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The Empirical Minimum-Variance

Hedge

Sergio H. Lence and Dermot J. Hayes

Decision making under unknown true parameters (estimation risk) is discussed along
with Bayes® and parameter certainty equivalent (PCE) criteria. Bayes’ criterion
incorporates estimation risk in a manner consistent with expected utility maximization.
The PCE method, which is the most commonly used, is not consistent with expected
utility maximization. Bayes’ criterion is employed to solve for the minimum-variance
hedge ratio. Empirical application of Bayes’ minimum-variance hedge ratio is addressed
and illustrated. Simulations show that discrepancies between prior and sample
parameters may lead to substantial differences between Bayesian and PCE minimum-

variance hedges.
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Estimation risk occurs when the joint probabil-
ity density function (pdf) of a decision prob-
lem’s random variables is not known with cer-
tainty. It is a common occurrence in economics.
For example, parameters such as the marginal
productivity of fertilizer, the elasticity of de-
mand, and the regression coefficient of cash on
futures prices are rarely known for sure. Agents
making decisions in the presence of random
variables generally are confronted with the ad-
ditional uncertainty of less-than-perfect knowl-
edge about the pdf governing the distribution of
those variables.

Almost all studies involving decisions in the
presence of estimation risk implicitly use the
“plug-in” or “parameter certainty equivalent”
(PCE) approach. The PCE consists of develop-
ing the theoretical decision model under the as-
sumption that the pdf and its parameters are
known with certainty. Once the optimal deci-
sion rule is derived, the empirical application
proceeds by substituting sample estimates for the
unknown parameters. Although it is intuitively
appealing and empirically tractable, the PCE has
no axiomatic foundations and is not consistent
with expected utility maximization.

The shortcomings of the PCE approach can
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best be demonstrated with an example from price
speculation. Assuming the true parameters are
known, theory predicts that a risk-averse indi-
vidual will speculate if the known futures mean
is different from the current futures price. In or-
der to determine empirically the optimal spec-
ulative position, the PCE method involves using
the sample futures mean as a substitute for the
true but unknown futures mean. Prior informa-
tion, such as a possibly strong belief in the ef-
ficient market hypothesis, and sample infor-
mation, such as the standard errors of the
estimated parameters, are ignored. Taken to its
extreme, the PCE would predict a long specu-
lative position whenever the mean of recent fu-
tures prices is lower than the current futures price,
and predict a short position when the opposite
is true. This clearly is questionable speculative
behavior.

When estimation risk is due to imperfect
knowledge about the parameters of the joint pdf
(given that the functional form of the pdf is
known), Bayes’ criterion is the method consis-
tent with the expected utility paradigm (De-
Groot, chapters 7 and 8). This criterion takes
into account uncertainty regarding the unknown
true parameters by assigning a pdf to these pa-
rameters and then integrating over the parameter
space.

Bayes’ criterion has been studied thoroughly
in statistics (Raiffa and Schlaifer, DeGroot,
Berger, Klein et al.). It has also been applied to
solve important problems in finance, such as se-
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curity market equilibrium (Bawa; Barry and
Brown; Coles and Loewenstein), portfolio choice
(Klein and Bawa; Bawa; Brown; Alexander and
Resnick; Jorion; Frost and Savarino), and option
pricing (Boyle and Ananthanarayanan). But un-
til recently, Bayes’ criterion was largely ignored
in agricultural economics (Dixon and Barry; Pope
and Ziemer; Collender and Zilberman; Collen-
der; Chalfant, Collender, and Subramanian).

Dixon and Barry modeled an agricultural
bank’s allocation of funds among three assets
and concluded that estimation risk influenced
portfolio composition. Pope and Ziemer used
second-degree stochastic dominance to examine
the performance of alternative estimation meth-
ods. Using Monte Carlo simulations, they found
that the plug-in approach generally performed
no better than did the empirical distribution
function, and that the empirical distribution gen-
erally led to more correct rankings under small
sample sizes. Collender and Zilberman analyzed
the optimal land allocation problem under alter-
native joint pdfs for crop returns, concluding that
farmers with different opinions about the joint
pdf of crop returns will both allocate and value
land differently, even if they have the same ab-
solute risk aversion and identical opinions about
the mean and the variance of crop returns. Col-
lender addressed the decision maker’s ability to
distinguish among different farm plans based on
sample means and variances. Collender found,
at reasonable significance levels, that it may be
statistically impossible to distinguish among most
estimated mean-variance combinations on the
efficient frontier, even with large sample sizes.
Chalfant, Collender, and Subramanian studied
sampling properties of portfolio allocations based
on the PCE approach. They showed that PCE
allocation decisions are biased and inefficient,
and proposed an alternative approach that would
be unbiased and have lower variance.

We show in the present paper how to apply
Bayes’ criterion to calculate the minimum-
variance hedge ratio. Collender and Zilberman
similarly analyzed problems associated with us-
ing an incorrect functional form for the joint pdf,
assuming perfect knowledge about the parame-
ters. We are concerned instead with problems
of having less-than-perfect knowledge about the
parameters, assuming perfect knowledge about
the functional form of the joint pdf.

Decisions under Uncertainty

The standard optimization problem under un-
certainty can be represented by
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(h
max E, ,(U) = maxJU[R(d,y)]p(yiﬁ) dy
den den

Y

where E(-) is the expectation operator, U(*) is a
von Neumann-Morgenstern utility function, R(d,
y)] is a function of a vector of decision variables
d and a (k X 1) vector of future random vari-
ables y = x;,, related to the decision problem,
p(y|@) is the joint pdf of y given the vector of
parameters 0, Y is the domain of y, and D is
the feasible decision set.

Decision problem (1) is the basic paradigm of
expected utility theory (Hey). An important un-
derlying assumption is that p(y|0) is perfectly
known. However, in many real-world situations
this assumption is not valid: there is estimation
risk (Bawa, Brown, and Klein). Estimation risk
may arise because of less-than-perfect knowl-
edge about either (/) the functional form of p(y|0),
or (ii) parameters contained in vector 6 (given
that function p(y|@) is known with certainty).
Although case (7) is relevant in certain situations
(Bawa; Collender and Zilberman), we are con-
cerned only with case (ii). In other words, we
will define estimation risk as that in which the
decision maker knows with certainty the func-
tional form of joint pdf p(y|0), but has less-than-
perfect knowledge about the parameters in 0. We
will refer to the absence of estimation risk as a
case of perfect parameter information (PPD).!

If 8 in (1) is not known with certainty, then
E,o(U) is not known either because the expec-
tation is a function of @; therefore, E4(U) can-
not be maximized. Bayes’ criterion provides a
remedy to this situation in a manner consistent
with the axioms of expected utility theory
(DeGroot, chapters 7 and 8). The solution con-
sists of taking into account the uncertainty about
the parameters by postulating a joint pdf of 0
and integrating over the parameter space. That
is, the decision problem is

(2) maxEy[Es(U)] = maxf
deD deD

(&

{f UIR, y)] p(y|®) dy}p(OIX, 1) do
Y

' Decisions based on the PPI need not be similar to those based
on the PCE. The former assumes perfect prior knowledge about the
parameters, whereas the latter assumes perfect confidence in the
quality of the sample information. Because there is no need for the
sample information in one scenario to be identical to the prior in-
formation used in the other, the resulting decisions may be difter-
ent.
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where p(0|X, I) is the posterior pdf of @ given
sample data matrix X and prior (nonsample) in-
formation /;, and @ is the domain of 8. Sample
data matrix X = (x,, ..., Xp)' is a (T X k) matrix
of T past realizations of x.

The posterior pdf p(8X, /) contains all in-
formation available regarding the parameter
vector 0 at decision time 7. This pdf conveys
all the sample and nonsample information about
0 because it is obtained by application of Bayes’
theorem as follows:”

p®lIy) p(X[0)
p(X3 If)

where p(0|/;) is the prior pdf of 8 and p(X|0) is
the likelihood function. The prior pdf represents
the decision maker’s prior (nonsample) infor-
mation about 0; this pdf reflects the probabilities
which the agent assigns to different values of 0
based on his practical experience, knowledge,
and beliefs. And according to the Likelihood
Principle, all relevant experimental information
about 0 after X is observed is contained in the
likelihood function for the observed X (Berger,
p. 28). By combining sample and nonsample in-
formation, the posterior pdf provides a better as-
sessment about the unknown true parameter
vector than does either the prior pdf or the like-
lihood function alone.

Assuming that U[R(d, y)] is independent of
0, (2) can be alternatively stated as

(4)  maxEy[E,(U)]
dep

(3) pOX, I;) =

= maxf UIRW, V)] p(y|X, I7) dy
Y

deD

where p(y|X, I;) is the predictive pdf of y.’
Expression (4) facilitates the comparison of
Bayes’ criterion with PPI case (1). The only dif-
ference between the right-hand sides of expres-
sions (1) and (4) is that the joint pdf of y in the
former is p(y|@), whereas in the latter it is p(y|X,
I;). When parameter vector 0 is known with cer-
tainty, the sample X adds no information about
the parameters; therefore, the decision maker can
ignore X and proceed to make decisions based
on the joint pdfp(y|0) as indicated in (1). In the
more common situation characterized by imper-

? Recall that p(a. ) = p(e) plale) = pla) plea). and therefore
plale) = pla) plela)/ple), where p(a. ¢) is the joint pdf of any pair
of random variables ¢ and e. p(ale) and p(ela) are the conditional
densities, and p(«a) and p(e) are the marginal densitics.

* Expression (4) is obtained by reversing the order of integration
of (2), noting that U[R(d. y)} is independent from 8, and using the
fact that p(y|X. 1) = [o p(y|0) p(8]X, 1) 6.
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fect knowledge about 0, however, it is unrea-
sonable to ignore either prior or sample infor-
mation. In such a case, the decision maker uses
all the available information in an optimal man-
ner by employing the predictive pdf. Bawa,
Brown, and Klein have shown that, for any par-
ticular prior, Bayes’ criterion yields the maxi-
mum expected utility.

Letting O(X) denote the sample point estimate
of the unknown parameter vector @, the PCE
method can be stated as

(5) maxEyg_s(U)
deb

= max f UIR(. y)] plyld(X)1 dy
den y

Simply put, in the PCE the sample point esti-
mate 0(X) replaces the unknown vector 6 in (1);
that is, parameter estimates are taken as if known
with certainty. Solving the decision problem by
means of the PCE generally is much easier than
using Bayes’ criterion, but the PCE has no ax-
iomatic foundations. Klein et al. analyzed the
necessary and sufficient conditions for the PCE
approach to yield the optimal (i.e., Bayesian)
solution. They show that the conditions are very
restrictive and seldom fulfilled by the pdfs com-
monly used in economic studies. Moreover, they
show that the utility loss from using the PCE
rather than Bayes’ criterion may be large.

Minimum-Variance Hedge Ratio

An important problem involving estimation risk
is that of calculating the minimum-variance hedge
ratio (MVH). The MVH is the ratio between the
futures and the cash positions that minimizes in-
come variance, given the agent’s cash position.
The MVH is an important paradigm in the the-
ory of hedging and dominates the applied hedg-
ing literature.

Reduced to its essentials, the derivation of the
MVH is as follows. Consider an agent at deci-
sion date T whose random terminal income 7, ,
equals the returns from his cash and futures po-
sitions:

(6) Tra1 = Pra @ — (fra =D F

where p;., is the random cash price at date T
+ 1, Q is the amount of product sold at date T
+ 1, fr+, is the random futures price prevailing
at date T + 1 for delivery at some date 7 + ¢
= T + 1, f; is the current futures price for de-
livery at date 7 + ¢, and F is the amount sold
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in the futures market at date 7 and purchased at
date T + 1. The decision problem consists of
selecting the hedge F that minimizes the vari-
ance of terminal income, given cash position Q:

(N

ming varp(7rry ;) = ming [Qz vary(priy)
— 2QF covr(pryy, fre) + F7vare(fro)].

Subscripts in the variance and covariance op-
erators denote that they are conditional on in-
formation at date 7. First order condition cor-
responding to (7) is

dvarp(mr. )

8
(8 o°F

= =2 Q covp( pri1s frer)
+ 2 Fvary(fri) =0

which can be solved for the variance-minimiz-
ing hedge position*

_ covr(Preis frer)

- varr( fri1)

9)

PPI

The ratio covy{ prey, fra1)/vary(fre) is the
MVH. It has been shown that the MVH is the
optimal hedge ratio if the current futures price
fr 1s an unbiased predictor of the posterior fu-
tures price f;+,, regardless of the decision mak-
er’s absolute risk aversion (Benninga, Eldor, and
Zilcha). In addition, the MVH is the optimal
hedge ratio for extremely risk-averse decision
makers, even if fr is a biased predictor of f;,,
(Kahl). Because of these attributes, and also be-
cause of the apparent ease of the empirical cal-
culation, MVH estimation has been the focus of
numerous applied studies. Implicitly or explic-
itly, all such studies use the PCE approach; that
is, they estimate Fpp; by means of Fpeg:

* The second order condition for a minimum is always satistied
because vary(fr.) > 0.
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_ Opr
(10) F PCE — Q
Gy
where &, and &, are the sample estimates of

covy(pryis Jre1) and varp(fr,)), respectively.

Alternative methods have been applied to ob-
tain the MVH estimate &,,/6,. A popular tech-
nique consists of regressing cash on futures prices
with historical data, then taking the futures price
regression coefficient as the estimated MVH.
Examples of this approach (or some variation of
it) are Ederington; Myers and Thompson; and
Viswanath. Other authors advocate GARCH
models (Baillie and Myers) and conditional
forecasts (Peck) to estimate the MVH. Large
differences in estimated MVHs obtained by dif-
ferent authors with the same commodities sug-
gest that MVH estimation risk is important. But
if estimation risk exists, the sample estimate of
the MVH need not lead to the optimal decision.
Moreover, the stated properties of the MVH (i.e.,
optimality under unbiased futures prices or un-
der extreme risk aversion) hold under PPI con-
ditions, but need not hold in the presence of es-
timation risk.

Using Bayes’ criterion to Derive the MVH in
the Presence of Estimation Risk

In the MVH model, utility is given by U[R(d,
w1 = —vary (7)), with R, y) = 774y, d =
F,andy = (prs1, fr+1)'. This utility function is
special in that it depends on parameters of the
joint pdf of y because vary(pr.,), varr( f;+,), and
covr(pr+1, fr+1) belong to parameter set 6. Sub-
stituting this utility function into (2) and pro-
ceeding analogously to the previous derivation
of Fpp;, the optimal hedge under Bayes’ crite-
rion can be shown to equal

f {J COVT(PT+1sz+1)[’(Y[0) d)’} [)(GIX’ I7) do
o Uy

(1)

FBAY_

|

)

Q
f {j Varr(fT+|)P(Y|6) dY} [)(OIX, 1) do
o Uy

covr(priis fren) P(0|X, I7) do

(11"

)
f vary( fre1) P(("X, I7) dé
)
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f covr(pret, fret) P(9|1’1‘) p(X‘H) df
)

(1" =

0.

f vary(fry ) [7(0‘17‘) p(X|0) do
)

In deriving (11") from (11), we use the fact that
neither covy(pry,, fr+1) nor vary(fr.,) depend
on a particular value of y. Hence, we can take
them outside the inner integrals on the right-hand
side of (11). The resulting inner integrals are
readily solved because [, p(y|0) dy = | by the
properties of pdfs. To derive (11”) from (11"),
we employ the definition of the posterior pdf
p(0|X, 1) given by (3) and the fact that the de-
nominator on the right-hand side of (3) is in-
dependent of 0.

Expression (11”) is the most convenient base
upon which to perform numerical integrations,
and is therefore the most suitable expression for
calculating Fy,y in practical applications. How-
ever, (11") provides the best insight because it
shows that the numerator is the expected co-
variance and the denominator is the expected fu-
tures variance, where these expectations are ob-
tained by integrating with respect to the posterior
pdfp(O’X, I;). Alternatively, the numerator (de-
nominator) of (11°) is the value of the covari-
ance (futures variance) that can be expected by
combining both prior and sample information
about the unknown true parameters.

It is important to note that Fy,y nests Fpp as
a limiting situation. Bayes” MVH simplifies to
the PPI MVH when the decision maker knows
covy(priys frvy) and varp(fr.) with certainty.
In that instance, prior and posterior pdfs for
covr(priys fre1) and varp(fr,,) are identical.
Furthermore, these pdfs have their mass con-
centrated at single points, i.e., at the certain val-
ues of covy(pry1, fr+1) and vary(fr,,). Hence,
the posterior means of covy(pr.,, fr+1) and
var,( f;,,) are the same as the certain values as-
signed by the agent, in which case Fyay in (117)
is identical to the expression for Fpp (9).

In contrast, Fpcy is not a special case of Fyay.
The only possible case where Bayes” MVH might
collapse to the PCE MVH is where there is no
prior knowledge about parameter vector 0. With
such a diffuse prior, the posterior is determined
by the sample information through the likeli-
hood function. However, the means of cov;(p,, ,
fr+1) and var;(fr,,) with respect to the likeli-
hood function will in general be different from
the maximum likelihood point estimates of
covy(pryis fr+0) and varp( fr. ). Therefore, Fiy,y

and Fpce will almost always differ from one an-
other even in the extreme scenario in which the
agent has diffuse priors.

It is also worth emphasizing that Fy,y pro-
vides a means for calculating the minimum-vari-
ance hedge when there are no sample data. Ex-
amples of such a scenario include the opening
of a futures contract for a new commodity or
the occurrence of a major event that changes the
market structure and therefore price behavior.
Under these circumstances, Fpce cannot, be-
cause of lack of sample data, be estimated and
Fpp cannot be calculated unless the decision
maker knows the parameters with certainty.
However, Fzay can be calculated as long as the
agent has a nondiffuse prior (nonsample infor-
mation) about the parameters.

Implementation

The basic element required to calculate an MVH,
be it Bayes’ or PCE, is the joint pdf p(y|@) of
cash and futures prices. Assume the joint pdf is
given by’

(12)  In(pr.) — In(py)
= w, + BlIn(f7) — In(pp)] + w74,
(13) In(fre)) = In(f7) = py + wyrs
(14) ur,, i.i.bn. (0, X)
where U = [Uyrsrs Upr]’

0=1[0,01

2= T pa',,:)',» ,0,>0,
po,0y gy
>0, -1 <p<l

and i.i.bn. means identically independently bi-
variate normally distributed. The vector of pa-
rameters whose values are not known with cer-

’

tainty is O = [w,, iy, B, 0,, a5 pl'.

* The joint pdf depicted by (12) through (14) is an example we
used to show how to calculate Bayes” MVH. For example, if it is
believed that cash prices exhibit scasonality, shifters should be added
to (12). Alternatively, if it is believed that prices follow a bivariate
t rather than a bivariate normal distribution, the distributional as-
sumption in (14) should be changed to bivariate 7.
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The joint pdf represented by (12) through (14)
is chosen to render the example both realistic
and intuitive. Following most studies of asset
price behavior, natural logarithms are used in-
stead of price levels. This transformation re-
duces any positive skewness in price levels and
eliminates the possibility of negative prices. The
first-difference specification reflects the fact that
price series usually are found to be integrated of
order one. An error correction term [In(f;) —
In( p;)] appears in the equation for cash prices
but not in the equation for futures; this formu-
lation implies that the price discovery process
occurs in the futures market and that cash prices
adjust towards futures prices (Garbade and Sil-
ber). Coefficient B reflects the speed at which
cash prices adjust towards futures prices. Fi-
nally, the bivariate normal pdf is adopted be-
cause it is standard in both empirical and the-
oretical studies.

The joint pdf is essential to calculating both
the PCE and Bayes’ MVH. In the former, the
joint pdf provides the means to obtain the sam-
ple parameter estimates. In the latter, the joint
pdf defines the likelihood function p(X|0). To
see this point, note that the likelihood function
in general is equal to

(15)
(157

where (15') follows from (15) by the properties
of pdfs. But (15) can be simplified to

(15" p(X|8) = p(pr, frlpr—i, fr1, 0)
PPr-vs froi| Proas fr—2. ) .. p(fos folp1s 1) ©)

because under the assumed joint pdf (12) through
(14), prices at ¢ depend only on prices at r—1.
Had we assumed instead that prices follow a VAR
process of order n, the right-hand side of (15")
would consist of the product of terms like p( p,,
f;‘Pr— s ft-— 15 Pr-2s ff—Zﬂ sy Piens f;—ns 0)

Under the additional assumption of bivariate
normality, (15") further specializes to

(151") .
1 | L
p(XI(‘)) = n ;;W eXp(*E u, % : ll,)

=2

where

p(X[ﬂ) = p(prs frs Pr—1s Jrovs - - S Jrs P
= P(I’T-frlpr»»lvfr—la Prss froas ..
P(Pr—is fr- |PT—2v.fT—z~ Pr—as fr-a, ..
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exp(+) is the base of natural logarithms, and ||
is the determinant of 3. Other joint pdfs, such
as the multivariate r-distribution, lead to differ-
ent functional forms for likelihood function (15").
To derive these, simply replace the normal dis-
tribution with the distribution of choice in (15").

Two aspects of the likelihood function are no-
table. First, for the given sample data (p,. f:
t=1,...,T), p(X|0) is a function only of the
vector of unknown parameters 0 = [w,. ., B.
a,, o5, p). Second, p(X|0) is also used (either
explicitly or implicitly) to calculate the PCE
MVH.

The other key input needed to calculate Bayes’
MVH is prior pdf p(0|I;). The prior represents
the decision maker’s beliefs, expert knowledge,
and/or other type of nonsample information about
parameter vector 6. This nonsample information
must be expressed in terms of pdfs. For cxam-
ple, the agent may know there will be a shortage
of railroad cars in the next few days which will
drive down local cash prices. Intuitively, such
information is important but is neglected by the
PCE MVH because it is nonsample information.
In contrast, Bayes” MVH incorporates the non-
sample information through the prior pdf of either
M, or B or both. To show how this can be done,

£l

© pl’f’lv Plaf‘]a 9)

'91123./‘2’[)11.](‘% 9) v p(plwfl‘[)]vfl- 9)

assume for example that the prior is depicted by
the normal distribution for w,, i.e.. p(ull;) =
dl(w, — m)/0,), where () is the standard
normal pdf, m, 1s the prior mean of w,, and
a,, 1s the prior standard deviation of w,. Knowl-
edge that cash prices will fall as a result of the
railroad shortage means that u,, must be nega-
tive; furthermore, the greater the expected short-
age (or the greater the response of local prices
to transportation conditions) the more negative
M, should be. Prior standard deviation o, is
negatively related to the quality of the nonsam-
ple information. Hence. o, should be smaller
the higher the confidence placed on this infor-
mation.

Any pdf can be used to represent the decision
maker’s nonsample knowledge, provided it sat-
isfies both the pdf properties and the restrictions
of the parameter space. To meet the pdtf prop-

u:[mnquMJ—BHMﬁﬂﬁmeﬂ—m]
' In(f)) — In(fi. ) — py
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erties, the function selected to represent the prior
must be positively valued and must integrate to
unity.® To satisfy the parameter space restric-
tions, the function must equal zero at values that
parameters cannot take. For example, the prior
pdf should be zero at nonpositive variances be-
cause the latter must be positive. Similarly, the
prior pdf of the correlation coefficient must be
zero outside interval (—1, 1) because the cor-
relation coefficient cannot exceed one in abso-
lute value.

To summarize, the additional requirements to
calculate Bayes’ MVH are (i) specifying the prior
pdf of unknown parameters p(8|l;), and (ii)
solving the integrals in (11").

Solving the Integrals in Bayes” MVH

The most difficult step in calculating Bayes’
MVH is to solve the integrals on the right-hand
side of (11”). In general, these integrals have no
analytical solution and must be solved numeri-
cally. Software packages such as Mathematica™
or Mathcadg can do so without need of pro-
gramming skills. There remains the problem,
however, that numerical methods may fail to
converge when solving multiple integrals such
as those involved with F,y. An alternative pro-
cedure that avoids nonconvergence problems is
sensitivity analysis. To this end, numerical in-
tegration is performed over one or a few param-
eters while maintaining the other parameters fixed
at reasonable values, given both sample and
nonsample information. Integrations are re-
peated for different combinations of values of
the fixed parameters. The results obtained are
then used to assess the MVH on the basis of the
weight attached to each fixed parameter com-
bination.

Another alternative to numerical integration is
to use either importance sampling or the rejec-
tion method to approximate the integrals in (11")
or (11"). For practical applications, the latter
techniques may be favored over the former be-
cause they require only a random number gen-
erator, a standard feature in statistical packages

® An exception to this rule arises when the decision maker has
very little information about a parameter, i.c., the prior is diffuse
(Zellner, pp. 41-53). In the preceding example, a diffuse prior could
be modeled by letting o,, be very large. However, it is more
convenient to just usc p(p.p’IT) = 1 if the parameter w, can take
any positive or negative value. When a parameter can only be pos-
itive, as in the case of the standard deviation o,, the diffusc prior
to use is p(o,|l;) = 1/0,. But the diffuse priors p(p,[fy) = 1 and
p(op\l,) = 1/0, are not pdfs because thcy do not integrate to one.
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such as SHAZAM, TSP, SAS, MicroTSP, and
RATS. The intuition behind the rejection method,
and an explanation of how to use it, can be found
in Smith and Gelfand. Kloek and van Dijk pro-
vides a good reference for importance sampling.

Application to Soybean Hedging

To illustrate the proposed method with a real-
world situation, consider the case of a decision
maker in North Central lowa who, on 3 Decem-
ber 1992, wants to hedge soybeans on the nearby
futures contract (i.e., January 1993) for one
week. Assume also that the joint pdf p(y|0) of
cash and futures prices is given by (12) through
(14).

Sample information set (X) consists of weekly
data on cash and futures prices of soybeans since
the January 1993 contract began trading in the
Chicago Board of Trade (CBOT). Cash prices
are North Central Towa prices on Thursdays, as
reported by the Iowa State University Market
News. Futures are settlement prices on Thurs-
days for the January 1993 contract, and were
obtained from the CBOT DataBank. The sample
spans 17 October 1991 through 3 December
1992, for a total of 60 observations.

For the sake of completeness, the sample data
are used to verify whether the pdf of (12) through
(14) is reasonable. First, Augmented Dickey-
Fuller tests are performed to investigate whether
the sample data are consistent with the assump-
tion of a single unit root in the logarithms of
both cash and futures prices. Following the
methodology proposed by Dolado, Jenkinson,
and Sosvilla-Rivero, the null hypothesis of two
unit roots is rejected but the null of one unit root
cannot be rejected for both series at standard
significance levels (see table 1).” Hence, the first-
difference specification in (12) and (13) is sup-
ported by the sample data.

Second, the postulated pdf is fitted by full in-
formation maximum likelihood, yielding

7 The initial model used to test for unit roots in table 1 is

W, = w) = By + Botime + oy + yalve = wio) + oy,
(W — wimy) + v (w—3 — w,_y) + ¢, However, the null hypothesis
of y3; = ¥ = v23 = 0 cannot be rejected for any of the series. For
the [In(p,) — In(p,_))] and [In(f) — In(f,_))] series, the null hy-
pothesis of y, = 0 in model (A) is rejected, allowing us to conclude
that these series are stationary (Dolado, Jenkinson, and Sosvilla-
Rivero). For the In(p,) and In(f) series, in contrast, the null hy-
pothesis of y; = 0 in model (A) cannot be rejected, making it nec-
essary to test whether 8, and B, are significantly different from
zero. Following the steps suggested by Dolado, Jenkinson, and
Sosvilla-Rivero, it is found that neither S, nor B8, are significantly
different from zero. Hence, model (B) is the appropriate one to test
for unit roots in the In(p,) and In(f) series.
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(16) [—1.12]

In(f) = In(fi-)) = —0.0009 + u,
[-0.38]

$ = 0.00031123 0.00027187
0.00027187 0.00029400

(17)

where z-statistics are reported within brackets
below the corresponding coefficients, and % is
the sample estimate of X. The log of the like-
lihood function is —359.318. Neither w, nor w,
are significantly different from zero. As ex-
pected, the error correction term has a positive
effect; however, this effect is not statistically
significant. The lack of significance of some of
the estimated parameters emphasizes one of the
primary advantages of Bayes’ method. Rather
than ignore these high standard errors, as we
would with the PCE, we can use the information
to reduce our relative confidence in the sample
data. Addition of lagged dependent variables does
not increase the model’s explanatory power. Es-
timated errors u,, and u; behave consistently with
the model’s underlying assumptions (see table
2). Based on the Ljung-Box modified-Q statis-
tics, the null hypothesis of no autocorrelation
cannot be rejected for either series of estimated
errors. Similarly, the test for autoregressive
conditional heteroskedasticity (ARCH) pro-
posed by Engle shows no evidence of ARCH(1)
effects in the estimated errors. Finally, the null
hypothesis of normality for each series of esti-

Table 1. Augmented Dickey-Fuller Tests for
Unit Roots

Model for [In(p) — In(p, )] and [In(f) — In(f,_,)] series:
(A) (w, —w, ) = By + B time + vy, w_, + e

=0
v #0

null hypothesis:
alternative hypothesis:

Model for In(p,) and In(f) series:

B) (v, —w, )=y w_, te
null hypothesis: v =0
alternative hypothesis: v, #0

Critical Value

Series Evaluation
(w,) Statistic 5% 1%
fin(p,) — In(p, I f= —7.62 —3.49 —4.14
(n(f) — In(fi-)] 7 = —8.14 -3.49 ~4.14
In(p,) = 012 -195 -2.62
In(f) # =-047 —1.95 -2.62

Empirical Minimum-Variance Hedge 101

In(p) — In(p,_;)) = —0.0049 + 0.061 [In(f,_)) — In(p_)] + u,
[1.44]

mated errors cannot be rejected. In summary,
the pdf depicted by (12) through (14) seems to
represent the joint behavior of cash and futures
prices well enough for the expository purposes
of this paper.”

The use of logarithms as opposed to levels
adds realism but also complexity because
covr(prir, fre) 7 covplu,riy, Uryy) and
vary(f,+,) # vary(u4;r,,). Under bivariate nor-
mality, Press (p. 149) has shown that the vari-
ance and covariance of any two series v; (i = 1,
2) and the moments of their logarithmic trans-
forms satisfy

(18)
cov(vy, vy) = eXp{Mm(v.) + Minas) + [Ufn(\-,)

+ O'IZnn»y]/2}{3XP[plziTln(m Tingry] — 1}

(19)  var(v) = exp[2iuny + Tiny)
{exp[(ffn(\',)] - l}’ l = ls 2

where u’s denote means, ¢’s represent standard
deviations, and p,, is the correlation coefficient
between In(v,) and In{v,). This parameter trans-
formation is a consequence of using price log-
arithms rather than levels, and is common to both
Bayes’ approach and the PCE.

The fitted model was used to perform simu-
lations on the PPI ratio (9), the PCE ratio (10),
and the Bayesian ratio (11”). Fyay is obtained
by substituting (15”), (18), (19), and the prior
pdf into (11”), and solving the integrals. For
purposes of comparison, Fpcy is obtained by
plugging (18) and (19), and the parameter es-
timates shown in (16) and (17) into (10).” This
procedure yields Fpep = 0.874 Q.

The results of sensitivity analysis on corre-
lation coefficient p are shown in figure 1.'’ This
figure was built by integrating over the corre-
lation coefficient while fixing all other param-
eters at the values estimated from the sample.
The prior pdf of the correlation coefficient was
assumed to be

(20) (P iin. [y T

r(p) = In[(1 + p)/(1 — p)]'*

¥ Choice of the pdf may have nontrivial effects on the caleulated
MVH. Bayes’ MVH under alternative pdfs p(y|8) can be calculated
with the same techniques discussed in this article. Such simulations
arc omitted because of space constraints and becausce the focus of
the paper is on the effect of unknown parameter values.

Y Recall that Fpe # 0.92 (= 0.00027187/0.000294) Q because
of log-normality.

' Equivalent results for g, and o, are available on request.
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Table 2.
skedasticity (ARCH) of Estimated Errors

Amer. J. Agr

. Econ.

Tests for Normality, Autocorrelation, and Autoregressive Conditional Hetero-

Test For Estimated Error Evaluation Statistic p Value
Autocorrelation U, Q'(1) = 0.65 0.42
U, Q'(3) =1.03 0.79
uy Q'(1) = 0.04 0.85
uy, Q'(3) = 1.96 0.58
ARCH(1) U, LMA = 0.0002 0.99
‘ uy LMA = 1.91 0.17
Normality u, LMN = 1.54 0.46
uy, LMN = 1.08 0.58

Note: Q'(7) is the Ljung-Box portmanteau test or modified-Q statistic for i-order autocorrelation (Ljung and Box). LMA is the Lagrange
multiplier test for first order autoregressive conditional hetcroscedasticity (Engle). LMN is the Lagrange multiplier test for normality

(Greene, p. 329).

where ,,, is the prior mean of r(p) and o, is
the prior standard deviation of r(p). Prior (20)
is based on Fisher’s classical approximation. We
chose this prior because it is identical to the
asymptotic distribution used for hypothesis test-
ing and for calculating confidence intervals about
the correlation coefficient (Cox, pp. 119-21).
In addition, the normal prior requires only two
prior parameters (the prior mean and prior stan-
dard deviation) and facilitates interpretation of
these prior parameters.

The horizontal axis in figure 1 depicts the range
of the prior mean of r(p). To avoid unreasonable
prior means, the range was set equal to the 95%
confidence interval calculated from the sample.
The horizontal axis ranges from pu,,, = 1.204
to w,, = 1.728, because the 95% sample con-
fidence interval of r(p) is (1.204, 1.728)."" The
midpoint of the horizontal axis denotes the sam-
ple point estimate of r(p) (e.g., i,y = 1.466).
The sample point estimate of correlation coef-
ficient p is 0.899."

The curves labeled high, medium, and low
confidence denote degree of confidence in prior
information relative to sample information. The
low-confidence scenario is such that the prior
standard deviation is four times the sample stan-
dard deviation of r(p). Analogously, medium
confidence depicts the case in which the prior
and sample standard deviations are the same, and
high confidence is such that the prior standard
deviation is one-fourth of the sample standard
deviation. The rationale for linking confidence
in the prior with the prior standard deviation is

! Note that p = [exp(2 r) — 1]/[exp(2 r) + 1] because r(p) =
In{(1 + p)/(1 = p)]"/*. Therefore, the confidence interval (1.204,
1.728) for r(p) is equivalent to the confidence interval (0.835, 0.939)
for p.

'* See footnote 11.
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Figure 1. Minimum-variance hedge ratios
for alternative priors about the coefficient of
correlation

that, as discussed earlier, the former is inversely
related to the latter.

Given the sample data used, it is unlikely that
the hedger could have had high confidence in
the estimated value of the correlation coefficient
between cash and futures prices. If there is un-
certainty about this relationship, the decision
maker will choose not to hedge fully (compare
Bayes’ medium-confidence MVH with the PCE).
The underhedging makes intuitive sense. Risk
averse hedgers will find it optimal to hedge all
their output if markets are unbiased, transaction
costs are zero, and the futures market can pro-
vide an effective hedge. If there is uncertainty
about the degree of correlation between futures
and cash prices, a full hedge may increase risk.
The expected-utility-maximizing solution is to
reduce the use of the futures market as uncer-
tainty about the effectiveness of this market for
hedging purposes increases. One of the more
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frustrating aspects of calculating optimal hedges
with the PCE approach is that slight changes in
the data set can induce major impacts on the
“optimal” hedge. Results presented here show
that this is an aberration caused by placing too
much confidence in the estimated parameters.

Summary and Conclusions

Decision models generally assume perfect pa-
rameter information (PPI), that is that the true
parameters characterizing joint probability den-
sity function (pdf) of the relevant random vari-
ables are known. In most applications, how-
ever, the true parameters are not known; there
is estimation risk.

Bayes’ criterion provides a way of dealing with
estimation risk in a manner consistent with ex-
pected utility maximization. The approach as-
signs a pdf of the unknown true parameters based
on sample and prior information, and uses this
pdf to integrate the original objective function
over the parameter space. Optimization is then
performed over the resulting integral. Bayes’
criterion has been used in statistics and finance
but has been relatively neglected in agricultural
economics. The standard technique employed in
agricultural economics is the parameter cer-
tainty equivalent (PCE). The PCE consists of
substituting sample estimates of the unknown true
parameters into the PPI decision rule. The PCE
approach is easier to implement than Bayes’ cri-
terion but is not consistent with expected utility
maximization. Moreover, PCE decision rules
generally differ from the Bayesian decision rules.

The minimum-variance hedge ratio is the ra-
tio of futures to cash positions minimizing the
variance of income, given a particular cash po-
sition. Empirical estimation of the minimum-
variance hedge ratio has been the subject of many
studies employing the PCE approach and is a
clear example of a problem involving estimation
risk. Simulation of a practical soybean hedge re-
veals that estimation risk may lead to substantial
differences between PCE and Bayesian solu-
tions of the variance-minimizing hedge ratio. The
Bayesian hedge ratio also departs substantially
from the PPI hedge ratio when parameters are
not known with certainty. Such discrepancies
highlight the superiority of Bayes’ criterion over
the PCE or PPl approaches in that neither of the
latter yield decision rules which combine sam-
ple and prior information.

[Received July 1992 final revision received
August 1993.]
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