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Abstract
This paper estimates the degree of ‘stickiness’ in aggregate consumption growth

(sometimes interpreted as reflecting consumption habits) for thirteen advanced
economies. We find that, after controlling for measurement error, consumption growth
has a high degree of autocorrelation, with a stickiness parameter of about 0.7 on average
across countries. The sticky-consumption-growth model outperforms the random walk
model of Hall (1978), and typically fits the data better than the popular Campbell and
Mankiw (1989) model, though in a few countries the sticky-consumption-growth and
Campbell–Mankiw models work about equally well.
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1 Introduction
A large literature ranging across macroeconomics, finance, and international
economics has argued that ‘habit formation’ can explain many empirical facts
related to consumption dynamics.1 The core empirical pattern driving all these
findings appears to be that aggregate consumption growth is too ‘sticky’ to
be explained with standard models. Other explanations for the persistence of
aggregate spending growth, or ‘excess smoothness’ (in Campbell and Deaton
(1989)’s terminology), include imperfect attentiveness to macroeconomic news on
the part of consumers (Sims (2003); Reis (2006); Carroll and Slacalek (2007)), or
consumers’ inability to distinguish micro- from macro-economic shocks (Pischke
(1995)). Further explanations could undoubtedly be imagined.
But a full consensus has not emerged on whether empirical data are irrecon-

cilable with Hall (1978)’s benchmark random walk model of consumption. Hall’s
model implies that consumption growth is unpredictable (excess smoothness is
zero). However, standard extensions of the Hall model can generate some degree
of stickiness in consumption growth. For example, excess smoothness might
merely reflect the fact that spending decisions are made more frequently than con-
sumption data are measured (Working (1960); this viewpoint has recently been
advocated in well known papers by Lettau and Ludvigson (2001, 2004)). Also,
in the presence of uncertainty, the precautionary motive slows down consumers’
response to shocks, which could also explain part (though not all) of the excess
smoothness (Ludvigson and Michaelides (2001)). Another possibility, not often
mentioned but nevertheless worth serious consideration, is that the smoothness
of measured spending reflects data construction methods (e.g. for components of
spending for which quarterly observations are imputed using annual data sources).
Finally, many of the papers in the habit formation literature have not carefully
examined the possibility that their results might reflect the presence of some
‘rule-of-thumb’ consumers, who simply set consumption equal to income in each
period, as proposed in influential papers by Campbell and Mankiw (1989, 1991).
Motivated by this debate and by the fact that much of the empirical evidence on

excess smoothness has come from a single country (the U.S.), this paper provides
systematic estimates of three simple canonical models of consumption dynamics
using data for all advanced economies for which we were able to construct appro-
priate datasets (thirteen countries in all). We compare the random walk model of

1Facts that have been interpreted using habit formation models include the equity premium puzzle
(Constantinides (1990) and Campbell and Cochrane (1999)), Granger causality from growth rates to saving
rates (Carroll, Overland, and Weil (2000)), the hump-shaped response of consumption to income shocks (Fuhrer
(2000)), the dynamic effects of fiscal policy (Ljungqvist and Uhlig (2000)), persistence in current account
balances (Gruber (2004)), and the home bias puzzle (Shore and White (2006)). (We do not distinguish here
between ‘internal’ and ‘external’ habits models because in our view they are empirically indistinguishable using
macroeconomic data; see Carroll, Overland, and Weil (1997) for the argument.)
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Hall (1978) with two alternatives: the Campbell and Mankiw (1989) model, and
a model that permits (but does not require) excess smoothness. We remain
deliberately agnostic (in this paper) about whether such smoothness reflects
habits, inattention, or other factors; our aim here is simply to document the key
stylized facts that should be matched by any model of aggregate consumption
dynamics.
Using both instrumental variables (IV) (section 3.1) and Kalman filter struc-

tural (section 3.2) estimation methods, we find strong evidence of excess smooth-
ness (‘stickiness’) in consumption growth in every country in our sample.2 Al-
though there is some variation across countries in the degree of stickiness, in
every country we can reject the hypothesis that the stickiness coefficient is zero
(the random walk theory), while in no country can we reject the hypothesis that
it is 0.7 in quarterly data. Furthermore, wherever there is a clear distinction
between the two non-random-walk models, the sticky consumption growth model
outperforms the rule-of-thumb model, usually by a decisive statistical margin. (In
a few cases, the two non-random-walk models are not statistically distinguishable
from each other.)3
The large size of our estimated stickiness parameter may come as a surprise to

some readers, because the serial correlation coefficient for spending growth in the
raw data is much lower than 0.7 (for instance, in U.S. data the OLS estimate of
the AR(1) coefficient for nondurables and services consumption growth is about
0.35). The discrepancy reflects our use of econometric methods that are robust
to the presence of measurement error. Consistent with Sommer (2007)’s findings
for the United States, our estimates suggest that in most countries at least half
of the quarterly variation in consumption growth can be interpreted either as
measurement error or as truly transitory spending disturbances unrelated to
the theoretical consumption model (caused, for example, by unseasonal weather,
which can have a nontrivial effect at the quarterly frequency in most countries).4
The remainder of the paper is organized as follows. Section 2 outlines two

theoretical frameworks that generate sticky consumption growth and provide the

2Section 3.2.1 shows how our Kalman filter technique can be interpreted as a particularly simple example of
structural estimation of a DSGE model. Embedding our framework in a larger macroeconomic structure would
be relatively straightforward.

3To our knowledge, the only comparable paper is Braun, Constantinides, and Ferson (1993) (henceforth
BCF), who estimate a habit formation model using data on total personal consumption expenditures for six
countries. BCF find evidence for stickiness in aggregate consumption growth data in most countries. Their
estimates of the habit persistence coefficient range between 0.57 and 0.93, but are often insignificant. Their
paper also does not test the assumption of habit formation against alternative models of consumption dynamics,
such as the Campbell–Mankiw model. Ferson and Constantinides (1991) report in a framework closely related
to BCF that the evidence for habit formation seems stronger in the U.S. data than in their international dataset.
However, both papers use GMM to estimate a nonlinear Euler equation, a method which is not robust to the
presence of substantial measurement error in consumption data.

4Interestingly, Friedman (1957)’s original statement of the permanent income hypothesis gave almost equal
billing to transitory consumption shocks and transitory income shocks, but the subsequent literature has focused
almost exclusively on income shocks.
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conceptual framework for our estimation strategy. Section 3 presents the main
empirical results and Section 4 concludes.

2 Two Theories of Stickiness
This section sketches the two most popular theoretical frameworks—habit for-
mation and sticky expectations—that can generate serial correlation in aggre-
gate consumption growth. In the habit formation model, the serial correlation
coefficient χ reflects the strength of habits (if χ = 0, the model collapses to
the Hall random walk model); in the sticky information model, χ is the frac-
tion of aggregate expenditure by households that have not fully updated their
information set about the latest macroeconomic developments (and again, χ = 0
corresponds to the Hall model). Because the implications of the two frameworks
are indistinguishable in aggregate data, our empirical evidence is consistent with
either model.5

2.1 Habit Formation
Muellbauer (1988) proposed a simple model of habit persistence, in which the
representative consumer maximizes time-nonseparable utility

max E
∞∑
t=s

βt−su(Ct − χCt−1) (1)

subject to the usual transversality condition and the dynamic budget constraint:

Mt+1 = (Mt − Ct)R + Yt+1, (2)

where β is the discount factor, C is the consumption level, M is market resources
(net worth plus current income), R is the constant interest factor, and Y is
noncapital income. Ct−1 in (1) represents the ‘habit stock,’ i.e., the reference
level of consumption to which the consumer compares the current consumption
level. The parameter χ captures the strength of habits. After rewriting the utility
function as u(Ct−χCt−1) = u

(
(1−χ)Ct+χ∆Ct

)
, one can see that, for χ ∈ (0, 1),

the consumer derives utility from both the level and the change in consumption.
Dynan (2000) shows that for a habit-forming consumer with Constant Relative

Risk Aversion (CRRA) outer utility u(Z) = Z1−ρ/(1 − ρ) and Rβ = 1, a first

5For forecasting and some other purposes, it may not matter which theory is closer to the truth. For other
purposes (like welfare analysis) the two models could yield quite different conclusions. Carroll and Slacalek (2007)
argue that the models can be distinguished using microeconomic data, which suggest the sticky expectations
model is closer to the truth.
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order approximation to the Euler equation leads to an equation of the form:

∆ logCt ≈ χ∆ logCt−1 + εt, (3)

where εt mainly reflects innovations to lifetime resources.6 Hence, in contrast to
the standard intertemporally separable utility specification, some of period t’s
consumption growth is predictable at time t − 1, and the strength of habits χ
can be measured directly by estimating an AR(1) regression like (3) on aggregate
consumption data.

2.2 Sticky Expectations
Carroll and Slacalek (2007) present an alternative model that also generates sticky
aggregate consumption growth, but without departing from the conventional
intertemporally separable utility specification. The key assumption is that con-
sumers are mildly inattentive to macro developments—for example, some house-
holds do not immediately notice shocks to aggregate macroeconomic indicators
such as productivity growth or the unemployment rate.7
Assume that consumers maximize the discounted sum of time separable utility∑∞
t=s β

t−su(Ct) subject to the budget constraint (2). In a Hall (1978) model with
quadratic utility, in which households use all available information, the optimal
consumption level follows a random walk: ∆Ct = εt. Numerical simulations in
Carroll and Slacalek (2007) show that when quadratic utility is replaced with
CRRA utility and the model is solved with realistic calibrations of idiosyncratic
and aggregate uncertainty, the log of aggregate consumption is close to a random
walk with drift (the drift reflects the precautionary motive and the attendant
nonlinearities): ∆ logCt = µ+ εt.
Suppose now that the economy consists of a continuum of inattentive but

otherwise-standard CRRA-utility consumers, each of whom updates the infor-
mation about his permanent income with probability Π in each period. For
each consumer, this probability is assumed to be independent of the date when
he last updated his information set (and independent of his income, wealth, or

6εt will also include any higher-order terms that are discarded in the process of the log-linearization,
including terms that reflect the precautionary motive. Note, however, that the excess smoothness of aggregate
consumption cannot be explained by a precautionary saving motive in a model without habits (Ludvigson and
Michaelides (2001)). See Michaelides (2002) for a careful numerical examination of a model with both habits
and a precautionary motive. Unfortunately, that paper does not examine the accuracy of the approximation
(3) in the presence of uncertainty, and we are not aware of any other paper that does so. But Carroll and
Slacalek (2007) show that the random walk implication of the model without habits survives largely intact for
simulated aggregate data for an economy populated by households facing both idiosyncratic and aggregate risk;
this suggests that the log-linearized approximation is likely to be plausible.

7The possibility that households do not immediately perceive aggregate shocks is lent credibility by recent
work of Aruoba (2008), who shows that advance and preliminary releases of national income accounts data are
not unbiased predictors of the final revised data. If even the national statistical agencies do not know the truth
immediately, it seems hard to argue against the plausibility of assuming that households do not perceive the
truth immediately.
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other characteristics). The model therefore is similar to the Calvo (1983) model
of price setting frequently used in the monetary economics literature. Carroll
and Slacalek (2007) show that the change in the log of aggregate consumption,
∆ logCt, approximately follows an AR(1) process, whose autocorrelation coeffi-
cient approximates the share of consumers (1 − Π) who do not have up-to-date
information about macroeconomic developments. That is, consumption growth
is well approximated by:8

∆ logCt = µ+ (1− Π)︸ ︷︷ ︸
≡χ

∆ logCt−1 + εt. (4)

In addition, in the spirit of Akerlof and Yellen (1985) and Cochrane (1991),
Carroll and Slacalek (2007) show that the utility loss from the infrequent updating
of expectations is very small under standard calibrations of the model with Π =
0.25 per quarter.9

3 Empirical Results
This section tests the model of sticky consumption growth (3) and (4) against
the alternatives of rule-of-thumb behavior and the random walk hypothesis. The
organizing framework for our empirical analysis is a specification for consumption
growth adopted in the excess sensitivity literature,10 which has been expanded
here to include a term capturing stickiness of consumption growth:

∆ logCt = ς + χEt−2[∆ logCt−1] + η Et−2[∆ log Yt] + αEt−2[at−1] + εt, (5)

where Y is household income and a denotes the ratio of household (net) assets
to permanent income. The first two right-hand side regressors correspond to
two of the tested theories of consumption behavior: inattentiveness or habit
formation (∆ logCt−1) and rule-of-thumb consumers (∆ log Yt). Under the third
tested theory—the random walk hypothesis—the coefficients χ and η should both
be zero. The third term in the equation above (at−1) is included as a control—any
of the three theories allow for some direct effect of asset holdings on consumption
growth, either due to effects related to uncertainty (which induces a precautionary
saving motive) or due to time variation in interest rates (which we assume is
captured by time variation in a).11

8Sluggish dynamics of aggregate consumption growth are also implied by the ‘rational inattention’ models
of Reis (2006) and Sims (2003).

9Carroll (2003) estimates that the probability that a household updates their inflation expectations is 0.27
per quarter, similar to the 0.25 rate assumed in Mankiw and Reis (2001).

10Early contributions include Flavin (1981), Campbell and Deaton (1989), and Campbell and Mankiw
(1989); for more recent work see, e.g., Luengo-Prado and Sørensen (2008) and the citations therein.

11By including the assets in the estimated equation, we follow the literature on precautionary saving and
liquidity constraints. The alternative justification for including a is as a proxy for expected interest rates Rt+1;
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There are at least three reasons to expect the OLS estimates of coefficients in
(5) to be biased and inconsistent. First, as argued by Wilcox (1992) and Som-
mer (2007), quarterly consumption data may be contaminated with substantial
measurement error.12 Second is the undoubted existence of transitory spending
disturbances such as those related to weather (or even, for some smaller countries,
one-time events like the hosting of the Olympics). Standard theoretical models
ignore these kinds of shocks, yet back-of-the-envelope calculations suggest their
effects could be substantial in quarterly data. Our final reason for expecting OLS
to be biased is the well-known problem of time aggregation.13
We develop these points using the United States as an example. The Bureau

of Economic Analysis (2006) describes the methodology by which aggregate
expenditures on nondurable goods are estimated using data on retail sales at
a sample of retail outlets; since only a subset of retail stores are surveyed, the
retail sales figures must contain sampling error.14 As an example of a “transitory
disturbance,” under some plausible assumptions, Hurricane Katrina may have
reduced quarterly personal consumption expenditure (PCE) growth by about 1
percentage point on an annualized basis in Q3:2005.15 However, even a much more
benign event such as mild winter can reduce annualized quarterly consumption
growth significantly—for instance, by about 1/4 percentage point in the United
States in Q1:2006—through lower outlays on energy.
To address these three estimation issues (measurement error, transitory con-

sumption, and time aggregation) in quarterly consumption data, we use two
econometric methods. The first technique attempts to correct for the estimation
issues using instrumental variables regressions. As with any IV method, validity
of the estimation results depends on the ability to find suitable instruments. As
an alternative, the second technique therefore uses the Kalman filter to separate
‘true’ consumption growth from its transitory components and measurement
error.16 In this case, the usual caveat applies: The validity of this maximum

calibrated general equilibrium models imply that the relationship between at and Et[Rt+1] is very close to
linear. If such models are a good way of interpreting the data, the a term should therefore capture the interest
rate effects implied by the theory. However, empirical estimates of Euler equations using macro data generally
produce insignificant (or even implausible) coefficients on expected interest rates (see, e.g., Hall (1988) and table
3 of Campbell and Mankiw (1991); and Vissing-Jørgensen (2002) for evidence in micro consumption data).

12Bureau of Economic Analysis (2006), for example, describes the methodology by which aggregate retail
sales are estimated from a sample of retail outlets; since the universe of retail stores are not surveyed, the retail
sales figures must contain sampling error.

13Working (1960)’s analysis shows that if consumers with time separable preferences make purchase decisions
more often than consumption data are observed, time aggregation generates an MA(1) process in observed
consumption growth even when preferences are otherwise standard as in Hall (1978). In a simple habit formation
or sticky information model of the type presented in this paper, time aggregation generates an MA(2) process
in consumption growth, but the MA(2) coefficient is generally small.

14A careful reading of the sampling methodology suggests that most of the sampling error will be serially
uncorrelated at the quarterly frequency, as we assume below.

15See Sommer (2007) for details.
16Aficionados of Bayesian estimation of DSGE models may wish to reinterpret our estimates as a maximum
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likelihood method hinges on the assumed structure of the stochastic processes for
measurement error and ‘true’ consumption dynamics.17

3.1 Sticky Consumption Growth in IV Regressions
3.1.1 Dataset

Equation (5) is estimated using aggregate quarterly data from thirteen advanced
economies ranging roughly over the past forty years (table 5 provides data de-
tails). Our preferred measure of consumption is the sum of expenditures on
nondurable goods and services. However, this measure is available only for six
countries in our sample (Canada, France, Germany, Italy, the U.K. and the U.S.);
total personal consumption expenditures are therefore used for the other sample
countries.18 Finally, Y and a are measured as household disposable income and
the ratio of financial wealth to disposable income, respectively.19

3.1.2 Instruments

The main advantage of IV estimation is that with appropriate instruments, there
is no need to make assumptions about the stochastic structure of measurement er-
ror and other transitory fluctuations in quarterly consumption growth. The only
requirements are that the instruments are uncorrelated with measurement error
and temporary consumption fluctuations, but correlated with the instrumented
variables.

likelihood estimator of a particularly simple structural model with measurement error and a weak prior. See
Section 3.2 for details.

17In principle, the ‘habit formation’ model could be estimated by GMM, if we were willing to assert that the
representative agent model with habits is a perfect description of aggregate consumption choice. One problem
with nonlinear GMM estimation is that it is often difficult to be sure how much identification is coming from
the higher derivatives of the Euler equation; in a context where there is an unknown amount of measurement
error with an unknown distribution, this is worrisome. Also, nonlinear GMM is not really applicable for the
sticky expectations model, whose full and precise implication is exactly the linear equation we estimate.

18For the six countries for which nondurables and services data are readily available, regression results using
total PCE are similar to those reported in the paper for nondurables and services. Since durable consumption
growth is generally mildly negatively autocorrelated (Mankiw (1982)), the estimates of consumption persistence
χ for the other countries for which we use data on the total PCE (see the bottom panel of table 1) may be biased
downward, making our evidence in favor of strong consumption stickiness likely to be conservative. Japan is
not included in our sample as creating a quarterly dataset with consumption data prior to 1980 would involve
splicing consumption series based on three very different methodologies. Adjustments to the Japanese national
accounts methodology in 2002 and 2004 have significantly improved the reliability of quarterly consumption
series but the current-methodology data are only available since Q1:1994 (International Monetary Fund (2006)).
For the U.S., it is possible to perform similar experiments using data on purely nondurable goods spending and
on retail sales spending, with results similar to those reported here for PCE excluding durables.

19 In the denominator of the wealth–income ratio, we have also experimented with using permanent
component of income extracted from the random walk model with transitory noise. Doing so does not practically
change the results because, as previous literature has found, essentially all aggregate shocks to the log-level of
income are permanent and consequently, in aggregate data permanent income essentially equals actual income.
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Under habit formation or sticky expectations, Sommer (2007) shows that time
aggregation makes “true” consumption growth ∆ logC∗t (i.e., consumption growth
without measurement error and transitory consumption) follow an ARMA(1,2)
process:

∆ logC∗t = c0 + χ∆ logC∗t−1 + vt + λ1(χ)vt−1 + λ2(χ)vt−2, (6)

where the λs are complicated functions of χ. In addition, the MA(2) coefficient
λ2 is close to zero for all reasonable values of χ ∈ (0, 1), so that ∆ logC∗t is
approximately ARMA(1,1). Given these considerations, equation (5) can be
estimated using the IV estimator with instruments lagged at least twice (e.g.,
dated as of time t− 2 and earlier).20
The baseline instrument set for the IV regressions consists of variables that are

strongly correlated with consumption growth and yet unlikely to be correlated
with measurement error: the unemployment rate, a long-term interest rate, and
an index of price volatility.21 Consumer sentiment is also used as an instrument
whenever available (the G-7 countries and Australia), as in Carroll, Fuhrer, and
Wilcox (1994) and others.

3.1.3 Estimation Results

Table 1 summarizes the baseline estimation results for four alternative economet-
ric specifications nested in equation (5).22 The left panel reports the results from
univariate regressions in which each right-hand side variable enters the estimated
specification as the only regressor. The first column presents the IV estimates
of consumption persistence χ, which are for all countries much higher than the
(unreported) OLS estimates and are always highly statistically significant.23 The
IV estimates of consumption persistence in table 1 are on average about 0.7—a
strong rejection of the random walk proposition which implies a coefficient of

20Ideally, it would be desirable to use instruments dated t − 3 or earlier, but for some countries the t − 3
instruments did not have sufficient predictive power for the instrumented variables.

21Price volatility is robustly negatively correlated with real consumption growth in all sample countries—this
relationship is known among business cycle forecasters as the ‘Katona Effect’; see, e.g., Okun (1981), p. 216. In
economic terms, periods of above-average price volatility tend to be associated with shocks that may also have an
impact on permanent income. This instrument is attractive because it can be readily calculated for any country
and it is unlikely to be correlated with measurement error in consumption growth. The variable appears to be
widely used in the professional forecasting community but is not as common in academic work. Price volatility
at time t, V P

t , is calculated as the coefficient of variation over the past four quarters: V P
t = σP

t−3,t/µ
P
t−3,t,

where σP
t−3,t =

q
1/4×

P3
i=0(Pt−i − µP

t−3,t)
2 is the standard deviation of price level between quarters t − 3

and t and µP
t−3,t = 1/4×

P3
i=0 Pt−i denotes the mean of price level P between quarters t−3 and t. To calculate

price volatility we use quarterly data on consumption (PCE) deflator.
22An advantage of our reduced-form estimates of the consumption function over the estimated dynamic

stochastic general equilibrium models (DSGE, which started with the influential work of Smets and Wouters
(2003); see An and Schorfheide (2007) for a review) is that we do not use informative priors.

23The OLS estimates, and many further results, can be obtained by downloading the archive containing the
data and programs that generate the results for this paper, available at the first author’s website.
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zero. The second column reports p values of the null hypothesis χ = 0 implied
by the heteroscedasticity and autocorrelation robust version of the conditional
likelihood ratio (HAR-CLR) test of Andrews, Moreira, and Stock (2004). The
test is robust to potentially weak instruments and is effectively uniformly most
powerful among tests invariant to rotations of the instruments. The p values
indicate that the zero restriction on χ is soundly rejected in almost all countries.
The third column estimates the Campbell–Mankiw model. Our results are

broadly consistent with the evidence presented in Campbell and Mankiw (1991):
Rule-of-thumb consumers (for whom, by assumption, consumption equals current
income) are on average estimated to earn about η ≈ 0.4 of aggregate income.
Interestingly, the estimates of η in the left panel are often less significant than
those of consumption persistence χ and are in three or four cases insignificant
(depending on whether the standard or HAR-CLR p values are used). This means
that—aside from the question of how the Campbell–Mankiw model stands up
against the alternative of habit formation or sticky expectations—rule-of-thumb
spending behavior cannot be reliably detected in about a third of our sample
countries.
The fifth column investigates the relative importance of wealth (expressed as

the ratio of net financial assets to income) in aggregate consumption dynamics.
The coefficient on the wealth–to–income ratio, α, turns out to be statistically
significant only in four countries, although the HAR-CLR p values suggest more
often that α is not zero. In addition, the coefficient α has in most countries the
opposite sign to that predicted by either precautionary saving theory or intertem-
poral substitution as channelled through the interest rate. This is unsurprising for
at least two reasons. First, the overwhelming significance of consumption (and
also income) in the previous regressions implies a severe omitted-variable bias
problem with the univariate regression that only includes wealth. Second, the
previous literature generally finds little evidence of interest rate or precautionary
saving effects in aggregate consumption data.24
The last column of the left panel displays the adjusted R2s from the first-stage

regressions of consumption growth on instruments (denoted R̄2
c). This measure

of the strength of instruments ranges between 0.1 and 0.2 for most countries.25,26

24Microeconomic evidence suggests that the precautionary saving motive may be an important determinant
of household-level consumption decisions, see for example Carroll and Samwick (1997), Gourinchas and Parker
(2002), and Fuchs-Schündeln and Schündeln (2005).

25Ideally, one would prefer first stage R̄2
c coefficients larger than those generated by our instrument set for

some countries. For each individual country it is possible to find a country-specific instrument set that performs
considerably better than our universal instrument set. We preferred to run the well-understood risks of weak
instruments (coefficients biased toward the OLS value) rather than the much more difficult to quantify risks
associated with cherry picking a different instrument set for each country.

26The adjusted R2s from the first-stage regressions on income growth are comparable with the R2s from the
first-stage regressions on consumption growth. The R2s are much higher for the wealth–to–income ratio, about
0.8.
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The right panel of table 1 reports estimation results when all three regressors
are included in equation (5). The results strongly suggest that past consumption
growth is by far the strongest predictor of current consumption growth. The
average persistence parameter in the country regressions falls only very slightly
compared with the average estimates from univariate regressions reported in the
left panel (from χ ≈ 0.7 to χ ≈ 0.6) and remains statistically significant at the five
percent level in ten of our thirteen countries. The predicted income growth term
dominates the lagged consumption term only in one country, Germany.27 The last
column of the right panel reports the p-values of the Hansen’s overidentification
test—results of which imply that the null of instrument exogeneity cannot be
rejected.
Table 2 averages the coefficient estimates from table 1 across various country

groups. As in table 1, while the average consumption persistence χ falls relatively
little after income and wealth are added to the estimated equations (compare the
right and left panels of the table), the income and wealth coefficients become
essentially zero. The result holds for all five groups of countries reported in the
table which suggests considerable homogeneity in χ among advanced economies,
a fact already apparent in the previous table with the results for individual
countries.
Table 3, whose format is identical to table 1, estimates aggregate consumption

dynamics with an alternative instrument set, in which long-run interest rates
and price volatility have been replaced with income growth and the interest-rate
spread.28
The estimation results are broadly consistent with our baseline: (i) the co-

efficient on lagged consumption growth in univariate regressions is large and
significant for ten countries, (ii) in the regressions that include all three regressors,
the coefficients on instrumented income growth and wealth tend to be small and
less often statistically significant compared with univariate regressions (iii) lagged
consumption growth beats lagged income in nine horse-race regressions (but gets
badly beaten in German data).

27Germany tends to be an outlier in all our IV regressions (reported and unreported). This may reflect
difficulties associated with comparing pre- and post-reunification German data. Prior to reunification in 1991,
the German data reflect only West German economic growth. Subsequent to unification, they are for the
united Germany. We include a dummy for the quarter of reunification, but it would be surprising if there
were structural stability across such an extreme event. These problems are compounded by the highly erratic
behavior of German consumption growth during the years immediately following reunification.

28The interest rate spread is a variable that has long been used in the consumption growth literature,
having first been shown to have robust explanatory power for consumption growth in the literature testing
Hall’s random walk theory in the 1980s. Interest rates are measured essentially without error, and we can think
of no reason the spread would be correlated with measurement error or transitory disturbances to consumption
growth. Income growth has been perhaps the most intensively studied variable in this literature, dating back
to the original work of Hall (1978) and Flavin (1981).
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3.2 Kalman Filter/Maximum Likelihood Evidence on Sticky
Consumption Growth

As a more efficient alternative to IV, we also estimate the dynamics of consump-
tion growth using the Kalman filter. To proceed, it is necessary to specify an
assumption about the stochastic process of measurement error. We follow the
methodology of Sommer (2007) and assume that measurement error in the log-
level of consumption follows an MA(1) process.29 Observed consumption growth,
∆ logCt, can be written as the sum of ‘true’ consumption growth, ∆ logC∗t , and
a measurement error, ut, as follows:

∆ logCt = ∆ logC∗t + ut + (θ − 1)ut−1 − θut−2, (7)
∆ logC∗t = c0 + χ∆ logC∗t−1 + vt + λ1(χ)vt−1 + λ2(χ)vt−2. (8)

As noted above, λs are not free parameters but are complicated functions
of χ. The Kalman filter jointly estimates the sticky expectations coefficient χ
and the degree of the first autocorrelation in measurement errors, θ. The filter
also generates separate estimates of ‘true’ consumption growth, ∆ logC∗t , and
the measurement error component, ut. For the purposes of this subsection, we
assume that the correlation structure of measurement error remains unchanged
over the sample period.

The model described in equations (7) and (8) has been rewritten in a state-
space form (see appendix B) and estimated using consumption data for the
countries in our dataset (listed in table 5). Table 4 presents the estimation
results. As in the case of the IV estimation, the coefficient reflecting consumption
growth stickiness, χ, is large and highly statistically significant in almost all
sample countries. The value of χ typically ranges between 0.6 and 0.8, with only
Denmark and the United Kingdom having coefficients estimated below 0.4. For
the United States, the estimated consumption persistence is about 0.7, which is
consistent with previous studies (e.g. Fuhrer (2000)).

It is encouraging that the Kalman filter estimates of consumption persistence
tend to be close to the IV estimates. This suggests that stickiness of consumption
growth is a robust feature of the data that appears similarly even when viewed
through quite different lenses.

The estimation results also suggest that measurement error in the level of con-
sumption is positively and significantly autocorrelated in about half of our sample
countries—a fact that is not surprising given the interpolation techniques that

29Taking a classical approach with white noise measurement error in the level of consumption is a priori not
justifiable because all three main measurement error types are likely to be serially correlated. The measurement
error is therefore allowed to be serially correlated in our model but the impact of error on the serial correlation
properties of the consumption data is limited.
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are often used by statistical agencies when constructing quarterly consumption
data.
The Kalman filter’s estimate of “true” consumption growth, ∆ logC∗t , is pre-

sented, along with the raw data, in figures 1 and 2. The Kalman filter estimation
suggests that the share of transitory components in published quarterly consump-
tion data is large (about 50 percent for the United States and even more for some
countries).30 To see how the restrictions on λs imposed by the theoretical model
with habits affect estimates of χ we have also experimented with several versions
of model (7)–(8) in which λs are free parameters (rather than known functions of
χ). In such models, consumption sluggishness χ robustly turns out to be similar
to the values shown in Table 4. However, the fact that in a few cases λs appear
unrealistic (greater than one or smaller than minus one) suggests that imposing
theoretical restrictions is helpful in identifying them (rather than χ).

3.2.1 Relationship with the Structural Estimation Literature

The state-space representation (7)–(8) fits nicely into the structural DSGE frame-
work recently proposed by Ireland (2004), who estimates a small log-linearized
model with the Kalman filter. Control variables ft in his model can be solved in
terms of state variables st and residuals ut:

ft = Cst + ut. (9)

Ireland, p. 1210 views the disturbances ut as follows: “the residuals [ut] may
. . . soak up both measurement errors, but they can be interpreted more
liberally as capturing all of the movements and co-movements in the data
that the real business cycle model, because of its elegance and simplicity,
cannot explain.” Once we plug our transition equation for consumption growth
(8) into the measurement equation (7) the Kalman filter model we estimate
above has exactly the structure (9) with ft = ∆ logCt, st = ∆ logC∗t−1,
ut = ut + (θ − 1)ut−1 − θut−2 + vt + λ1(χ)vt−1 + λ2(χ)vt−2 and C = χ.
Thus the state-space representation (7)–(8) can be interpreted as a stripped-

down version of Ireland’s model with consumption habits in which measured
consumption is affected by a combination of measurement errors ut and shocks
vt to “true” consumption C∗t . As our main goal is to estimate consumption
stickiness χ, we do not take a stand on where the consumption shocks vt come
from (be it news about income, wealth, interest rates, fiscal policy or something
else). Our model is simple enough to be estimable using classical techniques,

30There is an interesting link between the signal-to-noise ratio from the estimated Kalman filter models,
var(∆ logC∗t )/ var(∆ logCt), in table 4 and the first-stage R2 for consumption growth from the IV regressions
in table 1. The correlation between the two statistics is about 80 percent across countries, confirming that
consumption growth can be predicted better in the countries with smaller measurement error and transitory
fluctuations.
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including the maximum likelihood estimator, so that data have complete control
over the estimates of χ, in contrast to larger-scale DSGE models, which are often
inevitably estimated with Bayesian methods with informative priors.

4 Conclusions
Hall (1978) provided macroeconomists with a clean theoretical benchmark against
which actual consumption data could be compared: Consumption growth should
be essentially unpredictable. In contrast with this benchmark, we find that, when
econometric techniques that account for measurement error are used, consump-
tion growth exhibits a high degree of persistence or “momentum.” The stickiness
of aggregate consumption growth can be interpreted as reflecting the behavior
of fully informed households with a strong consumption habit, or the behavior
of an aggregate economy in which households are not always perfectly up to
date in their knowledge of macroeconomic developments. Fitting the model to
data from thirteen countries, we estimate that consumption growth persistence is
always significantly above the random-walk benchmark of 0 and is never robustly
different from about 0.7. Our analysis also suggests that, on balance, the model
of sticky consumption growth describes aggregate consumption data better than
the rule-of-thumb model of Campbell and Mankiw (1989), although our point
estimates do typically indicate that a modest proportion of aggregate income (in
the range of 10–20 percent) may be received by households who consume their
current income every quarter.31
Our findings imply that the large literature claiming to find evidence of sticky

consumption growth in the U.S. probably cannot be explained away as reflecting
time aggregation problems or other mistreatment of the data, suggesting that
many of the insights gleaned from that literature are likely applicable to other
countries as well. (However, it is worth bearing in mind that analyses that rely
heavily on the literal interpretation of the habits-in-the-utility-function frame-
work, such as calculations of the welfare cost of aggregate fluctuations, may not
hold up under alternative interpretations of consumption growth stickiness.)
Our analysis also strengthens a key policy message about the sluggish average

response of consumption to monetary and fiscal policy innovations highlighted
earlier in the context of the habit formation literature—an important policy
consideration at the current cyclical juncture in many countries, including in
the United States.

31If these households are poorer than the average, they may constitute a larger proportion of the population
than they do of aggregate income.
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Table 2 Consumption Dynamics—Groups of Countries (Simple Averages)

∆ log Ct = ς + χEt−2[∆ log Ct−1] + ηEt−2[∆ log Yt] + αEt−2[at−1]

Estimation with Estimation with
one regressor only all three regressors

Country χ η α χ η α

All Countries 0.73∗∗∗ 0.38∗∗ 0.19 0.63∗∗ 0.14 −0.03
(0.18) (0.18) (0.19) (0.25) (0.21) (0.16)

G7 Countries 0.67∗∗∗ 0.36∗∗∗ 0.08 0.55∗∗ 0.19 −0.01
(0.18) (0.11) (0.19) (0.23) (0.14) (0.12)

Anglo–Saxon 0.73∗∗∗ 0.27∗∗ 0.24 0.68∗∗∗ 0.04 0.04
(0.16) (0.11) (0.18) (0.22) (0.14) (0.12)

Euro Area 0.69∗∗∗ 0.43∗∗ 0.19 0.54∗∗ 0.15 −0.01
(0.18) (0.20) (0.18) (0.27) (0.22) (0.13)

European Union 0.73∗∗∗ 0.39∗ 0.18 0.65∗∗ 0.15 −0.06
(0.18) (0.20) (0.20) (0.26) (0.23) (0.17)

Notes: Instruments: Lags t−2, t−3 and t−4 of the unemployment rate, long-run interest rate, price volatility and

consumer sentiment. Left Panel: Regressions were estimated with one regressor only. Right Panel: Regressions

were estimated with all three regressors. Robust standard errors are in parentheses. {∗, ∗∗, ∗∗∗} = Statistical

significance at {10, 5, 1} percent. Standard errors are simple averages of individual countries in a given group.

All countries: Canada, France, Germany, Italy, the United Kingdom, the United States, Australia, Belgium,

Denmark, Finland, the Netherlands, Spain, Sweden. G7 countries: Canada, France, Germany, Italy, the United

Kingdom, the United States. Anglo–Saxon Countries: Australia, Canada, the United Kingdom, the United

States. Euro Area Countries: France, Germany, Italy, Belgium, Finland, the Netherlands, Spain. European

Union: France, Germany, Italy, the United Kingdom, Belgium, Denmark, Finland, the Netherlands, Spain,

Sweden.
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Table 4 Consumption Dynamics—First-Stage Kalman Filter Estimates

∆ logCt = ∆ logC∗t + ut + (θ − 1)ut−1 − θut−2,

∆ logC∗t = c0 + χ∆ logC∗t−1 + vt + λ1(χ)vt−1 + λ2(χ)vt−2

Parameter Estimates

Country χ θ log σ2
u log σ2

v
var(∆ log C∗t )

var(∆ log Ct)

G7 Countries
Canada? 0.78∗∗∗ 0.25∗∗ −11.03∗∗∗ −13.02∗∗∗ 0.18
France? 0.81∗∗∗ −0.01 −11.42∗∗∗ −14.00∗∗∗ 0.10
Germany? 0.83∗∗∗ 0.25∗ −9.97∗∗∗ −12.49∗∗∗ 0.14
Italy? 0.62∗∗∗ −0.08 −12.04∗∗∗ −12.26∗∗∗ 0.37
United Kingdom? 0.36∗∗∗ −1.00 −12.21∗∗∗ −10.79∗∗∗ 0.39
United States? 0.67∗∗∗ 0.30∗∗ −12.26∗∗∗ −12.58∗∗∗ 0.44

Other Countries
Australia‡ 0.49∗ 0.23 −10.78∗∗∗ −11.50∗∗∗ 0.21
Belgium‡ 0.70∗∗∗ 0.39∗∗∗ −11.44∗∗∗ −11.83∗∗∗ 0.45
Denmark‡ 0.39∗ −0.23 −10.38∗∗∗ −9.85∗∗∗ 0.38
Finland‡ 0.72∗∗∗ 0.20 −10.95∗∗∗ −11.00∗∗∗ 0.55
Netherlands‡ 0.90∗∗∗ −0.08 −9.85∗∗∗ −12.64∗∗∗ 0.18
Spain‡ 0.84∗∗∗ 0.23 −12.08∗∗∗ −11.39∗∗∗ 0.82
Sweden‡ 0.67∗∗∗ 0.27∗ −11.71∗∗∗ −11.40∗∗∗ 0.60

Notes: Consumption variable: ?: nondurables, semidurables and services consumption, ‡: total personal

consumption expenditure. {∗, ∗∗, ∗∗∗} = Statistical significance at {10, 5, 1} percent.
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Figure 1 Measured and “True” Consumption Growth—G7 Countries
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Figure 2 Measured and “True” Consumption Growth—Other Countries
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Appendix A: Description of Data
Data for the G-7 economies are from the Haver Analytics database. Data for other
countries are from the database of the NiGEM model of the NIESR Institute, London.
The original sources for most of these data are OECD, Eurostat, national statistical
offices and central banks. Income is measured as personal disposable income. Wealth
is approximated using data on the net financial wealth. All series were deflated with
consumption deflators and expressed in per capita terms. The population series are from
DRI International and were interpolated from annual data to quarterly observations.
Japan is not included in our sample as creating a quarterly dataset with consumption
data going prior to 1980 would involve splicing consumption series based on three very
different methodologies. Adjustments to the Japanese national accounts methodology
in 2002 and 2004 have significantly improved the reliability of quarterly consumption
series but the current-methodology data are only available since Q1:1994 (International
Monetary Fund (2006)).

We thank Roberto Golinelli for consumer sentiment series for G7 countries and
Australia used (and described in detail) in Golinelli and Parigi (2004). (We have not
used consumer sentiment series for the remaining countries, because the data are not
available before 1985.) We are grateful to Carol Bertaut and Nathalie Girouard for
providing us with the data used in Bertaut (2002) and Catte, Girouard, Price, and
Andre (2004), respectively. Ray Barrell, Amanda Choy and Robert Metz answered our
questions about the NiGEM’s database.

Appendix B: Details of the Kalman Filter
Estimation
Following Sommer (2007), equations (7) and (8) can be rewritten in the state-space
form with the measurement equation:

∆ logCt = c0 +
[
1 0 0 1 0 0

]


∆ logC∗t
ut

−ut + θ∆ut
∆ut + θ∆ut−1

vt
vt−1

+ 0,
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Table 5 Consumption Data, Its Sources, and Samples for IV Regressions

Country Time Frame Consumption/Source Income/Source Wealth/Source

G7 Countries
Canada Q4:1970–Q3:2002 NDS/Haver PDI/Haver NFW/NiGEM
France Q1:1985–Q4:2003 NDS/Haver PDI/Haver NFW/NiGEM
Germany‡ Q4:1975–Q4:2002 NDS/Haver PDI/Haver NFW/NiGEM
Italy Q1:1981–Q4:2003 NDS/Haver PDI/Haver NFW/NiGEM
United Kingdom Q1:1974–Q4:2003 NDS/Haver PDI/Haver NFW/NiGEM
United States Q3:1962–Q2:2004 NDS/Haver PDI/Haver NFW/NiGEM

Other Countries
Australia Q4:1975–Q4:1999 PCE/Haver PDI/Haver NFW/NiGEM
Belgium Q2:1980–Q4:2002 PCE/NiGEM&MEI PDI/NiGEM&MEI NFW/NiGEM
Denmark Q1:1977–Q2:2003 PCE/NiGEM&MEI PDI/NiGEM&MEI NFW/NiGEM
Finland Q3:1973–Q2:2003 PCE/NiGEM&MEI PDI/NiGEM&MEI NFW/NiGEM
Netherlands Q1:1975–Q4:2002 PCE/NiGEM&MEI PDI/NiGEM&MEI NFW/NiGEM
Spain Q1:1978–Q4:1999 PCE/NiGEM&MEI PDI/NiGEM&MEI NFW/NiGEM
Sweden Q1:1977–Q4:2002 PCE/NiGEM&MEI PDI/NiGEM&MEI NFW/NiGEM

Notes: PCE = Total personal consumption expenditures, NDS = Nondurables and services, PDI = Personal

disposable income, NFW = Net financial wealth, ‡: Regressions for Germany were estimated with a reunification

dummy in Q1:1991; Source: Haver—Haver Analytics, NiGEM—Database of the NiGEM model of the NIESR

Institute, London, MEI—Main Economic Indicators of OECD.
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and the state-evolution equation:

∆ logC∗t
ut

−ut + θ∆ut
∆ut + θ∆ut−1

vt
vt−1

 =



χ 0 0 0 λ1 λ2

0 0 0 0 0 0
0 −θ 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0





∆ logC∗t−1

ut−1

−ut−1 + θ∆ut−1

∆ut−1 + θ∆ut−2

vt−1

vt−2

+



vt
ut

(θ − 1)ut
ut
vt
0

 ,

and with the associated covariance matrices H = 0 and

Q =



σ2
v 0 0 0 σ2

v 0
0 σ2

u (θ − 1)σ2
u σ2

u 0 0
0 (θ − 1)σ2

u (θ − 1)2σ2
u (θ − 1)σ2

u 0 0
0 σ2

u (θ − 1)σ2
u σ2

u 0 0
σ2
v 0 0 0 σ2

v 0
0 0 0 0 0 0

 ,

respectively.
The state-space form is estimated with the Kalman filter using the consumption

series described in table 5. The coefficients λ1 and λ2 are not free parameters but
instead depend on the consumption persistence coefficient χ: λ1 = f(χ), λ2 = g(χ).
Our Kalman filter estimation incorporates this relationship between χ, λ1, and λ2.

Figures 1 and 2 display the measured consumption growth ∆ logCt and true con-
sumption ∆ logC∗t estimated using the Kalman smoother based on the above state-space
model.
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