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Abstract

This paper analyzes Bayesian normal form games in which players write contracts that

condition their actions on the contracts of other players. These contracts are required to be

representable in a formal language. This is accomplished by constructing contracts which are

de�nable functions of the Godel code of every other player�s contract. We provide a complete

characterization of the set of allocations supportable as pure strategy Bayesian equilibria of

this contracting game. When information is complete, this characterization provides a folk

theorem. In general, the set of supportable allocations is smaller than the set supportable by

a centralized mechanism designer.

1 Self Referential Strategies and Reciprocity in Static Games

In this paper we characterize the allocation rules attainable by players in a Bayesian game when

they have the ability to commit themselves by writing contracts that condition on other players�

contracts.

The idea that contracts might condition on other contracts is not new in economics. The most

commonly known expression of this idea is well known in the industrial organization literature (e.g.

(Salop 1986)) as the �meet the competition�clause in which one �rm commits itself to lower its

price when any of its competitors does. A similar idea appears in trade theory as the principle of

reciprocity ((Bagwell and Staiger 2001)). Countries enact trade legislation in which they agree to

abide by a trade agreement like GATT. Such legislation commits the country to lowering tari¤s in

response to trade legislation by another country that lowers tari¤s, provided this other country�s

legislation agrees to abide by GATT. Finally, tax treaties sometimes have this �avor - for example,

out of state residents who work in Pennsylvania are exempt from Pennsylvania tax as long as they

live in a state that has a �reciprocal�agreement that exempts out of state residents (presumably

from Pennsylvania) from state taxes.1

�We would like to thank the editor and three referees for many useful suggestions that we ended up incorporating

into the paper.
1http://www.revenue.state.pa.us/revenue/cwp/view.asp?A=238&Q=244681
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In all of these examples, commitments are made that are conditional on commitments of others,

and are used to support cooperative outcomes. The literature treats these situations as static

games of complete information. Additionally, the contracts that are used to support equilibrium

are idiosyncratic, so that only the simplest most stylized problems are amenable to analysis. For

example, in the �meet the competition argument�, �rm A o¤ers to sell at a high price provided its

competitor, �rm B, also sets a high price. If instead, B o¤ers any price below the highest price, A

commits itself to sell at its marginal cost. If B believes this commitment, then one best reply for B

is to set the highest price. In the trade and taxation treaties mentioned above, a state cooperates

by o¤ering a �reciprocal�contract that cooperates if and only if the other state does the same.

(Tennenholtz 2004) suggests a way to model mutually dependent commitment devices. His

players compete using computer programs that condition their actions on other programs. He

shows that all individually rational outcomes in complete information games can be supported

as equilibria.2 Basically, two programs implement cooperative actions if they know that they

have the same syntax, otherwise, they punish each other. As he is only concerned with showing

that individually rational outcomes can be supported as program equilibrium, he does not give a

complete description of what the set of possible programs looks like. (A.T. Kalai and Samet 2010),

whose method we illustrate below, speci�cally construct a set of commitment devices for a two

player game of complete information with the property that outcome functions are supportable as

equilibria in these commitment devices if and only if they are individually rational.

This paper considers a two-stage contracting game in a Bayesian environment. At the �rst

stage, players o¤er contracts. A contract restricts the action spaces of a player as a function of the

other contracts. At the second stage, players take actions from their restricted action spaces. Our

objective in this paper is twofold. First, we identify two properties of any abstract contract space

that lead to a complete characterization of supportable outcomes. We refer to these properties

as �cross-referentiality�and �invariant punishment�. Cross referentiality is a generalization of the

Tennenholz idea that contracts can recognize each other. Invariant punishment means that if a

player wants to, he can write contracts that commit him to any of his pure actions, while inducing

the same reaction from the other players each time. It is this property that allows us to show

that players�payo¤s cannot be held below their individually rational level in games of complete

information.3 Second, we show that there exists a contract space which satisfy these properties. We

assume that the set of feasible contracts is a set consisting of �nite texts written in some language.

Conditional on the language, this description of contracts is natural and has the advantage that

the set of contracts is universal in the sense that the same set of feasible contracts can be used

to model competition in every environment. This set is at once rich, descriptive and must, within

2By �individually rational outcome�in a game of complete information, we mean an outcome in which each player

receives at least his minmax payo¤.
3More speci�cally, if players can react to the outcomes of a deviation by appropriately crafting their contract,

then they could conceivable respond to the action that a deviating player takes. This would make it possible to

keep some players�payo¤s at their maxmin level, instead of just their minmax.
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limits set by the language in which contracts are written, be robust to the introduction of new

contracts. We explain how these contracts can be written so that they specify actions that are

conditional on the contracts of other players.

We use our methods to show how to extend the static complete information folk theorem

results of papers like (Tennenholtz 2004) or (A.T. Kalai and Samet 2010) to games of incomplete

information. We provide a complete characterization of outcomes that can be supported as (pure

strategy) equilibria in �nite contracting games of incomplete information. Though there is no

agreed de�nition in the literature of what a folk theorem would say in games with incomplete

information, our results do indicate that contracts are more restrictive in such games. In the

complete information case, it is known that outcomes in which every player receives more than his

or her minmax payo¤ can be supported as an equilibrium in contracts with the appropriate choice

of commitment devices. One way to think of such outcomes is that they are the outcomes that

could be supported by a centralized mechanism designer, who can enforce actions of all players

who agree to participate in his mechanism, and who minmaxes players who unilaterally decide

not to participate. In the incomplete information case, we show that there are outcome functions

that a centralized mechanism designer like this can support, but which cannot be supported with

contracts.

The reason that a �folk theorem�like result doesn�t hold with incomplete information has to do

with �participation�. A player who doesn�t play along with some cooperative agreement enforced by

contracts will still observe any information that the contracts themselves convey about the types

of the other players. In the play of the ensuing game, the deviator can make use of this information

when choosing his actions. To capture this, we show that outcome functions are supportable if and

only if they are supportable by a mechanism designer who can condition actions only on publicly

observable messages.

1.1 Contractible Contracts

When trying to describe a broad set of feasible contracts, it is easy to get lost in complexities

associated with the in�nite regress that arises when a contract speci�es a commitment that depends

on whether another contract speci�es a commitment that depends on whether the �rst contract

speci�es... One way to get around this in�nite regress is simply to impose ad hoc restrictions on

the set of feasible contracts to ensure that the in�nite regress doesn�t arise. This is the approach

developed in (A.T. Kalai and Samet 2010). We explain this approach brie�y in order to motivate

the broad approach that we adopt.

We can apply the argument in (A.T. Kalai and Samet 2010) to a simple two player prisoner�s

dilemma. We want to construct a set of commitment devices that will support cooperation. De�ne
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a contract called �this contract�which works as follows:

this contract =

8<:C if other player�s contract = this contract

D otherwise:

If both players in the prisoners dilemma o¤er �this contract�, then they are unambiguously obliged

to cooperate. If one of the players o¤ers something else, then the other is unambiguously required

to defect. As long as the deviator�s contract speci�es some unambiguous outcome against �this

contract�, cooperation is a Nash equilibrium. Depending on what other contracts are described by

the word �otherwise�in the sentence above, there may be many other possible equilibrium outcomes

as well.

To complete the description of the contracting game, let � be a set of feasible contracts de�ned

in such a way that � 2 � =) � : �! A. We are about to judiciously construct �. We have just

described a reciprocal contract �� such that

��
�
�0
�
=

8<:C if �0 = ��

D otherwise:

Suppose we simply add to this a pair of �constant�contracts �c 2 � such that �c
�
�0
�
� C and a

contract �d 2 � such that �d
�
�0
�
� d. The constant contracts could be used to support the Nash

equilibrium in the prisoners dilemma in the obvious way. Since the outcomes (C;C) and (D;D)

are the only two outcomes for which all players receive at least their minmax payo¤s, the collection

consisting of the contract �� and the two constant contracts already supports all outcomes for

which each player receives at least her minmax payo¤. Furthermore, if � = f��; �c; �dg, it is pretty
clear that no other (pure) outcomes can be supported as equilibrium in contracts. In other words,

now that we have the set �; we have a complete characterization of the set of equilibrium outcomes.

This characterization amounts to a folk theorem.

One desirable feature of contracts that this approach lacks is that they be robust to contractual

innovation. Absent such a property, one is never sure whether economic properties that emerge

from a contractual model aren�t just artifacts of the way the contracts are modelled. Ideally, if we

want commitment devices that can condition on the devices used by others, it would be desirable

that the set of feasible contracts or commitment devices would include all functions from itself

into the set of feasible actions. This would ensure that any new contract we could dream up would

already be a feasible contract. Unfortunately, this is impossible because the cardinality of the set

of functions with a given domain is larger than the cardinality of that domain (Cantor�s Theorem).

Our approach is instead to describe the largest set of contracts that can be written in a �nite set

of characters using �rst order logic.

This isn�t simply a theoretical issue. Observe that in the formulation above, the set of contracts

made available seems much too restrictive. Contracts depend on other contracts, but in a very

limited way. If a player o¤ers the contract that he is �supposed� to o¤er, then things go well.
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Otherwise something bad happens. Yet this bad outcome can�t depend in any way on what the

deviator actually does. In other words, the punishment imposed on a deviator only depends on

the deviator�s identity and not on the actual deviation. This is not at all a natural property of

contracts that depend on other contracts. In (A.T. Kalai and Samet 2010) and (Tennenholtz 2004),

this is true by assumption.

Relaxing this constraint on contracts creates a di¢ culty when attempting to provide a full

characterization of supportable outcomes. The reason is that natural bounds on outcomes like

the minmax payo¤ themselves rely on this property. When players minmax a deviating player,

their actions don�t vary with the action the deviator takes. If contracts allow reactions to depend

on deviations, then in principle, it might be possible to support outcomes in which some players�

payo¤s are below their minmax payo¤s. In the complete information environment, there is an easy

�x to this problem, which is to allow players to o¤er contracts which do not specify a single action,

but rather specify a subset of their action spaces. With such a contract space, a deviator can

always o¤er a contract which does not restrict his action space at all, and then best-respond to the

action pro�le of the others. Then the worst possible punishment players can impose on a deviator

is indeed an action pro�le which minmaxes him. Therefore, restricting attention to punishments

which are independent of the actual deviation is without loss of generality. Unfortunately, this

same approach fails in games with incomplete information. The reason is that players who punish

a deviator might not restrict their action spaces to a single action precisely because they might

not want to reveal too much information to a deviator. Therefore, following a deviation, even the

non-deviators will be forced to choose their actions strategically. Hence, a deviator might actually

bene�t from restricting his action space.

Furthermore, the set of feasible contracts described above is specially tailored to the economic

problem it is applied to. The commitment devices we just described obviously won�t be much use

in a game with more than two players or more than two actions. Indeed, if we simply relabel

the actions so that C stands for defection and D stands for cooperation, then these commitment

devices will support only the non-cooperative outcome. We can create new sets of commitment

devices to handle these changes without much problem. What we would like to do instead, is to

provide a set of commitment devices that always works.

Perhaps more important, the contracts are obviously chosen because we know we want to

support a speci�c pair of actions. If we perturb the payo¤s in a way that changes the essential

economics of the problem (for example, by making the socially desirable outcome (C;D)) then we

have to reconstruct the set of contracts to get the result we want. We provide a set of contracts

that can be described independently of the (payo¤s in the) game to which they are applied. So

there are two ways in which our contracts are universal. First, any particular set of contracts, like

the contracts we described above, can be rewritten in our language so that they are embedded in

the larger set of contracts we describe. Second, the set of contracts we describe can be used to

model contractual competition no matter what the actual payo¤s in the game are.
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Perhaps the main contribution of our approach is to show that even when contracts are universal

in the sense that we have described, we can still understand the economic logic of contractual

situations using a modi�ed version of the �minmax a deviator�logic that is described above.

1.2 How De�nability Works

We accomplish this universality by allowing players to write �nite texts in a �rst order arithmetic

language that describes their commitments. This allows players to punish deviators in potentially

very complex ways and involves no ad hoc restrictions like those above. The way we do this is

to observe that the texts associated with contracts can be reinterpreted as de�nable functions of

the Gödel codes of texts written by other players. Since Gödel codes and de�nable functions are

unfamiliar to most economists, we give an informal description of the method below.

We start by endowing each player with a formal language and require each contract to be a

text written in this language. A text is a �nite string of symbols. It is well known that there

are bijections from the set of texts into the set of integers. One such mapping is called the Gödel

Coding. This implies that any contract uniquely corresponds to an integer. A contract of a player

is a mapping from contract pro�les to subsets of his action space. Since the contracts correspond

to integers, one can think of such a contract as a description of an arithmetic correspondence from

the codes of contracts to the codes of the names of the actions. There is a well-known set of

arithmetic correspondences, called the de�nable correspondences, which can be precisely described

in the formal language by using �nitely many characters. (We shall formally de�ne this set later.)

Hence, one can think of the contract space as the set of de�nable functions from Nm ! 2N, where

m is the number of players. The domain of these functions are the vectors of the codes of the

players�contracts and the range of these functions are the subsets of the codes of the names of the

actions. We identify the contract space of a player with the set of de�nable correspondences.

To see how our approach works, return to the simple prisoner�s dilemma game. Let [c] denote

the Gödel code of the contract c and refer to [c] as the �encoding�of c. For any pair of contracts

c1 and c2, the action (C or D) taken by Player 1 is c1 ([c2]) and similarly for Player 2. Since every

pair of actions determines a payo¤, this procedure associates a unique payo¤ with every pair of

contracts.

There are many things that aren�t de�nable contracts that also have Gödel codes. We want to

make use of some of these other things. In particular, we want to use de�nable functions with free

variables. Interpreting n as the encoding of the other player�s contract, here is a de�nable contract

with a free variable

x (n) =

8<:C n = x;

D otherwise.

A free variable has the natural interpretation that x can take on any integer value. De�nable

contracts with free variables also have Gödel codes. The contract with free variable that we want
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is a slight modi�cation of the one above, in particular

cx (n) =

8<:C n =
�
< x >(x)

�
;

D otherwise.
(1)

is also a contract with a free variable. The mapping < x >(x)is the composition of two functions.

First, the function < x > is the inverse operation to the Gödel coding. That is, < n > is the text

whose Gödel code is n. Second, if � is a text with one free variable, then �(n) is the same text where

the value of the free variable is set to be n. Hence, if n is a Gödel code of a de�nable contract with

one free variable, then < n >(n) is itself a de�nable contract (without a free variable).
�
< n >(n)

�
is just the Gödel code of whatever this de�nable contract happens to be.

We want to create a contract by �xing a very speci�c value for x in (1). In particular, the value

of x we are interested in is [cx]. Since [cx] is the Gödel code of a contract with a free variable, the

right hand side of (1) requires that we decode [cx] to get cx, then �x x at [cx] to get the contract

c[cx]. Putting all this together gives

c[cx] (n) =

8<:C n =
�
c[cx]

�
D otherwise

So

c[cx] ([c2]) =

8<:C [c2] =
�
c[cx]

�
D otherwise

This is the contract which corresponds to the one we called �this�contract or �� in our discussion

above. The di¤erence is that this contract now reacts to a much broader set of contracts than to

what �� did. The contract �� could only respond to itself and to the two constant contracts. The

contract c[cx] responds to any de�nable function (in fact it speci�es an action for every �nite text).

To press the analogy with �� in the problem above, if Player 2 also uses strategy c[cx]; then

[c2] =
�
c[cx]

�
, which evidently triggers the cooperative action by Player 1. The same argument

applies for Player 2. Player 2 can deviate to any alternative de�nable strategy c0 that she likes.

Since every de�nable strategy has a Gödel code, the reaction of Player 1, and consequently both

players�payo¤s are well de�ned. As the Gödel coding is injective, c0 6= c[cx] implies the Gödel code

of c0 is not equal to
�
c[cx]

�
, and the deviation by Player 2 induces Player 1 to respond by switching

from C to D.

What this argument illustrates is that our contract space is large enough that we can always

�nd a contract corresponding to �� in our existing set of contracts, without having to construct it

explicitly from the details of the game. This is the property that makes our contracts universal in

the sense that exactly the same set of contracts can be used to characterize equilibrium outcomes

in all games.

The introduction of Gödel coding into our model requires some explanation. Take it as given

that contracts must be expressed in a formal language. Then a contract of a player must give
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precise instructions on how to restrict his action space as a function of the texts submitted by the

other players. In order to describe the contracting game, one must carefully de�ne the notion of

�precise instructions�and the set of those texts which give these instructions. Any such de�nition

would lead to a de�nition of a set of arithmetic correspondences which can be described as �nite

texts. To see this, suppose that there is a text which gives instructions on how to pin down a subset

of a player�s action space as a function of the other texts. Then, there is also a text that gives

the same instructions as a function of the Gödel Codes of texts of other players instead of their

texts. This is because the Gödel Coding and its inverse are de�nable functions, that is, they can be

described as texts.4 This implies that this new text describes an arithmetic correspondence. In the

paper we adopt the de�nition of de�nable functions from Number Theory instead of introducing

a new de�nition.

Since, the set of de�nable functions is the largest set of arithmetic functions which can be

described in a �rst-order language, our contract space is the largest given the restriction to contracts

which can be expressed as texts. Implicitly, our approach makes it possible for players to o¤er

any �nite text as a contract. We simply identify the original text with the corresponding de�nable

mapping.

In the Prisoner�s Dilemma example above, we assume that a contract of Player 1 is a de�nable

function, say c (x), and the Player 1 can take action a (2 fC;Dg) if and only if the code of a is in
the set c ([c2]), where c2 is the code of Player 2�s contract. If we allow players to write any text as

contracts, then they could write down the following text:

�My contract can be described by the following de�nable function: c (x), where the interpretation

of c (x) is the following. If the code of the text of the contract of Player 2 is x, then I can only

take action a if the Gödel Code of a is in c (x). Finally, the Gödel Code of a text is de�ned as

follows: ...�

Since the Gödel Coding is a recursive function, the �...� can be replaced by a precise description

of this coding. All we do is to identify the text above with c (x).

2 Literature

As we mentioned in the introduction, our paper is not the �rst to show how contractual devices can

be used to support cooperative play. Much of the literature in this area follows an idea developed by

(Fershtman and Judd 1987) in which actions are delegated to an agent who is given the appropriate

incentives to carry out actions that might not otherwise be a part of a non-cooperative equilibrium.

This idea was developed by (Katz 2006) who used it to prove a �folk theorem�for a very specialized

environment.
4 In particular, this implies that players don�t need to agree to use the Godel code of other contracts. They can

use the Godel code unilaterally, and the implications of the contract will be understood by the others provide they

agree on the underlying language in which contracts are written.
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The idea that agents might report deviations provides the basis for the menu theorems in

common agency, like (Martimort and Stole 1998), (Peters 2001) and (Han 2006). (Martimort and

Moreira 2007). Recently (Yamashita 2010) suggests a method that can be used to extend the

common agency approach to games in which there are many agents.5

The idea that principals could learn about deviations by communicating with agents is devel-

oped in (Epstein and Peters 1999). They show that for every environment, there is a universal set

of mechanisms for that environment such that any set of indirect mechanisms used to model com-

petition between principals can be embedded in that universal set. Each element of this universal

set is described by a sequence of payo¤s. Since each indirect mechanism that a principal can o¤er

corresponds to some sequence of payo¤s, agents can report the mechanisms being used by other

principals by reporting the sequences that correspond to each of the other principals�mechanisms.

In this sense, the agent�s type corresponds with his usual payo¤ type along with a sequence repre-

senting the mechanisms of the other principals. Every equilibrium in a competing mechanism game

can then be represented as an equilibrium in a game where principals o¤er universal mechanisms

and agents truthfully report both their payo¤ type and their market information.

There are a couple of important di¤erences between our paper and theirs. First of all, our

formulation makes it possible to provide a characterization of the outcome functions that are

supportable as equilibria. This is a major advantage over (Epstein and Peters 1999) which only

provides a set of contracts that might be used to support equilibrium. Secondly, players o¤er

contracts that condition directly on contracts of other players instead of asking agents to describe

these contracts. In our model there is no communication at all between players after contracts

have been announced, so there are really no agents at all. Indeed we illustrate that despite this

limit on players�ability to communicate, contracts support a rich set of type contingent outcome

functions. Our main theorem shows that contracts are equivalent to a mechanism in which players

communicate their type information publicly. In the private value case, contracts support all the

outcome functions that can be supported by a centralized mechanism designer, illustrating the

�exibility of this approach.

However the primary objective of (Epstein and Peters 1999) and our paper is the same - to

�nd a language that makes it possible to describe contracts that depend on other contracts. The

essential conceptual di¤erence is that (Epstein and Peters 1999) create a language to describe

contracts that uses sequences of payo¤s from the game to describe contracts. In this sense, the

approach in (Epstein and Peters 1999) resembles the approach in (A.T. Kalai and Samet 2010)

that we described above, except that the contracts in (Epstein and Peters 1999) are immune to

contractual innovation. So the contracts that �work�in one game won�t work in a new game with

a di¤erent payo¤ structure. As we mentioned, the contracts that we describe work for all games.

The cost of our �universality� is that the set of contracts we describe is countable for the �nite

environments we are interested in. The universal set of contracts in (Epstein and Peters 1999) is

5See (Peters and Troncoso-Valverde 2009) for a full characterization of supportable outcomes using his method.
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�nite in �nite environments because the set of payo¤s is �nite.

Our approach is closely related to ideas in the computer science literature. One paper we have

already mentioned that uses this approach is (Tennenholtz 2004). He has players writing programs

that determine their actions. Using an idea due to von Neumann, he allows these programs to use

other programs as data, which has the e¤ect of making the output of each player�s program depend

on the other players�programs. We illustrated the idea with our description of �this contract�in the

introduction. Tennenholz doesn�t give a complete description of the set of feasible contracts. We

explain below how our approach di¤ers from the assumption that players choose Turing machines

to play against one another.

The paper by (A.T. Kalai and Samet 2010) gives a complete characterization of equilibrium

outcomes in two-player complete information games. They construct a set of (game speci�c)

commitment devices which can be used to support correlated strategies in which all players�payo¤s

exceed their minmax payo¤s. Speci�cally, in some games their devices support outcomes in which

all players receive payo¤s that exceed their best payo¤s with Tennenholz�s programs. This is

accomplished by constructing commitment devices that allow players to correlate their actions

while using independent randomizing devices. We extend part of their argument to games of

incomplete information. We do not deal with correlation, or any other form of randomization

simply because we are trying to keep a notationally and technically demanding problem relatively

simple.

Finally, the problem we model is one in which privately informed players o¤er contracts which

will depend on their types in most Bayesian equilibria of the contracting game. Since our interest

is in contracts rather than mechanism design, we do not allow players to communicate privately

after agreeing to the contract like it is done in an informed principal problem (Myerson 1983).

Despite this, we are able to show that contract equilibria support a rich set of type contingent

outcomes. Indeed, this is a major advantage of our approach over the simple �cooperate or be

minmaxed�approach in the computer science literature since contracts have to respond to other

players�contracts in a much more sophisticated way to make it possible for one player�s action to

depend on another player�s type without any explicit communication. We could not have shown

this as e¤ectively if we had allowed private communication. Of course, the results we have about

the limits of contract equilibrium arise from this restriction. We could support a larger class of

outcome functions if we allowed private communication.

3 The Model

There are m players indexed by i 2 f1; :::;mg. Player i has a �nite action space Ai, and let
A denote �mi=1Ai. Player i has a type ti drawn from a �nite set Ti, and let T denote �mi=1Ti.
Each type pro�le has a strictly positive probability and the joint distribution of types is common

knowledge. The payo¤ of Player i is ui : A� T ! R.
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Each Player i is endowed with a contract space Ci and let C denote �mi=1Ci. Each element of
Ci de�nes a mapping from C to 2Ain f;g. Let eci denote the mapping induced by ci. That is, a
contract of Player i speci�es a nonempty subset of his action space for each contract pro�le. It is

important to note that we do not identify a contract with the mapping it de�nes. This allows for

the possibility that two di¤erent contracts induce the same mapping, that is, eci (c) = ec0i (c) for all
c 2 C, but ci 6= c0i.

The contracting game takes place in two stages. In the �rst stage, each player submits a

contract from his contract space simultaneously. Let ci 2 Ci denote the contract submitted by

Player i. For each Player i, consider the following subset of Ai determined by the contract pro�le

c = (c1; :::; cn):

Si (c) = fai : ai 2 eci (c)g :
In the second stage, Player i takes action from Si (c) simultaneously. As always S (c) = �iSi (c).

In what follows we restrict attention to pure strategies. A strategy of Player i consists of a

mapping from his type space to his contract space and a mapping from his types and �rst-stage

contract pro�les to his action space. Let �i denote the �rst stage strategies of Player i, that is,

�i =
n
i : i 2 CTii

o
;

where CTii denotes the set of functions with domain Ti and range Ci. Similarly let Ai denote the
set of second-stage strategies of Player i, that is,

Ai =
n
�i : �i 2 ATi�Ci and 8ti 2 Ti, 8c 2 C, �i (ti; c) 2 Si (c)

o
:

Let  (t) denote (1 (t1) ; :::; m (tm)) and � (t; c) = (�1 (t1; c) ; :::; �m (tm; c)) for all t 2 T and

c 2 C. The strategy pro�le (�; ��) 2 (�i�i) � (�iAi) constitute a Bayesian equilibrium if and

only if for all i 2 f1; :::;mg, ti 2 Ti, i 2 �i and �i 2 Ai:

Et�i (ui (�
� ((ti; t�i) ; 

� (ti; t�i)) ; (ti; t�i)) j ti)

� Et�i (ui (� ((ti; t�i) ;  (ti; t�i)) ; (ti; t�i)) j ti) ; (2)

where � =
�
�i; �

�
�i
�
and  =

�
i; 

�
�i
�
.

A deterministic outcome function in our model is a mapping from T to A. We say that an

outcome function s : T ! A is supportable as a Bayesian equilibrium in the contracting game if

there is a Bayesian equilibrium (�; ��) such that �� (t; � (t)) = s (t) for all t.

Bayesian equilibrium imposes no restriction at all on the second stage actions ���i
�
t�i;

�
i; 

�
�i (t�i)

��
that Player i anticipates when he deviates, apart from ���i

�
t�i;

�
i; 

�
�i (t�i)

��
2 S�i

�
i; 

�
�i (t�i)

�
.

For example, ��j
�
tj ;
�
i; 

�
�i (t�i)

��
could be strictly dominated for Player j with type tj by some

other action in Sj
�
i; 

�
�i (t�i)

�
. For this reason, it may be that re�nements of equilibrium are

necessary in applications to rule out this kind of second stage behavior.

11



Re�nements are completely incidental to our formalism, although they are obviously going to

make a di¤erence to the precise set of outcome functions that are supportable as equilibria. The

less controversial re�nements, like sequential equilibrium and perfect Bayesian equilibrium do not

�t easily into our environment since our contract spaces aren�t necessarily �nite and player types

can be correlated. The detailed formalism we need to modify these concepts takes us well beyond

our main purpose in this paper. For these reasons, we restrict attention to equilibria where players

do not take strictly dominated actions in the continuation games generated by a contract pro�le.

In the appendix, we provide a more abstract description that describes re�nements in a manner

that is independent of the particular game that is being played (see Section 8.1).

For each t�i 2 T�i and A = �mi=1Ai � A, de�ne Ri

�
A; t�i

�
as the set of action pro�les

a�i 2 A�i such that for each j 6= i, aj is not strictly dominated6 for Player j when his type

is tj , given that the players are constrained to choose actions in A. We say that (�; ��) is an

R-equilibrium of the contracting game if (2) holds, and in addition for every i, i 2 Ci, and

t�i 2 T�i
���i (t�i;  (t�i)) 2 Ri (S ( (t�i)) ; t�i) , (3)

where  (t�i) =
�
i; 

�
�i (t�i)

�
.

3.1 Properties of the Contract Space

Our main characterization theorem relies on two properties, which we describe formally in this sec-

tion. We have already mentioned these properties - cross referentiality, and invariant punishment.

Cross-referentiality is intended to generalize the term �this contract�that we used to support co-

operation in the prisoner�s dilemma game in the introduction. The complication is that, generally,

a contract has to respond to many players of who have many di¤erent types. For each such player

and type, a contract needs to recognize the particular contract for that player and the type which

reciprocally recognizes the player�s own contract. Formally

Cross-referential Property. For all (N1; :::; Nm) 2 Nm; Ni � 1, for all functions ri : Nm !
2Ain f;g , pji : Nm�1 ! 2Ain f;g (i; j 2 f1; :::;mg, i 6= j), there exists a set of contracts for all

i 2 f1; :::;mg, fcnii gni2f1;:::Nig � Ci, such that c
ni
i 6= c

n0i
i if ni 6= n0i and:

ecnii (c1; :::; cm) =
8>><>>:

ri (ni; n�i) if 8k 6= i cnkk = ck,

pji (ni; n�ij) if 8k 6= i; j cnkk = ck and @nj s.t. c
nj
j = cj ;

Ai otherwise.

(4)

Notice that the conditions on the right-hand-side of (4) explicitly depend on (cross referential

contracts) cnjj , and vice versa, the mapping determined by c
nj
j explicitly depends on cnii . If each

6Here, strictly dominated means �no matter what he believes about the types of his opponents�. This is intended

to be a very weak re�nement. In particular, we ignore here any information j might have learned from the contracting

phase when evaluating whether or not a particular action is strictly dominated.
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Player j o¤ers a contract cnjj for some nj � Nj , then c
ni
i restricts the action space of Player i to

be ri (n) where n = (n1; :::; nm). If each player o¤ers such a contract except Player j, then c
ni
i

restricts the action space of Player i to be pji (n�j). In any other cases, c
ni
i imposes no restrictions

on the actions of Player i. Intuitively, fcnii gni can be thought of as the set of contracts from which

Player i is supposed to choose in an equilibrium. If each player chooses from these sets, then the

second-stage restrictions are de�ned by the functions frigi. If a single player, say Player j, o¤ers
a contract which is not in

�
c
nj
j

	
nj
, then the contracts of the other players restrict their action

spaces according to the functions
n
pji

o
i
. One can think about these functions as the contractual

punishments imposed on deviators.

In the construction given above, the reaction of each player when one of the others fails to use

one of the cross referential contracts is independent of what contract this player actually o¤ers.

This is similar to the approach we used in the prisoner�s dilemma problem. The next property is

used to ensure that the logic associated with �xed punishments like this will still be valid in richer

contract spaces.

This property requires, that no matter what contracts the other players are o¤ering, the contract

space is rich enough that the remaining player is able to write contracts that will commit him to

any subset of his actions that he wants while inducing the same commitments from his opponents

in response to each di¤erent subset. Of course, any sensible contract space will let a player commit

himself to an arbitrary subset of his actions. Yet the player must make these commitments by

announcing di¤erent contracts. The other players�contracts make commitments that depend on

the contract this player o¤ers. So the other players� commitments will generally change as the

remaining player�s commitment changes. We want the contract space to be rich enough that the

player can write the contracts in such a way that the di¤erent commitments he makes induce

exactly the same commitments from his opponents.

We don�t need to know what these contracts are, or what commitments they elicit from the

other players. All we require is that these contracts exist so that there is some �xed commitment

a player can elicit from the others. What this property delivers is the fact that in any equilibrium,

a player must do at least as well as he does against this �xed commitment. This ensures that all

equilibrium outcomes can be implemented with the cross referential contracts we described above.

Formally

Invariant Punishment Property. For all (N1; :::; Nm) 2 Nm; Ni � 1, for all set of contracts�
c
nj
j

	
j;nj2f1;:::Njg

(cnjj 2 Cj , c
n0j
j 6= c

nj
j if n0j 6= nj), and for every i, there are functions pik : Nm�1 !

2Akn f;g (k 6= i), such that for any function fi : Nm�1 ! 2Ain f;g, there is a contract c�i 2 Ci such
that for all n�i 2 �j 6=i f1; :::; Njg :

ec�i �c�i ; �cnjj �j 6=i� = fi (n�i) (5)

and for all k 6= i ecnkk �
c�i ;
�
c
nj
j

�
j 6=i

�
= pik (n�i) : (6)
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Again, the set fcnii gni can be thought of the collection of those contracts from which Player i

chooses depending on his type in an equilibrium. Given the strategies of the others, each alternative

contract that he o¤ers induces a commitment correspondence fi (n�i) and elicits some kind of

response by the others. The Invariant Punishment Property guarantees that there must exist some

collection of punishment correspondences,
�
pij
	
j 6=i, such that for any commitment correspondence

fi that Player i wants, he can write his own contract in such a way that the others respond with

exactly the same punishment
�
pij
	
j 6=i.

In Section 5 we specify a contract space which satis�es both of these properties. This space is

going to be the set of de�nable functions. There are other spaces which contain cross-referential

objects. One such a space is the set of Turing machines which is often used in game theoretic

analysis. One can even think about the programs in Tenneholz (2006) as Turing machines, who

used this space to model contracts in a complete information environment. If we modeled the

contracts by Turing machines, then the input of a player�s machine would be the descriptions of

the machines submitted by the other players, and the output would be a subset of the player�s

action space.

This space would satisfy the Cross-referential Property, but not the Invariant Punishment

Property. This is because players could submit universal machines that would simulate the machine

of a deviator. Once the simulation is completed, these machines could recommend an action pro�le

which is worse for the deviator. This action pro�le can depend on the result of the simulation,

that is, on the actual deviation. This suggests that players can push the payo¤ of a deviator below

his minmax value. Of course, a deviator could also submit a universal machine that simulates the

machines of the others, and then best-responds to their outputs. The problem is that, in general,

these universal machines will not halt on each other. Indeed, it is not clear how one can properly

de�ne the game because of this halting problem.

4 The Characterization Theorem

There are several ways of stating our characterization theorem. One of our objectives is to compare

the set of equilibrium outcomes of the contracting game to the set of outcome functions imple-

mentable by a centralized mechanism designer who can control the actions of all the players who

agree to participate in his mechanism. To help illustrate the relationship, we de�ne a class of mech-

anisms, called Public Message Mechanisms (PMM) and show that the set of equilibrium outcomes

relative to these mechanisms is identical to the set of equilibrium outcomes in the contracting

game.

The following class of two-stage mechanisms are called Public Message Mechanisms. In the

�rst stage, players simultaneously decide whether or not to participate in the mechanism. Players

who participate send public messages from a countable message space. At the same time, a player

who does not participate publicly submits a commitment device, which imposes a restriction on
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his action space as a function of the messages sent by the participants.7 In the second stage, the

mechanism restricts the action spaces of the participating players, as a function of the messages

of the participants. These restrictions, however, cannot depend on the functions submitted by the

non-participants. Finally, players take actions from their restricted actions spaces simultaneously.

Next, we de�ne the Public Message Mechanism formally.

De�nition 1 Let Ni be a countable message space for each i, and let N = �mi=1Ni. Suppose that
? =2 [mi=1Ni and let N i = Ni [ f?g for each i.8 In addition, let

%i =

�
�i : �i 2

�
2Ain f;g

��m
i=1Ni

�
:

For each �� = (��1; :::; �
�
m), �

�
i 2 %i, consider the following two-stage game. In the �rst stage, players

take actions simultaneously. The �rst-stage action space of Player i is Ni[%i. In the second stage,
after observing the �rst-stage action pro�le, players take actions simultaneously. Suppose that the

�rst stage action of Player j is �j. Let nj = �j if �j 2 Nj and ? otherwise. Then the second stage
action space of Player i is ��i (n1; :::; nm) if �i 2 Ni and �i (n1; :::; nm) if �i = �i 2 %i. We call this
game the Public Message Mechanism de�ned by (N; ��).

The main di¤erence between a PMM and a standard direct mechanism is that the reports of

the players are publicly observable. This has several consequences. First, a non-participant player

can learn about the types of the participants through their messages and can make his action

contingent on these messages. As a result, non-participation is more pro�table in a PMM than

it would be in a comparable mechanism when messages are privately conveyed to the mechanism

designer. Second, to prevent players from refusing to participate so that they can make use of

this information, the mechanism might not induce participants to fully reveal their types in the

�rst stage. Finally, since the messages do not necessarily coincide with the types, the mechanism

designer might not want to specify a single action for every player in response to some public

messages. If, instead, he allows the player to choose from a subset of his actions, then he makes

it possible for the player�s action to depend on his private information which was not revealed

through his message. Furthermore, he can exploit a non-participant�s uncertainty about the types

of the others when implementing a punishment.

Intuitively, the relationship between a PMM and the contracting game can be explained as

follows. In a contracting equilibrium, a player with di¤erent types o¤ers di¤erent contracts. Since

the contracts are publicly observable, players learn about each other�s types from the contracts.

The contracts�information content about the types corresponds to the public messages in a PMM.

An equilibrium contract pro�le speci�es restrictions on the action spaces of the players. These

restrictions correspond to the second-stage restrictions of a PMM if each player participates. The

7A restriction is a nonempty subset of the action space.
8The symbol ? can be interpreted as the message of a player who does not participate in the mechanism.
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Invariant Punishment Property corresponds to the property of a PMM which says that the re-

strictions imposed on participants do not depend on the commitment devices submitted by the

non-participants. The reader should think about a non-participant in a PMM as a deviator in

the contracting game, and the commitment device of a non-participant as the deviator�s contract.

The Invariant Punishment Property implies that it is without loss of generality to assume that

uncooperative behavior by one player in the contracting game provokes a punishing contractual

response from the others that doesn�t depend on how the deviator goes about being uncooperative.

We restrict attention to deterministic mechanisms and pure strategies. Our main theorem can

be stated as follows.

Theorem 1 An outcome function is implementable as an R-equilibrium in the contracting game

if and only if it is implementable as an R-equilibrium by a public message mechanism.

A simple public message mechanism is a public message mechanism in which each player�s

message space is a partition of his type space. The mechanism is incentive compatible if each player

prefers to report the partition element that contains his true type. It is individually rational if

every player, irrespective of his type, would prefer to participate in the mechanism than unilaterally

commit himself to a subset of his actions that depends on the partition elements reported by the

other players. By standard arguments in mechanism design, an outcome function can be supported

as an R�equilibrium in a public message mechanism if and only if there is an incentive compatible
and individually rational simple public message mechanism that implements the same outcome

function as an R�equilibrium. For this reason we will restrict attention to simple public message
mechanisms which are incentive compatible and individually rational.

Next we characterize the set of implementable outcome functions with constraints. Let � i :

Ti ! 2Tin f;g be the partition from which Player i must choose his report. Let � , ��i, and

��ij denote �ni=1� i; �j 6=i� j , and �k 6=i;j�k respectively. Let ri (t) 2 2Ain f;g denote the restricted
action space of Player i if each player participates, and the message sent by Player j is � j (tj).

Since the restrictions can depend only on the partition elements that each player reports, ri must

be measurable with respect to � ; that is, ri (t) = ri (t
0) whenever � (t) = � (t0). Furthermore,

let pji (t�j) 2 2Ain f;g denote the restriction on the action space of Player i if all players but
Player j participate and the message sent by Player q is � q (tq) for all q 6= j. The function

pji (t�j) is measurable with respect to ��ij . A simple public message mechanism is given by

(� ; r; p) =

�
f� igmi=1 ; frig

m
i=1 ;

n
pji

om
i;j=1

�
.

A public message mechanism only constrains players to subsets of their action spaces, so we

need to describe what happens at the second stage. We start with the equilibrium path. Let si
denote the strategy of Player i at the second stage if each player participates. That is, si : T ! Ai,

such that si (t) 2 ri (t) for all t, and si is measurable with respect to ��i. Note that since Player i
knows his own type, si does not have to be measurable with respect to � i. Next, we describe the
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strategies of the players following a deviation. Let

F �i =
n
fi : fi 2

�
2Ain f;g

�T�i , fi is ��i measurableo .
The set F �i is the action space of Player i in the �rst stage if he does not participate in the

mechanism. If Player i submits fi (2 F �i ) and Player j reports � j (tj) for j 6= i, then Player

i�s restricted action space is fi (t�i) (� Ai) in the second stage . Let s
j
i denote the second-stage

strategy of Player i if all players but Player j participate. That is, sji : T�j � F �j ! Ai such that

sji (t�j ; fj) 2 p
j
i (t�j), and s

j
i is measurable with respect to ��ij .

An outcome function s = (s1; :::; sm) is supportable as an equilibrium in the public message

game (or alternatively, is implementable by a simple public message mechanism) if there is a

simple public message mechanism (� ; r; p) such that the following inequalities hold. The �rst one

guarantees that each player sends a truthful message in the �rst stage of the game. For each

i = 1; : : :m, and for all ti,t0i 2 Ti

Et�i (ui (s (t) ; t) j ti)

� Et�i

 
max

ai2ri(t0i;t�i)
Et0�i

�
ui
�
ai; s�i

�
t0i; t

0
�i
�
;
�
ti; t

0
�i
��
j t0�i 2 ��i (t�i)

�
j ti

!
: (7)

The max operator on the right hand side implies that the player has to choose a best reply from

his restricted action space given his posterior belief. Taken together, these constraints for all the

players require that the play in the second stage constitutes a Bayesian equilibrium of the game in

which each player chooses an action from his restricted set of actions, given posterior beliefs about

other players�types.

To deal with deviations at the �rst stage of the PMM, we require that for each ti 2 Ti

Et�i (ui (s (t) ; t) j ti) �

max
fi2F �

i

Et�i

�
max

ai2fi(t�i)
Et0�i

�
ui
�
ai; s

i
�i
�
t0�i; fi

�
;
�
ti; t

0
�i
�
; t
�
j t0�i 2 ��i (t�i)

�
j ti
�
: (8)

The inequality says that even if the deviator chooses a best reply from the set of actions to which

he is restricted, he cannot gain by deviating.

We say that an outcome function is supported as an R-equilibrium of the public message

mechanisms (alternatively, is R-implementable by a simple public message mechanism) if (7) and
(8) hold, and in addition, for every i and fi 2 F �i

si�i (t�i; fi) 2 Ri

�
fi � pi�i; t�i

�
: (9)

With this formalism, we can restate our theorem as follows:

Corollary 1 The outcome function s is implementable as an R-equilibrium in the contracting

game if and only if there is a simple public message mechanism (� ; r; p) for which (7), (8) and (9)

hold.
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4.1 The Proof of Theorem 1

Proof of the �if�part of Theorem 1. Suppose that there exists a PMM which R-implements
the outcome function s = (s1; :::; sm) : T ! A. According to the arguments in the previous section,

this implies that for all i and j there exists a partition of the type space, � i : Ti ! 2Tin f;g, on-path
restriction ri : T ! 2Ain f;g, o¤-path restrictions, pji : T�j ! 2Ain f;g, and o¤-path strategies
sji : T�j�F �j ! Ai such that si and ri are measurable with respect to ��i, p

j
i and s

j
i are measurable

with respect to ��ij , si (t) 2 ri (t), s
j
i (t�j ; fj) 2 pji (t�j), and (7), (8), and (9) are satis�ed. In

what follows we construct anR-equilibrium in the contracting game which implements the outcome
function s.

For each i let Ni denote the number of elements in the partition generated by � i. Then there

exists a � i-measurable surjection �i : Ti ! f1; :::; Nig. De�ne ri : Nm ! 2Ain f;g such that
ri (�1 (t1) ; :::; �m (tm)) = ri (t1; :::; tm), and p

j
i : Nm�1 ! 2Ain f;g, such that pji

�
(�k (tk))k 6=j

�
=

pji

�
(tk)k 6=j

�
. This is possible because �i and ri are � i measurable and p

j
i is ��ij measurable. The

Cross-referential Property guarantees that there exists a set of contracts for all i, fcnii gni2f1;:::Nig �
Ci, such that c

ni
i 6= c

n0i
i for ni 6= n0i and:

ecnii (c1; :::; cm) =
8>><>>:

ri (ni; n�i) if 8k 6= i cnkk = ck,

pji (n�j) if 8k 6= i; j cnkk = ck and @nj s.t. c
nj
j = cj ;

Ai otherwise.

Now de�ne ctii to be c
�i(ti)
i . The �rst-stage strategy of Player i, i : Ti ! Ci is given by i (ti) = ctii .

Since �i is � i measurable, i is also � i measurable. Using the de�nitions of ri and p
j
i , ectii can be

written as

ectii (c1; :::; cm) =
8>><>>:

ri (ti; t�i) if 8k 6= i ctkk = ck;

pji (t�j) if 8k 6= i; j ctkk = ck and @tj s.t. c
tj
j = cj ;

Ai otherwise.

(10)

It remains to specify the second-stage strategy of Player i, �i : Ti � C ! Ai for each i. If,

for all j, there is a tj 2 Tj such that Player j o¤ered a contract j (tj) = c
tj
j , then �i (ti;  (t)) =

si (t). This strategy is well-de�ned because si (ti; t�i) = si
�
ti; t

0
�i
�
whenever �i (ti;  (ti; t�i)) =

�i
�
ti; 

�
ti; t

0
�i
��
.9 Suppose now that one player deviated, say Player j, and o¤ered a contract cj ,

and Player k o¤ered ctkk , for some tk 2 Tk, for all k 6= j. De�ne fcjj : T�j ! 2Aj as follows:

f
cj
j (t�j) = ecj �cj ; �ctkk �k 6=j� = ecj �cj ; �j (t�j)� . (11)

Notice that fcjj 2 F �j because �j is ��j measurable. De�ne �i
�
ti;
�
cj ;
�
ctkk
�
k 6=j

��
to be sji

�
t�j ; f

cj
j

�
.

These strategies are well-de�ned because si and �i are ��i measurable, s
j
i is ��ij measurable, and

9This follows from �j being a surjection for each j.
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�j is a surjection. In addition, they are consistent with the restrictions imposed by the contracts

de�ned by (10), that is, si (t) 2 ri (t) and sji (t�j ; fj) 2 p
j
i (t�j).

Next, we shall argue that the strategies described above constitute an R�equilibrium in the

contracting game. First, we show that the strategies fsigmi=1 are optimal in the second stage. The
constraint (7) with ti = t0i requires si (ti; t�i) to be a best response of Player i with type ti to the

strategies of the other players. It remains to show that players do not have an incentive to deviate

at the contracting stage. Suppose that Player j with type tj o¤ers a contract cj 6= c
tj
j . We shall

consider two cases. Case 1: there exists a t0j 2 Tj such that cj = c
t0j
j . Then, by (7), this deviation

is not pro�table no matter what the second-stage strategy of Player j is. Case 2: cj 6= c
t0j
j for all

t0j 2 Tj . Such a deviation induces Player i (i 6= j) with type ti to take action s
j
i

�
t�j ; f

cj
j

�
, where

f
cj
j is de�ned by (11). Hence, by (8), such a deviation cannot be pro�table.

Moreover, these strategies satisfy the constraints imposed by the re�nement concept (3). This

is because

�i
�
ti;
�
cj ; �j (t�j)

��
= sj�j

�
t�j ; f

cj
j

�
2 Rj

�
f
cj
j � pj�j ; t�j

�
= Rj

�
S
�
cj ; �j (t�j)

�
; t�j

�
;

where the equalities are satis�ed by the de�nitions of �i; f
cj
j and  and the middle of the chain is

just (9).

Finally, since �i (ti;  (t)) = si (t) for all i and t, these strategies indeed implement the outcome

function s.

Proof of the �only if� part of Theorem 1. Fix an R-equilibrium in the contracting game

which implements the outcome function s = (s1; :::; sm) : T ! A. For all i and j we shall construct

the following objects: � i : Ti ! 2Ti , ri : T ! 2Ain f;g, pji : T�j ! 2Ain f;g and sji : T�j �F �j such
that si and ri are measurable with respect to ��i, p

j
i and s

j
i are measurable with respect to ��ij ,

si (t) 2 ri (t), sji (t�j ; fj) 2 p
j
i (t�j). Then we show that (7), (8) and (9) are satis�ed.

Denote the equilibrium contract of Player i with type ti by c
ti
i . De�ne the partition, � , as

follows:

� i (ti) =
n
t0i 2 Ti : ctii = c

t0i
i

o
.

For all i 2 f1; :::;mg, let

ri (t) = ectii �ctii ;�ctjj �
j 6=i

�
: (12)

Notice that ri is measurable with respect to ��i by the de�nition of � = �mi=1� i.
Let �i : Ti � C ! Ai denote the second stage strategy of Player i. Observe that

�i

�
ti;
�
c
tj
j

�
j

�
2 ectii �ctii ;�ctjj �

j 6=i

�
(13)

by the rules of the contracting game. Since the contracting equilibrium implements s = (s1; :::; sm),

it follows that �i

�
ti;
�
c
tj
j

�
j

�
= si (t1; :::; tm). Notice that si (t) is measurable with respect to ��i.

In addition, si (t) 2 ri (t) by (12) and (13).
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We are ready to show that the triple (f� igmi=1 ; frig
m
i=1 ; s) satis�es (7). First, consider this

constraint with t0i = ti. This constraint requires �i

�
ti;
�
c
tj
j

�
j

�
to be a best-response of Player

i with type ti to the strategies of the other players on the equilibrium path. Since �i was an

equilibrium strategy, it has to be a best response and hence (7) must be satis�ed. Second, consider

(7) with t0i 6= ti. Then, this constraint says that Player i with type ti is better o¤ o¤ering the

contract ctii than o¤ering c
t0i
i . Indeed, the left-hand-side is just his expected equilibrium payo¤ and

the right-hand-side is the maximum payo¤ of Player i with type ti if he o¤ered c
t0i
i . Since, c

ti
i was

an equilibrium contract, Player i is better o¤ o¤ering ctii than any other contract, hence, (7) is

satis�ed.

It remains to construct pji and s
j
i for all i; j (i 6= j) and show that (8) is also satis�ed. For each

i let Ni denote the number of elements in the partition of Ti generated by � i. For each i, �x a

� i-measurable surjection �i : Ti ! f1; :::; Nig. For each fj 2 F �j and for all n�j 2 �k 6=j f1; :::; Nkg ;
de�ne f j (n�j) to be fj (t�j) if n�j = ��j (t�j). The function f j is well de�ned because fj is

��j measurable and ��j is a ��j measurable surjection. For all ni 2 f1; :::; Nig, de�ne cnii to

be ctii if �i (ti) = ni. The Invariant Punishment Property guarantees that there are functions

pjk : Nm�1 ! 2Akn f;g (k 6= j) such that for each fj 2 F �j there is a contract c
fj
j 2 Cj which

satis�es ecfjj �cfjj ; (cnii )i 6=j� = f j (n�j) and ecnkk �
c
fj
j ; (c

ni
i )i 6=j

�
= pjk (n�j) ; (14)

for all n�j 2 �i 6=j f1; :::; Nig and k 6= j. For all t�j 2 T�j , de�ne p
j
k (t�j) to be p

j
k (��j (t�j)).

Notice that pjk is ��j measurable. Using this notation and the de�nition of f j , (14) can be rewritten

as ecfjj �cfjj ; �ctii �i 6=j� = fj (t�j) and ectkk �cfjj ; �ctii �i 6=j� = pjk (t�j) ;

for all t�j 2 T�j and k 6= j. For each fj 2 F �j and k 6= j, de�ne sjk (t�j ; fj) to be �k
�
tk;
�
c
fj
j ;
�
ctii
�
i 6=j

��
.

The function sji is obviously measurable with respect to ��ij . Given these notations, (8) requires

that Player j cannot pro�tably deviate by o¤ering cfjj . Therefore, this constraint is satis�ed.

Finally, since the strategies in the contracting game satis�es the re�nement,

sj�j (t�j ; fj) = ��j

�
t�j ;

�
c
fj
j ;
�
ctkk
�
k 6=j

��
2

Rj

�ecfjj �cfjj ; �ctkk �k 6=j� ;�ectii �cfjj ; �ctkk �k 6=j��i 6=j ; t�j
�
=

Rj

�
fj (t�j)� pj�j (t�j) ; t�j

�
and hence, (9) is satis�ed.
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5 De�nable Contracts

5.1 The Language and the Gödel Coding

We consider a formal language that is su¢ ciently rich to allow its user to state propositions in

arithmetic. (The Appendix provides a formal de�nition of a �rst-order language, see Section 8.2.)

Furthermore, the set of statements in this language is closed under the �nite applications of the

Boolean operations: q, _, and ^. In addition, the language contains variable symbols, such as x; y,
which enables one to express, for example, Fermat�s Last Theorem:

8n; x; y; z f[(n � 3) ^ (x 6= 0) ^ (y 6= 0) ^ (z 6= 0)]! (xn + yn 6= zn)]g :

In fact, one can also express statements in the language that involves any �nite number of free

variables. For example,�x is a prime number� is a statement in the language. The symbol x

is a free variable in the statement. Another example for a predicate that has one free variable

is�x < 4.�One can substitute any integer into x and then the predicate is either true or false. This

particular one is true if x = 0; 1; 2; 3 and false otherwise.

A text is a �nite string of symbols. Let L be the set of all texts of the formal language. It

is well known that one can construct a one-to-one function L ! N. Let ['] be the value of this
function at ' 2 L; call it the Gödel Code of the text ':
In what follows, we de�ne a class of functions which can be represented by �nitely many

characters in our formal language.

De�nition 2 The function f : Nk ! 2N is said to be de�nable if there exists a �rst-order arith-

metic statement � in k + 1 free variables such that for all a 2 Nk: b 2 f (a) if and only if � (a; b)
is true.

We provide a formal de�nition of �rst-order arithmetic statement in the appendix. We illustrate

the previous de�nition with an example.

Example. Consider the following function de�ned on N:

f (a) =

(
0 if a is an even number,

1 if a is an odd number.

We show that this function is de�nable by constructing the corresponding predicate �.

� (x; y) � ffy = 1g _ fy = 0gg ^ f9z : 2z = y + xg .

Notice that � indeed has two free variables. (The variable z is not free because there is a quanti�er

in front of it.) The �rst part of � states that y is either one or zero. The second part says that

x+ y is divisible by two. Clearly, f (a) = 0 if and only if � (a; 0) is true and f (a) = 1 if and only

if � (a; 1) is true.
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If the statement � de�nes the function f and � is true, then � ^ � also de�nes f . We make
use of this observation to construct di¤erent but computationally equivalent contracts in the next

section.

De�nition 3 Suppose that fn is a function mapping from Nk to 2N for all n 2 Nq. Suppose that
there exists a �rst-order arithmetic statement � in q+ k+1 free variables such that for all n 2 Nq

and a 2 Nk: b 2 fn (a) if and only if � (n; a; b) is true. Then we call the expression fx a de�nable
function with q free variables; where x = (x1; : : : ; xq) is a vector of variable symbols.

A de�nable function from Nk to 2N with q free variables is essentially a de�nable function from
Nk+q into 2N. Therefore, many properties of de�nable functions are also properties of de�nable
functions with free variables.

We can now describe some properties of de�nable functions that we need in our proofs. We

need two pieces of notations. First, recall from the introduction that if n 2 N, then < n > denotes

the text whose Gödel code is n, that is, [< n >] = n. Let g be a function from f1; :::; qg to the
set of variable symbols such that g (i) 6= g (j) if i 6= j. That is (g (1) ; :::; g (q)) is a �nite vector of

variable symbols. Then, for any text ' and (n1; :::; nq) 2 Nq let '(n1;:::;nq) denote the text where if
the symbol g (k) stands for a free variable in ' then g (k) is replaced by nk in ' for k = 1; :::; q.10

For example, if g (1) = x1 and g (2) = x2, ' is�x1 < x2�; n1 = 1 and n2 = 2 then '(n1;n2) is

1 < 2.11

Suppose that g (i) = xi for i = 1; :::; q. Consider the following text in n free variable: <

xk >(x1;:::;xq), where k � q. Since the Gödel coding is a bijection, < nk > is a text for each

nk 2 N. Since '(n1;:::;nq) is de�ned for all ' and (n1; :::; nq) 2 Nq, < nk >
(n1;:::;nq) is a text for all

(n1; :::; nq) 2 Nq. The following is a well-known result in Mathematical Logic:

Lemma 1 Let (g (1) ; :::; g (q)) be a vector of distinct free variables, and for all k 2 f1; :::; qg, let
fk (n1; :::; nq) =

�
< nk >

(n1;:::;nq)
�
. Then fk is a de�nable function for all k 2 f1; :::; qg.

This basic result is central to the construction of cross-referential contracts. The next result is

used to show that the contracts we construct to support various kinds of equilibrium are de�nable.

Lemma 2 For any set A, let �A denote the characteristic function of A.

(i) If A � Nk is �nite, then �A is de�nable.
(ii) Let A;B � Nk. If �A and �B are de�nable, then �A\B ; �A[B, and �AnB are de�nable.
(iii) Let A1; :::; Am � Nk, B1; :::; Bm+1 � N. If \mi=1Ai = f;g, �A1

; :::; �Am
are de�nable, and

10The text '(n1;:::;nq) depends on g which speci�es the list of free variables that are to be replaced. We suppress

this dependence in the notation just to make it simpler.
11Of course, it is possible that the text ' does not contain some of the symbols fg (1) ; :::; g (q)g. In that case,

there is no substitution for the missing symbols in '(n1;:::;nq). For example, g (1) = x1 and g (2) = x2 and ' is

�x2 > 2�, then '(3;4) is �4 > 2�; because x1 does not appear in '.
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B1; :::; Bm are �nite, then the following correspondence, f : Nk ! N, is de�nable:

f (n) =

8>>>><>>>>:
B1 if n 2 A1;
::: :::

Bm if n 2 Am;
Bm+1 otherwise.

(iv) Suppose that D1; :::; Dk � N are �nite sets, g : �ki=1Di ! 2N, and B1; :::; Bk+1 � N are �nite
sets. For all n 2 Nk let ni denote the ith coordinate of n. Then the following correspondence is
de�nable:

f (n) =

8>>>>>>><>>>>>>>:

g (n) if n 2 �ki=1Di;

B1 if fi : ni =2 Dig = f1g ;
:::

Bk if fi : ni =2 Dig = fkg ;
Bk+1 otherwise.

We point out that all the contracts we use to construct equilibrium in the paper are in the form

of (iv) of Lemma 2.

Proof. See the Appendix.

5.2 The Contract Space

With a slight abuse of notation we shall refer to [ai] as the Gödel code of the text describing action

ai.12 In addition, for each Ai � Ai, let
�
Ai
�
= f[ai] : ai 2 Aig. We de�ne the contract space of

Player i, Ci, as the set of all arithmetic statements de�ning functions from Nm to 2[Ai]n f;g in the
sense of De�nition 2.

For all ci 2 Ci, de�ne the correspondence eci : C ! 2Ain f;g induced by ci as follows:

ai 2 eci (c1; :::; cm), ci ([c1] ; :::; [cm] ; [ai]) is true. (15)

That is, given the contract pro�le (c1; :::; cm), Player i can take action ai if and only if the Gödel

code of this action is an element of the function de�ned by ci evaluated at the vector ([c1] ; :::; [cm]).

In order to show that the statement of Theorem 1 is valid with this contract space we have to

show that both the Cross-referential Property and the Invariant Punishment Property hold.

5.2.1 The Cross-referential Property

Let Ni � 1, ri : Nm ! 2Ain f;g and pji : Nm�1 ! 2Ain f;g for i; j 2 f1; :::;mg ; i 6= j. Let xj
denote the vector

�
x1j ; :::; x

Nj

j

�
and x = (x1; :::; xm) where x

nj
j is a variable symbol for all j and nj .

12 In other word, we identify an action with a text which describes it.
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For each i and ni 2 f1; :::; Nig let hnii (x) denote
�
< xnii >(x)

�
and consider the following function

in
Pm

i=1Ni free variables:

f i;nix ([c1] ; :::; [cm]) (16)

=

8>>>><>>>>:
[ri (ni; n�i)] if 8k 6= i hnkk (x) = [ck] and h

nk
k (x) 6= h

n0k
k (x) if nk 6= n0kh

pji (ni; n�ij)
i if 8k 6= i; j hnkk (x) = [ck] and h

nk
k (x) 6= h

n0k
k (x) if nk 6= n0k

and @nj s.t.h
nj
j (x) = [cj ] ;

[Ai] otherwise.

We prove in the Appendix that this function is de�nable (see Lemma 6). Let 'i;ni (x; y; z) be a

statement which de�nes the function f i;nix where y is an m dimensional vector of variable symbols

and z is a variable symbol. De�ne ci;nix (y; z) to be 'i;ni (x; y; z)^ (ni + 1 > ni) and let 
ni
i denote

its Gödel Code.13 In addition, let i =
�
1i ; :::; 

Ni
i

�
and  = (1; :::; m). Observe that the

contract ci;ni de�nes the following function:

f i;ni ([c1] ; :::; [cm]) =

8>>>><>>>>:
[ri (ni; n�i)] if 8k 6= i hnkk () = [ck] and h

nk
k () 6= h

n0k
k () if nk 6= n0kh

pji (n�j)
i if 8k 6= i; j hnkk () = [ck] and h

nk
k () 6= h

n0k
k () if nk 6= n0k

and @nj s.t.h
nj
j () = [cj ] ;

[Ai] otherwise:

Recall that hnqq (x) =
�
< x

nq
q >(x)

�
and nqq =

�
c
q;nq
x

�
. Hence hnqq () =

�
c
q;nq
x

�()
= c

q;nq
 . There-

fore, the previous function can be rewritten as14

f i;ni ([c1] ; :::; [cm]) =

8>><>>:
[ri (ni; n�i)] if 8k 6= i

�
ck;nk

�
= [ck] ;h

pji (n�j)
i

if 8k 6= i; j
�
ck;nk

�
= [ck] and @nj s.t.

h
c
j;nj


i
= [cj ] ;

[Ai] otherwise:
(17)

De�ne cnii to be ci;ni . Therefore, by (15),

ecnii (c1; :::; cm) =
8>><>>:

ri (ni; n�i) if 8k 6= i cnkk = ck;

pji (n�j) if 8k 6= i; j cnkk = ck and @nj s.t. c
nj
j = cj ;

Ai otherwise,

which is just (4). In addition, since cnii = 'i;ni (; y; z) ^ (ni + 1 > ni), c
ni
i 6= c

n0i
i if ni 6= n0i, and

hence the Cross-referential Property is satis�ed.

13Notice that ni+1 > ni is always true, and hence, c
i;ni
x (y; z) and 'i;ni (x; y; z) de�ne the same function. Such a

statement, however, makes it possible that a player with two di¤erent types o¤ers two di¤erent but computationally

equivalent contracts.
14Notice that ck;nk 6= c

k;n0k
 if nk 6= n0k, hence, these conditions became irrelevant in the de�nition of f

i;ni
 (see

the previous footnote).
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5.2.2 The Invariant-punishment Property

In order to prove that our contract space satis�es the Invariant Punishment Property it is enough

to prove the following

Lemma 3 For all (N1; :::; Nm) 2 Nm; Ni � 1, for all set of contracts
�
c
nj
j

	
j;nj2f1;:::Njg

(cnjj 2 Cj,

c
nj
j 6= c

n0j
j if nj 6= n0j) and for every i, there are functions p

i
k : N

m�1 ! 2Akn f;g (k 6= i),

such that for any function fi : Nm�1 ! 2Ain f;g, there is a contract c�i 2 Ci such that for all

n�i 2 �j 6=i f1; :::; Njg : ec�i �c�i ; cn�i�i
�
= f (n�i) ; (18)

and for all k 6= i ecnkk �
c�i ; c

n�i
�i
�
= pik (n�i) , (19)

where ecj is de�ned by (15) for all j and cj 2 Cj.
First, we reformulate the statement of the lemma. Let Ni denote f1; :::; Nig and N = �mi=1Ni.

Let
�
2Ai
�jN�ij denote the set of �j 6=iNj dimensional vector of nonempty subsets of Ai. For all�

A
n�i
i

�
n�i2N�i

2
�
2Ai
�jN�ij de�ne S

��
A
n�i
i

�
n�i2N�i

�
as follows:n�

A
n�i
�i
�
n�i2N�i

: 8n�i 2 N�i; 9ci s. t. eci �ci; cn�i�i
�
= A

n�i
i ; ecn�i�i

�
ci; c

n�i
�i
�
= A

n�i
�i

o
.

�
A
n�i
�i
�
n�i2N�i

2 S
��
A
n�i
i

�
n�i2Nj

�
implies that there exists a contract, ci, available for Player

i such that if he o¤ers ci and the contract pro�le of the other players is c
n�i
�i ; then the contract

pro�le
�
ci; c

n�i
�i
�
restricts the action space of Player i to be An�ii and the action spaces of the other

players to be An�i�i . We claim the following

Lemma 4 The statement of Lemma 3 is equivalent to the following statement. For all (N1; :::; Nm) 2
Nm; Ni � 1, for all set of contracts

�
c
nj
j

	
j;nj2f1;:::Njg

(cnjj 2 Cj, c
nj
j 6= c

n0j
j if nj 6= n0j), and for

every i:

\(An�i
i )

n�i2N�i

S
��
A
n�i
i

�
n�i2N�i

�
6= f;g : (20)

Proof. Suppose �rst that (20) is true and
�
A
n�i
�i
�
n�i2N�i

is an element of the intersection. De�ne

pi�i (n�i) =
�
pik (n�i)

�
k 6=i to be A

n�i
�i for all n�i. Fix a function fi : N�i ! 2Ain f;g and consider

S
�
(fi (n�i))n�i2N�i

�
. Then, there exists a c�i such that equations (18) and (19) are satis�ed

because
�
pi�i (n�i)

�
n�i

2 S
�
(fi (n�i))n�i

�
.

Conversely, suppose that (20) is false. Then for all pi�i (n�i) =
�
pik (n�i)

�
k 6=i : N�i ! A�i

there exists
�
A
n�i
i

�
n�i2N�i

2
�
2Ai
�jN�ij such that�

pi�i (n�i)
�
n�i2N�i

=2 S
��
A
n�i
i

�
n�i2N�i

�
.

De�ne fi (n�i) to be A
n�i
i for all n�i 2 N�i. Then, by the de�nition of S, there does not exist a

contract c�i such that (18) and (19) are satis�ed.

25



By the previous lemma, in order to show Lemma 3, we only have to prove (20). We have

relegated this proof to the Appendix. Here, we sketch the proof for the case of two players, and

where N1 = N2 = 1. Let c2 denote the contract of Player 2. For all (f;g 6=)B1 � A1 :

S (B1) = fB2 : 9c1 s. t. ec1 (c1; c2) = B1; ec2 (c1; c2) = B2g .

We have to show that \f;g6=B1�A1
S (B1) 6= f;g. Suppose that, by contradiction, \B1

S (B1) = f;g.
Then for all B2 � A2 there exists a (f;g 6=)B1 � A1 such that B2 =2 S (B1). Therefore, one can
construct a function, g : 2A2n f;g ! 2A1n f;g, such that

8B2 � A2 : B2 =2 S (g (B2)) .

Let fc2 denote the function de�ned by c2. De�ne the function in one free variable, fx, as follows:

fx ([c1] ; [c2]) =
h
g
�
< fc2

�h
< x >(x)

i
; [c2]

�
>
�i
.

We shall show (see Lemma 7 in the Appendix) that since g has a �nite domain, fx is a de�nable

function in one free variable. Let cx denote a statement which de�nes fx, and let  denote its

Gödel code. Notice that <  >()= c . Hence,

f ([c1] ; [c2]) = [g (< fc2 ([c ] ; [c2]) >)] : (21)

Notice that ec2 (c ; c2) 2 S (ec (c1; c2))
by the de�nition of S. On the other hand,

ec2 (c ; c2) =2 S (g (ec2 (c ; c2))) = S (ec (c ; c2)) ;
where the exclusion follows from the construction of g and the equality follows from (15) and (21).

The previous two displayed statements contradict each other and hence, \B1�A1S (B1) 6= f;g.

6 Applications and Examples

This section accomplishes two goals. First, we illustrate some properties of the contracting equi-

librium by two examples. Second, we compare the set of outcome functions implementable by a

centralized mechanism with those implementable by our contracting game.

6.1 Example 1

Suppose that there are two players. The action space of Player 1 is fa; bg and the action space of
Player 2 is fl;m; rg. The type space of Player 1 is D = f�1; 1g and the type space of Player 2 is
T � D = f3;�3g � f�1; 1g. Any realization of the type of each player is equally likely and the
types of the players are independently distributed. If the type of Player 1 is d1 and the type of

Player 2 is (t; d2) ; then the payo¤s to the players are de�ned by the following matrix:
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l m r

a 6; t 2 + d1; 2 + d2 0; 0

b 0;�t 0; 0 2; 2

:

We want to show that the following outcome function can be supported as an R�equilibrium
in the contracting game:

s (d1; t; d2) =

(
(a; l) if t = 3;

(b; l) if t = �3.

In this outcome function the action of Player 1 varies with the type of Player 2. Therefore, if

the players played this game without the contracting stage, the outcome function s could not be

implemented as a Bayesian equilibrium. Moreover, Player 2 always takes action l in the outcome

function s. Given l, Player 1 would like to deviate and take action a no matter what the types

are. Below we show how to construct a contract of Player 2 which prevents such a deviation.

In what follows c will denote the equilibrium contract of Player 1 and ct denotes the equilibrium

contract of Player 2, if the second coordinate of his type is t. De�ne the mappings determined by

these contracts as follows:

ec (c1; c2) =
8>><>>:

a if c2 = c3;

b if c2 = c�3;

fa; bg otherwise,

and for t = 3;�3:

ect (c1; c2) = ( l if c1 = c;

r otherwise,
(22)

such that c3 6= c�3. The Cross-referential Property guarantees that these contracts lie in the

contract space.

Notice that these contracts refer to each other and they implement the outcome function s.

Indeed, Player 1�s contract, c, prescribes taking action a if the contract of Player 2 is c3 and action

b if Player 2�s contract is c�3. Similarly, Player 2�s contracts, c3 and c�3, prescribe taking action

l if the contract of Player 1 is c. We only have to show that players cannot pro�tably deviate.

The contracts always constrain the players to a speci�c action so they cannot deviate in the

second stage of the game. We only need to check deviations in contracts. The payo¤ of Player

2 is maximized by the outcome function, so we only have to show it for Player 1. Any deviation

of Player 1 triggers action r by Player 2. The best response of Player 1 to this action is b and it

provides him with a payo¤ of 2, which is smaller than his expected equilibrium payo¤, 3.

Next, we discuss a number of features of this contract equilibrium that will be of interest in

the general model.

Information Content of the Contracts.� The contracts o¤ered by Player 2 for each of the

realizations of the �rst coordinate of his types is di¤erent. In this sense equilibrium play reveals
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something about Player 2�s type. In fact, it is precisely this feature that makes it possible for

Player 1 to take an action on the equilibrium path that depends on Player 2�s type. However,

there is a limit to this in the sense that Player 1�s action can only vary with Player 2�s type to

the extent that type information is revealed through the equilibrium contract. In this example,

the action of Player 1 cannot depend on d2 because d2 is not revealed through the equilibrium

contracts.

The two contracts of Player 2, c3 and c�3, are computationally equivalent, that is, they deter-

mine the same actions as a function of the contract pro�le. However, c3 6= c�3, and Player 2 uses

his contract to communicate his type to Player 1. This communication is not cheap talk because

the contract ct is also used by Player 2 as a commitment to punish Player 1 unless he credibly

promises to make his action contingent on t by o¤ering c.15

On the other hand, since contracts reveal information about types, a deviating player can make

his second-stage action contingent on types of the other players. This limits the set of outcome

functions which are implementable by contractible contracts. We will show that a centralized

mechanism designer can implement more outcome functions than our contracting game because

he can prevent a non-participant player from learning something about others�types.

Invariant Punishments.� Any deviation of a player at the contracting stage triggers a restric-

tion on the action space of the other player. These restrictions can be viewed as a punishment for

a deviation. Observe that our equilibrium is supported by �punishments�that don�t vary with the

transgression. For example, Player 2 simply commits himself to choose r whenever Player 1 o¤ers

a contract that is di¤erent from his equilibrium contract. The Invariant Punishment property

implies that assuming that contractual punishment is invariant to the deviation is without loss of

generality. (Of course, the punishment usually depends on the type of the punisher.)

We further explain the signi�cance of this property. Since the punishment for any contractual

deviation of Player 1 is the same, he can best-respond to the equilibrium contract of Player 2.

That is, the most pro�table deviation of Player 1 speci�es a restriction which is a best response

to the punishment of Player 2 given the second-stage strategies. This allows us to use a logic that

is similar to the minmax logic in games of complete information. The following table summarizes

the best responses of Player 1 as a function of the restrictions of Player 2:16

restrictions of Player 2

fmg frg fm; rg

best response of Player 1 fag fbg
fag if d1 = 1

fbg otherwise

expected payo¤ of Player 1 2 2 2:5

15 In fact, the allocation s cannot be implemented by introducing a cheap talk stage instead of the contracting

stage because Player 1 would not take action b if Player 2 takes action l.
16 It is never optimal to punish Player 1 by taking action l. Therefore, we left this possibility out from the following

table.
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Consider for example the last column of the table. The punishment of Player 2 is fm; rg. What
is the best response of Player 1? If d1 = 1, he can restrict his action space to be fag. Player 2
observes this restriction and is forced to take his strictly dominant action m in the second stage.

Similarly, Player 1 can restrict his action space to be fbg if d1 = �1 and the best response of
Player 2 is r. Player 1�s expected payo¤ is 2:5. It is clear from the table that Player 1 can always

achieve a payo¤ of 2 no matter what the punishment of Player 2 is.

Consider now a modi�cation of the original game such that the action pro�le (a; l) generates a

payo¤ of 3 to Player 1 instead of 6, but the payo¤s are the same otherwise. In this case, our target

outcome function generates a payo¤ of 1:5 to Player 1. This payo¤ is lower than 2 and hence, the

outcome function cannot be implemented as an R-equilibrium in the contracting game. Next, we

argue that our outcome function could be implemented even in the modi�ed game if the restriction

of Player 2 could depend on the restriction of Player 1.

Suppose now, that the restriction of Player 2 can depend on the restriction of Player 1 generated

by a deviation. Next, we present another table which summarizes the most e¤ective punishment

of Player 2, if the punishment can be contingent on the restriction implied by the deviation.

restrictions of Player 1

fag fbg fa; bg
best punishment of Player 2 frg fmg fm; rg
expected payo¤ of Player 1 0 0 1:25

Therefore, if the restriction of Player 2 could depend on the restriction of Player 1, Player 1

can only achieve a payo¤ of 1:25. Hence, the target outcome function could be implemented even

in the modi�ed game.

Equilibrium Re�nement.� The outcome functions that are supportable as equilibria will gen-

erally depend on the equilibrium re�nement concept. As we explained above, an important feature

of the contract equilibrium is the restriction on the action space triggered by a deviation. Since

deviations are o¤ the equilibrium path, players never have to choose from these restricted sets

of actions on the equilibrium path. Di¤erent re�nement concepts impose di¤erent restrictions on

these o¤-equilibrium choices.

To see how re�nement matters consider again the modi�ed version of our example and suppose

that Player 2 restricts his action space to fm; rg whenever Player 1 deviates. Suppose that one
is interested in every Bayesian equilibrium. This concept does not impose any restriction on o¤

the equilibrium play. Hence, if Player 1 restricts his action space to be fag, Player 2 can still take
action r although it is strictly dominated. Similarly, if Player 1 restricts his action space to be

fbg, Player 2 can take action m. In both of these cases, the payo¤ of Player 1 is zero. If Player
1 restricts his action space to be fa; bg, then Player 2 can play m if d2 = 1 and r otherwise. This

provides Player 1 with an expected payo¤ of at most 1:25. Hence, the outcome function s can be

implemented as a Bayesian equilibrium even in the modi�ed example.
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6.2 Example 2

The next example illustrates two more properties of the contracting equilibria. First, we show

that the informational partition is non-trivial in general. That is, players reveal some information

about their types but do not reveal them fully. Second, we show that some outcome functions can

only be implemented by a contract pro�le that does not restrict the action space of a player to a

single action. That is, a player must still have some �exibility in choosing his action in the last

stage of the game. In this sense, contracts are generally incomplete.

Suppose that m = 2, T1 = A1 = f�1; 1g2, and A2 = f�1; 1g2 � f�; �g. (The type space of
Player 2 is degenerate.) If the type of Player 1 is t1 =

�
t11; t

2
1

�
, the action of Player 1 is a1 =

�
a11; a

1
2

�
;

and the action of Player 2 is
�
a12; a

2
2; �
�
; then the payo¤ of each player is

t11
�
a11 + a

1
2

�
+ t21

�
a21 + a

2
2

�
:

If the type of Player 1 is
�
t11; t

2
1

�
and the action of Player 2 is

�
a12; a

2
2; �
�
then the payo¤ of Player

2 is 5t21a
2
2 and the payo¤ of Player 1 is zero.

Notice that if the third coordinate of the action of Player 2 is �; this game is a kind of

coordination game where both players want to match the type of Player 1 with their actions

coordinate wise. If both players do so, then each player receives a payo¤ of four conditional on

Player 2 taking �. The problem is that if Player 2 knows the type of Player 1, he prefers to take

action � and match the second coordinate of Player 1�s type with the second coordinate of his

action. This would provide him with a payo¤ of �ve.

Consider the following outcome function: s1
�
t11; t

2
1

�
=
�
t11; t

2
1

�
and s2

�
t11; t

2
1

�
=
�
t11; 1; �

�
. In this

outcome function each player matches the �rst coordinate of the type of Player 1 but only Player

1 matches the second coordinate. This outcome function generates an expected payo¤ of three

to each player. Next, we argue that this outcome function can be implemented by contractible

contracts as an equilibrium. To see this, consider a PMM where Player 1 reports t11 at the �rst

stage. The mechanism imposes no restriction on the action space of the players. In the second

stage, Player 1 takes action
�
t11; t

2
1

�
and Player 2 takes action

�
t11; 1; �

�
. Obviously, no player has

incentive to deviate.

Notice that the information partition is described be �1 (t1) = t11 for all t1. Observe that (s1; s2)

cannot be implemented such that all the information is revealed about Player 1�s type. This is

because if Player 1 would fully reveal his type, Player 2 would not participate in the mechanism

and would take action
�
1; t21; �

�
.

Also notice that (s1; s2) cannot be implemented by complete contracts. This is because Player

1 has to match the second coordinate of his own type by the second coordinate of his action.

Recall that he can only reveal the �rst coordinate of his type. Therefore, it must be the case that

r1
�
t11; t

2
1

�
contains both

�
t11;�1

�
and

�
t11; 1

�
.
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6.3 Comparison with Centralized Mechanisms

The set of implementable outcome functions in the contracting game is fairly large. However, as we

mentioned before, contract equilibrium imposes a restriction on feasible outcome functions. When

a player decides to deviate at the contracting stage, he knows that he will learn something about

the types of the other players when he observes their contracts. Therefore, a deviator�s action in

the last stage of the game can depend on the information about the types of the other players

that are revealed by their contracts. This suggests that there are outcome functions which are

implementable by centralized mechanisms (where the messages are private) but not by contracts.

By the standard Revelation Principle, a centralized mechanism asks the players to report their

types privately. Then the mechanism requires each participant to take an action as a function of

the reported type pro�le of the participants. If a player does not participate in the mechanism, he

can take any action he wants. It is without loss of generality to restrict attention to mechanism-

equilibrium pairs where each player participates and truth-telling constitutes a Bayesian equilib-

rium.17

A centralized mechanism has to specify the target outcome function, s : T ! A, and what

actions the others take if Player i does not participate: si�i : T�i ! A�i for each i. Then the

outcome function s is implementable by a centralized mechanism if and only if the following two

sets of constraints are satis�ed. For all i 2 f1; :::;mg and ti; t0i 2 Ti :

Et�i (ui (s (t) ; t) j ti) � Et�i (ui (s (t
0
i; t�i) ; t) j ti) ; (23)

and

Et�i (ui (s (t) ; t) j ti) � max
ai2Ai

Et�i
�
ui
�
ai; s

i
�i (t�i) ; t

�
j ti
�
: (24)

The inequality (23) is the incentive compatibility constraint guaranteeing that a participant player

reports his type truthfully. The inequality (24) is the participation constraint guaranteeing that

each player prefers to participate irrespective of his type.

To show that one can implement more outcome functions with centralized mechanisms than

with contracts, we revisit the example of the previous subsection. Consider the outcome function

s� = (s�1; s
�
2) : T ! A, such that s�1

�
t11; t

2
1

�
=
�
t11; t

2
1

�
and s�2

�
t11; t

2
1

�
=
�
t11; t

2
1; �
�
. Notice that this

outcome function provides each player with a payo¤of four, and it maximizes the sum of the players�

payo¤ among all outcome functions. We show that this outcome function can be implemented by

a centralized mechanism but cannot be implemented by a PMM as an R�equilibrium.
In order to show that s� can be implemented by a centralized mechanism, it is enough to

construct s21 : T1 ! A1 and s12 : T2 ! A2 such that (23) and (24) are satis�ed for i = 1; 2 with

s = s�. De�ne s21
�
t11; t

2
1

�
� (1; 1), that is if Player 2 does not participate, the mechanism requires

17Notice that the mechanism restricts the action space of the participants to singletons, that is, participating

players do not choose actions strategically at the second stage. Therefore, each Bayesian equilibrium is also an

R�equilibrium.
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Player 1 to take action (1; 1). Similarly, de�ne s12 � (1; 1; �). Notice that s� maximizes the payo¤
of Player 1 among all outcome functions. Hence, (23) and (24) are satis�ed for i = 1. Since, the

type space of Player 2 is degenerate, we only have to show that Player 2 prefers to participate,

that is, (24) holds for i = 2. Notice that the right-hand side of (24) is zero and the left-hand side

is four.

Now, we argue that s� cannot be implemented by a PMM. Notice that in order to implement

s�, Player 2 must know the type of Player 1. Therefore Player 1 has to fully reveal his type at the

�rst stage of the mechanism. If Player 2 decides not to participate and Player 1 reveals that his

type is
�
t11; t

2
1

�
, Player 2 can take action action

�
1; t21; �

�
in the last stage of the mechanism. This

would generate a payo¤ of �ve, which is larger than the payo¤ generated by s�.

Next, we identify some environments where the set of outcome functions implementable by

centralized mechanisms is the same as the set of outcome functions implementable by contracts.

Assumption 1. For all i and ti 2 Ti, there exist ai (ti) 2 Ai, ai�i 2 A�i; and Ui : T ! R such
that for all (ti; t�i) 2 T :
(i) ui (ai (ti) ; a�i; t) � Ui (t) for all a�i 2 A�i; and
(ii) ui

�
ai; a

i
�i; t

�
� Ui (t) for all ai 2 Ai:

Part (i) of Assumption 1 says that Player i has an action for each of his type which provides

him a payo¤ of at least Ui (t) no matter what the action pro�le of the other players is. Part (ii)

says that players other than Player i can take an action pro�le which holds Player i down to at

most Ui (t), no matter what action Player i takes.

Assumption 1 is arguably a strong assumption but is satis�ed in many economic environments.

One way to interpret part (i) is that Player i can choose not to interact with the other players

and take his outside option. The value Ui (t) can be thought of as the value of the outside option.

Similarly, the action pro�le ai�i can be thought of as a pro�le of the other players which forces

Player i to exit.

Consider, for example, an auction environment where a single seller is selling a single object

to many bidders. The players in this environment are the bidders and the seller. The type of a

player is his signal about the value of the object. The action space of a bidder is the amount of

transfers to the seller, and the action space of the seller is set of players (to whom he can sell the

object). In this environment Assumption 1 is obviously satis�ed because a bidder can choose not

to pay and the seller can decide to keep the object.

Proposition 1 Suppose that Assumption 1 is satis�ed, and the allocation s : T ! A can be

implemented by a centralized mechanism. Then the allocation s can be implemented as an R-
equilibrium in the contractible contracting game.

Proof. Suppose that a centralized mechanism implements s, that is, there exists
�
si�i
	
i
such that

(23) and (24) are satis�ed. Notice that by part (i) of Assumption 1:

max
ai2Ai

Et�i
�
ui
�
ai; s

i
�i (t�i) ; t

�
: ti
�
� Et�i (Ui (t) : ti) .
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Therefore, (24) and the previous inequality implies:

Et�i (ui (s (t) ; t) : ti) � Et�i (Ui (t) : ti) . (25)

Next, we construct a PMM which implements the outcome function s. Consider the following PMM

de�ned by
�
s; f� igmi=1 ; frig

m
i=1 ;

n
pji

om
i;j=1

�
, where � i (ti) = ftig, ri (t) = fsi (t)g, pji (t�j) =

n
aji

o
.

That is, the information partition is the full information partition, the equilibrium restrictions are

singletons corresponding to s, and if Player j does not participate, Player i�s action space is

restricted to be the singleton
n
aji

o
. Since, pji (t�j) =

n
aji

o
, sji (t�j) must be a

j
i . We have to show

that (7), (8), and (9) are satis�ed. Since pji (t�j) is singleton for all i; j, and t�j , (9) is satis�ed.

Since ri (t0i; t�i) = fsi (t0i; t�i)g, (7) coincides with (23). Since � i (ti) = ftig and p
j
i (t�j) =

n
aji

o
,

(8) can be rewritten as

Et�i (ui (s (t) ; t) j ti) � Et�i

�
max
ai2Ai

ui
�
ai; a

i
�i; t

�
j ti
�
.

By parts (i) and (ii) of Assumption 1, the right hand side of the previous inequality is Et�i (Ui (t) j ti).
Hence, this inequality is just (25), which is indeed satis�ed.

Notice that the statement of the proposition holds for any re�nement. This is because the

outcome function s can be implemented by a PMM in which all the restrictions on the action

spaces of the players are singletons. That is, even o¤ the equilibrium path, players do not make

strategic choices at the second stage.

6.4 Complete Information Environment

In this section, we characterize the set of pure-strategy Subgame Perfect Nash Equilibrium (SPNE)

in our model if the players do not possess private information. We prove a pure-strategy Folk

Theorem for this environment. That is, we show that for each player there exists a value, such

that an outcome function is implementable as a SPNE if and only if the payo¤ of each player is

larger than his value.

De�ne the value for Player i as;

ui = min
a�i2A�i

max
ai2Ai

ui (ai; a�i) ,

We refer to ui as the pure minmax value of Player i.

Theorem 2 The action pro�le a� = (a�1; :::; a
�
m) 2 A is supportable as a pure-strategy SPNE

outcome in the contracting game if and only if ui (a�) � ui for each i.

Proof. Suppose �rst that ui (a�) � ui for all i 2 f1; :::;mg. We construct a PMM which imple-

ments a� as a SPNE. For each j, let us �x an action aji for Player i (i 6= j), such that,�
aj1; :::; a

j
m

�
2 arg min

a�j2A�j
max
aj2Aj

uj (aj ; a�j) ,
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and let

aj 2 argmaxuj
�
aj ; a

j
�j

�
.

For all j and i (i 6= j), de�ne ri = fa�i g, p
j
i =

n
aji

o
, and sji (fj) = aji for all fj 2 Fj . Notice that

sji (fj) 2 pji and the restriction imposed by subgame perfection is irrelevant because the action

space of each player is restricted to a single action followed by any deviation. By Theorem, 1, in

order to prove that these strategies constitute a Nash equilibrium, we have to show that both (7)

and (8) are satis�ed. Notice that since players have no private information, (7) boils down to:

ui (a
�) � max

ai2ri
ui
�
ai; a

�
�i
�
.

Since ri = fa�i g, this inequality is obviously satis�ed. Again, since players have no types, (8) can
be rewritten as:

ui (a
�) � max

fi2Fi
max
ai2fi

ui
�
ai; s

i
�i (fi)

�
= max

fi2Fi
max
ai2fi

ui
�
ai; a

i
�i
�
;

where the equality follows from si�i (fi) = ai�i. Notice that the right-hand-side is just ui, and

hence, this inequality is indeed satis�ed.

Suppose now that a PMM implements a�. Then, by Theorem 1, there exist on-equilibrium

restrictions ri 2 2Ain f;g, o¤-equilibrium restrictions, pji 2 2Ain f;g, and o¤-equilibrium strategies

sji : Fj ! Ai, s
j
i (fj) 2 p

j
i , such that (7) and (8) are satis�ed. Hence:

ui (a
�) � max

fi2Fi
max
ai2fi

ui
�
a; si�i (fi)

�
� max

ai2Ai

ui
�
ai; s

i
�i (Ai)

�
� ui.

The �rst inequality is just (8), the second one follows from setting fi = Ai, and the third one

follows from the de�nition of ui. We can conclude that (8) can only be satis�ed if ui (a
�) � ui for

all i.

One of the implications of Theorem 2 is that for the complete information case, the set of

outcome functions that are implementable by a centralized mechanism designer is identical to the

set of outcome functions that can be supported by equilibrium in the contracting game. As we

have shown (by example) that the same is not generally true for games of incomplete information,

this result serves to highlight one of the uses of our characterization theorem.

7 Conclusion

This paper shows how the contracts on contracts approach can be extended to environments with

incomplete information. De�nable contracts constitute the largest class of arithmetic contracts

which can be written as a �nite text in a �rst order language. In this sense de�nable contracts

embed most other interesting classes of feasible contracts as subsets.

In contrast to the complete information case, we show that the �folk theorem�doesn�t generally

hold in the following sense. A centralized mechanism designer can implement outcome functions
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that can�t be supported as equilibrium with contractible contracts. This limitation is not a conse-

quence of the set of feasible contracts, but rather of the fact that public contracts reveal information

about non-deviators�type. The restriction to de�nable contracts allows us to provide a complete

characterization of equilibrium and to prove this result. One of the results we provide as a part of

our main theorem illustrates the role that punishments play in a static contracting environment.

We emphasize that this paper does not intend to do mechanism design, and restricting attention

to our two-stage game is with loss of generality. For example, if we allow further communication

after the contracting stage, the set of implementable outcome functions becomes larger. Similarly,

allowing players to o¤er contracts and take actions sequentially leads to a di¤erent characterization

theorem.

8 Appendix

8.1 Re�nement

This section shows how to extend our characterization theorems to more general equilibrium re-

�nements. A re�nement is a restriction on the strategy rules of the di¤erent types of non-deviating

players in the second stage following a deviation by some Player i in the �rst stage. In the main

text, we only ruled out the possibility that players choose strictly dominated actions. Strict domi-

nance is a notion that depends on feasible sets of actions and payo¤ functions, but not on the game

in which these are embedded. Generally, re�nements impose restrictions that can depend on the

sets to which the players are constrained in the second stage, the information that has been revealed

by the non-deviators��rst period contracts and the outcome that would have prevailed had there

not been any deviation. Informally, the sets to which players are constrained when choosing their

second period actions are used to determine whether or not some actions are dominated for certain

player types. The information conveyed by �rst period play is used for re�nements like perfect

Bayesian equilibrium that require the use of Bayes rule for making inferences about non-deviating

players. The original equilibrium outcome is used in re�nements like the �intuitive criterion�, which

restrict beliefs that non-deviators can have about the deviating player based on what he might

have expected to gain by deviating.

Formally, let s : T ! A denote the equilibrium outcome function, that is, s (t) = �� (t; � (t))

for each t. Let � i be the partition of Ti generated by i�s equilibrium strategy, or in the context of our

contract game, � i (ti) = ft0i : �i (t0i) = �i (ti)g. Let F i be a ��i measurable correspondence from
T�i into A representing the sets to which the players are constrained when choosing their actions

following a deviation by Player i. If Player i deviates to contract i, then this correspondence is

F i (t�i) = S
�
i; 

�
�i (t�i)

�
.

A re�nement speci�es for every deviator i, every F i measurable with respect to some in-
formation partition ��i, and every status quo outcome function, s, a non-empty set of action

pro�les for the non-deviators that the re�nement allows for each pro�le of their types. Let
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Ri

�
s;F i; � ; t�i

�
2 2A�in f;g describe this correspondence.18 If an equilibrium has the non-

deviators using strategy rules ���i
�
t�i;

�
i; 

�
�i (t�i)

��
in response to a deviation to contract i by

Player i, then the equilibrium satis�es the re�nement if

���i
�
t�i;

�
i; 

�
�i (t�i)

��
2 Ri

�
s; S

�
i; 

�
�i (t�i)

�
; � ; t�i

�
for each t�i.

The properties to be built into the re�nement correspondence Ri are going to depend on the

particular application. For example, if types are independently distributed, then perfect Bayesian

equilibrium is well de�ned and Ri

�
s; S

�
i; 

�
�i (t�i)

�
; � ; t�i

�
would, for each t�i consist of all

action pro�les for the non-deviators that constitute actions these types would jointly take in some

Bayesian equilibrium of the game with action spaces S
�
i; 

�
�i (t�i)

�
and beliefs given by posterior

beliefs conditional on non-deviators types lying in ��i (t�i).19 In a game of complete information

with equilibrium contracts
�
c�i ; c

�
�i
�
and equilibrium outcome a�, a deviation to c0 by Player i

supports the collection of action pro�les F i = S
�
c0; c��i

�
; which are just the actions to which

players are constrained in the second stage by their �rst period contracts. The subgame perfection

re�nement of Nash equilibrium would specify Ri

�
s;F i

�
� N

�
F i
�
where N

�
F i
�
is just the set

of action pro�les a�i 2 A�i for which there exists an action ai 2 S�i
�
c0; c��i

�
such that (ai; a�i)

constitutes a Nash equilibrium of the game with action spaces S
�
c0; c��i

�
.

Finally, if we simply want to describe Bayesian equilibrium, then we could do so by having

Ri

�
s;F i; � ; t�i

�
= A�i. We refer to the collection of restrictions R = fRigi=1;:::;m as a re�nement.

Fix a re�nement R. Let � be the information partition induced by the equilibrium strategies

� (that is, � (t) = ft0 2 T : � (t0) = � (t)g). We say that (�; ��) is an R-equilibrium of the

contracting game if (2) holds, and in addition

���i (t�i; �) 2 Ri

�
�� (�; � (�)) ; S

�
i; 

�
�i (t�i)

�
; � ; t�i

�
,

for every i and i 2 Ci (recall the notation � =
�
�i; �

�
�i
�
).

Recall from Section 4 that an outcome function is implementable by a PMM if and only if (7),

(8) and (9) hold. Using the more general re�nement described above, we only have to modify (9)

as follows. For every i, t�i 2 T�i, and fi 2 Fi

si (t�i; fi) 2 Ri

�
s; fi � pi�i; � ; t�i

�
: (26)

Then an outcome function is R-implementable by a public message mechanism if and only if (7),

(8), and (9) hold.

18 It is reasonable to require Ri to be measurable with respect to ��i but we do not need this property for our

formalism.
19Perfect Bayesian equilibrium does not have a well accepted de�nition when types are correlated. To see why,

observe that when Player i deviates, non-deviators have to make some inference about his type. The on path choices

of the non-deviators reveal their types to be in some subset. The distribution of non-deviators� types within this

subset depends on the deviating player�s type. So either inferences about non-deviating players depend on actions

of the deviator, or the common prior assumption has to be abandoned.
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Finally, the statement of Theorem 1 is valid even if R denotes restrictions imposed by a more

general re�nement concept. The proof is essentially identical to the one in Section 4.

8.2 De�nability

Our goal here is to provide formal de�nitions for arithmetic statement and arithmetic statements

with free variables. We shall de�ne statements for any �rst-order logic and explain what is speci�c

about Number Theory.

Each formal language has a set of symbols. The symbols of a �rst-order language are divided

into two disjoint sets: the logical-symbols, and the non-logic symbols. The logical-symbols include:

(, ), 8, 9, :, =, and in�nitely many variable symbols, x0; x1; :::. The non-logic symbols include
function-symbols and relation-symbols.

De�nition 4 t = hF;R; �i is a similarity type, where F is a set of function-symbols, R is a set of

relation-symbols, and � : F [R! N such that � (r) > 0 if r 2 R.

The function � tells how many variables do the functions and relations have. If � (f) = 0, then

f is referred to as a constant-symbol.

Example. One of the similarity type corresponding to the Peano Arithmetics, denoted by

q = hF;R; �i, is: F = f0; 1;+; �g, R = f<g, � (0) = � (1) = 0, � (+) = � (�) = � (<) = 2. Notice

that the zero and the one are considered as functions with zero variables, that is, constant symbols.

(We point out that the similarity type of arithmetics can be de�ned without the relation�<�. This

relation can be then de�ned recursively.)

De�nition 5 Let t = hF;R; �i be a similarity type. Then the set of expressions of type t, denoted
by K (t), is the smallest set for which:

(i) x 2 K (t) for all variable symbols,
(ii) For all f 2 F , if � (f) = 0 then f 2 K (t),
(iii) For all f 2 F , if � (f) = n, and k1; :::; kn 2 K (t) then f (k1; :::; kn) 2 K (t).

Suppose that t = q. Then the following string of symbols are expressions in arithmetics: x, 0,

1, x+ 1, ((x+ 1) � (y + 1) + 1) etc.
Finally we are ready to de�ne the set of statements corresponding to a similarity type.

De�nition 6 Let t = hF;R; �i be a similarity type. Then the set of statements of type t, denoted
by F (t), is the smallest set for which:

(i) if r 2 R; � (r) = n; and k1; :::; kn 2 K (t) then r (k1; :::; kn) 2 F (t),
(ii) if k1; k2 2 K (t) then k1 = k2 2 F (t)
(iii) if �; � 2 F (t), then (�) _ (�) 2 F (t), : (�) 2 F (t), and 9x (�) 2 F (t).
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The set of arithmetic statements are de�ned according to the previous de�nition with t = q.

Then the following string of symbols are statements in arithmetics: x = y, :9x9y (y = x+ 1), etc.

For each statement, one can enumerate the number of di¤erent variable symbols appearing in

the statement. A variable is called free variable in a statement if it does not appear right behind a

quanti�er. For example, the statement :9x9y ((y = x+ 1) _ (z = 1)) has three variable symbols:
x, y, and z. However, both the x and the y appears behind a quanti�er. Hence, the only free

variable of this statement is z.

8.3 Proofs

Proof of Lemma 2. (i) Suppose that A =
�
n1; :::; nq

	
where ni =

�
ni1; :::; n

i
k

�
2 Nk for

i = 1; :::; q. The characteristic function of the set A can be de�ned by the following statement in

k + 1 free variables:

� (x1; ::::; xk; y) �
�
_qi=1

�
^kj=1

�
xj = nij

��
^ (y = 1)

�
_
�
:
�
_qi=1

�
^kj=1

�
xj = nij

���
^ (y = 0)

�
.

(ii) Suppose that 'A de�nes �A, 'B de�nes �B ; and let x denote (x1; :::; xk). Then �A\B ,

�A[B and �ArB are de�ned by

['A (x; 1) ^ 'B (x; 1) ^ (y = 1)] _ [: ('A (x; 1) ^ 'B (x; 1)) ^ (y = 0)] ;

[('A (x; 1) _ 'B (x; 1)) ^ (y = 1)] _ [: ('A (x; 1) _ 'B (x; 1)) ^ (y = 0)] ;

['A (x; 1) ^ 'B (x; 0) ^ (y = 1)] _ [: ('A (x; 1) ^ 'B (x; 0)) ^ (y = 0)] ;

respectively.

(iii) Let �Ai
denote a statement de�ning �Ai

for each i. Furthermore, let Bi =
�
bi1; :::; biqi

	
.

Then the following statement obviously de�nes the function f :�
_mi=1

�
�Ai

(x1; :::; xk; 1) ^
�
_qil=1

�
y = bil

����
_
�
^mi=1�Ai

(x1; :::; xk; 0) ^
�
_qm+1

l=1

�
y = b(m+1)l

���
.

(iv) Let �D de�ne the characteristic function of D = �ki=1Di, let �Dj
de�ne the charac-

teristic function of Dj , and let 'n de�ne the characteristic function of g (n) for n 2 D. The

statements �D, �Dj
, and 'n exist because of part (i) of this lemma. Furthermore, let Ai =�

n 2 Nk : fi : ni =2 Dig = i
	
for i 2 f1; :::; kg. The following statement de�nes the characteristic

function of Ai for i 2 f1; :::; kg:

 i (x1; :::; xk; z) =

��
^kj=1
j 6=i

�Dj
(xj ; 1)

�
^ �Di

(xi; 0) ^ (z = 1)
�

_
�
:
��
^kj=1
j 6=i

�Dj
(xj ; 1)

�
^ �Di

(xi; 0)

�
^ (z = 0)

�
.
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Finally, let �j de�ne the characteristic function of Bj for j = 1; :::; k + 1. Then the following

statement de�nes the function f :

(�D (x; 1) ^ (_n2D ('n (y; 1) ^ (x = n)))) _ki=1 (�D (x; 0) ^  i (x; 1) ^ �i (y; 1))

_
�
:
�
(�D (x; 1) ^ (_n2D ('n (y; 1) ^ (x = n)))) _ki=1 (�D (x; 0) ^  i (x; 1) ^ �i (y; 1))

�
^ �k+1 (y; 1)

�
.

Lemma 5 Let Ni � 1 for all i 2 f1; :::;mg. Suppose that hnjj : N�
m
j Nj ! 2N is de�nable and

jhnjj (q) j = 1 for all j 2 f1; :::;mg, nj 2 Nj and q. Suppose that r : N ! 2Nn f;g, and pji : N�j !
2Nn f;g for each i; j 2 f1; :::;mg (i 6= j), such that r (n) and pji (n�i) are �nite for each n 2 N ,
n�i 2 N�i and i. In addition, let (f;g 6=)Ai � N be a �nite set. For all (q1; :::; qm) 2 N�

m
i Ni

(where qi =
�
q1i ; :::; q

Ni
i

�
2 NNi) and l = (l1; :::; lm) 2 Nm, de�ne f i;ni (q; l) as follows:

f i;ni (q; l) (27)

=

8>>>><>>>>:
r (ni; n�i) if 8k 6= i hnkk (q) = lk and h

nk
k (q) 6= h

n0k
k (q) if nk 6= n0k

pji (ni; n�ij)
if 8k 6= i; j hnkk (q) = lk; and h

nk
k (q) 6= h

n0k
k (q) if nk 6= n0k

and @nj s.t.h
nj
j (q) = lj ;

Ai otherwise.

Then the function f i;ni : N�m
i Ni+m ! 2N is de�nable.

Proof. Let Ni denote f1; :::; Nig and N = �mi=1Ni. Let 'nii (x; yi) de�ne h
ni
i , where x is an

jN j-dimensional vector of variable symbols, and yi is a variable symbol. Let �nr (z; v) de�ne the
characteristic function of the set r (n), let �n

pji
(z; v) de�ne the characteristic function of pji and let

�Ai (z; v) de�ne the characteristic function of Ai. The letters z and v are variable symbols.

For all n = (n1; :::; nm) 2 Nm, nk 2 f1; :::; Nkg de�ne

 n (x; y) � ^k 6=i

 
'nkk (x; yk) ^n0k2f1;:::;Nkg

n0k 6=nk

�
:'n

0
k

k (x; yk)
�!

.

Notice that  n (q; l) is true if and only if hnkk (q) = lk for all k 6= i, and hnkk (q) 6= h
n0k
k (q) whenever

nk 6= n0k. That is,  
n corresponds to the condition in the �rst line of (27).

Similarly,

 
n�j
j (x; y�j) � ^k 6=i;j

 
'nkk (x; yk) ^n0k2Nk

n0k 6=nk

�
:'n

0
k

k (x; yk)
�!

^nj2Nj

�
:'njj (x; yj)

�
.

Notice that  n�jj (q; l�j) is true if and only if h
nk
k (q) = lk, h

nk
k (q) 6= h

n0k
k (q) whenever nk 6= n0k for

all k 6= i; j, and there is no nj (2 Nj) s.t. hnjj (q) = lj . That is,  
n�j
j (x; y�j) corresponds to the

second line of (27).

We are ready to construct a statement which de�nes the f i;ni :
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_n2N [ n (x; y) ^ �nr (z; 1)] _j;n�j2N�j

h
 nj (x; y�j) ^ �npji (z; 1)

i
_�

:
�
_n2N [ n (x; y) ^ �nr (z; 1)] _j;n�j2N�j

h
 nj (x; y�j) ^ �npji (z; 1)

i�
^ �Ai (z; 1)

�
.

Lemma 6 The function described by (16) is a de�nable function with j �mi=1 Nij free variables.

Proof. By De�nition 3, we have to show that f i;ni : N�m
1 Nj�Nm!2N is de�nable where f i;ni (q; l)

is de�ned by8>>>><>>>>:
[ri (ni; n�i)] if 8k 6= i hnkk (q) = lk and h

nk
k (q) 6= h

n0k
k (q) if nk 6= n0kh

pji (ni; n�ij)
i if 8k 6= i; j hnkk (q) = lk; and h

nk
k (q) 6= h

n0k
k (q) if nk 6= n0k

and @nj s.t.h
nj
j (q) = lj ;

[Ai] otherwise.

for all l = (l1; :::; lm) 2 Nm, qj =
�
q1j ; :::; q

Nj

j

�
2 NNj , and q = (q1; :::; qm).

Notice that jhnkk (q) j = 1 for all q and hnkk is de�nable by Lemma 1. De�ne ri (ni; n�i) to be

[ri (ni; n�i)] and p
j
i (ni; n�ij) to be

h
pji (ni; n�ij)

i
. Finally let Ai = [Ai]. Notice that Notice that

ri (ni; n�i), p
j
i (ni; n�ij) and Ai are �nite sets of N. Hence, the statement of the lemma follows

from Lemma 5.

Lemma 7 Suppose that g : Nk ! 2B r f;g is a de�nable function where B (� Nq) is �nite. Let
f : 2B ! 2D an arbitrary function where D

�
� Nl

�
is �nite. Then f � g : Nk ! 2D is a de�nable

function.

Proof. Suppose that the statement � in k + q free variables de�nes the function g. That is,

� (a1; :::; ak; b1; :::; bq) is true if and only if (b1; :::; bq) 2 g (a1; :::; ak). First, we construct a state-

ment, ' in k + qjBj free variables, such that,

'
�
a; b1; :::; bjBj

�
is true , g (a) =

�
b1; :::; bjBj

	
(28)

where bi is a q dimensional integer vector. (Notice that we do not assume that bi 6= bj if i 6= j in

the previous equivalence.) To this end, let x =
�
x1; :::; xk

�
, yi =

�
y1i ; :::; y

q
i

�
for all i 2 f1; :::; jBjg,

and z =
�
z1; :::; zq

�
. De�ne ' as follows:

'
�
x; y1; :::; yjBj

�
=
h
^jBji=1� (x; yi)

i
^
h
@z
�
^jBji=1z 6= yi

�
^ � (x; yi)

i
.

This ' obviously satis�es (28). Next, we construct a statement,  , in qljBjjDj free variables such
that

 
�
b1; :::; bjBj; d1:::; djDj

�
is true , f (fb1; :::; bjBjg) =

�
d1:::; djDj

	
, (29)
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where bi is a q dimensional integer vector for all i and di is an l dimensional integer vector for all

i. Suppose that Bi � B, Bi =
n
b1i ; :::; b

jBj
i

o
, and f (Bi) = Di =

n
d1i ; :::; d

jDj

i

o
. Consider

 Bi

�
y1; :::; yjBj ; z1:::; zjDj

�
=

�
_jBjn=1 (yj = bni )

�
^
jBj

n=1

�
_jBjj=1 (yj = bni )

�
^�

_jDjn=1 (zj = dni )
�
^
jDj

n=1

�
_
jDj

j=1 (zj = dni )
�
:

The �rst part in the �rst line says that yj 2
�
b1; :::; bjBj

	
and the second part of the �rst line requires

that for all bni there exists a yj such that yj = bni . Similarly, the �rst part in the second line says

that zj 2
�
d1; :::; djDj

	
and the second part of the second line requires that for all dni there exists

a zj such that zj = dni . Obviously,  Bi

�
b1; :::; bjBj; d1; :::; djDj

�
is true if and only if

�
b1; :::; bjBj

	
=n

b1i ; :::; b
jBj
i

o
and

�
d1; :::; djDj

	
=
n
d1i ; :::; d

jDj
i

o
. Let 2Bn f;g =

�
B1; :::; Bi; :::B2jBj�1

	
. We are

ready to de�ne  :

 
�
y1; :::; yjBj; z1:::; zjDj

�
= _2

jBj�1
i=1  Bi

�
y1; :::; yjBj; z1:::; zjDj

�
.

This statement  obviously satis�es (29).

Finally, we are ready to construct the statement � which de�nes g � f .

� (x; z) = 9y1; :::; yjBj; z1:::; zjDj
�
'
�
x; y1; :::; yjBj

�
^  

�
y1; :::; yjBj; z1:::; zjDj

�
^ (z = z1)

�
.

Lemma 8 Suppose that f : Nk ! 2N is de�nable, g : N! 2Nn f;g is de�nable and jg (n) j = 1 for
all n. For each n 2 N de�ne

h (n1; :::; nk) = f (g (n1) ; n�1) :

Then the function h : Nk ! 2N is de�nable.

Proof. Suppose that � (x; y) de�nes f , where x = (x1; :::; xk) is a vector of variable symbols and

y is a variable symbol. Suppose that ' de�nes g (z; v) ; where both z and v are variable symbols.

Then the following statement, #, obviously de�nes h:

# (x; y) � � (z; x�1; y) ^ ' (z; x1) .

Lemma 9 Let (N1; :::; Nm) 2 Nm (Ni � 1) and Ni = f1; :::; Nig. Suppose that hn�i : N ! 2N is

de�nable for all n�i 2 N�i. Let f;g 6= Ai � N be a �nite set. Let g = (g1; :::; gm�1) : N�i ! Nm�1

be an injection. For each l 2 N and q = (q1; :::; qm) 2 Nm de�ne f (l; q) as follows

f (l; qi; q�i) =

(
hn�i (l) if q�i = g (n�i) ;

Ai otherwise.

Then the function f is de�nable.
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Proof. Let �n�i (v; y) be a statement which de�nes hn�i and let �Ai
(y; z) denote a statement

which de�nes the characteristic function of Ai. The letters y; z and v are variable symbols. Let

x = (x1; :::; xm) a vector of variable symbols. Then the following statement, #, obviously de�nes

f :

# (v; x; y) = _n�i2N�i

�
�n�i (v; y) ^ (g (n�i) = x�i)

�
_
�
:
�
_n�i2N�i

�
�n�i (v; y) ^ (g (n�i) = x�i)

��
^ �Ai

(y; 1)
�
:

Proof of Lemma 3. By Lemma 4, we only have to show that (20) holds for all i 2 f1; :::;mg
and any contract pro�le

�
c
nj
j

	
j, nj

. Suppose by contradiction that there exists an i 2 f1; :::;mg,

and a contract pro�le
�
c
nj
j

	
j, nj

such that \(An�i
i )

n�i

S
��
A
n�i
i

�
n�i2N�i

�
= f;g. Then, for all�

A
n�i
�i
�
n�i2N�i

2
�
2A�i

�jN�ij there exists an
�
A
n�i
i

�
n�i2N�i

2
�
2Ai
�jN�ij such that

�
A
n�i
�i
�
n�i2N�i

=2

S
��
A
n�i
i

�
n�i2N�i

�
. Let us �x a function f =

�
fn�i

�
n�i2N�i

:
�
2A�i

�jN�ij !
�
2Ai
�jN�ij such that

for all
�
A
n�i
�i
�
n�i2N�i

2
�
2A�i

�jN�ij

�
A
n�i
�i
�
n�i2N�i

=2 S
�
f
��
A
n�i
�i
�
n�i2N�i

��
.

Let fc
n�i
�i denote the function de�ned by cn�i�i . De�ne a function with one free variable, fx, as

follows:

fx ([ci] ; [c�i]) =

8<:
�
fn0�i

��
<
�
fc

n�i
�i
��
< x >(x)

�
;
�
c
n�i
�i
���

>
�
n�i2N�i

��
if c�i = c

n0�i
�i ;

[Ai] otherwise.
(30)

We shall prove that fx is a de�nable function in one free variable, see Lemma 10. Let cx be an

arithmetic statement de�ning fx and let  denote its Gödel code. Then

f ([ci] ; [c�i]) =

8<:
h
fn0�i

��ecn�i�i
�
c ; c

n�i
�i
��
n�i2N�i

�i
if c�i = c

n0�i
�i ;

[Ai] otherwise.

Notice that �ecn�i�i
�
c ; c

n�i
�i
��
n�i2N�i

2 S
�
(ec (c ; cnii ))n�i2N�i

�
(31)

by the de�nition of S. On the other hand,�ec �c ; cn�i�i
��
n�i2N�i

=

�
fn�i

��ecn0�i�i

�
c ; c

n0�i
�i

��
n0�i2N�i

��
n�i2N�i

= f
��ecn�i�i

�
c ; c

n�i
�i
��
n�i2N�i

�
;

by the de�nition of c . Therefore,��ecn�i�i
�
c ; c

n�i
�i
��
n�i2N�i

�
=2 S

��ec �c ; cn�i�i
��
n�i2N�i

�
(32)

by the de�nition of f . Notice that (31) and (32) contradict to each other, and hence (20) holds.
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Lemma 10 The function de�ned by (30) is a de�nable function with one free variable.

Proof. By De�nition 3, we have to prove that f : Nm+1 ! 2N is a de�nable function if

f (l; q1; :::; qm) =

8<:
�
fn0�i

��
<
�
fc

n�i
�i
��
< l >(l)

�
;
�
c
n�i
�i
���

>
�
n�i2N�i

��
if q�i =

h
c
n0�i
�i

i
;

[Ai] otherwise.

for all l 2 N and q = (q1; :::; qm) 2 Nm. The function fc
n�i
�i
��
< l >(l)

�
; q�i

�
is de�nable

�
Nm ! 2N

�
by Lemmas 1 and 8. De�ne hn0�i (l) for all l 2 N as follows

hn0�i (l) =

�
fn0�i

��
<
�
fc

n�i
�i

�h
< l >(l)

i
;
�
c
n�i
�i
���

>
�
n�i2N�i

��
:

Then the function hn0�i is de�nable for all n
0
�i 2 N�i by Lemma 7. Finally, de�ne g (n�i) =

�
c
n�i
�i
�

for all n�i 2 N�i and apply Lemma 9 to conclude that f is de�nable.
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