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Abstract

Under a cutoff policy, taxpayers can either report incomesasl and run the risk of being
audited, or report a “cutoff’ income and hence pay a thrashak that guarantees not being
audited. Whereas the mainstream literature in this fieldrass risk neutrality of taxpayers — with
some notable exceptions like Chu (1990) and Glen Ueng and §2001) — this paper assumes
risk aversion instead: taxpayers have a Constant RelatsleARersion (CRRA) utility function
and differ in terms of their relative risk aversion coeffiti@nd income. The novel contribution of
this work is that, under certain conditions, the cutoff isgqed by taxpayers with intermediate
characteristics in terms of income and relative risk aeersiContrary to the standard result in
the literature, a full separation of types (the rich who attke cutoff versus the poor who refuse
it) does not arise. However, our results confirm that the fEyiolicy violates equity, as only
some taxpayers directly benefit. Nonetheless, the pearepfithis drawback may in practice be
obfuscated because that exclusion does not necessa&bty affly the poor.

JEL Classification Numbers H260, D890, K420.

Key words: cutoff, tax evasion, relative risk aversion.

1 Introduction

Under a cutoff policy, the Tax Administration audits, witlgi@en probability, each taxpayer reporting
income below a given threshold; no audit takes place, idstehtaxpayers whose income report
meets the threshold. If taxpayers are risk-neutral, anéxpected sanction for evasion large enough,
the effect of the cutoff rule is that taxpayers whose incoaral(thus whose taxis lower than the
threshold pay their tax due, thereby risking audits, whilese who owe tax equal to or higher than
the threshold pay the threshold tax and avoid audits. Theabym@yments made by taxpayers are non
decreasing in income. Many different aspects of this apprdeave been examined in the literature
(see,e.g, Reinganum and Wilde, 1985, Scotchmer, 1987, Cremer, Macttand Pestieau,1990,
Sanchez and Sobel 1993, and, for a generalization, Chand&¥éde, 1998), where it is by and large
considered as an efficient strategy in agency models in ithe&fiax Administration as a principal can
commit to a given audit policy. The cutoff rule entails eficcy gains as long as it secures savings in
terms of audit costs that exceed the revenue losses indaxdtthas, however, been criticized from an
equity point of view, because it introduces a regressivs, l@a taxpayers’ payments strictly increase
in income only until the threshold level.

*Dept. of Public Policy and Public Choi€®lis, Universita del Piemonte Orientale; e-mail fabio.prigdgg@unipmn.it
For the sake of simplicity the income tax is described as atfan of reported income, disregarding possible differ-
ences between reported (gross) income and net taxable ndoento exemptions, deductions etc.
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While the aforementioned literature focusses upon theiefiicesign of the whole tax system,
including the choice of tax rates, penalties etc., Chu (1%@0dies the cutoff policy as a reform
that can be applied to actual tax systems. He assumes tlpatyters are risk averse, while the tax
rate and the enforcement parameters are given and are sictin¢hexpected yield of tax evasion
is positive. Chu shows that the introduction of a scheme é@mginting the cutoff polid/gives rise
to a Pareto improvement. In fact, when taxpayers evade andskr averse, the cutoff system can
play a role which is impossible under risk neutrality: thatollecting risk premia for the insurance
against audits provided by the cutoff. This characterist&y render the cutoff policy profitable even
disregarding the benefits in terms of reducing the numbecastly) audits to be run. On the other
hand, the cutoff policy still implies a regressive bias.

The Chu model has been generalized by Glen Ueng and Yang)(20bé&y show that the lump
sum nature of the threshold tax implies that the cutoff i® a#ficiency improving when income
depends on the labor-leisure choice of the agent. Morebegr approach allows for heterogeneous
preferences. The authors, however, do not investigatetighty along this direction, thus failing
to ascertain some aspects specifically related to heteedget preferences. In their brief mention
to the heterogeneous framework (Remark 1, p. 88) it is intpgliassumed that the highest income
taxpayer contributes the highest expected tax revenukidiimg sanctions) in a standard tax system.
This feature, that they show to hold under homogeneousrergtes, is implicitly maintained also
when preferences are heterogeneous (see also note 9, pn 88) latter case, however, the expected
tax revenue depends on both the taxpayer’'s income and onréfergnces, and thus a monotonic
relationship between expected tax revenue and income majlitold any more. If this possibility is
taken into account, the design of a Pareto improving cutlitp becomes more demanding in terms
of information: it is not enough to rely upon data pertaininghe income distribution. Preferences
must be considered as well. Moreover, in this more generaemohe consequences of the cutoff
policy in terms of equity also deserve a closer examination.

In this paper, by building upon the models of Chu (1990) an@leh Ueng and Yang (2001), we
aim at studying the cutoff policy by explicitly taking int@osideration heterogeneity of preferences.
We assume that taxpayers differ in relative risk-aversmeffecient and in income, which are treated
as exogenous continuous variables. To overcome the tedlthificulties that ensue, the taxpayers’
utility function is assumed to be CRRA (Constant RelativekRAversion). We believe, however,
that this loss of generality with respect to the Glen Uengdaraly model, which refers to the whole
family of utilities exhibiting risk-aversion, is adequteompensated by our main finding (Propo-
sition 1), which heavily exploits the advantage of having @asure of heterogeneity of preferences
expressed by means of relative risk-aversion coefficigvitgeover, such parametrization allows for
the representation of a continuum of taxpayers, thus emab from this point of view to follow a
more general approathvith respect to Glen Ueng and Yang, who assume a finite sexpéyers.

The main new finding of this work pertains to the reaction ofpyers who are requested to
make a cutoff payment larger than the tax they would pay utigestandard tax rule. We show that
acceptance of the threshold tax among this group might lasnke two tails: the poorest with high
risk-aversion and the richest with low risk-aversion. Hetige cutoff policy introduces a trade-off
between efficiency advantages (Government revenue irege¢hanks to taxpayers’ voluntary pay-
ments) and negative effects in terms of equity. The latt@wdver, differ from those pointed out in
previous models, which predict that the cutoff policy isgued by (all) the richest.

The paper is organized as follows. In Section 2 we describétkpayer’s problem with reference

2The so called FATOTA scheme provides that taxpayers caargithy a fixed amount of taxes (FAT), being exempted
from tax audits, or pay taxes as usual, running the risk oétadits (TA).

3The continuum representation is mainly followed in therditare; seee.g, Chander and Wilde (1998), who shortly
review the previous studies.



to both the optimal income report and the conditions needeadceptance of a cutoff proposal.
In Section 3 we characterize those who pay the thresholditaterms of both true income and
relative risk-aversion. Section 4 contains two examples ilfustrate the main result of Section 3.
Section 5 discusses the relevance of our result: while the/aBicks in terms of equity introduced
by cutoff programs already known in the literature are caméid, our contribution provides a more
detailed and complex scenario in which emerges that ecguitgti being affected, as widely assumed,
monotonically; specifically, when taxpayers are hetereges and have CRRA preferences some
rich taxpayers may not benefit from the cutoff. Finally, theohe Section 6 is devoted to the technical
proof of our main result.

2 The Taxpayer’'s Problem

Consider an economy in which there is a continuum of taxmaydihe utility that each taxpayer
enjoys out of her exogenously given and non observable ieeoms assumed to be of the standard
CRRA form, with constant relative risk-aversion coeffidien

= 1
u(w) = — o
In class (1) we also include the case= 1 by takingu (w) = lim,_; (w'™* —=1) /(1 — a) = Inw.
Hence, the taxpayers populating our economy are indexebdiyrelative risk-aversion coefficient
a > 0.

2.1 Facing the Standard Tax Rule

Let us examine the taxpayer’s optimal report, making refegeonly to general tax rules and setting
aside the cutoff policy for the moment. A proportional taxst®m is considered: the income tax is
given byt (y) = ty, wherey denotes theeported incomand0 < ¢t < 1. We also assume that the
sanction to be paid in case of audi proportional to the amount of the evaded tax:

S(w,y)=(1+s)t(w—y), (2)

wheres > 0 is a penalty rate.

As we rule out rewards to honest taxpayers by assumpiiotaxpayer will reporyy < w, where
w > 0 denotes thérue income A rational taxpayer who earned a true incomeill choose to report
the incomey* that maximizes her expected utility

1-p(w—ty)" “+pw—ty—(1+s)tlw—y)] *—1
11—«

Bu (y) = 3
with respect ta;, where0 < p < 1 is the probability of detection. Note that, by consideringv) =
Inw whena = 1, Eu (y) is well defined for allk > 0 and for all feasibley.

The feasible set contains values fpsuch that(1 + s)t (w — y) < w — ty; that is, we assume
that the taxpayer can always bear the loss in case of deteesstbn. A lower bound for the feasible

4We maintain the standard assumption that detection of tagien occurs with probability whenever the tax report
is false and an audit is run.

5This is also a standard assumption, even if the theory ofrgdtauditing provides reasons in favor of rewards to
audited honest risk-averse taxpayers (see MookherjeeragdlB89).



reported income is thusm,, = [(1 + s)t — 1] w/ (ts). Since we are interested in a strictly positive
income reporty > 0, we shall assume that

(I+s)t>1. (4)

This implies that sanctions are large enough to excludeefidsiorf Therefore, the feasible set of
values for the reported incomss the interval(m,,, w], with m,, > 0.

In accordance with empirical evidence, we assume that theystem parameters have values
such that cheating in reporting income has a positive eggeturn. In other words, the expected
sanction is assumed to be less than the expected gain fodedahinvested in tax evasion:

sp<1-—np. (5)

Hence, the case of full complianag= w, is also ruled out, as can readily be seen by noting that the
limit of the marginal expected utilitfEu ()]’ asy — w™ is negative whenever (5) holds.

Since, on the other hantim,_, - [Eu (y)] = +oc andEu (y) is strictly concave ovefm,,, w)
for all « > 0, there exists a unique (interior) valyé, m,, < y* < w, that maximizes the expected
utility, which is completely characterized in terms of FXapplied to (3):

w—ty —(1+s)t(w—y") ( ps )é, (6)

w — ty* - 1—0p

By solving (6) fory*, the optimal reported income proves to be a fixed share oattpater’s true
incomew, which depends on the risk-aversion coefficient

Q=

*

o (st (£5)" —1

t[H (%)%}

Note that a higher risk-aversion implies a larger shareikdrlen Ueng and Yang (2001) approach,
in our setting a richer taxpayer (endowed with a larggr might have a lower reported income if
her relative risk-aversion coefficientis lower. The F.O.C. condition in (7) allows for a substantia
refinement of the representation of the population of tagpain the economy by adding a dimension
to their relative risk-aversion coefficient index

An inverse formulation of (7), which will be exploited laten, gives a relation expressing the
true income of (optimizing) taxpayers, which is privateamhation, as a function of their relative
risk-aversion coefficient for any given optimal repor*:

s+ % » ty*
w(?/*aa): l ;( ) :| ’ : (8)
(&) +1+s)t-1

w. (7)

1-p

As can easily be checked, the functioriy*, «) in (8) is strictly decreasing with respectdo

5The literature that considers optimal income reportingarmisk aversion has routinely focussed upon strictly pasit
reports, sees.g, Allingham and Sandmo (1972). For the role of the assumtion s) ¢ > 1 in order to ensure an internal
solution, also see the Appendix in Chu (1990).



2.2 Introducing a Cutoff

Now, let us assume that the Tax Administration offers thesimilgy of paying the cutoff amountin
order to avoid audits with certainty. To facilitate the dgstton of the reaction to this proposal by a
taxpayer who would pay an amoumt: under general rules, let us break dowas follows:

c=ty" +x. 9)
Whenever: is negative, that is the cutoff is lower than the ordinary, the trivial implication is that
the taxpayer chooses the cutbfOn the contrary, if the taxpayer cannot afford payinghat is:

x> w—ty*

she always prefers ordinary taxation.

We will focus upon the most interesting caseis positive and the taxpayer can afford it. In this
case, the taxpayer will accept the offer if she is at leasfferént as to whether to pay the requested
amountc or to pay onlyty* and risk an audit. Thus, for a given > 0, she chooses to pay the
threshold tax if

[w—(ty +2)] ™ (L=p) (w—ty)" +plw—ty" — (L+5)t(w—y")]
1 -« - 1 -«

—a 11—«

: (10)

where the additive constants(1 — oz)*1 have already been dropped from both sides.
By jointly considering the optimal condition (8) and thedbkhold condition (10), we are led to
the following system:

o= {[+ () o} () e o]

(w—ty' =)™ (A—p)(w—ty) " +plw—ty — (L +s)tw—y)""
-« - -«

(11)

The first equation of system (11) links the taxpayer’s trusomew to y* according to (8) —
or, equivalently, according to (6). The second equatioihésweak preference condition for paying
the threshold tax instead of reportipg and risking an audit. All pairéa, w) solving system (11)
characterize in terms of relative risk-aversiorand true incomev the subset of taxpayers whose
optimal report isy* and who prefer to pay the threshold taalthough it is larger than the tax they
would pay under general rules.

In the following sections we will take the optimal repgitand the ‘premium’: as given andv
andw as the unknowns and provide a characterization of the sekphiyers accepting the cutoff.

3 The Main Result

By plugging the first equality in system (11) into the secamebjuality, after some tedious algebra we
obtain a single inequality where the unknown is the soleadeio:

1—«a

1
1 1—1)ty* Kl
<1 I=Dty 1-|1—prp(-2 . (12)
ps | lL=p
(Tp) +(1+8)t—1
"The cutoff is always preferred as long as it is lower thgh+ p (1 + s)t (w — y*), i.e., the expected payment in

terms of taxes and fines. While writing= ty* + p (1 + s) t (w — y*) + « would be preferable in order to highlight the
possible request of a risk premium, we choose a simpler brgaip of terme in (9) to ease algebraic reduction.
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Inequality (12) characterize all taxpayers with relatis&+aversion index: who (optimally) reported

incomey™* and choose to participate in the cutoff program for an extrawntx when0O < ¢t < 1is

the tax rates > 0 is the penalty rate anti< p < 1 is the probability of detection under general rules.
For future algebraic convenience we introduce the follgmhanges of parameters:

xz
f= m% (13)
’y:ln<1]i9p); (14)
§= Lt P . (15)

(I+s)t tlp+(1—p)er]
Parametep transforms component in percentage terms with respect to the reported income afte
taxation under general rules, we shall assuing 1; v is a transformation of the sanction rate
which takes into account also the probability of deteciign andp will be the key parameters in our
analysis); finallyg transforms the tax rateand the sanction rateand, by using (14), can be written
as a function ofy and the probability of detection a form that will be exploited in Section 6.
Consider the function of the sole variaklalefined by

In (1 —p+p671_7a>

l—«o

1 —exp

7(a) = (16)

1—(5(1—6%)

Since, by I'Hépital’s rule lim,_.; [ln (1 —p+p67%> /(1 — a)] = pv, whena = 1 (16) boils

down to
1 —er

=150y

In order to letr be defined for albk > 0 we shall take into account the discussion on parameters
s, p andt developed in the the previous section, which translatestire following conditions which
will hold throughout the papefl < 5 < 1,7 < 0 and0 < § < 1. Specifically,y < 0 follows from
(5) ands < 1 is a consequence of (4).

The numberr («) can be interpreted as the individual (percent) threshaldevéor the taxpayer
characterized by coefficient of risk aversienif /5 is smaller or equal te () such taxpayer opts for
the cutoff. Inequality (12) is thus equivalent to the foliagy.

(@) = 5, (17)

whose solution set contains all taxpayers characterizegklagive risk aversion coefficient who
chooses (or are indifferent to) to pay the cutoff rather timaarring the risk of being audited when
the (percent) cutoff offered by the tax administratiopidNote that parametet embeds the optimal
report in absence of cutoff;*, which, in turn, depends on the true income therefore, the only
relevant independent variable left is the relative riskraiam coefficienty representing heterogeneity
in the population of taxpayers.

For each given valué < § < 1, inequality (17) defines thapper contour sebf 5 for the
function 7; our goal is to show that, under some conditions on the pass)esuch upper contour
sets are intervals not necessarily having zero as theietefpoint. While we will be able to prove
thatr is quasiconcave in some cases [when values lailge enoughj > sup {7 () : a > 0}, are
allowed], in the general case we will establish the desireggrty of the upper contour sets only for
values ofg not too large p < sup {7 (a) : & > 0}].

The following technical assumption further restricts tdengssible values of the parameters.
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A. 1 Parameters3 and~y have values in the following rangeg:< 3 < 1 andf 6/ (v3 —3) < <
—2. Moreover, the probability of detectignand the tax rate must satisfy
p ve?

Note that the RHS in (18) is less thanas~ is negative. By explicitingy, (18) assumes the
following more cumbersome form which separates paramsfrem ¢ and~:°

[1+ 7l ]e“ft

p< ) . (19)
1 [1+ﬁ] (1—en)t
Proposition 1 Suppose Assumption A.1 holds true.
i) Ify=-2and
5 < 1o (CV39TED) (20)

1—-946 ’
then the upper contour setsotlefined in (16) are intervals. Fgf large enough, such intervals
are disjoint from the origin, i.e., their left endpoint igistly positive.

i) If 6/ (V3 —3) <~ < —2, then, for eachy satisfying

2In[1 + (14 v/2) pv]
o[22
1—(1—e?)§ ’

B < (21)
the solution set of inequality (17) is a nonempty intervabai, for 3 large enough, such
interval is disjoint from the origin, i.e., its left endpaiis strictly positive.

Section 6 is entirely devoted to the proof of Proposition 1.

Note that (21) is more restrictive than (20); specifically,jtawill be seen in the proof, the RHS
in (21) is always less thasup {7 () : « > 0}. On one side this is sufficient for nonemptiness of the
solution of (17), but is not enough to establish tha quasiconcave.

4 Two Numerical Examples

Let us apply Proposition 1 for the following values of pardens: v = —4.0644, p = 0.01, to which
corresponds a sanction rate= (1 —p)e”/p ~ 1.7, andt = 0.44. Assumption A.1 is satisfied as
§=p/{tlp+ (1 —p)e’]} ~ 0.8417 < 0.9277 ~ 1 +v¢7/ (1 — ¢")?. Sincey < —2, part (ii) of
Proposition 1 is involved and we have only to establish thgeupound for the (percent) cutoff value
— 21In[14(1 2)p

given by condition (21)5 < = {1 _ i }/ [1— (1 —e72)4] ~ 0.1434; for example,
by (13), 3 corresponds to a value= (1 —t) y*3 ~ 80.299 wheny* = 1000. Therefore, any fixed
(percent) premium that satisfigs< 0.1434 produces a nonempty interval — either of the fdim,.|

Note that/ (V3 — 3) ~ —4.7321.

9As prescribed by (14), parametgractually contains parametgrin its expression; however, rather than being a
function of p, v must be interpreted as a function of the original sanctide ¢dor any given value op, and thus as a
parameter which is independent of parametéself. In this perspective, we can say theand-~y are “separated” in the
RHS of (19).



or of the form[ay, cv,.] with oy > 0 — of relative risk-aversion coefficients characterizingrtg who
pay the threshold tax. For example, with= 0.13 (corresponding ta = 72.8 wheny* = 1000), the
interval hasn, ~ 0.53 > 0 anda, ~ 3.93 as endpoints, as shown in figure 1 where the function
defined in (16) is plotted for our values for the parametdrg® & 1000 these two values, correspond
to a minimum true incom& w ~ 1664 (corresponding tey, ~ 3.93) and a maximum true income
w ~ 3969 (corresponding tay, ~ 0.53), which imply evasion (in terms of share of concealed income
wheny* is reported) of around0% and around’5% respectively.

0.25 1

0.2+

0.151
B 0.13

0.1+

0.05 1

0 053 1 2 3 3.93 5

FIGURE 1: the solution set of inequality (17) for= —4.0644, p = 0.01, s = 1.7, ¢t = 0.44 and = 0.13.

Figure 1 shows that more than the statement of part (i) op&stion 1 is true; the shape of
functionr is striking: it is clearly a quasiconcave function, thattis upper level sets are intervals for
all 8 < max{7(a):a >0} ~ 0.26, not only for5 < 0.1434. However, we have not been able to
establish this property in general, at leastjor. —2. Only wheny = —2 and part (i) of Proposition
1 applies, and thug turns out to be constrained by the much looser condition &er than by
condition (21), it can be established that actually quasi concave for some cases, as it may happen
thatmax {7 (a) : a > 0} is smaller than the RHS in (20).

For example, withy = —2, p = 0.05, to which corresponds a sanction rate- (1 — p)e™2/p ~
2.57, andt = 0.44, Assumption A.1 is satisfied @s= p/ {t[p + (1 — p) e ]} ~ 0.6364 < 0.638 =~
1—2e72/(1— 6_2)2. Part (i) of Proposition 1 applies and the upper bound for{pleecent) cutoff
value given by condition (20) i8 < 3 = [1 — exp (—/3.9781Ip)]/ (1 — ) ~ 0.9895. Figure 2
shows thatnax {7 (a) : a > 0} ~ 0.23, well below3 ~ 0.9895; in this case part (i) of Proposition 1
can be restated by saying that the functias quasiconcave for these values of parameters.

10Recall that the true income of (optimizing) taxpayers asmfion of their relative risk aversiom is given by (8).



0.25 1
0.23

0.2+

0.151
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0.05 1

FIGURE 2: plot of the functionr for vy = —2, p = 0.05, s = 2.57 andt = 0.44.

5 Equity Considerations

If the solution set of inequality (17) is of the for(f, o] — like, for instance, in the first example of
Section 4 wheneves < 0.06, as can be understood from Figure 1 — relatively rich taxpayeéth
low risk-aversionj.e.,with o < «,., pay the threshold tax, while relatively poor ones with hiigk-
aversion, that is witlax > «,., do not accept the cutoff. The latter prefer to submit thptrroal report
y*, which, by (7), conceals only a relatively small income amtpthereby risking audits. This result
can be explained as follows. As reported incomepproaches true income for very risk averse
taxpayers, the expected sanction decreases, while thenmeskium under a CRRA utility function
does not increase enough to counter the former effect.

If the solution set of inequality (17) is of the forfa,, o] with o, > 0 — like in the first example
of Section 4 withg = 0.13 — in addition to the reaction just discussed, the cutoff $® akfused by
taxpayers with a risk-aversion coefficient below some lobaindqa,, whose optimal income report
y*, again by (7), conceals a relatively large income amoung¢s€haxpayers, too, prefer risking audits
rather than paying the threshold tax. In this case therevavegtoups of taxpayers who refuse the
cutoff when it includes a premium, one characterized bytikedly high true income and the other by
relatively low true income. It is clear from both figures 1 @hithat this last situation may happen only
if the premium component is large enough, while, at the same time, sufficiently snuadiltow for
participation in the cutoff proposal, as part (ii) of Propia® 1 guarantees nonemptiness whenever
condition (21) is satisfied.

In other words, we conclude that, as intuition suggestsséhef participants in the cutoff program
shrinks as the premium asked by the tax administration toasuinsurance against the possibility
of being audited increases. However, the novel contributibthe present work is that, contrary
to conjectures hitherto formulated by the mainstreamditee, such ‘shrinking’ does not follow a
simple monotonic pattern. Specifically, we have shown thbgn taxpayers have CRRA preferences,
above some threshold value fémot only less and less poor taxpayers (identified by the dsorg



right endpointa,. of relative risk aversion index which bounds the set of pgréints from above)
choose the cutoff because of its growing price, but also Smery) rich taxpayers characterized by
low risk aversion coefficients,0 < a < oy, start refusing the offer as well.

Therefore, our result confirms the widely accepted criticisward cutoff programs: equity is
adversely affected. Nonetheless, such drawback assumesanmadti-faceted pattern when taxpayers
are risk averse, heterogeneous and endowed with a CRR# tuitiction. We showed that, whenever
the cost of entering the cutoff is high enough, the well knoggressive bias is mitigated by the refusal
of the cutoff by two tails of taxpayers, the relatively pomdahe relatively rich, who do not receive
suitable insurance offers.

6 Proof of Proposition 1

The proof of Proposition 1 will be accomplished through sabsteps. First of all we restate inequal-
ity (17) —that is, (12) — in a more convenient form. By using)(&nd rearranging terms in (17) we
get

In <1 —p —|—pe”’17Ta>

T a5

which is equivalent to the following system:

In(1—-p+pera®) <(1—a)ln[l—(1-26)3—dfes] ifo<a<l1

1-a : (22)
In(1—p+pe’—= Z(l—oz)ln[l—(l—é)ﬁ—c%efﬂ if > 1.
Definef : R, — R by
fla)=¢ () +¢ () = (1—-p), (23)
where?
gb(a):exp{(l—a)ln [1—(1—5)6—5ﬁ6%}}, (24)
W (a) = —pe’ (25)
Then system (22) — and thus inequalities (12) and (17) — cavritten as
f(a) >0 fo<a<l
{f(a)go if o> 1. (26)

The functionf defined in (23) is a smooth function defined for all> 0. Note thatf equals
zero ina = 1 (corresponding to logarithmic utility in our model) for alhlues of parameters 3,
~ andd satisfying Assumption A.1; as a matter of fact, consistewith the algebraic manipulations
of inequality (17) required to obtain system (26), the paint 1 is being explicitly excluded from
(26), as it does not carry useful information on its soluseh However, as the original functierin
(16) is continuous ix = 1, this point must be taken into consideration. Since thetgwlset of (26)
is nonempty whery crosses the horizontal axis from abovenat 1, we shall includex = 1 in the
solution set as long a8 (1) < 0.3

Recall that, by (8), smaller values afcorrespond to larger levels of true income

12Sincey/a < O foralla > 0,1 — (1 —6) 3 — §fe= turns out to be always positive and thtige) in (24) is well
defined for allo. > 0.

BMore precisely, a sufficient (but not necessary) conditmna nontrivial —i.e., with positive Lebesgue measure —
solution set of (26) ig” (1) < 0.
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In principle, the conditiory’ (1) < 0 does not rule out the possibility that the solution set issa di
joint union of intervals; in the rest of this section we shpathve that this cannot be the case whenever
Assumption A.1 and either condition (20) or condition (2&)d) regardless of the sign ¢f (1). This
will be achieved by partitionin® , , into a number of subintervals and by studying monotoniaity a
curvature properties of the two functiopsand, defined in (24) and (25) respectively, over each
subinterval. First, we need some preliminary lemmas.

6.1 Preliminary results

We start by studying the function defined in (24). In the sequel we shall often split it into the
compositionp () = exp [g («)], with

gl@)=(1—a)ln (A—Be%> ) (27)
where constantd and B are introduced in order to ease notation and are defined by:

A=1-(1-6)8, (28)
B =63 (29)

Note that, under Assumption 1, the following holds:
0<B<A<LI. (30)
Moreover, also the functiopwill be sometimes written as the producta) = (1 — «) h («), where
h(a)=1In (A - Be%) . (31)
Note thath («) < 0 for all « > 0.

Lemma 1 Let Assumption 1 holds. Theh(«) > 0 for all o > 0, and thus the function is strictly
increasing.

Proof. ¢’ has the following expression:

g (@) ==h(a)+ (1 —a)h (o), (32)
where N
, B yBea

W (a) = o (A — Be%) (33)

is clearly negative since < 0. As bothh andh’ are negative, the lemma is true whenewep 1.
Hence, let us assuntle< a < 1 and look for a lower bound fay’ which is independent aof.
We first compute a lower bound faf. A direct computation of,”yields:

Bew 2 v yBea
Woa) = Jpe 2o aber
(@) a2 (A— Bea) | o - a? (A — Bee)
o 7 n' (Oz) ! 2
= —(2+ ) == W)

Since by Assumption ¥ < —2, 2 + v/a < 0 holds for all0 < o < 1 and thush” turns out to
be strictly negative; that igy’ is strictly decreasing and we can takg1) = (A — Be’)™ ' yBe?,
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which is independent of, as its lower bound. A$ — a < 1 andh’ (1) < 0, the second term in
(32) is bounded from below by (1). Moreover, since-h is an increasing function af [recall that
h' < 0], =h () > lim, ¢+ [-h ()] = —In A forall 0 < a < 1. Hence,¢’ is bounded from below
by —In A+ A/ (1), that s,

yBeY

/
g (Oé)>—lnz4+m,

(34)

where the RHS is independent®f

The first term in the RHS of (34) is positive, while the secoad is negative; thus, now we
need to find conditions under which the RHS is nonnegativecifipally, by expanding constants
and B as in (28) and (29) respectively, we must find for what valugsasameterg, 3, v andé the
following inequality holds:

~vo3eY
1—(1—5)5—556720' (35)

Since it clearly holds (with equality) fg# = 0, a sufficient condition is that the derivative with respect
to 5 of the LHS be nonnegative for dll< 5 < 1. A direct computation yields

0 ~vo3eY B 1—96 ~voey '
%{_ln[l_(l_é)ﬁH1—(1—5)6—5567}_ T—(1=0)3  [I—(1-0)3—0Be].

in order to guarantee that such expression is nonnegatezesavrange terms and study the following
inequality:

—In[1—(1-90)8]+

1—5Jr 1-(1-9)p <
e 1= (1-3)8 - d8e]
We now show that the second term in the LHS of (36) is increpsir:
Q{ 1-(1-9)p }_ (1-0)1—(1—6)5+[2—(1—0)J]de
B \[L-(1-8)p-dse)) [1—(1-0)5-dper)

as both the numerator and the denominator in the RHS arevgosithus, an upper bound for the
LHS in (36) is obtained by letting = 1:

(36)

>0,

1_5+ 1-(1-6)p <1_5+ 4] _1_5+ 1
6T [1—(1=0)B =682 ~ yder (6 —der)? e’ §(1—en)?
Therefore, a sufficient condition for (36) is the following:

1-6 1 ?
+ S<0 = <1+
yoer 5 (1 —e) (1—e7)

which is condition (18) of Assumption 1. Since (36) is itssl$ufficient condition for (35), which,
through (34), establishes thgt(«) > 0 for 0 < « < 1, the proof is completem

Lemma 2 Under Assumption 1 there is a unique vatue- 0 such thaty” (a) = 0, ¢” (o) < 0 for
0 <a<aandg” (a) > 0fora > a; ais the uniqgue number satisfyitfy

~vA
(2—~)A—2Bea’

(37)

a=—

1The exact solutiorv of (37) involves theLambert W functior(see,e.g, Corless et al., 1996); specifically, =
—v/ [LambertW (—2Be"~2/A) + 2 — 7],

12



Useful bounds for the value af as functions of the sole parametgrare given by:

1 gl . gl
- < —K < — < 1. 38
2= 2 YT o o (38)

Hence,g is strictly concave fof) < o < @ and it is strictly convex forr > @, while ¢ turns out to be
strictly convex forx > @, but no conclusion can be drawn on its curvature properiig$f< a < a.

Proof. By using the notation (31);” can be written as follows:

g (@) = —H (a) {2+(1—a) [h’ () + 20‘”}}. (39)

a2

Sinceh’ < 0, it is enough to study the sign of the term in curly bracketsicl is the same as that of
the following expression, obtained by using (33) and aiarranging terms:

((a):2<A—Be%>a+(1—a)fyA. (40)

It is easily seen that any roatof ( must satisfy (37).

To show thatv is unique, firstly note thdim,, .o+ ¢ (o) = yA < 0; moreover, since the first term
in the RHS of (40) is positive angl < 0, ¢ (o) > 0 certainly holds fore > 1. Thus, it is sufficient
to establish that the functiapdefined in (40) is strictly increasing for< « < 1. To see this, let us
differentiate it with respect ta:

6% (a)zQ(A—Be%> —7<A—%Be%);

as the first term on the RHS is positive apg: 0, we just need to establish that

2 a 6% A
A—aBea>0 — E<ﬁ (41)
for 0 < a < 1. As (9/0a) (e=/a) = — (ex/a?) (1 +v/a), the LHS of the last inequality is

increasing whenever+ v/a < 0 <= « < —v; but this is certainly the case sinGe< o < 1 and
v < —2. Thus, a sufficient condition for (41) iS < A/ (2B), which definitely holds since, by (30),
A/B > 1ande” < e? < 1/2. This establishes uniqueness of the réatisfying (37).

Let us now turn our attention to the bounds in (38). As far a&sltdwer bound is concerned,
note that, since-2Bes < 0 in the denominator of (37)a > —y(2—7)"" =y (y—2)"", and,
asy < =2, y(y— 2)_1 > 1/2. The upper bound requires some more work. First notedhat
—vA/ [-7A+2 (A — Bex)] < 1, since—yA > 0 and2 (A — Be#) > 0. Hence, let us assume
0 < o < 1. As —2Bex is decreasing fob < a < 1, a first upper bound fof is given by

vA
(2—4)A—2Be’ (42)
which is independent af. In order to let it be independent of parametémsndd as well, we expand
constantsd and B as in (28) and (29) respectively and differentiate with ezspo3:

9 { —y[1—(1-9)0] } _ —27y6eY
B LR—1-1-0)81—258e7 ]  {(2—7)[1—(1=26)8] —268e7}*’

which is clearly positive. Hence, an upper bound of (42), g ofa as well, is given by (42) itself
evaluated ap = 1:

A - _ gl
(2—7)A—2Ber = 2—~—2¢7’
which is the upper bound in (38), and the proof is complate.
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Lemma 3 Under Assumption 1g” (o) > 0 for v (v —2)~" < a < 1, which, by condition (38) of
Lemma 2, implies that” (o) > 0fora < a < 1.

Proof. By using the notation (31);” can be written as follows:

g/// (O[) — _3h// (O[) + (1 _ a) h/// (O[),

which, since
h" () = —hlofg) [P (a) &® + 20+ 7], (43)
W () = — h';(f) 28/ (@) 02 + 20+ 7] + 20‘;%' (), (44)
can be expanded to
" (a) =~ {3 - —= 21 (@) a? + 20 + 9] } W (@) + 211 O‘Lg‘)‘ W (w),

where (44) has been used. To study the inequafityc) > 0, we multiply the last expression ly?
and substituté” («) as in (43) to get:

R () l-—«
o'

{3a2+(1—a) [2h'(a)a2+2a+’y]} 3 [h’(a)a2+2a+’y] +2 (a+~)h' (a) >0,

which, multiplying both sides by? /1’ (o) and recalling that’ (o) < 0, reduces to
{30+ (1 —a) 20/ (a) &® + 20+ 7] } [ (@) & + 20+ 7] + 20 (1 — @) (e +7) < 0. (45)

In order to solve (45), first note that, singe< —2 andh’ < 0, for o < 1 the second factor in
the first term of the LHS)' (o) a? + 2a + v, and the second term in the sugay (1 — «) (o + 7),
are negative and nonpositive respectively. Therefore, mh imeed to establish for what values of
0 < a < 1 the first factor in the first term of the sudy? + (1 — ) [2R/ () a? + 2a + 7], turns out
to be nonnegative;e., after substituting’ (a) as in (33) and some rearrangements, we must solve
the following inequality:

A+ Bea
420+ (1 —a)y——— )
( )7/1 — Bea ™
which, sinced — Be= > 0, is equivalent to
(a2 + 20) (A—Be%) (1 —a)v(AJrBe%) > 0. (46)

We now show that the LHS of (46) is increasinginA direct computation of the derivative with
respect tax of the LHS leads to the following inequality:

2
(2a +2) (A _ Be%) — (A n Be%) + 2 Bet (1 _ lg) YBed >0, (47)
o (8}

where all terms on the LHS are positive but the last one. Since

[e3

D [(1= 2)2Bei] = (~a? 420 49) T2 <,

196" o2 ot
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asy’Bea /a* > 0 while —a? 4 2a + v < 0 for v < —2, a lower bound for the LHS in (47) is given
by:

2
(2a+2) (A — Be%) - (A + Be%) + %7365 + (1 —~)yBe”

> (20 +2) (A—Be%> - (A+B€%) + (1 —v)yBe”
=20 (A= Bed) + A+ (1=7) A= (2+7) B + (1 - 9)1Be"
> 20 (A= Bed ) + A+ (1-7) (A +9Be), (48)

where in the second line we dropped the third term of the fimst (being it nonnegative) and in the
fourth line we dropped- (2 + v) Be” > 0. The first two terms in (48) are clearly positive; thus, as
1 —~ > 0, we want to establish that + yBe” > 0, or, equivalently, that-ve” < A/B. Since,
by (30), A/B > 1, a sufficient condition is-ye? < 1; as(9/9v) (—ye?) = — (1 +v)e” > 0 for
v < -2, itis enough thate=2 < 1, which is true. Hence, we have just established that the LHS o
(46) is increasing if.
Therefore, in order to inequality (46) to hold true foty —2)™' < o < 1, itis sufficient that it
holds inac =~ (v — 2)*1. By substitutingy =y (y — 2)*1 in (46) and rearranging terms we get:
3y —4
v —2
which is convenient to rewrite as
3y —4 - A+ Be' 2
v—2 = A— Ber?
As the LHS is strictly decreasing in we can lety = —2 into the LHS and get the following sufficient
condition for (49):

(A= Be"?) —2(A+ Be'™?) >0,

(49)

A+ Be' 2 < 5

A—Ber 2 — 4

In order to find an upper bound for the LHS in (50), we subsithie constantgl and B as in
(28) and (29) respectively and differentiate with respect;tafter rearranging terms we get:

0 [1-(1-9)p8+ 6pe’ 2] 20772
B 1—(1—-06)—0Be"2] [1—(1-10)8— 8872
which is clearly positive. Thus, we can set= 1 in the LHS of (50) so to get
-2
14 ¢ < §
1—er2 = 4’
which boils down toy < 2 — In9 ~ —0.197, which clearly holds under Assumption 1.
This is enough to establish inequality (46), which, in tusrsufficient for inequality (45) to hold;
thereforeg” (o) > 0fory (v — 2)"' < o < 1 and the proof is completen

Corollary 1 Under Assumption 1, the functiahn(«) defined in (24) is such that” (o) > 0 for
a<a<l.

(50)

Proof. It is immediately seen that the third derivativego€an be written as follows:

6" (@) = e { 4" (a) +3¢" (a) ¢/ (a) + g ()]}

which is positive forw < o < 1 as, by Lemma 3" (o) > 0 and, by Lemmas 1 and 2, algo(«) > 0
(and thugg’ ()] > 0) andg” (a) > 0. m

Now we turn our attention to the functianhdefined in (24).
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Lemma 4 Under Assumption 1, the following holds for the functiof) = —pe’Yl%x defined in
(24):

i) ¢ (a) <0Ofora > 0;
i) ¥ (a) <0for0 <a < —v/2,¢"(a) > 0fora > —y/2andy” (—vy/2) = 0;
i) ¥ (o) <0for0 < a<a,yv”(a)>0fora<a< —y/2andy” (a) = 0, where

_ 3—3
— fy.

o =
6

(51)
Note that, under Assumptiond, (v/3 — 3) <~ < —2 implies that®
0<l1-1/vV3<a<l. (52)

Thus,y is strictly decreasing, it is concave for< o < —+/2 and convex forv > —v/2, while
its second derivative is decreasing fok o < a and increasing forx < o < —v/2.

Proof. Direct computation yields:

W (a) = S, (53)
a
V(@) = =2 (20 +7). (54)
" (o) = p—Zevl_Ta (60” + 6y +77) .
a

Condition (i) holds asy < 0. Since— (py/a?) e’'a > 0, the sign ofy)” is entirely determined by
the sign of2a + v and condition (ii) follows accordingly. Similarly, dgv/a®) e7'a" < 0, the sign
of ¢ is entirely determined by the sign 6 + 6y« + 2, which has the two roots~y (3 — v/3) /6
and—v (3 + v/3) /6; since—v/2 < —v (3 + v/3) /6, condition (jii) is establishedm

6.2 Case (i) of Proposition 1y = —2

In this section we start to assemble all the information gieth in the last section in order to prove
the first part of Proposition 1. First of all, notice that when- —2, —v/2 = 1, and thus Lemma 4 (ii)
establishes that is strictly convex fore > 1; coupled with Lemma 2, which implies thatis strictly
convex fora > 1 as well, this is enough to guarantee that the funcfion) = ¢ (o) +1 (o) —(1 — p)
defined in (23) is strictly convex ofi, +o0c). As f(1) = 0, this means that the solution of the
second inequality of system (26) is a nontrivial intervahifd only if f/(1) < 0. Note that, as
lim, ., f (o) = +00, any such interval is always closed and hass its left endpoint.

More problematic is the analysis ouéx, 1], that is, the study of the first inequality of system (26).
Recalling that, from (38) in Lemma 2/2 < & < 1, the idea underlying the proof is to partitio, 1]
into two subintervals(0, @] and[a, 1], and then exploit the monotonicity and curvature propsrtie
which are specific for the functiorsand on such subintervals, as established by the lemmas in the
previous section. We start with two lemmas which are spefdfithe scenario in which = —2.

Lemma 5 Wheny = —2, if both Assumption 1 and condition (20) in Proposition 1h@)d, then the
functiong defined in (27) has the property thgt(«) < 1 for0 < o < a.

5Note thatl — 1/+/3 ~ 0.4226.
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Proof. By Lemma 2y’ is decreasing off), a|, thusg’ (a) < lim, .o+ ¢’ (o) = —1In[1 — (1 —0) f]
for 0 < a < @. Hence we must show thatin[1— (1 -0 3] < 1< < (1—€e')/(1—-4)
holds true. Since, by condition (20}, < [1 — exp (—+/3.9781p)] / (1 — §), it is sufficient to show

that
1— —+/3.9781 —e !
exp( 3978p)§1 e < 1 '
1-9 1—90 3.9781

A slightly stronger condition i < 1/4, which certainly holds under condition (18) of Assumption
1. As a matter of fact, by substituting= —2 into (19) — which is the expanded version of (18) — and
recalling that < 1, we find that

1
3.9781°

0.08634t  _ 1 _
P=1"013534¢ ~ 4

and the proof is completem

Lemma 6 Under the same assumptions of Lemma B, ¥ oy < a is a stationary point for the
function f defined in (23)f' (ap) = ¢’ (ag) + ¥’ (o) = 0, then a smooth functiofy; : (0, a9] — R
exists such thafy (ag) = f (), f; (a0) = [ (aw), fu (a) > f(a)for0 < a < apand ff; (a) >0
for 0 < o < «ap. In other words, an upper bounfi; of f exists on(0, o] such thatf; is strictly
larger than f and it is strictly increasing or0, «).

Proof. Choosel < ay < @ such thatf’ (o) = ¢' (o) + ¢ (ag) = 0. Define the first order
Taylor approximation of the functiom defined in (27) atv = ay:

Ty (a) = g (o) + ¢ (o) (@ — ) -

By Lemma 2,4 is strictly concave o0, a|, thusTj is a strict upper bound of on (0, @), and
therefore, also the function defined by

GbU (Oz) — eTo(a) —_ eg(ao)-i—g’(ao)(a—ao) (55)

is such thatpy > ¢ on (0, al, with strict inequality on(0, @). Our goal is to show that the upper
bound of functionf defined on(0, a] as

fu (@) = ¢u (a) +¢ () + (1 -p),

is strictly increasing o0, «y), that is,

fu (@) = ¢y (@) + ¢/ (a) > 0 (56)

for0 < a < ayp.

From Lemma 4 (iii) we know that’ is strictly concave orf0, a], wherea is given by (51), as
P" < 0for0 < a < a, while it is strictly convex fora < o < —v/2 = 1. Wheny = -2,
howevera =1 — 1/v/3 < 1/2 < a [see (38)]; therefore, we need to study separately the twesca
0<ap<1-—1/v3andl —1/v3 < ay <a.

1. Assume thab < oy < 1 —1/4/3 = &. Theny/ is strictly concave o0, ag); ¢;;, however, it
is not, being it an exponential function, as can be seen lgrdiftiatingy, in (55): ¢}, (o) =
g (ag) @, Therefore, we shall linearize it by taking its first ordeya approximation at
a = Op.

T1, () = ¢ (o) + ¢ () (v — ) = ¢’ () €9 [1 + ¢’ (cwg) (x — exg)] -
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Clearly, beingp;; a strictly convex function]7, is a lower bound foy;,; specifically: 77, (o) =
oy (o) andTy, (o) < ¢ (a) for 0 < o < ap. As Ty, is also linear, the function defined by

L () =Tp () + ¢ (), (57)

turns out to be a strictly concave lower bound f§f, defined in (56), on0, ap]: L () <
fi (@) for 0 < a < «p. Hence, in order to establish that > 0 on (0, ), it is suf-
ficient to show thatL > 0 on (0,aq). By strict concavity ofL, a sufficient condition is
that min {lim, .o+ L (o), L (ap)} > 0. But, on one hand, as, by (53jm, .o+ ¢’ (a) =
lima_g+ (py/a?) e’ a" =0,

lim L (a) = lim [T} (@) + ¥/ (@)] = g (a0) "™ [1 = ¢ () ]
is strictly positive sincé < «y < 1 and, by Lemmas 1 and B,< ¢’ (o) < 1. On the other

hand, by construction, (ay) = ¢’ (o) + ' (o), Which equals zero by assumption. Hence
inequality (56) is established for< oy < 1 — 1//3.

. Now assume that = 1 — 1/4/3 < ay < @ and consider again the functidndefined in (57),
which, while being strictly concave dif, a], it turns out to be strictly convex ofay, o) as, by
Lemma 4 (iii),7’ is. Our strategy is to extend the argument of the previoustoithe whole
interval (0, ag] by showing that, under condition (20) in Proposition 1 {iymust be strictly
decreasing ovefa, «y]; therefore, provided that’ (o) < 0 for @ < o < ap, once again the
conditionmin {lim,, .o+ L (o), L (ag)} > 0 guarantees that inequality (56) holds also when
ap > a. Hence, let us study the sign of the derivative of the lowemuly.:

L) = Ty () + 4" (a) = ¢ (o) e 4+ 4525 (= 1), (59)

wherey” («) have been expanded as in (54) computed, fer —2. We must thus establish that
the RHS in (58) is strictly negative.

As oy < @ < 1, by definition (27)g (a) < 0, and thuse?) < 1, yielding [¢’ (a)]” as
a first upper bound ofy’ (a)]” e/(*); moreover, since by Lemmas 1 andy/2s positive and
decreasing o0, &|, an upper bound of (ayp) islim, .o+ ¢’ (o) = —In[1 — (1 — §) G]. Thus,
an upper bound for the first term in the RHS of (58]lis[1 — (1 — §) 3]}°.

As far as the second term in the RHS of (58) is concerned, fremrha 4 (iii) we know that)”

is increasing forx > a; therefore a useful upper bound fof is given by the number” (@),
which, however, cannot be computed directly. Thus we shalead employ the upper bound of
a provided in (38) of Lemma 2 foy = —2: v/ (y — 2+ 2¢7) = (2 — 672)71. By substituting
(2 — e—z)’1 in the argument of” («) in the RHS of (58), after some algebra we get:

1 1 — -2 9 -2 4 3 —2(1—672)
e _ (1= (2e )e p~ —3.9781p.
2 — e 2 2

Using the two upper bounds just found, we get the followiregumality which holds oitic, «):
L'(a)=T; (@) + 9" (a) < {In[1 — (1 —8) B]}* — 3.9781p;
hence, a sufficient condition fdt’ < 0 on (&, o] is {In[1 — (1 — 0) B]}* < 3.9781p, which

is condition (20) in Proposition 1 (i). This is enough fain {lim, .o+ L (), L (o)} > 0t0
hold true also when — 1/v/3 < o < Q.
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We have thus shown that inequality (56) holds@ot: o« < «, Whereay can be any stationary
point of f in (0, @], and the proof is completen

Corollary 2 Under the assumptions of Lemmaf&an have at most one stationary pointin (0, &
which must be a maximum, while there cannot be any statigmaint which is a minimum foy' in
(0,al. Either f" (a) > 0for 0 < a < @, or (a unique)d < ay < a exists such that’ (ag) = 0; in
the latter casef turns out to be strictly increasing ai), o) and strictly decreasing ofny, a.

Proof. First of all, note thatim,, .o+ f' (o) = —[1 — (1 =) f]In[1 — (1 — §) F] > 0; therefore,
if f has no stationary points di, a] it must be increasing over there. Now let us suppose that a
stationary point exists and argue by contradictionflet «y < & be such thaf’ (o) = 0 which is a
minimum point of f. But, by Lemma 6, an upper bourfg of f exists on(0, | such thatfy (ag) =
f () and fy (@) > f () for 0 < a < o Which is strictly increasing o0, «y); therefore,f itself
must be strictly increasing at least on a (left) neighbotholx, which contradicts our assumption.
The same argument rules out existence of multiple maxim@ om)] as well, since this would imply
the existence of stationary points which are minima amoegrbximum pointsa

Proof of Proposition 1 (i). Corollary 2 states that the functigidefined in (23) is either increasing
or has at most one maximum point (h a]. Since, fory = —2,a=1-1/V3<1/2<a<1=
—~/2, Corollary 1 and Lemma 4 (iii) establish that bathand:) have positive third derivative on
[, 1], and thusf” > 0 on [a, 1] accordingly. Finally, Lemmas 2 and 4 (ii) establish thathbet
and are strictly convex forx > 1, which implies thatf is strictly convex on1, +o0c) as well.
By combining these three properties we deduce that theibamgt can be either increasing on all
(0, +00), or it can have at most one maximum paintsuch that) < oy < 1 and one minimum point
a1 such thaty; > «ay. More specificallyp can either satisfy < oy < a ora < ag < 1, where the
numbera is defined in (37) of Lemma 2 and, by calculating the bound8&) fory = —2, is such that
0.5 < a < 0.5363; while «;; can either be such that) < «; < 1 ora; > 1, depending on whether
f(1) > 0or f' (1) < 0 respectively. Recalling also th#t(1) = 0 andlim, ., f (o) = o0, the
following possible scenarios can occur, all defining theigoh set of system (26) as either the empty
set or an interval.

1. fis strictly increasing on0, +oo) and thus it crosses the abscissanos: 1 from below,i.e.,
f' (1) > 0; in this case system (26) has an empty solution set.

2. There is one maximum poifit< ay < 1 and one minimum point; for f such thaty, < a; <
lLandf (ag) < 0; f crosses the abscissaan= 1 from below,i.e., f' (1) > 0, and system (26)
has an empty solution set.

3. There is one maximum poifit< ay < 1 and one minimum point; for f such thaty, < a; <
Landf (ag) = 0; f crosses the abscissa an= 1 from below,i.e., f' (1) > 0, and the solution
set of (26) is the singletofiy }.

4. There is one maximum poifit< oy < 1 and one minimum point; for f such thaty, < oy <
L andf (ag) > 0; sincea; < 1, once agairy crosses the abscissa an= 1 from below,i.e.,
/' (1) > 0, and the solution set of (26) can be either

(@) the closed intervaby, o], with 0 < ay < o9 < i, < iy < 1, 0r
(b) the left-open interval0, o], with 0 < ap < o, < ag < 1.

5. There is one maximum poift < oy < 1 and the minimum point forf is a; = 1; then
f (1) = 0, and the solution set of (26) can be either
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(a) the closed intervaky, 1], with a;, > 0, or
(b) the left-open intervalo, 1].

6. There is one maximum poift< ay < 1 and one minimum point; for f such that; > 1;
then f crosses the abscissa an= 1 from abovej.e., f' (1) < 0, and the solution set of (26)
can be either

(@) the closed intervaty, o], with 0 < ay < 9 < 1 < oy < av, OF
(b) the left-open interval0, o], with 0 < ap < 1 < a1 < .

Since the six cases discussed include all possibilitiespthof is completem

Figure 3 illustrates the last proof by showing some solusiets/ of system (26) wher = —2.
All figures has been plotted using the values of parametepdosted in the second example of Section
4. v = —2,t = 0.44 andp = 0.05; while parametey; takes decreasing values from figure 3(a) to
Figure 3(f). Figure 3(a) corresponds to case 1 in the probiiedigure 3(b) matches case 2: in both
cases the solution set is emply= @. Figure 3(c) shows case 3, in whic¢hs the singletor{a,}.
Figure 3(d) explains case 4a, while figures 3(e) and 3(f}iitlte case 5a, in whieky = «,, = 1, and
case 6a, in which,. > 1 (and thusf’ (1) < 0), respectively: all the last three cases produce a closed
interval as solution sef, = [ay, ], with left endpointy, strictly larger than zero. Finally, figure 3(f)
corresponds to case 6b, when the solution set is an intehiahvis left-open: = (0, «,.].

6.3 Case (ii) of Proposition 1:6/ (v/3—3) < v < —2

Sincey < —2 implies—v/2 > 1, by Lemma 4 (ii) the function) defined in (25) turns out to be
concave onl, —vy/2]; however, Lemma 2 states that the functiprdefined in (24) is convex on
[1,—v/2]. Since no information is available on the sign#f on the intervall, —v/2] (note that
Corollary 1 holds only forx < o < 1), if v < —2 in principle nothing can be said on the behavior
of f defined in (23) on the intervdl, —v/2]. The task of condition (21) in Proposition 1 (ii) is to
overcome this impasse by lettinfgto be, if not convex, at least quasiconvex|trHoo), so that its
lower contour sets are still intervals. Therefore, undedition (21), the analysis di, +c0) remains
the same as in the previous section. However, as we havers&egation 4, there is a price to pay, as
condition (21) turns out to be much more restrictive thandiwon (20).

Lemma 7 Under Assumption 1, if condition (21) in Proposition 1 (ipltds the functionf defined
in (23) is quasiconvex ofl, +c0); specifically, the sefa > 1: f («) < 0} is always a nonempty
(nontrivial) closed interval.

Proof. Consider the following linear upper boundf function¢ on [1, —v/2]:

exp{(lJr%)ln[l—(1—5+e*25)ﬁ]}—1

P

As¢ (1) =1and¢ (—y/2) =exp{(1+~/2)In[l — (1 — & + e25) B]}, x is the expression of the
line defined by the two pointd, ¢ (1)) and(—v/2, ¢ (—/2)). Sinceg is strictly convex orjl, +o0),
X is strictly larger tharp on (1, —v/2).

X (a) =1+ (a—1). (59)
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FIGURE 3: the solution sef of system (26) is either empty or a (possibly nontrivialgival; in (a) and (b)
I=02,in(c)I ={ap},in(d), (e) and (f)f = [y, ], while in (g) I = (0, cv,].
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Define the upper bounfiof f as follows:

- { f (@) if 0 <a<landa > —v/2 (60)

FOZ @ +e@-1-p)  Hlas—p,

wherey () is defined in (59). The functiofi defined in (60) is such that(1) = f (1), f (—v/2) =
f(=v/2), f(a) > f(a)for1l < a < —v/2, and is strictly concave ofi, —v/2]. Therefore, by
assuming that

X' (1) +¢' (1) <0, (61)

f turns out to be strictly decreasing 6h —v/2], which, sincef (1) = f (1) = 0, in turns implies
that f (o) < 0 on(1,—v/2]. Since, by Lemmas 2 and 4 (i), is strictly convex on(—~/2, +c0),
condition (61) is thus sufficient to establish ttfais quasiconvex offl, +o0). Using (53) to evaluate
Y’ (1) = py and after some algebra, (61) boils down to condition (214, the proof is completa

When~ < —2, however, something changes also on the left ef 1. As a matter of fact, the two
constantsy anda introduced in Lemmas 2 and 4 (iii) both increaseyatecreases, with increasing
faster tharny, as the next lemma explains in detail. This reshuffles theraemts used in the previous
section also on the intervéd, 1], which thus need to be reassessed.

Lemma 8 Under Assumption 1, a unique valyé < —2 exists such that = a wheny = y*, a < &
if v* < v < —2anda > aif vy < v*, wherea anda are defined in (51) and in (37) respectively.
Bounds independent of the parameters are given by:

1 6 2
—2.7497 ~ -2 +exp| ———= <A< —— ~ —2.7321. 62
At < (62

Proof. By substitutingxy with «, defined in (51), into the expression (37) and rearrangingge
we consider the following function of:

n(y) =7+ roeEal oy 2y 2pe 2" ,
V3—1 A V3—1 (1=p)tlp+(1—pe+ps

where in the last equality the constardt@and B have been expanded as in (28) and (29) respectively
and the definition of in (15) has been used. Direct computation yields:

(63)

2 TAE (L= B)t(1—p)e
{1=p)tlp+ (1 —p)er]+pB}"
which is clearly positive under Assumption 1. Thus, the fiorcy defined in (63) is strictly increasing
in v and it can have at most one rogt in (—oo, —2], which solves) (y) = v +2/ (V3 —1) +
2¢ +v3 (B/A) =0.As0 < B/A < 1, the bounds in (62) follow immediatels.

n(y)=1-

Note that, sinc&/ (v/3 — 3) ~ —4.7321, by (62) it is immediately seen that > 6/ (v/3 — 3)
must hold.

By Lemma 8,a < a if v* < v < —2. This means that the argument developed through Lemmas
5 and 6 and in Corollary 2 in Section 6.2, and thus in the pré&froposition 1 (i), carries over also
when~y* <~ < —2; we only need to adjust Lemmas 5 and 6 in order let them hotdialthis case.
The next Lemma actually generalizes Lemma 5 foﬁal(\/g — 3) <~ < —2 under condition (21)
in Proposition 1 (ii), while the following one, Lemma 10, jgexific for the case* <~ < —2.
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Lemma 9 When6/ (v/3 —3) < v < —2, if both Assumption 1 and condition (21) in Proposition 1
(i) hold, then the functioy defined in (27) has the property thdt(«) < 1 for 0 < a < @, wherea
is defined in (37).

Proof. Recalling the proof of Lemma 5, we must show that (1 —e~') /(1 — 4) holds true
also whem* < ~ < —2. Under condition (21), it is sufficient to show that

2In[l + (14 ~v/2) pv]
l—exp{ }<1—el

2+
1—(1—-€e2)§ — 1-0"
or, equivalently, that
1—4§ 21n (1 + py + py*/2) .
— <l-—e. 64
1—(1—62)5{1 eXp{ 2+ =1 (64)

As(1—0)/[1—(1—e?)¢] < 1, asufficient condition for (64) is

2 (e—”T” . 1)
<7 65
- @2+ (69)
Condition (18) of Assumption 1, or, more precisely, coratit(19), provides a useful upper bound

for p; since an upper bound for the RHS in (19) is obtained by Igttia 1 in its expression, we obtain
the following:

> e ! = P

2In (14 py +p*/2)
exp 51

[1+ yel ]e“ft

e
(1-e)® [1 * <1jew>2} < (1—€)’ +7e

1 [1+ﬁ] (1—ew)t< 1 [1+(1]77)2} (1—e) (A=e)(i-e—7) (60)

p <

Combining (65) and (66), it is easily seen that

24y
2(e % 1) (1—e)’ +7e

@ty - —7) ©7)

holds true for all6/ (\/5— 3) < v < =2, as can be checked by plotting both terms in (67) as
functions of the only variable with Maple software. As (67) implies both (65) and (64), thegd is
complete.m

6.3.1 The argument wheny* < v < —2

The following Lemma exploits both Lemma 9 and condition (1Proposition 1 (ii) in order to
extend Lemma 6 to the case < v < —2.

Lemma 10 Lety* < v < —2. Under the same assumptions of Lemma 9, ¥ oy < ais a
stationary point for the functiorf defined in (23),f' () = ¢ () + ¥’ (ovg) = 0, then a smooth
function fi; : (0, a9] — R exists such thafy (ag) = f (), fi; (a0) = f' (), fu (@) > f(a) for
0<a<apandf] (o) >0for0 < a < . In other words, an upper boung; of f exists on0, ay|
such thatfy; is strictly larger thanf and it is strictly increasing or0, «).
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Proof. Sincea < a if v* < v < =2, the first part of the proofi.e., the case in whicl) <
oy < @, is exactly the same as in the proof of Lemma 6, one has onlgglacel — 1/+/3 with
a=— (3 — \/5) v/6 and use Lemma 9 instead of Lemma 5. Note that the same arguwosss also
in the special case = +*, in whicha = a.

As far as the second part is concerniegl, whenv* < v < —2 anda < oy < @, we must show
that under condition (21) in Proposition 1 (ii) the functidrdefined in (57) is strictly decreasing on
(e, ap]. To this purpose, let us study the sign of the derivativé af in (58) fory* < v < —2:

I'(0) = Tp.(0) + 0" (0) = [¢/ (a0))” e = 27’5 20+, (68)

wherey” («) have been expanded as in (54). We must establish that the RKEB) is strictly
negative. We shall consider the same upper bounds for betfirsth and the second term in the RHS
of (58): {In[1 — (1 — &) A]}* andy)” [y/ (v — 2 + 2¢7)] respectively, where the argument,f is the
upper bound ofv provided in (38) of Lemma 2. After some algebra we get:

! 2 _ p(y+2e) (y =24 2¢7) e
v — 2+ 27 72 '

Therefore, a sufficient condition for having the RHS in (68ictly negative is

p (v +2e7) (v — 2 4 2¢7)° e720=7)

V2 =0

{In[l - (1-4) 8} ~

9

which can be rearranged as follows:

1 —exp [_ \/ p(y+2e7) (v =2+ 2¢7)° 6—2“—@”/72}
1—-9

Under condition (21), it is thus sufficient to show that

21n (1 29
1—exp[ n +2p+77+m/)} 1 —exp |:_\/p<7+267)(7—2+2e“/)3€2(167)/72:|

<
l1—(1—e2)¢ - 1-9¢ ’

f<

or, equivalently, that

1-9§ 2In (1 + py +py?/2)
1— <
1—(1—6_2)5{ eXp[ 2+~

1 —exp l_ \/p (v +2¢7) (v — 2 + 2¢7)? 6_2(1_67)/’72} .

Since(1 —6) /[1 — (1 — e™?) 4] < 1, a sufficient condition is

{2 In (1 +py +py*/2)
exp

> ex —\/ +267) (v — 2+ 2¢7)° e=20=e7) 2},
> }_ pl p(y ) (7 ) /7

which, after some algebra, is equivalent to

[27111(1 +pv+p72/2)r
2+

0(p,y)=p— >
P.7)=r (7 +2¢7) (7 — 2 + 2¢7)? e20—e7)
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Note that the LHS of the last inequality depends only on theegarameters and~y; hence we can
label it as a function of two variableg(p, ). Since its expression is too tough to handle analytically
we rely on graphic inspection by means of Maple software ctvigionfirms that (p,v) > 0 for all
0 < p < 1andy < —2. This completes the proof as it is sufficient for conditioB8) € hold truem

Proof of Proposition 1 (ii) for v* <~ < —2. With Lemmas 9 and 10 replacing Lemmas 5
and 6 in Section 6.2, Corollary 2 still applies, and the pn@whains identical to that for case (i) of
Proposition 1 orj0, 1]. Moreover, Lemma 7 extends the argument in the proof of Ritipa 1 (i) also
on the intervall, +o00) by establishing that, if condition (21) holds true, theget> 1 : f (o) < 0}
is always a nonempty (nontrivial) closed interval. Notettlmader condition (21) the solution set of
system (26) cannot be emptm.

6.3.2 The argumentwher6/ (v3—3) < v < ~*

Clearly,y < ~* implies—v/2 > 1; thus Lemma 7 still applies and condition (21) in Propositio

(i) guarantees that the functighdefined in (23) is quasiconvex ¢h +co), so that its lower contour
sets are intervals. However, when< v* Lemma 8 states that the constantanda defined in (37)

of Lemma 2 and in (51) of Lemma 4 (iii) respectively, are sutdt& < a. Moreover, agy becomes
smaller, the constant becomes larger, until it reaches the vatue= 1, which, by definition (51),

corresponds to the valug (\/3 — 3) for parametery. Hence, unlike the casg < v < —2, now the

interval (0, 1] must be partitioned into the following three intervals:

(0,1] = (0,a] U [a,& U [4,1],

witha < a < 1.

While on (0, @] and, whery < 1, on|[a, 1] the arguments discussed in the previous sections still
apply, on[a, a] not only, as shown in Lemmas 2 and 4 (i), the functignand defined in (24)
and (25) are respectively convex and concave, but alsoftthieir derivatives have opposite sign, as
prescribed by Corollary 1 and 4 (iii). Therefore, the argairie the proof of case (i) of Proposition
1 does not apply anymore d&i, @]. We shall follow a new strategy in order to fill this gap: thexne
lemma will establish that, if condition (21) holds, the ftioa f turns out to be concave da, a/.

Lemma 11 Let6/ (\/3 — 3) < v < v*. Under Assumption 1, if condition (21) in Proposition 1 (ii)
holds, then the functiorf defined in (23) is strictly concave far < o < «, wherea and a are
defined in (37) and (51) respectively, and are such that a < 1.

Proof. Since, by Corollary 1¢” > 0 fora < a <1, ¢" (a) < ¢” (1) holds true whenevei <
a < 1. Also, since, by Lemma 4 (i) (o) < 0for0 < a < a,¢" (o) <¢" (@) <" [v/ (v — 2)]
wheneverr < o < a, where the last inequality uses the lower boundifan (38). Hence, a sufficient
condition for f” (o) = ¢" (a)) +¢" (a) < 0 on &, & is the following:

! 1/ ’}/
" (1) + (ﬁ) <0,

which can be expanded as

2vo3eY
1—(1-10)8—6p3e

where the LHS has been obtained by substituting 1 in the expression af”,

& (@) = e {47 (a) + Iy @)},

3.2
+{In[l - (1—8)8 -8} < %, (70)
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with ¢, ¢’ and ¢” defined in (27), (32) and (39) respectively, and the RHS has lmbtained by
substitutingy = v/ (v — 2) in (54).

Let us search for some useful upper bound for the LHS in (70%t Rote that fory < —2 the
following inequalities hold:

1 1
1—(1-0)0—08 ~1—(1-0)0—dpe2’
{In[l—(1-0)8 -8} < {n[l —(1-06)3-d8e?]},
which provide a first upper bound. Next, note that the RHS ith lieequalities above are strictly in-

creasing in?, therefore we can discard parametdyy taking its maximum value yielded by condition
(21), so that:

1-(1-0)p—0Be2=1— [1_(1_62)5]6:exp{21n[1+(1+’7/2)p7]}’

2+
and thus an upper bound for the LHS in (70) is given by
1 —exp {M

pxRy }+{mnu+a+ymnm}f

[ 2v0e) }
11 —e)s 2In[1+(1+4/2)p] 2+
( ) eXp{____317____} gl

Finally, we need to get rid also of parameterto this purpose, since it is immediately seen that
§/[1 — (1 —e2)4] is increasing im, condition (18) of Assumption 1 allows us to replatevith
1+ ~e?/ (1 — e7)?, thus eventually providing our final upper bound for the LIAS70):

21n[1+(14+v/2)pv]
2o [(1 = e poer] | 1o {Hegpomal) CIEIESTE N
(1 — ) +yer] e=2 — ve exp{%gmw} 2+
Since the RHS in (70) is increasing anthere is no hope to discard parameidrom the whole
inequality; as a matter of fact, we shall rely once again @pQpic inspection on the relevant ranges
for parameters andp. Recall that an upper bound fpris given by condition (19) of Assumption 1
computed int = 1 [see also inequality (66) in the proof of Lemma 9]:

(1—e?)” + e
l—e’)(1—er—1)

Py =p(7)- (71)
To conclude the proof, the plot by Maple software of the défece between the LHS and the RHS
of (70) as a function of the two variablesandp shows that it is clearly positive for all the relevant
values, that is, on the randés/ (v3—3) < v < 2/(1-+/3) and0 < p < B(v), with 5 (7)
defined in (71)m

Proof of Proposition 1 (ii) for 6/ (\/5—3) < v < ~*. Note that Lemma 6 holds also when
6/ (\/§ —3) < v < 7% as the first part of its proof is sufficient to cover the whaleeival (0, &
whena < a; the only tool required is Lemma 9, which, as a matter of factes apply for all
6/ (\/3 — 3) < v < —2. Thus, Corollary 2 still applies and states ttfatan have, if any, at most
one maximum point if0, a]. Lemma 11 establishes that the functjbis strictly concave oifa, ],
wherea < 1. As long asa < 1, Corollary 1 and Lemma 4 (iii) together state that betand« have

18Recall that, by Lemma 8;* < 2/ (1 — v/3).
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positive third derivative ona, 1], and thusf” > 0 on [a, 1] accordingly*’ Finally, Lemma 7 covers
the interval[1, +00) by establishing that, if condition (21) holds true, the &et> 1 : f (o) < 0} is
always a nonempty (nontrivial) closed interval.

Therefore, if 1)f can have at most one maximum poin{ina], 2) f is strictly concave oy, ],
3) f/ > 0onla, 1] whenevery < 1 and 4) the sefa > 1: f (a) < 0} is a closed interval, then the
behavior off is that described in the proof of Proposition 1 (i) also witgr{v/3 —3) < v < 77,
and the proof is complete. Recall that under condition (B&)dolution set of system (26) is always
nonempty.m
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