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Abstract

Random Utility Maximization (RUM) models of recreation demand are typically plagued
by limited information on environmental and other attributes characterizing the available sites
in the choice set. To the extent that these unobserved site attributes are correlated with the
observed characteristics and/or the key travel cost variable, the resulting parameter estimates
and subsequent welfare calculations are likely to be biased. In this paper we develop a Bayesian
approach to estimating a RUM model that incorporates a full set of alternative specific constants,
insulating the key travel cost parameter from the influence of the unobserved site attributes. In
contrast to estimation procedures recently outlined in Murdock [21], the posterior simulator we
propose (combining data augmentation and Gibbs sampling techniques) can be used in the more
general mixed logit framework in which some parameters of the conditional utility function are
random. Following a series of generated data experiments to illustrate the performance of the
simulator, we apply the estimation procedures to data from the Iowa Lakes Project. In contrast
to an earlier study using the same data (Egan et al. [7]), we find that, with the addition of a
full set of alternative specific constants, water quality attributes no longer appear to influence
the choice of where to recreate.
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1 Introduction

McFadden’s Random Utility Maximization (or RUM) model provides the framework most often
used to characterize recreation demand, linking the frequency of site visitation to individual at-
tributes, the characteristics of alternatives in the choice set, and the travel cost required to reach
each site. The estimated models can, in turn, be used to infer the value households place on access
to sites and/or changes to site characteristics. Such information is key to policy-makers seeking
to manage recreational resources. One advantage analysts have in modeling recreation demand is
that, unlike most empirical demand studies, there is rich variation in the price data. The travel cost
differs both across individuals and alternatives because of differences in each person’s proximity
to recreational sites. Unfortunately, variation in the price data is frequently offset by a paucity
of information characterizing the attributes of the sites themselves. Researchers are often limited
to one or two measures of site quality such as fish catch rates (Chen, Lupi and Hoehn [5] and
Morey, Rowe and Watson [20]), fish toxin levels (Phaneuf, Kling, Herriges [23]) or dummy variable
indicators capturing different levels of water quality (Parsons, Helm and Bondelid [22]).3 The risk
in this setting is that unobserved site attributes may be correlated with the observed attributes or
travel costs (or both), leading to omitted variables bias for the estimated parameters and biasing
any subsequent welfare calculations.4

One solution to this problem is to include a full set of alternative specific constants (ASC’s) when
specifying the conditional utilities derived from visiting sites. These constants absorb and isolate
the impact of site-specific attributes (including those unobserved by the analyst), allowing the key
travel cost parameter to be consistently estimated. However, two problems emerge. First, when
the available choice set is large, a full set of ASC’s will greatly expand the parameter space, making
the RUM model difficult to estimate. Second, the impacts that site attributes have on site selection
are no longer identified, having been absorbed into the alternative specific constants. This limits
the scope for policy analysis or regulators who are often interested in how changing site attributes
(particularly a site’s environmental conditions) will alter recreational usage patterns and the welfare
of their constituent residents.

In an important recent article, Murdock [21] provides a resolution to both problems. Drawing on
3There are, of course, exceptions. Hanemann [10] highlights the importance of a large set of water quality attributes

in determining site selection, including chemical oxygen demand (COD), phosphorus and fecal coliform bacteria levels.
In a related study of beach usage in the Boston-Cape Cod area, Bockstael, Hanemann and Strand [3] employ a large
number of water quality attributes, finding that these factors again are significant determinants of recreation demand.

4It is not hard to imagine possible correlations between observed and unobserved environmental attributes. For
example, fish catch rates are likely to be lower in water bodies suffering from high pollution levels. The fish catch
rates, in this case, might serve as a proxy for a myriad of water quality attributes affecting recreational site choices.
Unobserved site attributes might also be correlated with travel costs, both because individuals might choose to locate
closer to sites with higher water quality and because regulators may place a higher priority on improving the water
quality of sites near population centers.
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innovations in the industrial organization literature by Berry [1] and Berry, Levinsohn, and Pakes
[2], Murdock suggests dividing the estimation task, employing a contraction mapping routine to
estimate the alternative specific constants, while a standard maximum likelihood routine is used
to estimate the model’s remaining parameters conditional on the estimated ASC’s. Whereas joint
estimation of all of the RUM model’s parameters can be difficult, Murdock’s iterative approach is
significantly faster and more stable, addressing the first problem noted above. To address the second
issue (i.e., identification of the site attribute affects) Murdock suggests a second stage estimation
in which the ASC’s are regressed on observed site attributes. As she notes, the advantage of
this approach is that any concerns regarding correlation between observed and unobserved site
attributes can be readily dealt with at this stage of the analysis using standard instrumental
variable techniques in the context of a simple linear regression model.

There are, however, limitations to this estimation procedure. In particular, it cannot be used to
obtain maximum likelihood parameter estimates if the RUM model includes random parameters
(the so-called mixed logit model).5,6 Unfortunately, the mean-fitting feature of maximum likelihood
estimation, which emerges from the standard logit model and underlies the insight behind Mudock’s
[21] approach, does not hold once random parameters are introduced.7 Without this feature, the
alternative specific constants obtained by the contraction mapping routine no longer solve the
standard first order conditions implied by maximum likelihood estimation. In turn, this implies
that the remaining parameter estimates for the RUM model, which are obtained conditional on the
ASC’s, are also not maximum likelihood estimates. While forcing the alternative specific constants
to insure mean fitting may be a desirable feature of an estimator, it is no longer clear what the
statistical properties are of the resulting parameter estimates.8

The purpose of this paper is to provide an alternative approach to estimating the parameters of
a RUM model including a full set of alternative specific constants, but one that does allow for
the inclusion of random parameters. In particular, we propose a Bayesian approach using data
augmentation and Gibbs sampling to characterize the posterior distribution of model’s parameters.
Using a series of generated data experiments we demonstrate that our particular posterior simulator
yields a posterior distribution for the key travel cost parameter that is insulated from the influence

5To our knowledge, Klaiber and von Haefen [14] were the first to note this limitation of the procedure.
6See Train [26] for a description of the mixed logit model.
7The mean-fitting nature of the logit model stems from its membership in the linear exponential family of dis-

tributions, which the mixed logit model is not a member of. In her technical appendix to [21], Murdock essentially
uses a standard logit model (by conditioning on the random parameters) to prove that the first order conditions for
maximum likelihood estimation imply that the estimates will be mean fitting. In an appendix to this paper, available
from the authors upon request, a similar proof demonstrates that mean fitting is no longer implied by maximum
likelihood estimation once random parameters are introduced.

8It should be noted that the limitation to Murdock’s procedure does not carry over to the earlier work of Berry
[1] and Berry, Levinsohn, and Pakes [2]. In those papers, a contraction mapping is used to fit observed shares in the
context of a GMM estimator and do not implicitly rely upon first order conditions derived from maximum likelihood
estimation.
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of unobserved site attributes, even those correlated with price or the observed site attributes.9

The influence of observed site characteristics on site visitation is captured using a hierarchical
structure in the RUM model, allowing the distribution of the alternative specific constants to
depend upon the observed site attributes. Unlike the post-estimation second stage regression used
in Murdock [21], our approach proceeds jointly rather than sequentially and fully embraces the
informational content provided by all stages of the hierarchy in the estimation process. That
is, information provided by the hierarchical priors can be used to help “predict” the site-specific
constants in addition to what is learned by the first-stage exercise of intercept estimation in the
multinomial choice model. The adoption of such a hierarchical specification allows the researcher to
borrow strength from what is learned about the estimation of other site-specific parameters and use
it (in conjunction with site-level observables) to predict values of the given site-specific constant.
As such, the hierarchical model serves to shrink the model estimates toward common means and
helps mitigate concerns regarding overfitting, a common criticism of the highly-parameterized fixed
effects model. While we do not focus on this in our empirical analysis, the hierarchical structure
for the ASC’s can also be readily generalized to allow for possible correlation between the observed
and unobserved site attributes using an instrumental variables approach along the lines described
in Rossi, Allenby, and McCulloch [24] (section 7.1) and Lancaster [17] (chapter 8).

We illustrate our method using data from the Iowa Lakes Project, a large scale recreation demand
study containing information on the visitation patterns of approximately 4,400 Iowa residents to
the 130 primary recreational lakes in the state. One advantage of this study is that, in addition to
household level usage data, detailed information is available on both site attributes and lake water
quality. Moreover, this same data was recently used in Egan et al. [7] to estimate a RUM model of
lake usage as a function site attributes, individual characteristics and travel cost, but without the use
of alternative specific constants. The authors find that households significantly and substantially
respond to both site characteristics and water quality attributes in deciding which lakes to visit.
Using a similar specification that does not contain site-specific constants, yet estimated from a
Bayesian point of view, we are able to replicate these qualitative results. Importantly, however, we
find that once alternative specific constants are included in the model, the impact of water quality
attributes is no longer clear, while site characteristics such as wake restrictions and boat ramps
remain important factors. We also find that there is nearly a 20% drop in the coefficient of travel
cost with the addition of ASC’s, which in turn leads to an increase in most welfare calculations by
approximately 25%.

The outline of the paper is as follows. Section 2 provides a more detailed description of the basic
9By “insulated” we mean that the posterior is approximately centered around the parameter of the (known) data

generation process and tends to collapse around this value as the sample size grows. This result is specific to the
posterior simulator we employ - had we chosen to implement traditional blocking approaches with panel data, we
would not obtain this desirable sampling performance.
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RUM model, highlighting the potential for omitted variables bias and summarizing the related
literature. Section 3 then describes our proposed method for estimating the parameters of the
model, including a full set of alternative specific constants. A series of generated data experiments
is employed in Section 4 to illustrate the performance of our posterior simulator under varying
assumptions regarding unobserved site attributes. Section 5 provides a description of the Iowa
Lakes Project and the data used in our empirical analysis. Estimation results and model comparison
exercises are provided in Section 6 and the implications of various model specifications for welfare
calculations in Section 7. The paper concludes with a summary in Section 8.

2 Controlling for Unobserved Site Attributes

As noted above, a significant concern in the recreation demand literature is that the analyst typ-
ically has relatively few attributes characterizing the individual sites in the choice set. To the
extent that unobserved site attributes are correlated with either observed site attributes or the
travel cost variable (or both), the resulting parameter estimates and subsequent welfare analysis
will be contaminated by this correlation. Using both a generated data experiment and an empirical
application to recreational fishing in Wisconsin, Murdock demonstrates that ignoring the unob-
served site characteristics can “. . . cause biased standard errors that can outrageously overstate the
precision of the [parameter] estimates. . . ” (Murdock [21], p. 14.) and welfare predictions that are
off by up to a factor of four.

The nature of the issue can be illustrated using a simple RUM model. Suppose the utility individual
i receives from visiting site j is a linear function of a vector of site attributes (sj), the travel cost
required to visit the site (pij) and an idiosyncratic error component (εij) that is uncorrelated across
sites and individuals and uncorrelated with either sj or pij (e.g., εij is i.i.d. extreme value). That
is

Uij = sjα0 + pijβ + εij i = 1, 2, . . . , N ; j = 1, 2, . . . , J. (1)

Given distributional assumptions regarding the εij ’s, choice probabilities can be derived for each
individual and alternative, providing the basis for estimating parameters of the conditional utility
function in (1). Unfortunately, the analyst may only observe a subset of the site attributes, (soj),
leading to a reduced form specification

Uij = sojα
o
0 + pijβ + ε̃ij i = 1, 2, . . . , N ; j = 1, 2, . . . , J. (2)
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where
ε̃ij = sujα

u
0 + εij i = 1, 2, . . . , N ; j = 1, 2, . . . , J. (3)

In (3), suj denotes the unobserved site attributes and αk0 (k = o, u) denote the subset of parameters
associated with skj (k = o, u).10 Given this specification, consistent estimation of the parameters
αo0 and β will require that the observed site characteristics and travel cost variables be uncorrelated
with the unobserved characteristics. However, in applications where there are numerous unobserved
site attributes, this condition is unlikely to hold, resulting in correlation between the error term
ε̃ij and the included explanatory variables and leading to the classic omitted variables bias (and
inconsistency) problem.

One solution to this problem is to introduce a full set of alternative specific constants to capture
the unobserved site attributes. In particular, letting αuj ≡ sujαu0 , equation (1) becomes

Uij = αuj + sojα
o
0 + pijβ + εij i = 1, 2, . . . , N ; j = 1, 2, . . . , J. (4)

Unfortunately, perfect collinearity between the alternative specific constant αuj and the observed
site effects, sojα

o
0, will preclude identification of both αuj and αo0. Instead, one can only identify an

overall alternative specific constant

αj = sojα
o
0 + sujα

u
0 (5)

= sojα
o
0 + αuj (6)

capturing the total impact of the site characteristics (observed and unobserved) on latent utility.
That is, we can employ the model:

Uij = αj + pijβ + εij i = 1, 2, . . . , N ; j = 1, 2, . . . , J. (7)

This resolves the omitted variables problem since the error term (εij) is once again uncorrelated
with the explanatory variable (pij). Unfortunately, in addressing the omitted variables issue, we
have created two new problems. First, there are now J-1 alternative specific constants to estimate,
which can be challenging when the choice set is large. Second, the impact of the site characteristics
on consumer welfare is no longer separately identified.

If the individual utilities (i.e., the Uij ’s) in equation (7) were observable, we would have a classic
linear regression model and the alternative specific constants could be treated as fixed effects. In
this setting, familiar partitioned regression techniques could be used to ease the computational
burden of estimating the many ASC’s. However, given the nonlinear nature of the RUM model,
these techniques are not available. Murdock’s solution, however, is somewhat analogous. She

10The specification in equation (2) is similar to that used in Egan et al. [7] and in much of the recreation demand
literature.
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uses a contraction mapping routine, together with the mean-fitting nature of maximum likelihood
estimation (MLE) in the logit setting (i.e., imposing that the actual and fitted shares are equal under
MLE) to separate the estimation of a full set of alternative specific constants from the estimation of
the remaining parameters. Once the ASC’s are estimated, the relatively small number of remaining
parameters are obtained using standard maximum likelihood estimation, conditioning on the ASC’s.
This is an elegant solution to the problem, with both steps in the estimation process being easy to
implement. Murdock goes on to suggest that the role of the observed site attributes in determining
recreation demand can be captured using a second stage regression that fits the linear regression
model implicit in equation (6), replacing the ASC’s (i.e., the αj ’s) with their fitted values from
the first stage and treating αuj as the error term.11 Murdock observes that any omitted variables
bias resulting from correlation between the observed site attributes in (6) and the unobserved site
attributes imbedded in αuj can be handled using instrumental variables techniques. As noted in the
introduction, the principle drawback to the method proposed by Murdock [21] is that it does not
generalize to the mixed logit setting, which allows for preference heterogeneity across individuals
through the use of random parameters. Moreover, the parameters αo0 are informative for the ASC
parameters, and we fail to capitalize upon this source of learning in the sequential approach to
estimation.

In the next section we propose an alternative to Murdock’s two-step procedure that can be used
in the mixed logit setting. Before proceeding with the technical details, some intuition as to why
our approach works may help. We approach the estimation problem from a Bayesian perspective,
combining data augmentation and Gibbs sampling to characterize the posterior distribution of the
model’s parameters, but in the process draw on results in the standard fixed effects model familiar to
non-Bayesians.12 The data augmentation aspect of the simulator involves treating the unobserved
latent site utilities (i.e., the Uij ’s) as additional parameters of the model. At each stage a simulated
value for this otherwise missing information is obtained based on the observed decisions made by
each individual. The key to the approach is that, conditional on these draws of the latent utilities,
the model is effectively linear, and thus the problem of characterizing the posterior distribution of
the parameters in (7) (i.e., the ASC’s αj and the travel cost parameter β) proceeds in a manner
very similar to the classic fixed effects model. Indeed, with a diffuse prior on the parameters,
the corresponding posterior mean of (α1, . . . , αJ−1,β) reduces to the non-Bayesian’s fixed-effects
estimator. By blocking together the simulation of the conditional posterior distribution of ASC’s
and the travel cost parameter, we isolate the impact of the unobservables (capturing them entirely

11Note that this regression will have only J − 1 observations.
12There have been several papers using a Bayesian framework to estimate a model similar to that originally proposed

in Berry, Levinsohn and Pakes [2], including a full set of alternative specific constants to control for unobserved
alternative attributes. Yang, Chen, Allenby [27] develop a posterior simulation alternative to Berry, Levinsohn and
Pakes [2] in modeling aggregate supply and demand. However, the routine is conditional on correctly specifying the
underlying supply relationships. Jiang, Manchanda and Rossi [13] provide a Bayesian counterpart to the contraction
mapping approach outlined in Berry, Levinsohn and Pakes [2], though again the analysis is couched in the context
of aggregate supply and demand data.
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in the alternative specific constants) and insulate the travel cost parameter from their effects, much
like the standard result that the fixed effects estimator is unbiased even when correlation exists
between the fixed effects and other explanatory variables included in the model.

3 Model

The basic RUM model presented in the previous section considers only a single choice from among
the available alternatives in the choice set. In order to capture the observed outcome that indi-
viduals often take multiple trips to one or more sites during a course of a season, it is common
practice in the recreation demand literature to employ the repeated logit model (Morey, Rowe and
Watson [20], Herriges and Phaneuf [11]). In this extension of the basic RUM model, individuals are
assumed to repeatedly choose from among the same set of alternatives over a fixed number of choice
occasions. Furthermore, each decision is assumed conditionally independent across individuals and
choice occasions.13 The particular form of the model we use is the repeated mixed logit (RXL)
model employed by Egan et al. [7] (allowing individual parameters of the model to be random), but
with the addition of the full set of alternative specific constants advocated by Murdock [21]. This
section begins by describing the structure of the RXL model and developing the necessary notation,
followed by a specification of the prior distributions employed in our analysis and a description of
the Gibbs sampler used to generate draws from the posterior distribution.

3.1 The Repeated Logit Model

In the repeated logit model it is assumed that, on each choice occasion t, individual i chooses
from among J + 1 alternatives, including the option to “stay at home” (j = 0). We assume the
conditional utility individual i derives from alternative j at time t is given by:

Uijt =
{
ziγ + εi0t j = 0
αj + pijβ + ϕi + εijt j = 1, . . . , J.

(8)

In this form of the model, the utility from visiting any one of the recreation sites (i.e., j = 1, . . . , J) is
decomposed into an overall site-specific effect (αj), a price (or travel cost) effect (pij), an individual
specific effect ϕi, and an idiosyncratic error term εijt. The term ϕi is included in the model to
allow for heterogeneity in preferences to recreate across individuals and, specifically, we assume
ϕi ∼ N (0, σ2

ϕ). The parameter σ2
ϕ is estimated within the model and characterizes the extent of

13Herriges, Kling and Phaneuf [12] provide a summary of the repeated logit model and the implications of its
underlying assumptions.
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variation in preferences to recreate in the population. The mean of this assumed normal distribution
is restricted to be zero for identification purposes, as a non-zero mean (and thus an overall intercept
parameter) will be introduced through our hierarchical prior for αj .Ceteris paribus, an individual
with a small ϕi is more likely to stay at home on a given choice occasion than someone with a larger
ϕi. The inclusion of these individual-level heterogeneity terms thus mimics the standard nested
logit structure in which all of the recreational sites are included in a single nest (See Herriges and
Phaneuf [11]).

The idiosyncratic error term εijt captures any remaining unobservable aspects of conditional utility
and is assumed to be independent across the J + 1 alternatives. We assume εijt

iid∼ N (0, 1). This
assumption can be relaxed, and more flexible correlation and substitution patterns permitted across
the alternatives. We maintain this assumption here, however, both because it is rather common in
the recreation demand literature, mimics the often-used nested logit structure in empirical practice,
and the complexity of the current model leads us to consider this parsimonious variant of the model
as a starting point. Finally, individual demographic characteristics (such as age and gender) are
assumed to impact the individual’s propensity to stay at home, through the term ziγ in equation
(8), but are assumed to not impact the relative preference for any given recreation site. Such an
extension could, again, be relaxed by allowing γ = γj , although this generalization may potentially
introduce many new parameters in the model.

The choice among the alternatives on any given choice occasion depends, of course, only on relative
utility levels. We use the stay-at-home-option as the base alternative, defining:

Ũijt = Uijt − Ui0t = αj + pijβ − ziγ + ϕi + ε̃ijt (9)

where ε̃ijt = εijt − εi0t for j = 1, ...., J. Stacking the error differences over alternatives, let

ε̃i·t =


εi1t − εi0t
εi2t − εi0t

...
εiJt − εi0t

 ∼ N (0,Σ∗)

where

Σ∗ =


2 1 · · · 1
1 2 · · · 1

1 1
. . .

...
1 1 · · · 2



Stacking all the variables across alternatives, we then have

Ũi·t = α· + pi·β − (1J ⊗ zi)γ + 1Jϕi + ε̃i·t, (10)
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where 1J is a J × 1 vector of ones,

Ũi·t =


Ũi1t
Ũi2t

...
ŨiJt

 ; α· =


α1

α2
...
αJ

 ; and pi· =


pi1
pi2
...
piJ

 .
Grouping our covariates together, the vector of utility differences can be written more compactly
as

Ũi·t = Mi·tθ + vi·t, (11)

where
Mi·t =

[
IJ pi· 1J ⊗ zi

]
and θ =

[
α·
′ β γ ′

]′
.

Although Mi·t does not formally depend on t in our application, it may in other instances, and
we continue to make use of this notation here to remind us of the assumed repeated nature of the
decision problem. Finally, vi·t is the composite error term

vi·t = 1Jϕi + ε̃i·t (12)

where E(vi·t) = 0 and
E(vi·tvi·t′) ≡ Ω = σ2

ϕ1J1′J + Σ∗. (13)

The observed choice yit is linked to the latent variable vector Ũi·t as follows:

yit(Ũi·t) =

{
0 if max{Ũijt}Jj=1 ≤ 0
k if max{Ũijt}Jj=1 = Ũikt > 0.

(14)

What we observe for every individual is a count of the number of visits to the full menu of poten-
tial sites over a given period of time, which for us represents a calendar year. Within the RXL
framework, we imagine that a series of decisions were made by the individual at particular choice
occasions - which in our case is weekly - in a manner that is consistent with this aggregate data.
For example, if we know that a person visits just a single site k once and nothing else, then in
51 of the 52 cases, yit takes on the value of the stay-at-home option (0), while in the remaining
case, yit = k. The actual ordering of these occurrences is not informed by the likelihood function,
as nothing in the model depends on t, and we do not have information on the specific timing of
decisions within the data. Our posterior simulator, then, will sample the Uijt for t = 1, 2, . . . , 52
in a manner that satisfies the observed information on the total number of visits (and non-visits),
and the particular order in which this is done is irrelevant for estimation and inferential purposes.

3.2 Hierarchical Priors

As described in the previous section, the alternative specific constants (αj) play a particularly
important role in the model. The αj ’s capture both observed and unobserved attributes of the site
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that might influence a person’s propensity to visit that site (as in equation (5)).14 The alternative
specific constants also provide the sole avenue by which the observed site attributes impact the
recreation demand decision. In Murdock’s [21] two-stage estimation procedure, this is accomplished
in the second stage, in which the fitted α̂j ’s are regressed on the observed site attributes, soj . In
our Bayesian approach, this is captured by incorporating a hierarchical structure into our model,
assuming that the αj ’s are drawn from an underlying distribution whose mean is a function of the
observed site characteristics; i.e.,

αj
ind∼ N (qjα0, σ

2
α). j = 1, 2, . . . , J (15)

where qj includes a constant term and the observed site characteristics that influence demand for
site j. This simple hierarchical structure is mostly silent about any possible correlation between
unobserved site attributes and the observed attributes included in qj , although it is often assumed
- at least implicitly - that these unobserved characteristics are uncorrelated with those in qj . If this
assumption does not hold, then α0 will simply capture the correlation between the αj ’s and the
observed site attribute, rather than a causal relationship, suffering from a form of omitted variables
bias. In these instances, the hierarchical structure for the ASC’s can be readily generalized to allow
for possible correlation between the observed and unobserved site attributes using an instrumental
variables approach along the lines described in Rossi, Allenby, and McCulloch [24] (section 7.1)
and Lancaster [17] (chapter 8).

We do not explore this possibility in the present paper, as no compelling instruments were identified
in our data set and we do have available an extensive list of site attributes. In this regard we
recognize that application of our methods will not solve all problems - to the extent that relevant
unobserved site characteristics are omitted, yet correlated with observed site characteristics, our
posterior estimates of the α0 parameters will continue to be plagued by poor sampling properties.
However, even when such correlation and confounding is present, the inclusion of site-specific
constants, in conjunction with our particular posterior simulator, will yield accurate estimates of
the first-stage parameters in (8). We will elaborate on this issue when describing our generated
data experiments in the following section.

To complete our model, we specify priors for the remaining parameters. These are enumerated
below:

14We assume that these site-specific effects are constant over both time and individual. The model could readily
be generalized to allow for heterogeneity of preferences towards the site attributes by allowing the αj to vary over
individuals with some common mean. Allowing the site-effects to vary over time is substantially more difficult in that
most recreation demand data sets do not have diary data regarding when individuals visit specific sites, but rather
simply record how many times each site is visited over the course of a season.
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α0 ∼ N (µα,Vα) (16)

β ∼ N (µβ, Vβ) (17)

γ ∼ N (µγ ,Vγ) (18)

σ2
α ∼ IG(aα, bα) (19)

σ2
ϕ ∼ IG(aϕ, bϕ) (20)

The hyperparameters of the priors above are supplied by the researcher and are in general chosen to
be relatively vague to allow dominance of the information from the data. While N above obviously
refers to the normal distribution, IG(·, ·) follows the notation in Koop, Poirier and Tobias [16]
(pp. 336) and represents the inverse gamma distribution. The prior means (µα, µβ, µγ) in our
empirical work and generated data experiments are set to zero vectors of appropriate dimensions
with the respective prior variance for the parameters (Vα, Vβ, and Vγ) set to identity matrices
of the appropriate dimensions. We also select the hyperparameters of the variances by choosing
aα = 3; bα = 5 and aϕ = 3; bϕ = 5. This leads to a reasonably non-informative prior for the
variances with prior mean and standard deviation equal to 0.1.15

3.3 Posterior Simulator

Let
Ξ =

[
θ α0 σ2

α {ϕi} σ2
ϕ

]
denote all the parameters of the model. The joint posterior distribution of Ξ and the latent utility
Ũ defines the augmented posterior density for the parameters in our model. By Bayes theorem
this posterior density is obtained as:

p(Ξ, Ũ |y) ∝
[ T∏
t=1

N∏
i=1

φ(Ũi·t;Mi·tθ,Ω) (21)

×
〈
I(yit = j)I(Ũijt > max[Ũi,−j,t, 0]) + I(yit 6= j)I(Ũijt < max[Ũi,−j,t, 0])

〉]

×

 J∏
j=1

p(αj |α0, σ
2
α)

[ N∏
i=1

p(ϕi|σ2
ϕ)

]
p(β)p(γ)p(α0)p(σ2

α)p(σ2
ϕ).

As mentioned previously, the individual yit data are not directly observed, but are constructed
to be consistent with the total number of trips taken to all of the sites over a given period of

15It should be noted that in cases where the data provides little information such as “small” J , the priors can be
quite influential when making posterior inferences concerning these common parameters.
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time. We construct the individual yit artificially, though without loss of generality, to match these
aggregate counts; the timing of when these decisions are assumed to occur does not affect the
augmented posterior distribution or its simulator. Therefore, our particular assignment of the yit
values, provided they properly reproduce the total counts, is arbitrary.

We fit the above model using Markov Chain Monte Carlo (MCMC) methods, drawing specifically
upon Gibbs sampling techniques. The Gibbs sampler makes use of the fact that, while joint
posterior distributions frequently take unrecognizable forms (making them difficult to draw from),
the conditional posterior distributions for individual blocks (or partitions) of the parameter space
will often fall into well known distributional families that can be readily drawn from. Sequentially
drawing from the posterior conditional distributions will lead to drawing from the joint posterior
distribution of interest. In our particular implementation of the Gibbs sampler, the parameters αj ,
β and γ are blocked together. This not only improves the mixing of the posterior simulator, but
also preserves some desirable sampling properties of the posterior estimates of β. We will revisit
this point when conducting our generated data experiments.

Step 1: Draw the Ũi·t|Ξ,y

Given the structure of our model, and to ease computation, we draw the latent utilities that
individual i derives from visiting site j as an intermediate step in drawing the necessary utility
differences. That is, we sample the Uijt and then take differences from the baseline utility Ui0t

to obtain the Ũijt. Drawing the Uijt is straightforward, since conditional on αj , β,γ, and {ϕi}
there is no correlation among the alternatives or correlation across individuals. The posterior
conditional distributions for the Uijt’s are univariate truncated normal with mean µij and variance
of 1 and a truncation point dictated by the visitation pattern of the individual.16 In particular,
if an alternative is chosen, it must be the alternative that gives maximum utility. This places a
lower bound on the utility of the chosen alternative and an upper truncation point for all the other
alternatives.

We use the following steps to draw the Ũijt’s at a given draw r :

Assuming that individual i chooses alternative k at choice occasion t,

1: Draw U rijt for all j 6= k from a truncated normal distribution with mean µij , a variance of 1, and
upper truncation point Uikt = U r−1

ikt .

2: Draw U rikt from a truncated normal distribution with its mean µij , a variance of 1, and a lower
truncation point at the max(U rijt) for all j 6= k.

16From equation (8), µij = αj + Pijβ + ϕi for j = 1, . . . , J and µi0 = ziγ.
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3: Calculate Ũijt by taking the difference between utilities from all sites and the stay at home
option: Ũ rijt = U rijt − U ri0t.

Step 2: θ|Ξ−θ, Ũ ,y

In this case and in all the steps that follow, Ξ−m in the conditioning implies that we condition on
all the parameters in Ξ other than m. Using the result of Lindley and Smith (1972), the posterior
conditional for θ is given as:

θ|Ξ−θ, Ũ ,y ∼ N (Dθdθ,Dθ). (22)

where

Dθ ≡

[
T

N∑
i=1

M′
i·tΩ

−1Mi·t + Σ−1
θ

]−1

dθ ≡
∑
t

∑
i

M′
i·tΩ

−1Ũi·t + Σ−1
θ µθ

and

Σθ =

σ2
αIJ 0 0
0 Vβ 0
0 0 Vγ

 , µθ =

Qα0

µβ
µγ

 .
The blocking strategy adopted in this step is key to our proposed simulator, jointly drawing the
parameters α·, β and γ. This blocking not only helps in improving the mixing of the sampler,
but also avoids contamination of the travel cost parameter β stemming from unobserved site at-
tributes correlated with travel cost. A natural alternative blocking strategy, performed by many
in practice without recognition of its consequences, proceeds by drawing β and γ jointly from the
posterior conditional marginalized over the αj , and then drawing each αj independently from their
complete posterior conditional distributions. This simulator would not achieve the same objective.
In short, the steps used to integrate αj out of the β,γ conditional in this approach assume in-
dependence of the errors of (15) and other covariates in the model, even though such correlation
may be present. Our simulator proceeds without having to model this correlation, and without
needing to be concerned about it. The analogy here would be between the standard fixed and
random effects estimators in the non-Bayesian paradigm. In the standard fixed effects estimator,
the parameter estimates are robust to potential correlation between the regressors of the model
and fixed effects. The same is not true of the random effects estimator. Our blocking strategy
simultaneously simulates the alternative specific constants (our site fixed effects) jointly with the
other parameters β and γ, much like the fixed effects estimator simultaneously estimates the fixed
effects and the parameters in the linear regression model. We present results of a generated data
experiment in the next section that supports this.
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Step 3: {ϕi}|Ξ−ϕi , Ũ ,y

{ϕi}|Ξ−ϕi , Ũ ,y ∼ N (Dϕdϕ, Dϕ) (23)

where

D−1
ϕ = JT +

1
σ2
ϕ

; and dϕ =
T∑
t=1

(Uϕ
i·t −M

ϕ
i·tθ

ϕ)

and Uϕ
i.t,M

ϕ
i·t, and θϕ are stacked over the sites j (j = 1...J) and choice occasion for each individual

without the stay at home equation. That is

Mϕ
i·t =

[
IJ P i

]
and θϕ =

[
α·
′ β

]′
.

Step 4: α0|Ξ−α0 , Ũ ,y

The remaining steps of our posterior simulator involve the sampling of parameters of the hierarchical
priors. Once we condition on the αj ’s, the mean of the posterior conditional for α0 is similar
to Murdock’s (2006) second stage linear regression of the fitted alternative specific constants on
observed site attributes. Specifically:

α0|Ξ−α0 , Ũ ,y ∼ N (Dα0dα0 ,Dα0) (24)

where
Dα0 = (Q′Q/σ2

α + V −1
α )−1 and dα0 = Q′α/σ2

α + V −1
α µα.

Step 5: σ2
α|Ξ−σ2

α
, Ũ ,y

σ2
α|Ξ−σ2

α
, Ũ ,y ∼ IG

J
2

+ aα,

b−1
α + .5

J∑
j=1

(αj −Qjα0)2

−1 . (25)

Step 6: σ2
ϕ|Ξ−σ2

ϕ
, Ũ ,y

σ2
ϕ|Ξ−σ2

ϕ
, Ũ ,y ∼ IG

N
2

+ αϕ,

(
b−1
ϕ + .5

N∑
i=1

ϕ2
i

)−1
 . (26)
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4 Generated Data Experiment

In this section we conduct a series of four generated data experiments to illustrate the performance
of our proposed methods. In particular we examine how our sampler performs given different
degrees of correlation (a) between observed and unobserved site characteristics and (b) between
travel cost and unobserved site characteristics. The experiments also shed light on the mixing
properties of our simulations and are useful in surmising the accuracy of our code.

In the first pair of experiments we focus our attention on the impact that correlation between the
observed and unobserved site characteristics has on parameter recovery. The sample size is set at
N = 5, 000, with each individual choosing from among J = 30 sites and the stay-at-home option
over the course of T = 20 choice occasions. Two demographic variables (i.e., zi’s) are included in
the experiments, with one drawn from a uniform distribution and the second a dummy variable
drawn from a Bernoulli distribution with equal probability of success and failure. The travel cost
for each individual to each site (pij) is drawn from a standard normal distribution. Finally, the
alternative specific constants are generated assuming that

αj = α01 + α02s
o
j + αu0s

u
j (27)

with soj and suj drawn jointly from the following bivariate normal distribution:[
soj
suj

]
∼ N

[(
0
0

)
,

(
σ2
o ρσoσu

ρσoσu σ2
u

)]
. (28)

In our experiments we use σ2
o = 0.03, σ2

u = 0.05 and αu0 = 1. Since we assume only soj is observed,
(27) and (28) imply

αj |soj
ind∼ N

(
α01 +

[
α02 + ραu0

(
σu
σo

)]
soj , (α

u
0)2σ2

u

[
1− ρ2

])
. j = 1, 2, . . . , J. (29)

In the notation of our hierarchical specification for the alternative specific constants [see equation
(15)], qj = [1 soj ], α0 = (α01

[
α02 + ραu0

σu
σo

]
), and σα = αu0σu

√
1− ρ2. Experiment 1 assumes that

soj and suj are uncorrelated (i.e., ρ = 0), while experiment 2 assumes that they are correlated with
ρ = 0.7. In this first experiment, therefore, we would expect accurate recovery of the structural
parameter α02 as the second coefficient in α0. This will not be the case when ρ 6= 0, as the second
experiment will reveal.

We fix β, γ and the hierarchical parameters {α01, α02, σϕ, σα} at the true values listed in column
3 of Table 1. The Gibbs sampler described in Section 3.3 is implemented for 100,000 iterations,
discarding the first 40,000 draws as burn-in. The chain is initialized at values that are relatively
far from the true parameters with σ2

α and σ2
ϕ set to unity and all remaining parameters set to zero.
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Trace plots suggested relatively rapid convergence, with 40,000 burn-in simulations representing a
conservative choice.17

Posterior means and posterior standard deviations for β, γ and the hierarchical parameters {α01, α02, σϕ, σα}
are reported in the first column of Table 1 for the first generated data experiment.18 A comparison
of the first and third columns of this table reveals that the algorithm is performing well at recovering
the parameters of the model. The only parameter that appears potentially troubling is the variance
parameter σ2

α. We caution the reader, however, that our experiment only has J = 30, and with
this small number of alternatives, the prior can be influential and it is difficult to accurately pin
down the variance parameter at this level of the hierarchy. With J = 30, the marginal posterior
distribution of the variance parameters displayed a significant right-skew; reassuringly, however,
the mode of this posterior was quite close to the true value .05.

Although our point estimates are suggestive of good performance, any MCMC-based inference can
be affected by the degree of correlation among the parameter draws over sequential iterations. If
the degree of correlation is high, the algorithm will be slow in exploring all areas of the posterior
surface and a large number of draws will be needed to fully characterize the posterior distribution.
A summary of the impact of high autocorrelation on the precision of our posterior estimates can
be obtained by calculating numerical standard errors (NSE) associated with the mean estimates:

NSE(θm) ≡=

√
σ2

m

√√√√1 + 2
m−1∑
j=1

(1− j

m
)ρj , (30)

where θ represents an arbitrary scalar parameter of interest, m denotes the number of post-
convergence simulations, θm represents our estimate of E(θ|y) as the sample average of our post-
convergence draws, ρj represents the correlation between simulations j periods (iterations) apart
and σ2 ≡ Var(θ|y). The above reveals that the numerical standard deviation of the posterior mean
estimate equals the “traditional” standard error under iid sampling (

√
σ2/m) times an inflation

factor, often termed an inefficiency factor. Since the ρj are positive in practice, we see that the
NSE’s can be larger - sometimes dramatically so - than the standard errors under iid sampling.
How precise our mean estimate will be depends on the number of post-convergence simulations
produced (m) as well as the mixing of those simulations, as summarized by the ρj .

We present NSE’s in the second column of Table 1 and do so for the first experiment only, as
results from the remaining experiments are similar. As the results clearly illustrate, the NSE’s are
extremely small relative to the mean estimates, strongly indicating that the simulation-based esti-
mates are stable and accurately approximate the posterior means of this selection of parameters.19

17Trace plots for a selection of parameters are contained in a Technical Appendix to the paper available from the
authors upon request.

18For the sake of space, the posterior means and standard deviations for the alternative specific constants are
relegated to the Technical Appendix, available from the authors upon request.

19Importantly, the NSE’s should not be confused with the posterior standard deviations, the latter of which are
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Parameter posterior means and standard deviations for the second generated data experiment
are reported in the fourth column of Table 1. In this experiment there is substantial correlation
(ρ = 0.7) between the observed and unobserved site attributes. As anticipated, based upon the
result in (29), we find that the posterior mean of α02 is now much larger than the “true” α02. In
this case, the second coefficient associated with the vector qj no longer reduces to this parameter,
with the analysis suffering what is akin to omitted variables bias found in a classical linear setting.
Furthermore, the variance parameter σ2

α is also reduced relative to that of experiment 1, consistent
with (29) when ρ 6= 0. Despite this important limitation, however, estimates of parameters appear-
ing in the latent utility stage of the model in (8) are unaffected by the induced correlation between
soj and suj , with posterior means that are all quite close to their true values.

In the final two experiments we examine the potential consequences of correlation between travel
cost and the unobserved site attributes. Specifically, we assume that the travel cost (pij) is a
weighted average of an independent random variable ωij

iid∼ N(0, 1) and the unobserved site char-
acteristics (suj ) with:

pij = (1− κ)ωij + κsuj , 0 < κ < 1. (31)

As in the previous two experiments, the unobserved site characteristic (suj ) is generated from a
normal distribution with mean zero and variance σ2

u = 0.05. As κ increases, the correlation between
the travel cost and unobserved site characteristic increases.20 We consider two levels of correlation.
In experiment 3 we use κ = 0.5 to induce a moderate level of correlation between the unobserved
attributes and travel cost, yielding Corr(pij , suj ) ≈ 0.22. In experiment 4 we create a higher level
of correlation by setting κ = 0.7, yielding Corr(pij , suj ) ≈ 0.46. For both experiments the simulator
described in section 3.3 was used to obtain 100,000 draws from the posterior distribution, with
40,000 draws discarded as the burn-in. Parameter posterior means and standard deviations from
both experiments are reported in Table 2, along with the true parameters used to generate the
data.21

In both instances, and despite the correlation between the unobserved site attributes and travel
cost, the simulator does a good job in recovering the underlying parameters of the model. The
posterior mean of the key coefficient on the travel cost variable (β) differs from the true value in
both experiments by less than one percent and the true value falls within 1 standard deviation of
the mean in both experiments. We again emphasize that this is a special feature of our particular
posterior simulator and such results would not be obtained had we blocked the parameters in
a “traditional” way by first integrating out the αj and then sampling (β,γ). Indeed, when we

provided in parentheses in the first column of the table. NSE’s quantify how close the estimated mean is to the true
posterior mean, based upon the MCMC output. The posterior standard deviations reflect uncertainty regarding the
parameter’s themselves based on the data at hand and supplied prior information. NSE’s will converge to zero as m
increases, while the posterior standard deviations will not.

20In particular, Corr(pij , s
u
j ) = κσ2

u{σ2
u[(1− κ)2 + κ2σ2

u]}−1/2.
21As with experiments 1 and 2, the results for the alternative specific constants are relegated to the Technical

Appendix.

18



implement such a simulator to this data, we obtain a posterior mean and standard deviation of β
equal to -5.56 and 0.09, which is clearly bounded away from the actual parameters of the DGP.

As a whole, results from the four experiments reported in this section attest to the fact that our
sampling scheme works well and insulates the travel cost coefficient from potential biases resulting
from unobserved site characteristics. In the absence of legitimate instruments and an elaborated
structure on (15), however, estimated coefficients on site-level variables are not immune to problems
caused by relevant omitted site characteristics that are correlated with elements of soj .

5 Application and Data Description

We apply our methods using data from the Iowa Lakes Valuation Project at Iowa State University.
The Iowa Lakes Project is a four year panel data study, sponsored by the Iowa Department of
Natural Resources and the US EPA, eliciting the visitation patterns of Iowan residents to the
primary recreational lakes in the state. One of the objectives of the project is to measure the
value residents place in the existing lake recreation opportunities and to predict the changes in
welfare that would result from proposed water quality improvements. Understanding how water
quality attributes affect recreational activities will help policy makers allocate limited environmental
resources and prioritize their efforts to comply with the Clean Water Act.

The data set is appropriate for our study for a number of reasons. The Iowa Lakes Project not
only covers all the major lakes in the state but also provides information on a wide variety of site
characteristics. The observed site characteristics (Q) include both site attributes, such as lake
acreage and indicators for paved boat ramps and handicap accessibility, and an unusually large
number of water quality attributes, such as Secchi Transparency (a measure of the depth of water
clarity), Nitrogen, and Chlorophyll.22 In addition, the exact same data was used by Egan et al.
[7] to estimate a repeated mixed logit model but without the inclusion of a full set of alternative
specific constants. Our analysis provides an indication of how the estimated impact of travel cost
is impacted by not controlling for unobserved site characteristics.

Although data for the project was collected over a four year period (2002-2005), we focus on the
2002 survey. The initial survey was sent by mail to 8,000 randomly selected Iowa residents. The
response rate among deliverable surveys was 62%, yielding a total of 4,423 returned surveys. We
exclude from our analysis those individuals who (a) were not Iowa residents (42), (b) failed to
complete the section of the survey asking for lake visitation patterns (360), or (c) reported taking

22The water quality attributes were measured by Iowa State University’s Limnology Laboratory three times a year
at each lake. The values used in our analysis are simple averages of these measures, following the approach used in
Egan et al. [7].
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more than fifty-two day trips per-year (223). The latter sample exclusion follows the procedure
used in Egan et al. [7], wherein the authors note that individuals taking such frequent trips are
usually local residents who are counting casual visits to or the passing by of their local lake. Instead,
our analysis, like theirs, is concerned with day-trips taken to lake sites solely for the purpose of
recreation.23 The cut-off of fifty-two trips per year allows for a day-trip each week.

Table 3 provides summary statistics for our sample, both in terms of household demographics and
individual site characteristics. As the table indicates, the survey respondents in our data set are,
on average, older males with some college or trade/vocational school. The average household size
is 2.45, including (on average) 0.61 children. Travel cost (pij) is calculated using 25 cents per mile
for the round-trip travel distance [computed using PCMiler (Streets Version 17)] plus one-third
the respondent’s wage rate multiplied by the travel time.24 Overall, round-trip travel costs average
just under $140, ranging from less than $1 to $1366.

One of the appealing features of the Iowa Lakes Project is that, not only is there a wealth of infor-
mation available regarding the site attributes and lake water quality, but there is also considerable
variation across the lakes in terms of these characteristics. The lakes in the Iowa Lakes Project
are, on average, 667 acres in size, ranging from 10 acres to approximately 19,000 acres. The other
site attributes are represented with dummy variables that indicate the availability of amenities of
interest. The majority of the lakes in our sample have a paved boat ramp (85%) and wake restric-
tions (i.e., Wake = 1) (65%), while less than forty percent of the lakes have handicap facilities
or are part of a local state park. There is also a wide range of water quality in Iowa lakes. For
example, Secchi Transparency (which measures the depth into the lake that one can see) averages
just over one meter, but varies from less than 0.1 meters (approximately 3.5 inches) to 5.67 meters
(well over 18 feet). Similar ranges are found for the other water quality measures, including Total
Nitrogen, Total Phosphorus, and Cyanobacteria. Moreover, these water quality measures are not
highly correlated, as the source and nature of the water quality problems in individual lakes varies
considerably across the state.

6 Empirical Results

We fit our random utility maximization model using the posterior simulator of Section 3.3. As
described there, Gibbs sampling is used to generate simulations from the joint posterior distribution
and the Gibbs algorithm is first run for 20,000 iterations. The last iteration from this process is

23Egan et al. [7] also found that their qualitative results are not sensitive to the specific cut-off of fifty-two trips
per year.

24The “average wage rate” is calculated for all respondents as their household’s income divided by 2,000. This
allows for a 40 hour work week with two weeks of vacation.
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then used to initialize four different chains, run simultaneously on four different machines with
different seeds. Each of these runs produced 47,500 simulations, leaving us with a total of 190,000
post-convergence draws to calculate parameter posterior means, standard deviations and other
quantities of interest.

Each iteration of the simulator was found to take about 30 seconds to run (or about 10 hours to
produce 1,000 iterations), with the most time consuming step being the simulation of latent data for
each agent, for each of 130 different sites, and for T = 52 different choice occasions. Specifically, this
step demands the simulation of nearly 21,400,000 truncated normal random variables, which cannot
be completely vectorized or done within a single coding step, since the simulations just produced are
used to update the conditioning information in the sampling of the remaining latent data. A large
burn-in value of 20,000 iterations was used because, informed by our generated data experiments,
we found the simulator for the parameters α′js, β and γ to mix relatively slowly. Although we
would like to obtain more post-convergence simulations in light of the fact that the algorithm tends
to exhibit slow mixing, generating additional draws is quite costly - our two machines worked for
nearly 20 days to provide the set of simulations used here.

6.1 Application Results

We are primarily interested in applying the algorithm in Section 3.3 to data from Iowa Lakes
Project to address the following questions: (1) Does ignoring unobserved site characteristics matter
in understanding site visitation patterns of Iowans? (2) Which site attributes are important in
influencing site visitation patterns? and (3) What are the welfare implications of water quality
improvements?

We begin to address these questions by first considering our most general model (later denoted as
Model “A”) which contains a complete set of water quality measures and non-water quality site
attributes in qj . We report parameter posterior means and posterior probabilities of being positive
[denoted P (· > 0|y)] for key parameters of the model in Tables 4 and 5. For the sake of brevity we
only report (in Table 4) the alternative specific constants results for an illustrative subset of sites.25

The alternative specific constants αj are negative for all the 130 sites in our sample with less than
0.0001 percent of the posterior mass density in the positive region of the parameter space. The
large negative values for the site specific constants is consistent with our data as these constants
reflect the difference in utility from site visits relative to staying at home. Given the large number
of trip options, a large negative alternative specific constant is needed to reflect the fact that
approximately 39% of our sample reported visiting none of the lakes in 2002. As expected, the α′js

25The complete set of estimated alternative specific constants are provided in the Technical Appendix to the paper.

21



are higher (less negative) for popular destination lakes in the state, such as West Lake Okoboji,
which has one of the highest quality site attributes in the U.S.

Within the context of the standard RUM framework used here, the negative of the travel cost
coefficient (i.e., −β) can be interpreted as the marginal utility of income, which is assumed to
be constant.26 Consistent with our expectations, the posterior mean for β in Table 4 is negative
(-0.0146), with the vast majority of the posterior mass falling in the negative region. Posterior
distributions for parameters associated with the demographic variables are also consistent with
the literature. Similar to Egan et al. [7], older individuals, females, and the less educated are
more likely to stay at home. Households with a greater number of adults and children have a
higher likelihood of visiting a site. However, in contrast to [7], the signs and overall magnitudes
of these coefficients in our analysis are not sensitive to the construction of qj . This, we argue is
a key benefit of our hierarchical model structure and posterior simulator; only estimates at the
terminal stage of the hierarchy are susceptible to having limited information on the attributes. All
of the posterior densities for the demographic variables coefficients are highly massed on either the
positive or negative side of the distribution, showing a consistent impact on the decision to stay at
home.

The results for the parameters of the hierarchical prior are presented in Table 5. The posterior
mean of the “overall intercept” α01 is negative, as expected, and the posterior density also places
the majority of its mass over negative values. Similar to Egan et al. [7], the availability of amenities
such as boat ramps, handicap accessibility, wake restrictions and classification as a state park make
a site more attractive. Larger lakes, ceteris paribus, are also preferred, as all posterior simulations
associated with the site size (acres) parameter were positive.

The posterior results for the water quality attributes, however, are in sharp contrast to earlier
studies. In particular, whereas Egan et al. [7], using the same data, conclude that water quality
attributes are important determinants of recreational lake usage and site selection, we find little
evidence of this effect. For most of the water quality coefficients, the mass of their posterior
densities are more or less evenly divided between the positive and negative values [with P (· > 0|y)
hovering around 0.5]. This result may call into question the individual importance of water quality
attributes in determining recreation demand.27 Only Total Phosphorus, which contributes to algae
growth, is convincingly massed on one side of zero in our analysis, suggesting (as in [7]) that high
levels of Total Phosphorus reduces the appeal of a site.

26While it is standard in the recreation demand literature to assume a constant marginal utility of income, it is
not required for the methods outlined in this paper.

27It is important to emphasize, however, that by incorporating alternative specific constants into our model, the
impact of site specific attributes on recreation demand is being captured entirely by the variation in the αj ’s. In
essence, we have only J − 1 observations in modeling the impact of water quality on recreation demand. Thus, it is
not surprising that the resulting posterior distributions for the water quality coefficients are relatively diffuse, with
the data providing relatively little information by which update our diffuse priors on these parameters.
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Table 6 represents our attempt to reproduce results in Egan et al. [7] from the Bayesian perspec-
tive. Here, we consider a simplified representation of latent utility, as in equation (2), that ignores
unobserved site characteristics by dropping the site-specific constants. When performing this anal-
ysis, we obtain results that are similar to those in [7] with water quality attributes shown to have
important influences on site selection. In particular, the posterior probabilities of being positive
for these characteristics are, with the exceptions of Cyanobacteria and Volatile SS, virtually one
or zero, indicating a clear role for these characteristics in recreation decisions. Also, comparing
the coefficient on travel cost between the two results, we see a drop of about 20% in the estimated
impact of travel cost when we allow for site-specific constants. This translates into an approximate
25% increase in the welfare effect.

6.2 Model Comparison

Our empirical results provide little evidence that individual water quality attributes impact the
visitation patterns to Iowa lakes. Correlation among these characteristics, however, may make it
difficult to isolate the role of any single attribute. In this section, we investigate the joint impact of
site characteristics and water quality attributes in influencing recreational lake usage. Specifically,
we consider four different models, similar to those employed by Egan et al. [7], and with an eye
toward determining the set of factors that plays the largest role in explaining recreation decisions.
These models are enumerated below:

• Model A: The unrestricted model just discussed containing a full set of water quality char-
acteristics and site attributes.

• Model B: Includes Secchi Transparency as the only water quality characteristic, with all site
attributes included.

• Model C: No water quality characteristics included, with all site attributes included.

• Model D: Includes Secchi transparency as the sole water quality characteristic, with all site
attributes excluded.

Comparison among these competing models is based upon the posterior probability that a model
is supported by the data. By Bayes rule, the posterior probability of model Mk is given by:

p(Mk|data) =
p(data|Mk)p(Mk)

p(data)
k = 1, . . . ,K, (32)

where p(data|Mk) denotes the marginal likelihood, p(Mk) is the prior probability of Model k and
p(Mk|data) is the posterior probability ofMk. Therefore, models can be compared pairwise based
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on their posterior odds ratio which is defined as:

POkj =
p(Mk|data)
p(Mj |data)

=
p(data|Mk)p(Mk)
p(data|Mj)p(Mj)

. (33)

In practice, the prior odds ratio p(Mk)/p(Mj) is usually set to unity for all the possible models
considered so that:

POkj =
p(Mk|data)
p(Mj |data)

=
p(data|Mk)
p(data|Mj)

≡ BFkj , (34)

with the ratio of marginal likelihoods denoted as the Bayes factor (BF).

For nested model comparison exercises, like those involved in deciding among Models A-D above,
the Savage-Dickey (S-D) density ratio offers a useful computational expedient for the calculation
of (34). Specifically, suppose we wish to “test” π = 0 for some subvector of coefficients π. Provided
the restricted model’s prior for parameters other than π is the same as the unrestricted model’s
prior for these parameters given that π = 0, we can write

BF12 =
p(π = 0|data,M2)
p(π = 0|M2)

, (35)

where Model 1 in the above represents the restricted version of Model 2, imposing π = 0. The
two expressions p(π = 0|data,M2) and p(π = 0|M2) are recognized as the posterior and prior
ordinates at zero under the unrestricted model 2, respectively, and the former of these can be
readily calculated given output from the posterior simulator.

Table 7 provides the resulting Bayes factors (BFij). The first row of Bayes factors uses Model
A as the “unrestricted” model (j), comparing it sequentially to models B, C and D as restricted
alternatives (i). In each of these cases, the Bayes factors exceed 1.0E+11, providing little support
for a model including the full range of water quality attributes. Indeed, Model C, which includes
none of the water quality characteristics, clearly dominates Model A. The second row of Bayes
factors in Table 7 uses Model B as the baseline model (with only Secchi Transparency as a measure
of lake water quality). Again, Model C dominates, with its posterior probability being almost
30 times higher than Model B. Interestingly, Model B clearly dominates Model D (in which site
attributes such as wake restrictions and lake size are excluded from the model). These findings
confirm the general conclusions drawn from examining the individual parameter estimates; i.e.,
that site attributes do significantly influence the pattern of recreational lake usage, but that there
is little evidence indicating that water quality characteristics play a direct role in lake visitation.

7 Welfare Analysis

Policy and counterfactual analysis is an important part of recreation demand research. In this
section we briefly describe how our model can be used to evaluate policies that affect site charac-
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teristics. Specifically, we consider changes to site attributes from baseline levels (Q0) to alternative
conditions (Q1). Limiting versions of this exercise can also be used to examine welfare consequences
associated with changes to the available choice set (e.g., the loss of an entire site).

Let Υs
it denote the maximal utility achieved by agent i on choice occasion t under scenario s

(s = 0, 1). That is,
Υs
it(Ξ,Q

s) = max
j

(U sijt|Ξ,Qs) s = 0, 1, (36)

where Ξ denotes all parameters of the model.

The compensating variation (CV) is then defined as the monetized change in expected maximum
utility due to changes in site attributes over the course of the season. That is

CVi(Q1,Q0) = T

(
EΞ|y

(
− 1
β

[
Υ1
i (Ξ,Q

1)−Υ0
i (Ξ,Q

0)
]))

. (37)

The term in square brackets above measures the change in maximal utility per choice occasion
which, for us, does not depend on t and is identical in expectation for all t. As such, we drop t

in our notation for Υs
it in (37) and will do so throughout the remainder of this discussion. The

seasonal change in expected utility is then just a simple scaled multiple of the expected change per
choice occasion [hence the appearance of “T” in (37)]. Finally, dividing by the marginal utility of
income (−β) creates a monetized measure of the change in the consumer’s utility from a change in
site characteristics.

We estimate the compensating variation in (37) by simulating utility values conditional on the
posterior distribution of the parameters for the two scenarios. The algorithm for welfare analysis
can be described in the following steps:

Step 1: Let Ξ(r)
−α·(r = 1, . . . , R), denote a draw from the posterior distribution of Ξ−α· . Draw

α
s(r)
j (j = 1, . . . , J ; s = 0, 1) using (15). That is, draw the alternative specific constant for site j

under scenario s (αs(r)j ) from a normal distribution with mean qsjα
(r)
0 and variance (σ(r)

α )2.

Step 2: Draws of the utility levels U s(r)ij |Ξ, Qs are obtained using equation (8), with

U
s(r)
ij =

{
ziγ

(r) + ε
(r)
i0 j = 0

α
s(r)
j + pijβ

(r) + ϕ
(r)
i + ε

(r)
ij j = 1, . . . , J.

(38)

where
ε
(r)
ij ∼N (0, 1) and ϕ

(r)
i ∼N (0, σ2

ϕ(r)). (39)

Step 3: Define
Υs(r)
i = max{U s(r)ij }, s = 0, 1, r = 1, 2, . . . , R. (40)
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The simulation based estimate of the welfare effect is then computed using

ĈV (Q1,Q0) =
1
N

N∑
i=1

ĈV i(Q1,Q0) =
1
N

N∑
i=1

{
1
R

R∑
r=1

T

−β(r)
[Υ1(r)

i −Υ0(r)
i ]

}
, (41)

an average of the CV’s for every individual in the sample. In performing these calculations, we
are treating the Iowa Lakes sample as representative of the general Iowa population in terms of
individual characteristics and their proximity to the lakes in the state (which in turn determines
their travel cost). If true, then the parameter in (41) estimates the average annual dollar amount
that an Iowa resident receives as compensation / would pay as income for the proposed change in
site characteristics. Note that this is very different than an effect for an “average” individual, and
our approach also appropriately accounts for parameter uncertainty in the process.

To illustrate these welfare calculations, we consider two competing policy scenarios:

• Scenario 1: The closure of West Lake Okoboji, a popular destination lake in Iowa and one of
the cleanest lakes in the US.

• Scenario 2: Improving nine zonal lakes (listed in Table 4) to have the same water quality as
West Lake Okoboji. These nine lakes, chosen as potential target lakes by the Iowa Department
of Natural Resources, are spaced evenly throughout the state.

For the first of these policy scenarios, we find the posterior mean compensating variation to be
negative, as expected, with an annual loss per household of ĈV = −$9.52. Moreover, the sign of
the associated compensating variation is clear, with CV (r) < 0 ∀r [i.e., P (CV > 0|y) = 0]. In
contrast, the welfare implications of scenario 2 are less clear. Indeed, while one might expect the
water quality improvements to be welfare enhancing, the posterior mean compensating variation
is negative, indicating an annual loss per household of ĈV = −$2.20. However, the sign of the
welfare change itself is unclear, with the individual CV (r)’s relatively evenly distributed between
positive and negative values, with P (CV > 0|y) = 0.35. These findings are consistent with the lack
of clear evidence linking water quality attributes to recreational lake usage.

8 Summary

Controlling for unobserved site characteristics is important in modeling recreation demand as re-
searchers are typically restricted to only a small subset of the site attributes that influence site
selection. To the extent that site specific factors are omitted from the analysis and correlated with
either observed site attributes or the travel cost variable, the resulting parameter estimates and
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subsequent welfare analysis will be contaminated. In a recent article in this journal, Murdock [21]
provided a resolution to this problem in the context of the RUM model, introducing a full set of
alternative specific constants to absorb the impact of the unobserved site attributes and propos-
ing a two-stage estimation procedure, combining a contraction mapping algorithm and maximum
likelihood estimation. While this solution is an elegant one, it has its limitations. Perhaps most
importantly, it cannot be used in the context of mixed logit models that are frequently employed
in the recreation demand literature to capture preference heterogeneity. The purpose of this paper
has been to introduce an alternative approach to estimation of a RUM model with a full set of alter-
native specific constants, one that does allow for the inclusion of random parameters. Specifically,
we employ a Bayesian framework, combining Gibbs sampling and data augmentation techniques to
characterize the posterior distribution of the parameters of interest. A hierarchical model is used
to allow observed site attributes to influence the alternative specific constants, while the blocking
structure used in the Gibbs sampler ensures that the key travel cost parameter is insulated from
effects of correlation between unobserved site attributes and either the observed site attributes or
the travel cost variable itself. A series of generated data experiments illustrate this result. While
we do not pursue the option within the current paper, the model can be further extended to ex-
plicitly control for correlation between the observed and unobserved site attributes using a form of
instrumental variables.

Our application, using data from the Iowa Lakes Project, illustrates both the methodology itself
and the importance of controlling for unobserved site attributes when modeling recreation demand.
Whereas Egan et al. [7], using the same database, find that water quality significantly impacts the
pattern of recreation demand, little evidence to support this conclusion emerges once we allow for
the potential impact of unobserved site attributes.28 We do, however, continue to find that site
attributes (e.g., wake restrictions, boat ramps, lake size, etc.) significantly impact where households
choose to recreate.
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Table 1: Generated Data Experiments 1 and 2a

Experiment 1: Exogenous Observable Experiment 2: Endogenous Observable
Site Attributes (ρ = 0) Site Attributes (ρ = 0.7)

Parameter Posterior Mean NSE True Value Posterior Mean True Value
α0(1) -3.4318 0.0142 -3.52 -3.4777 -3.52

(0.0720) (0.0714)
α0(2) 0.9301 0.0012 0.98 1.5870 0.98

(0.2864) (0.2768)
β0 -4.4803 0.0030 -4.50 -4.4838 -4.50

(0.0214) (0.0212)
γ0(1) 0.9159 0.0162 0.96 0.8920 0.96

(0.3150) (0.3136)
γ0(2) 0.7680 0.0162 0.75 0.7525 0.75

(0.2039) (0.2016)
σ2
ϕ 0.4374 0.0084 0.40 0.4323 0.40

(0.039) (0.0412)
σ2
α 0.0898 0.0001 0.05 0.0768 0.05

(0.0219) (0.0188)

aPosterior standard deviation in parentheses

Table 2: Generated Data Experiments 3 and 4a

Experiment 3: Moderate Correlation Between Experiment 4: High Correlation Between
Price and Unobservables (κ = 0.5) Price and Unobservables (κ = 0.7)

Parameter Posterior Mean True Value Posterior Mean True Value
α0(1) -3.5347 -3.52 -3.5512 -3.52

(0.0573) (0.0573)
α0(2) 0.9225 0.98 0.8938 0.98

(0.2866) (0.2909)
β0 -4.5027 -4.50 -4.5262 -4.50

(0.0164) (0.0227)
γ0(1) .9104 0.96 0.8941 0.96

(0.0339) (0.0364)
γ0(2) 0.7961 0.75 0.7857 0.75

(0.0194) (0.0207)
σ2
ϕ 0.4094 0.40 0.41 0.40

(0.0130) (0.01)
σ2
α 0.0890 0.05 0.0920 0.05

(0.0218) (0.0226)

aPosterior standard deviation in parentheses
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Table 3: Summary Statistics
Variable Model Variable Mean Std. Dev. Min Max
Total Day Trips (2002)a Ti 6.3343 9.9717 0 50
Travel Cost ($100’s) Pij 1.37 .83 0.0044 13.66
Age b Di(1) 4.85 1.42 0 7
Gender (Male=1, Female=2) Di(2) 1.28 0.50 0 2
Education c Di(3) 3.00 1.18 0 5
Adults (No. of adults in household) Di(4) 1.84 0.71 0 6
Child (No. of children in household) Di(4) 0.61 1.04 0 7
Lake Attributes
Acres Qj(2) 667.20 2112.83 10 19000
Ramps Qj(3) 0.85 0.36 0 1
Wake Qj(4) 0.65 0.48 0 1
Handicap Qj(5) 0.38 0.49 0 1
State Park Qj(6) 0.39 0.49 0 1
Water Quality
Secchi Transparency (m) Qj(7) 1.17 0.92 0.09 5.67
Total Nitrogen (mg/l) Qj(8) 2.19 2.53 0.55 13.37
Total Phosphorus (µg/l) Qj(9) 105.45 80.33 17.10 452.55
Volatile SS (mg/l) Qj(10) 9.30 7.98 0.25 49.87
Inorganic SS (mg/l) Qj(11) 10.12 17.79 0.57 177.60
Cyanobacteria (mg/l) Qj(12) 298.08 831.51 0.02 7178.13
Chlorophyll (µg/l) Qj(13) 40.64 38.01 2.45 182.92

a39% of the sample did not visit any lake that year
bUnsure = 0; Under 18=1, 18-25=2, 26-34=3, 35-49=4, 50-59=5, 60-75=6, 76+=7
cUnsure = 0; Some high school or less=1, High school graduate=2, Some college or trade/vocational school=3,

College graduate=4, Advanced degree=5
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Table 4: Posterior Means of Selected Alternative Specific Constants, 29along with Travel Cost and
Demographic Parameters

Parameter
Parameter Model A Model B Model C Model D

Mean P (· > 0|y) Mean P (· > 0|y) Mean P (· > 0|y) Mean P (· > 0|y)
αj Selected Alternative Specific Constants

Storm Lake -2.8665 0.0000 -3.3376 0.0000 -3.3412 0.0000 -3.3308 0.0000
Briggs Woods Lake -3.6978 0.0000 -3.6683 0.0000 -3.6654 0.0000 -3.6571 0.0000

Silver Lake -4.0309 0.0000 -4.0154 0.0000 -4.0115 0.0000 -3.9830 0.0000
Prairie Rose Lake -3.5275 0.0000 -3.5012 0.0000 -3.5127 0.0000 -3.5014 0.0000
Big Creek Lake -3.0382 0.0000 -2.9928 0.0000 -2.9963 0.0000 -2.9845 0.0000
Lake McBride -3.1943 0.0000 -3.1318 0.0000 -3.1304 0.0000 -3.1197 0.0000

Lake Icaria -3.2517 0.0000 -3.2506 0.0000 -3.2562 0.0000 -3.2455 0.0000
Lake Darling -3.4999 0.0000 -3.4478 0.0000 -3.4572 0.0000 -3.4431 0.0000

Rathbun Roservoir Lake -2.8110 0.0000 -2.8024 0.0000 -2.8095 0.0000 -2.7988 0.0000
W. Okoboji Lake -2.2968 0.0000 -2.335 0.0000 -2.3473 0.0000 -2.3253 0.0000

Other Parameters
β (Travel cost) -0.0146 0.0000 -0.0132 0.0000 -0.0131 0.0000 -0.0132 0.0000
γ01 (Age) 0.1219 1.0000 0.1085 1.0000 0.1078 1.0000 0.1115 1.0000

γ02 (Gender) 0.1262 0.9826 0.1227 0.9978 0.1155 0.9926 0.1168 0.9971
γ03 (Education) -0.1813 0.0000 -0.1627 0.0000 -0.1592 0.0000 -0.1616 0.0000
γ04 (Adults) -0.1025 0.0000 -0.0929 0.0000 -0.0921 0.0000 -0.0935 0.0000
γ05 (Child) -0.0046 0.0453 -0.0042 0.0409 -0.0041 0.0414 -0.0042 0.0489

29We only report the result for the nine major lakes in each zone and Okoboji. Estimates for the other sites are
presented in the technical appendix.
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Table 5: Posterior Means of Hierarchical Parameters
Parameter

Parameter Model A 30 Model B Model C Model D
Mean P (· > 0|y) Mean P (· > 0|y) Mean P (· > 0|y) Mean P (· > 0|y)

α01 -4.1487 0.0000 -4.1090 0.0000 -4.1151 0.0000 -3.7124 0.0000
(2.1E-112)

Lake Attributes
α02 (Acres) 0.0001 0.9999 0.0001 1.0000 0.0001 1.0000

(18.2914)
α03 (Ramps) 0.2616 0.9956 0.2085 0.9885 0.209 0.9888

(0.3309)
α04 (Wake) 0.1261 0.9601 0.1026 0.9331 0.098 0.9261

(2.9286)
α05 (Handicap) 0.1738 0.9914 0.1660 0.9920 0.162 0.9907

(0.7630)
α06 (State Park) 0.2118 0.9975 0.2382 0.9996 0.236 0.9998

(0.2586)
Water Quality
α07 (Sechi) -0.0129 0.3851 0.0057 0.5675 0.0266 0.7365

(21.8717)
α08 (Total Nitrogen) 0.0126 0.8305

(47.9296)
α09 (Total Phosphorus) -0.0012 0.0304

(259.1956)
α010 (Volatile SS) -0.0002 0.4902

(148.8793)
α011 (Inorganic SS) 0.0030 0.8940

(191.5077)
α012 (Cyanobacteria) 2.11E-06 0.5203

(24273.222)
α013 (Chlorophyll) 0.0011 0.7933

(542.8128)
Variance

σ2
α 0.1283 1.0000 0.1198 1.0000 0.1183 1.0000 0.1935 1.0000
σ2
ϕ 3.0359 1.0000 1.8895 1.0000 1.8850 1.0000 1.9699 1.0000

30The values in parentheses are an approximation of the difference in Schwarz criterion (or BIC) between an
unrestricted model k and a restricted model j using derivations from the S-D density ratio. Higher positive values
represents grades of evidence for model j.
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Table 6: Posterior Means without controlling for unobserved site characteristics
Parameter Mean P (· > 0|y)
Lake Attributes
Acres 4.07E-05 1.000
Ramp 0.264 1.000
Wake 0.160 1.000
Handicap 0.149 1.000
State Park 0.381 1.000
Water Quality
Secchi 0.031 1.000
Total Nitrogen 0.002 0.922
Total Phosphorus -0.001 0.000
Volatile SS -0.001 0.250
Inorganic SS 0.002 1.000
Cyanobacteria -4.32E-06 0.207
Chlorophyll -0.001 0.000
Other Parameters
Travel cost -0.017 0.000
Age 0.668 1.000
Gender -1.211 0.001
Education 1.515 1.000
Adults 0.102 0.697
Child 0.435 0.997
σ2
ϕ 1560.70 1.000

Table 7: Model Comparison
Bayes Factor (BF)

Model A Model B Model C Model D
“Unrestricted Model” H0 H0 H0
Model A 1.63E+16 4.71E+17 2.03E+11

(74.67)a (81.39) (52.07)
Model B 29.21 1.80E-15

(6.75) (-21.85)
a

The values in parentheses are 2 loge BF using S-D density ratio.

Table 8: Annual Compensating Variation Estimates
CV ($) P (· > 0|y)

Close W. Okoboji -9.5207 0
Upgrade 9 Zone lakes to W. Okoboji -2.1988 0.3454
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