
     

 

 

  

  

Volume 30, Issue 2 

  

A Note on Cointegrating and Vector Autoregressive Relationships between 
CO2 allowances spot and futures prices  

  

 
 

Julien Chevallier  
Université Paris Dauphine 

Abstract 

This article investigates the cointegrating and vector autoregressive relationships in CO2 allowances spot and futures 
prices, valid for compliance under the EU Emissions Trading Scheme (EU ETS). Our empirical analysis yields to 
reject a cointegrating relationship between CO2 spot and futures prices, when accounting for the presence of a 
structural break in February 2009 (possibly due to the delayed impact of the ``credit crunch'' crisis). Then, a vector 
autoregression analysis (complemented by impulse response functions) indicates that futures prices are relevant for 
price formation in the spot market (while the opposite is not true). Overall, this analysis appears useful to making 
informed hedging decisions in the banking and finance industries, while allowing regulated utilities to relate futures 
prices to better forecasts of spot prices.

Julien Chevallier is Member of the Centre de Géopolitique de l'Energie et des Matières Premières (CGEMP) and the Laboratoire d'Economie 
de Dauphine (LEDa). He is also Visiting Researcher with EconomiX-CNRS and the Grantham Institute for Climate Change at Imperial College 
London. Address for correspondence: Place du Maréchal de Lattre de Tassigny 75775 PARIS Cedex 16 France. 
Citation: Julien Chevallier, (2010) ''A Note on Cointegrating and Vector Autoregressive Relationships between CO2 allowances spot and 
futures prices'', Economics Bulletin, Vol. 30 no.2 pp. 1564-1584. 
Submitted: Nov 20 2009.   Published: May 27, 2010. 

 

     

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6231756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

In the current global fight against climate change, the European Union took the lead

of environmental policy making by implementing the world’s largest emissions trading

scheme for CO2 emissions, which came into operation on January 1, 2005. In 2008,

global carbon markets (including transactions from projects mechanisms) were worth

more than =C89 billion, up more than 80% year-on-year (Reuters). The purpose of

this article is to empirically investigate the relationship between European emission

allowance (EUA) spot and futures prices using data from BlueNext and the European

Climate Exchange (ECX), i.e. the most liquid spot and futures carbon exchanges

operating under the EU ETS, respectively.

Previous literature has investigated the main properties of CO2 allowances spot and

futures prices. Daskalakis et al. (2009) use a jump-diffusion model to approximate the

random behavior of CO2 spot prices, while Benz and Truck (2009) analyze the spot

price behavior with a Markov-switching model. Paolella and Taschini (2008) find that

a generalized asymmetric t innovation distribution particularly suits the stylized facts

of CO2 emissions spot data. Finally, Lin and Lin (2007) model CO2 spot prices as

a result of mean-reversion with varying trends, combined with state-dependent price

jumps and volatility structure. In addition, they show that mean-reversion fares better

in forecasting futures prices.

Cointegrating and vector autoregressive relationships between CO2 spot and futures

prices have been addressed by two previous empirical studies. Uhrig-Homburg and

Wagner (2007) develop a cost-of-carry approach during 2005-2006 in the EU ETS, and

find evidence of a cointegrating relationship. Their results suggest that the carbon

futures market was already well functioning at the time, and that the no-arbitrage

relationship seems to hold, although market inefficiencies still existed temporarily. Due

to banking restrictions implemented between 2007 and 2008 (Alberola and Chevallier

(2009)), the weak form of informational efficiency in the European CO2 market is

violated during the whole Phase I (2005-2007). Other authors have shown that the

cost-of-carry relationship does not hold between spot and futures prices (Daskalakis

and Markellos (2008), Milunovich and Joyeux (2007)). Benz and Hengelbrock (2008)

further investigate this question. They conduct a vector error correction model in the

ECX futures and Nord Pool spot markets by making use of high frequency data. Their

results indicate that the time series from Nord Pool and ECX are cointegrated. Intraday

transaction prices also allow them to use detailed insights into trading patterns, and to
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investigate efficiency measures. Finally, Borak et al. (2006) investigate the modelling

of the convenience yield in the European carbon market. They show that the market

has changed from initial backwardation to contango with significant convenience yields

in futures contracts for the Kyoto commitment period starting in 2008. Their main

result features that a high fraction of the yields can be explained by the price level and

volatility of the spot prices.

In this article, the econometric analysis consists in a cointegration and vector au-

toregressive analysis to investigate the relationships between CO2 allowances spot

(BlueNext) and futures (ECX) prices. The central result is that futures prices lead

the price discovery process in the EU ETS markets. This study differentiates from

Uhrig-Homburg and Wagner (2007) and Benz and Hengelbrock (2008) by (i) testing

explicitly for the existence of cointegrating relationship between CO2 spot and futures

prices during Phase II, and (ii) developing additional statistical tests such as: de-

tecting structural breaks in the time-series used, conducting impulse-response analysis

and structural instability tests. Compared to Milunovich and Joyeux (2007), who also

investigated the price discovery in the EU ETS markets, this article brings updated

results with respect to Phase II price developments. Overall, these results bring a more

complete picture of the contemporary relationships between spot and futures prices in

the EU ETS.

The findings in this paper are threefold: 1) the presence of one cointegrating relation-

ship between CO2 spot and futures prices is subject to the inclusion of a structural

break in the data, as highlighted by the Zivot and Andrews (1992) test; 2) vector au-

toregression analysis (VAR, Sims (1980)) indicates that futures prices are relevant for

spot price formation, while the opposite is not true; and 3) impulse response functions

analysis (Pesaran and Shin (1998)) and Ordinary Least Squares-Cumulative Sum of

Squares (OLS-CUSUM, Kramer and Ploberger (1992)) tests allow to better identify

the sensitivity of CO2 prices to shocks in a context of structural instability, possibly

due to a delayed adjustment of the EU ETS to the “credit crunch” crisis. These find-

ings indicate that reliable price signals in the EU ETS may be found by looking at the

futures market. These economic and financial implications are also motivated by the

relatively higher liquidity of the ECX CO2 futures market compared to the BlueNext

CO2 spot market.

The remainder of the article is organized as follows. Section 2 recalls some theory on

the relationships between spot and futures prices for commodity markets. Section 3

applies unit root tests to the time series of CO2 spot and futures prices. Section 4
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conducts the formal cointegration analysis. Section 5 proceeds with the identification

of a well-specified VAR model to the time-series of CO2 spot and futures prices in

levels. Section 6 concludes.

2 Some Theory on the Spot-Futures Relationships

on Commodity Markets

Assuming rational expectations and risk-neutral market agents, future spot prices

should only deviate from futures prices in case of unexpected shocks. Under such re-

strictive assumptions, spot prices in the delivery period ST should equal futures prices

Ft,T plus a white noise error term ǫt with zero mean (Working (1949), Brennan (1958)):

ST = Ft,T + ǫt (1)

In order to test eq(1), we could run a regression where the observed spot price is

regressed against a constant and the traded futures price. If the futures price is an un-

biased predictor of the future spot price, then the regression coefficients of the constant

term and the futures prices should not be statistically different from, respectively, zero

and one. However, we do not perform this regression at this stage since we need to ap-

ply first unit root tests to the time-series under consideration. Indeed, if the time-series

are not stationary, then testing eq(1) will yield to fallacious regressions.

3 Unit Root Tests

We conduct unit root tests by applying the Augmented Dickey-Fuller (henceforth ADF,

Dickey and Fuller (1981)) test regressions to the log-returns of CO2 spot and futures

price series. The daily spot price series is the BlueNext CO2 spot price from February

26, 2008 to April 15, 2009. The daily futures price series used is composed of the

ECX December 2008 futures price from February 26, 2008 to December 15, 2008 (i.e.,

on the expiration day of the futures contract), and then of the ECX December 2009

futures price from December 16, 2008 to April 15, 2009. As shown by Carchano and

Pardo (2009), this choice of rolling over futures contracts will not introduce significant

bias in our estimates (see Jagannathan (1985), Brennan and Crew (2000), Miffre and

Rallis (2007) for more details on commodity markets). Thus, we follow this approach
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because of its simplicity. Descriptive statistics for all time-series are given in Table 1.

The graphs of all price series may be found in Figure 1.

Moreover, we apply the Zivot and Andrews (1992) unit root test with endogenous

structural break detection. Test statistics in Table 2 show that the hypothesis of a

unit root is rejected when CO2 spot and futures prices are taken in logarithmic first-

difference transformation1. It can be concluded that all time series are integrated of

order one (I(1)). These results are in line with Daskalakis et al. (2009).

4 Cointegration Analysis

To avoid (i) running spurious regressions of equation (1) on non-stationary raw time

series, and (ii) losing important long-run information by taking log first-differenced

price series, we first investigate the presence of a cointegration relationship between

the CO2 spot and futures price series. Following the Johansen procedure (Johansen

(1992)), the cointegration specification is fitted to the natural logarithms of the spot

and futures price series2.

Table 3 shows the results of the Johansen maximum eigenvalue and trace statistics, as

well as the cointegration vector and the model weights. Both tests indicate a cointe-

gration space of r = 1, given a 5% significance level. Indeed, the null hypothesis of one

cointegrating vector between CO2 spot and futures prices cannot be rejected at the 5%

significance level. Therefore, we specify a vector error correction (VEC) model to take

this cointegration restriction into account:

∆yT = A0 + A1EctT−1 + A2∆yT−1 + ǫt (2)

where ∆yT =

[

∆ST

∆FT−1,T

]

is a vector of first differences of spot and forward prices,

A0 =

[

b10

b20

]

is a vector of constants, A1 =

[

b11

b21

]

is a vector measuring the speed

of the adjustment to the long-run relationship, and A2 =

[

γ1,1 γ1,2

γ2,1 γ2,2

]

is a coefficient

matrix. Ect denotes the error correction term.

1This transformation is useful to smooth size effects between variables and to ensure the stationarity
of the time series under consideration, while being particularly useful in economics since it can be
interpreted as the growth rate of the dependent variable.

2This modelling choice is common practice for cointegration analysis (see for instance Holden and
Perman (1994)).

4



Table 3 shows the result of the VEC model. The error correction coefficient estimates

indicate a slow adjustment of short-term deviations to the long-term relationship. Be-

sides, the error correction model explains both spot and futures prices by their own

lagged values. It is interesting to see that in the long-run futures prices move together

with spot prices according to the cointegration relationship estimated by a relatively

short and simple dynamic repercussion (one day lag).

As shown in Figure 2, the Zivot and Andrews (1992) endogenous structural break test

indicates an estimated break point on February 12, 2009 for both CO2 spot and futures

price series, thereby capturing with a lag the likely effect of the “credit crunch” financial

crisis.

If we allow for a structural break in the data (Lutkepohl et al. (2004)), we reject the

hypothesis of one cointegrating relationship at the 5% significance level, as shown in

Table 4. Therefore, a vector autoregression (VAR) appears more suitable to describe

the data-generating process.

5 Vector Autoregression Analysis

Next, we estimate a VAR model. A VAR representation is only valid if the respective

time series can be considered stationary. Hence, we estimate a VAR:

∆yT = A0 + A1∆yT−1 + A2∆yT−2 + . . . + Ap∆yT−p + ǫt (3)

where ∆yT =

[

∆ST

∆FT−1,T

]

is a vector of spot and futures logreturns, A0 =

[

b10

b20

]

is

a vector of constants, and A1 =

[

γ1,1 γ1,2

γ2,1 γ2,2

]

, etc. are the coefficient matrices.

Those results are reported in Table 5. The order of the VAR is chosen by minimizing

the value of usual information criteria (Hamilton (1996)). The AIC(n) and FPE(n)

criteria indicate to choose a lag order p = 4, while the HQ(n) and SC(n) criteria

recommend a lag order p = 3. For both lag orders, VAR estimates satisfy the required

residuals properties in terms of autocorrelation, as indicated by the Portmanteau test.

Thus, we choose to adopt the most parsimonious specification of a VAR(3)3.

Table 6 shows the result of the VAR(3) model. The results are striking. Spot prices

3Due to space constraints, the results from the VAR(4) model are not shown here. They may be
obtained upon request to the author.
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can be explained well by their own lagged prices and futures lagged prices up to order

one (Table 6, columns (1) to (6)), while futures prices cannot be explained either by

their own lagged values or by lagged values of spot prices (Table 6, columns (7) to

(12)). Futures prices in the trading period are relevant for price formation of spot

prices, whereas the opposite is not true. This is confirmed by Granger non-causality

test (Granger (1969) results given in Table 6. The null hypothesis that spot prices do

not Granger cause futures prices cannot be rejected at the 5% level (p-value of 0.08783),

while the null hypothesis that futures prices do not Granger cause spot prices must be

rejected (p-value of 0.4439). Therefore, according to the definition of Granger causality,

lagged values of futures prices can be used for forecasting spot prices. Hence, there is

strong evidence that the predictive power of the spot price is weak. Alternatively, the

null hypothesis of no instantaneous causality between spot and futures prices cannot be

rejected for both tests (p-value of 0.0001) at the usual 5% confidence level. Additional

impulse-response analysis and structural stability tests based on OLS-CUSUM tests

are given in Figures 3 and 4, respectively.

In Figure 3, the standard deviation of the impulse for CO2 spot and futures prices may

be interpreted as a traditional impulse response function (Pesaran and Shin (1998)) for

a particular type of shock affecting either price series. According to previous literature

(Mansanet-Bataller et al. (2007), Alberola et al. (2008), Hintermann (2010)), such

shocks may come primarily from other energy markets and weather conditions. The

results from the impulse response functions are: 1) The response of futures prices to

the shock exhibits some magnification between horizons 0 and 8, and the response

at horizon 20 is smaller than the initial shock (this is known as the typical hump

shape) but may take on negative values; 2) The response of spot prices at horizon 10 is

bounded well above zero. However, the initial response to the shock shows substantial

magnification, again producing the hump shape typical of many economic time-series.

Thus, we have been able to comment in detail (i) the level of the shock on either of

the two time-series, (ii) the sign of the shock on the impacted time-series, and (iii) the

temporal pattern for the transmission of the shock through the dynamic structure of

the VAR model.

OLS-CUSUM tests (Kramer and Ploberger (1992)) for the presence of structural changes

in the components of the VAR(3) model are also shown in Figure 4. OLS-CUSUM tests,

which are based on cumulated sums of OLS residuals against a single-shift alternative,

confirm the Zivot-Andrews endogenous structural change test: for both spot and fu-

tures, we notice structural instability around February 2009. In this context, statistical
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tests on such CO2 spot and futures time-series should allow for a structural break in

the data. This methodology has been properly conducted in Section 4 for the cointe-

gration analysis based on Lutkepohl et al. (2004) test procedure robust to the presence

of structural breaks.

These results extend Uhrig-Homburg and Wagner (2007), and more recently Benz and

Hengelbrock (2008), by detailing the modeling of the VAR model used for CO2 spot

and futures allowances, as well as by conducting explicitly an impulse-response anal-

ysis. Last but not least, compared to previous literature, our results present updated

empirical estimates concerning the relationships between CO2 spot and futures prices

during Phase II.

6 Conclusion

To sum up, the analysis of the relationships between CO2 spot and futures prices

allowed us to derive the following insights: (i) there exists a cointegrating relationship

between CO2 spot and futures prices; (ii) a vector error correction model explains

both spot and futures prices by their own lagged value; (iii) if we allow for a structural

break in the time-series, such as the delayed impact of the “credit crunch” crisis on

CO2 allowance prices of all maturities in February 2009, we cannot further identify the

cointegrating relationship; (iv) a vector autoregression model then shows that futures

prices are relevant for price formation in the spot market, whereas the opposite is not

true; and (v) through impulse response functions analysis and OLS-CUSUM tests we

further identify responses of CO2 spot and futures prices to shocks in a context of

structural instability.

The central result is that futures prices lead the price discovery process in the EU

ETS markets. Reliable price signals in the EU ETS may thus be found by looking

at the futures market, which was also true during Phase I of the scheme (Alberola et

al. (2008), Hintermann (2010)). These economic and financial implications are also

explained by the relatively higher liquidity of the ECX CO2 futures market compared

to the BlueNext CO2 spot market.
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Figure 1

CO2 Spot and Futures Prices from February 26, 2008 to April 15, 2009: Raw Price
Series (top panel), Natural Logarithms (middle panel), and Logreturns (bottom
panel)
Source: BlueNext, European Climate Exchange
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Figure 2

Zivot-Andrews (1992) Test Statistic for CO2 Allowances Spot (top panel) and
Futures (bottom panel) Prices from February 26, 2008 to April 15, 2009
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OLS-CUSUM Test for CO2 Allowances Spot (top panel) and Futures Prices (bot-
tom panel) with the VAR(3) Model
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Variable Mean Median Max Min Std. Dev. Skew. Kurt. N

Raw Price Series

Spot 19.61 21.69 28.73 7.96 5.82 -0.43 1.77 288
DEC08 22.91 23.59 29.33 13.72 3.55 -0.83 3.03 207
DEC09 20.45 22.69 30.53 8.20 6.14 -0.44 1.78 288
Natural Logarithms

Spot 2.92 3.08 3.36 2.07 0.34 -0.74 2.21 288
DEC08 3.12 3.16 3.38 2.62 0.17 -1.16 3.65 207
DEC09 2.96 3.12 3.42 2.10 0.35 -0.76 2.23 288
Logreturns

Spot -0.01 -0.01 0.11 -0.10 0.03 -0.09 4.22 288
DEC08 -0.01 -0.01 0.05 -0.09 0.02 -0.64 4.02 207
DEC09 -0.01 -0.01 0.11 -0.09 0.03 0.08 4.59 288

Table 1

Summary Statistics for CO2 Allowances Spot and Futures Prices

Source: BlueNext, European Climate Exchange

Note: Spot refers to BlueNext CO2 Spot prices, DEC08 and DEC09 refer to ECX December 2008 and 2009 CO2 Futures
Contracts. Std.Dev. stands for Standard Deviation, Skew. for Skewness, Kurt. for Kurtosis, and N for the number of observations.
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Variable Deterministic
Terms

Lags Test Value Critical Values

1% 5% 10%
∆Spot constant 1 -13.2176 -3.44 -2.87 -2.57
∆Futures constant 1 -12.9003 -3.44 -2.87 -2.57

ADF Test for CO2 Spot and Futures Prices

Variable Estimate Std. Error t-value Pr(>| t |)
(1) (2) (3) (4)

Lagged levels

(Intercept) 0.009964** 0.004192 2.377 0.018157
Spot(1) -0.3178 0.1945 -1.634 0.103391
Trend -0.0001164*** 0.00003147 -3.699 0.000263
∆Spot(1) 0.4353** 0.1780 2.445 0.015131
∆Spot(2) 0.1720 0.1618 1.063 0.288559
∆Spot(3) 0.2098 0.1452 1.445 0.149718
∆Spot(4) 0.2574** 0.1319 1.951 0.052082
DU 0.03907*** 0.01096 3.565 0.000432
DT -0.0001269** 0.0004136 -0.307 0.759321
Residuals Std.Error 0.02868
R-Squared 0.1773
Adjusted R-Squared 0.1400
F-Statistic 0.00001
Test Statistic -6.7768 -5.57 -5.08 -4.82
Break Point 248

Zivot-Andrews Test Regression for CO2 Spot Prices

Variable Estimate Std. Error t-value Pr(>| t |)
(1) (2) (3) (4)

Lagged levels

(Intercept) 0.009724** 0.004158 2.338 0.020105
Futures(1) -0.2903 0.1927 -1.506 0.133229
Trend -0.0001156*** 0.00003131 -3.693 0.000269
∆Futures(1) 0.4273** 0.1763 2.424 0.016024
∆Futures(2) 0.1750 0.1605 1.090 0.276603
∆Futures(3) 0.1986 0.1438 1.381 0.168426
∆Futures(4) 0.2477** 0.1300 1.906 0.057764
DU 0.03953*** 0.01090 3.627 0.000343
DT -0.0001371** 0.0004108 -0.334 0.738822
Residuals Std.Error 0.0285
R-Squared 0.1775
Adjusted R-Squared 0.1403
F-Statistic 0.00001
Test Statistic -6.6947 -5.57 -5.08 -4.82
Break Point 248

Zivot-Andrews Test Regression for CO2 Futures Prices

Table 2

Augmented Dickey-Fuller (Dickey and Fuller (1981)) and Zivot-Andrews (1992)
Unit Root Tests for CO2 Spot and Futures Prices

Note: Spot refers to BlueNext CO2 spot prices, and Futures to ECX December 2008/2009 CO2 futures prices,
transformed in log-returns. Critical values are provided in Dickey-Fuller (1981) and Zivot-Andrews (1992). The
Zivot-Andrews model is estimated with both intercept and trend for a maximal lag of order 4. *** denotes 1%, ** 5%,
and * 1% significance levels. The Zivot-Andrews Test Statistic is provided with 1%, 5%, and 10% significance levels in
columns (2), (3), and (4) respectively. All tests are based on heteroskedasticity consistent standard errors. The
number of observations is 289.
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Hypothesis Statistic 10% 5% 1%
r ≤ 1 0.49 6.50 8.18 11.65
r=0 19.73 12.91 14.90 19.19

Cointegration Rank: Maximum Eigenvalue Statistic

Hypothesis Statistic 10% 5% 1%
r ≤ 1 0.49 6.50 8.18 11.65
r=0 20.22 15.66 17.95 23.52

Cointegration Rank: Trace Statistic

Variable Spot(1) Futures(1)
Spot(1) 1.0000 1.0000
Futures(1) -1.022703 -0.7516003

Cointegration Vector

Variable Spot(1) Futures(1)
∆Spot 0.02466715 -0.01388427
∆Futures 0.20443046 -0.01331373

Model Weights

Variable ∆Spot ∆Futures

Error Correction Term

ect -0.0246672 -0.2044305
Deterministic

constant 0.0008731 0.0158048
Lagged differences

∆Spot(1) -0.1887184 0.3311120
∆Futures(1) 0.3575622 -0.1463355

VECM with r = 1

Table 3

Cointegration Analysis of CO2 Spot-Futures: Johansen Maximum Eigenvalue,
Trace Statistics, Cointegration Vector, Model Weights, and Vector Error Correc-
tion Model (VECM)

Note: Spot refers to BlueNext CO2 spot prices, and Futures to ECX December 2008/2009 CO2

futures prices, transformed to natural logarithms. Lag order in parenthesis. r is the cointegration
rank. ect refers to the Error Correction Term. The number of observations is 289.
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Hypothesis Statistic 10% 5% 1%
r ≤ 1 6.88 5.42 6.79 10.04
r=0 48.96 13.78 15.83 19.85

VECM with Structural Break: Cointegration Rank Trace Statistic

Variable Spot(1) Futures(1)
Spot(1) 1.0000 1.0000
Futures(1) -0.9843966 -1.780992

VECM with Structural Break: Cointegration Vector

Variable Spot(1) Futures(1)
∆Spot -

0.47893305
0.05267858

∆Futures -
0.03596668

0.05306730

VECM with Structural Break: Model Weights

Table 4

VECM with Structural Break: Cointegration Rank Trace Statistic, Cointegration
Vector and Model Weights

Note: Spot refers to BlueNext CO2 spot prices, and Futures to ECX December
2008/2009 CO2 futures prices, transformed to natural logarithms. Critical values are
provided in Lutkepohl et al. (2004). Lag order in parenthesis. r is the cointegration
rank. ect refers to the Error Correction Term. The number of observations is 289.
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Lag 1 2 3 4 5 6 7 8
AIC(n) -1.695238 -1.710303 -1.715954 -1.716008 -1.714676 -1.712785 -1.713793 -1.712551
HQ(n) -1.691061 -1.704038 -1.707600 -1.705566 -1.702146 -1.698166 -1.697086 -1.693756
SC(n) -1.684826 -1.694685 -1.695130 -1.689978 -1.683440 -1.676343 -1.672145 -1.665697
FPE(n) 0.000434 0.000373 0.000353 0.000353 0.000358 0.000364 0.000361 0.000365

Diagnostic Tests

Lag Q16 p value JB4 p value MARCH5 p value
p = 3 57.4637 0.2800 38.6343 0.00001 94.0891 0.00003

Table 5

VAR Optimal Lag Length Determination for CO2 Spot and Futures Prices

Note: Spot refers to BlueNext CO2 spot prices, and Futures to ECX December 2008/2009 CO2 futures prices, transformed to logreturns. AIC(n) refers
to the Akaike Information Criterion for a lag of order n, HQ(n) refers to the Hannan-Quinn Criterion for a lag of order n, SC(n) refers to the Schwarz
Criterion for a lag of order n, and FPE(n) refers to the Final Prediction Criterion for a lag of order n. The number of observations is 289. Diagnostic tests
are provided for the optimal lag length p = 3. Q16 refers to the Ljung-Box-Pierce Portmanteau Test Q Statistic with a maximal lag of order 16, JB4 is the
Jarque-Berra Normality Tests Statistic for a maximal lag of order 4, and MARCH5 is the Multivariate ARCH Test Statistic for a maximal lag of order 5.
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Parameter Spot(1) Futures(1) Spot(2) Futures(2) Spot(3) Futures(3) Spot(1) Futures(1) Spot(2) Futures(2) Spot(3) Futures(3)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Estimate -0.4627* 0.6935** -0.5379* 0.2998 0.008649 0.1169 0.2587 -0.01406 -0.03377 -0.1914 0.2539 -0.1132
Standard Error 0.2767 0.2765 0.3119 0.3130 0.2768 0.2753 0.2763 0.2761 0.3115 0.3125 0.2764 0.2749

Diagnostic Tests Spot Futures

R − Squ. 0.1017 0.09056
Adj.R − Squ. 0.0789 0.0675
SE 0.02949 0.02945
Log − Lik. 1646.433 1646.433
F − Stat. 0.0001 0.0004

Granger Causality Test Statistic p-value
Cause=Futures

Granger 0.8941 0.4439
Instant 138.7813 0.0001
Cause=Spot

Granger 2.1933 0.08783
Instant 138.7813 0.0001

Table 6

VAR(3) Estimation Results for CO2 Spot and Futures Prices

Note: Spot refers to BlueNext CO2 spot prices, and Futures to ECX December 2008/2009 CO2 futures price, transformed to logreturns. The optimal lag order for the VAR is p = 3.
Columns (1) to (6) contains the parameter estimates and corresponding standard errors for the Spot equation, while columns (7) to (12) contain the results of the Futures equation.
Lag order in parenthesis. *** denotes 1% significance, ** 5% significance, and * 10% significance levels. All tests are based on heteroskedasticity consistent standard errors. The
number of observations is 289. R − Squ. stands for the R-Squared, Adj.R − Squ. for the Adjusted R-Squared, SE for the standard error, Log − Lik. for the log-likelihood, and
F − Stat. for the F-Statistic. The value of the F − Stat. is the p-value. The Granger Causality Test Statistic provided is the F − Test. Instant denotes instantaneous causality
between variables. The value of the instantaneous Granger Causality Test provided is the χ2-statistic.
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