analyze how greenhouse gases (especially for carbon dioxide) affect 

the strength and frequency of El Ni o and La Ni a, we analyse the SST and carbon 

dioxide emissions over the period 1950 to 2008. Thus, in order to determine whether 

increasing greenhouse gas emissions will lead to a greater strength of El Ni o/La Ni

a, we analyse the SST anomalies in the Nino 3.4 region’s data base using the 

definition of El Ni o and La Ni a by JMA and CLIVAR. If the value for which the 

12-month rolling means of SST anomalies in the Nino 3.4 region exceeds 0.4°C（or  

lie below -0.4°C）, the dependent variable is represented by the absolute value of the 

mean of the months which exceed 0.4°C or lie below -0.4°C. If the value for which 

the 12-month rolling means of SST anomalies in the Nino 3.4 region lie between -

0.4oC and 0.4oC, the dependent variable is represented by 0.4. Hence, we would have 

a large number of observations in our sample for which the SST anomalies are 0.4, 

which is an example of censored data. 

The Tobit model is a regression model for censored distributions, which 

means there are no observations beyond a certain point. If there is a large proportion 

of observations at this censoring point, Ordinary Least Squares (OLS) techniques may 

lead to biased estimates. Based on this, we can specify the model as: 
 

=iy 4.04.0 ** −≤≥+ iiii yoryifuxβ                      

      4.04.04.0 * <<− iyif        

(8) 
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where *
iy  is the value for which the 12-month rolling means of SST anomalies lie in 

the Nino 3.4 region, ix  is the carbon dioxide emission at time i, and iu  is the error term which is 

assumed to be normally distributed with zero mean and variance 2σ .   

The results of the Tobit regression are presented in Table 8. The estimated 

coefficient shows the expected signs that carbon dioxide emissions have a positive 

effect on the value of SST anomalies in the Nino 3.4 region.  Thus, as carbon dioxide 

emissions increase, the value of SST anomalies in the Nino 3.4 region will be higher, which 

explains why the strength of El Ni o or La Ni a will increase as more greenhouse 

gases are emitted. .   

 In order to forecast the strength of ENSO using future climate change, the 

estimates from Table 8 with future projections of Carbon Dioxide emissions are 

applied. Based on the IPCC (2007) report, global GHG emissions are projected by 

increasing a range of 9.7 to 36.7 GtCO2-eq (25 to 90%) between 2000 and 2030, 

while CO2 emissions from energy use between 2000 and 2030 are projected to grow 

by 40% to 110% over the same period. Therefore, an increases of 40% to 110% of 

CO2 emissions is applied in this paper. Maddala (1983) shows that the prediction 

equation for the Tobit model can be written as j
j

x
x

yE βσβ )/'()(
Φ=

∂
∂  where σ  is the 

standard error of the estimated equation and Φ is the cumulate distribution function. 

The forecast of ENSO strength in 2030 will increase by 29.62% to 81.5% if global 

CO2 emissions increase by 40% to 110%, respectively. 

6. Concluding Remarks  

Three major contributions of this paper are as follows. The first finding is to 

determine an empirically adequate model of volatility of the Southern Oscillation by 

checking the regularity conditions of the estimated models, and then detecting 

whether structural breaks exist in the climate indexes. The GARCH, GJR and 
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EGARCH models were estimated for the SOI and SST indexes, to answer the 

following questions: Under what conditions do GARCH-type processes have finite 

moments? Under what conditions are they stationary? These questions are important 

as the existence of moments permits verification of theoretical models to match 

stylized facts, such as fat tails and the temporal persistence observed in financial data 

(Carrasco and Chen, 2002). Although there have been many contributions to the 

ARCH/GARCH literature, it seems that until recently very little attention has been 

paid to appropriate model selection. Therefore, we conclude that nonlinear models are 

suitable for modelling the SOI and SST indexes after checking the regularity 

conditions.  

    In the second task, we tested for structural breaks in SOI and SST by using the 

Bai and Perron (1998, 2003) test, and then estimated the volatility of the SOI and SST 

indexes based on the structural breaks. The results showed that SOI had a structural 

break point in 1998(04). Therefore, we re-estimated the ARMA(1,1)-GARCH(1,1) 

model for SOI and the ARMA(3,2)-GARCH(1,1) for SST to examine volatility with 

1998(04) as a structural change point. The results indicated that the contribution of 

shocks to long run persistence of SOI and SST during 1998(05)-2007(07) was larger 

than during 1950(01)-1998(04), such that the volatility of ENSO over the decade had 

become stronger than during the previous 50 years. In other words, the ENSO strength 

has increased significantly since 1998. Such an increase in the ENSO strength may 

lead to greater damage worldwide. Chen et al. (2008) have shown that the additional 

welfare will lead to a loss in the global rice market by US$595 million and US$637 

million if the strength of the El Nino and La Nina events, respectively, were to 

continue to increase unabated. 

Finally, the linkage between ENSO strength and carbon dioxide was examined 

anda positive relationship was found. This implies that the strength of El Ni o or La 
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Ni a will increase as more greenhouse gases are emitted. Such estimated outcomes 

with the future projections of Carbon Dioxide emissions are used to forecast the 

strength of ENSO under future climate change scenarios. We are able to predict that 

ENSO strength in 2030 will increase by 29.62% to 81.5% if global CO2 emissions 

increase by 40% to 110%, respectively. This gives a very strong indication that we 

will faced with far stronger El Nino or La Nina effects in the future if global 

greenhouse gas emissions are not brought under greater control. 
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Figure 1. SOI and SST series 
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Table 1. Descriptive Statistics for the SOI and SST Series 

Variables Number of 
observations Mean Max Min Std Dev Q(p) JB 

SOI 895 -0.147 2.900 -4.600 1.048 1290.20 
(0.00) 

30.09 
(0.00) 

SST 691 0.018 2.85 -2.250 0.859 2149.50 
(0.00) 

19.09 
(0.00) 

Note: 1. Q(p) is the Box-Pierce statistic of serial independence. 
     2. JB is the Jarque-Bera Kagrange multiplier test of normality. 
     3. Values in parentheses denote p-values. 
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Table 2. ADF Unit Root Test for SOI and SST Series 
Variables Level First-Difference Level 

 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 
SOI -8.17(12)* -8.24(9)* -8.06(9)* -20.60(8)* -20.59(10)* -20.61(7)* 

SST -7.87(10)* -7.90(10)* -7.86(9)* -15.76(9)* -15.75( 9)* -15.77(8)* 

Note 1: * represents significance at the 1% level.  
2: Model 1:auxiliary regression equation with only intercept. 
  Model 2: auxiliary regression equation with only time trend. 

Model 3: auxiliary regression equation with non intercept and time trend. 
3: BIC is the criterion for selecting the optimal lag length, and values in 

parentheses denote the lag length. 
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Table 3. ARMA(p,q) Models for SOI and SST Series   

SOI SST 
p q BIC p q BIC 
1 0 2.481 1 0 0.573 
1 1 2.387 1 2 0.561 
2 0 2.405 2 1 0.530 
2 2 2.391 2 2 0.531 
3 0 2.392 3 1 0.524 
5 2 2.410 3 2 0.481 
5 4 2.412 3 3 0.490 
6 2 2.421 3 4 0.540 
6 3 2.416 4 1 0.527 
   4 2 0.534 
   4 3 0.538 
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Table 4. ARMA(1,1) and GARCH, GJR and EGARCH Models for SOI 

Variable(SOI) 
Model 

GARCH(1,1) GJR(1,1) EGARCH(1,1) 
Mean Equation    

AR(1) 0.896(0.021) 0.901(0.019) 0.896(0.019) 
MA(1) -0.477(0.044) -0.474(0.042) -0.471(0.042) 

Variance Equation    
ω  0.337 (0.145) 0.470 (0.166) -0.532 (0.144) 
α  0.103 (0.044) 0.202 (0.063) 0.245 (0.071) 
β  0.361 (0.152) 0.127(0.267) 0.077(0.043) 
γ   -0.139 (0.072) 0.292(0.261) 

Log moment -0.351 -0.719  
Second moment 0.464 0.127  

BIC 2.399 2.405 2.404 
Note: Values in parentheses denote standard errors. 
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Table 5. ARMA(3,2) and GARCH, GJR and EGARCH models for SST 

Variable(SST) 
Model 

GARCH(1,1) GJR(1,1) EGARCH(1,1) 
Mean Equation    

AR(1) 0.823(0.045)  0.849(0.032)  0.858(0.029)  
AR(2) 0.957(0.006)  0.955(0.006)  0.958(0.005)  
AR(3) -0.846(0.041)  -0.866(0.029)  -0.876(0.026)  
MA(1) 0.233(0.060)  0.188(0.048)  0.179(0.044)  
MA(2) -0.762(0.059)  -0.807(0.048)  -0.816(0.044)  

Variance Equation    
ω  0.003(0.045) 0.051(0.051)  -1.667(0.450)  
α  0.034(0.006) 0.179(0.092)  0.400(0.095)  
β  0.930(0.059) 0.224(0.110) 0.447(0.053) 
γ   0.125(0.177) -0.067(0.176)  

Log moment -0.015 -0.712  
Second moment 0.963 0.466  

BIC 0.483 0.488 0.485 
Note: Values in parentheses denote standard errors. 
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Table 6. Results of SOI for Structural Break Tests 
Test Hypothesis Statistics 

  SOI  Critical valuea 

UDmax H0:m=0 H1:m>0 13.14 *  8.88 
WDmax H0:m=0 H1:m>0 13.14 *  9.91 
supF(i|0) Test H0:m=0 H1:m=1 13.14 *  8.58 
 H0:m=0 H1:m=2 8.04*  7.22 
 H0:m=0 H1:m=3 7.37*  5.96 
 H0:m=0 H1:m=4 5.58*  4.99 
 H0:m=0 H1:m=5 4.50*  3.91 
supF(i+1| i) Test supF(2| 1)  7.34*  8.58 
 supF(3| 2)  2.49  10.13 
 supF(4| 3)  2.02  11.14 
 supF(5| 4)  0.00  11.83 
LWZ 1 0.1662*    
 2 0.1889    
 3 0.2228    
 4 0.2581    

Note: “a” is the critical value at the 5% significance level. 
“*” represents significance at the 5% level. 

     LWZ(1): denotes the number of breaks chosen by LWZ is 1. 
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Table 7.  Estimates of ENSO Volatility for Different Periods 

 SOI SST 
 Period 1 Period 2 Period 1 Period 2 

Mean Equation     
AR(1) 0.905 

(0.024) 
0.869 

(0.044) 
0.890 

(0.023) 
0.287 

(0.245) 
AR(2) 

 
 0.960 

(0.010) 
0.709 

(0.111) 
AR(3)   -0.899 

(0.021) 
-0.168 
(0.196) 

MA(1) -0.453 
(0.051) 

-0.439 
(0.141) 

0.112 
(0.033) 

1.015 
(0.255) 

MA(2)   -0.880 
(0.036) 

0.177 
(0.231) 

Variance Equation     
ω  0.363 

(0.243) 
0.413 

(0.236) 
0.058 

(0.017) 
0.015 

(0.015) 
α  0.008 

(0.053) 
0.438 

(0.210) 
0.255 

(0.077) 
0.046 

(0.012) 
β  0.351 

(0.408) 
0.092 

(0.279) 
0.147 

(0.190) 
0.660 

(0.316) 
Note: Values in parentheses denote standard errors. 



    Table 8  Tobit regression results a 

Tobit Analysis, Limit=0.4 

Variable Coefficient 

 Estimate 

Standard 

 Error 

T-Ratio 

CO2 0.0001426 0.00003819 3.734 

    

Log Likelihood -54.998 
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Limit Observation 

Non-Limit Observation 
a. Carbon dioxide emissions measured in million of tons. 

 


