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Abstract

The empirical DSGE (dynamic stochastic general equilibrium) literature pays surprisingly

little attention to the behavior of the monetary authority. Alternative policy rule

specifications abound, but their relative merit is rarely discussed. We contribute to filling

this gap by comparing the fit of a large set of interest rate rules (fifty-five in total), which

we estimate within a simple New Keynesian model. We find that specifications in which

monetary policy responds to inflation and to deviations of output from its efficient level--

the one that would prevail in the absence of distortions--have the worst fit within the set

we consider. Policies that respond to measures of the output gap based on statistical filters

perform better, but the best-fitting rules are those that also track the evolution of the

model-consistent efficient real interest rate.
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1 Introduction

Most central banks have a dual mandate: stabilize inflation and real activity. This dual

mandate is explicit and symmetric in the United States, where the Federal Reserve Act

instructs the Federal Reserve to “...promote effectively the goals of maximum employment,”

and “stable prices.”But even in inflation targeting countries, whose formal mandates tend

to focus on inflation, the implementation of monetary policy usually involves balancing this

objective with the stabilization of a real criterion. “In practice, inflation targeting is never

‘strict’inflation targeting but always ‘flexible’inflation targeting...”, according to Svensson

(2007) .

And yet, while the interpretation of the price stability mandate has become increasingly

transparent and uniform around the world, the real stability objective typically remains vague.

This lack of clarity reflects in part the absence of a consensus in the academic literature and

among policymakers. Economists agree that inflation should be low and stable, but they do

not share an operational definition of a real target for monetary policy. In applied contexts,

full employment (also known as “potential”) output has been traditionally defined as a smooth

trend for GDP, often measured through some filtering or de-trending procedure.1 From a

more theoretical perspective, the New Keynesian literature suggests that output should be

stabilized around its effi cient level, i.e. the level that would prevail in the absence of nominal

distortions (Woodford, 2003).2 Unfortunately, these two notions of potential output —one

purely statistical, the other purely theoretical —can differ quite significantly since the latter

incorporates the effi cient response of the economy to shocks and might thus be far from

smooth.3

The absence of a standard definition of the real objective of monetary policy is not only

relevant in normative contexts. For example, in the last few years, empirical dynamic sto-

chastic general equilibrium (DSGE) models have incorporated ever more detailed and realistic

1Orphanides and Van Norden (2002) review several of these statistical procedures. Growth accounting
represents another popular approach to the measurement of potential output as a smooth trend (see CBO,
2001).

2A third approach to the measurement of potential output, which is intermediate between the two described
above, involves positing a statistical relationship between inflation and the output gap (a Phillips curve).
This relationship then forms the basis for a multivariate Kalman filter to extract potential output (see for
example Kuttner, 1994, and Laubach and Williams, 2003). Mishkin (2007) provides an excellent survey of
various statistical and model-based methods for the estimation of potential output and discusses their policy
implications.

3For example, in an estimated DSGE model with several frictions, Edge, Kiley and Laforte (2007) find
that the time series of effi cient output does not resemble much the more traditional potential output derived
within FRB/US. Justiniano, Primiceri and Tambalotti (2011) reach the opposite conclusion comparing the
effi cient output in their model with an HP trend.
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descriptions of private sector behavior and of the monetary transmission mechanism, follow-

ing the seminal work of Christiano, Eichenbaum and Evans (2005) and Smets and Wouters

(2007). In terms of modeling the monetary authority, though, most studies simply posit an

interest rate feedback rule broadly inspired by Taylor (1993), usually with no discussion of

its details and of potential alternatives. As a result, we have witnessed a proliferation of

estimated policy rules, especially with respect to the specification of the real variables the

central bank reacts to, but with very little guidance on their positive or normative merit.4

This paper attempts to impose some order on this wilderness by comparing the fit of

a large set of interest rate rules within an estimated, small scale DSGE model of the U.S.

economy. Most of the rules we consider have previously appeared in the literature. Others,

including the best fitting ones, have not.

Our analysis proceeds in three steps. First, we show how to integrate statistical measures

of the output gap (in particular those obtained through filtering) into a general equilibrium

model. The idea, which we adapt from Christiano and Fitzgerald (2003), is to use the DSGE

model as a forecasting (and backcasting) device to construct a two-sided version of the filter,

in which the model’s forecasts substitute the realized forward values of the variable of interest

(here GDP). This filter produces a real-time measure of a “statistical”output gap, which at

the same time is one of the endogenous variables in the DSGE model.

In the second step of the analysis, we assemble a catalog of interest rate rules of the general

form

it = ρit−1 + (1− ρ) [φct + φπ (πt − π∗t ) + φxxt] (1)

where it is the Federal Funds Rate, φct is a potentially time-varying intercept, πt − π∗t is

the deviation of inflation from a target value, which can also be time-varying, and xt is

the output gap. As a baseline, we adopt a simple specification with constant intercept and

inflation target, and with the effi cient output gap as the measure of economic slack.

We then consider a few alternative classes of policies, each with several variants, for a

total of 55 estimated rules. For example, one alternative class of policies replaces the effi cient

output gap with a statistical measure, with variants corresponding to different types of filters.

This set of rules is designed to be close to those estimated in empirical analyses of monetary

4For a recent normative analysis of alternative simple interest rate rules within a calibrated DSGE model
see Schmitt-Grohe and Uribe (2007). Svensson (2003) recommends modeling central banks as optimizing
agents that maximize an objective function, as customary for the private sector, rather than as automatons
committed to an interest rate feedback rule. The optimal targeting rule obtained in this framework, however,
still depends on the arguments of the loss function policymakers are assumed to minimize. See Adolfson,
Laséen, Lindé and Svensson (2008) for a state-of-the-art implementation of this approach within a DSGE
model for Sweden.
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policy behavior based on partial information estimation methods, which tend to measure

slack as the deviation of GDP from a smooth trend (e.g. Clarida, Galí and Gertler, 2000;

Judd and Rudebusch, 1998; English, Nelson and Sack, 2003 and the survey by Orphanides,

2003). Another class of policies we examine allows the intercept φct to move over time. In

particular, we study specifications in which the monetary authority tracks the evolution of an

“equilibrium”real interest rate —the real rate that would maintain the economy at potential.

These policy rules echo Wicksell’s suggestion that a “natural”rate of return determined by

real factors represents a useful target for monetary policy (Woodford, 2003) —an idea familiar

to Fed policymakers at least since the early 1990s (e.g. Greenspan, 1993). However, to our

knowledge, this paper is the first to estimate interest rate rules consistent with this idea.5

Finally, in the third step of the analysis, we embed each of the candidate interest rate

rules within a DSGE framework with given tastes and technology. We estimate the resulting

set of models with Bayesian methods and compare their fit using marginal data densities.6

The objective of this exercise is not necessarily to pick the best fitting rule, and discard all

others, but rather to identify a class of policies that offer the best promise to account for

the behavior of the data and, perhaps more importantly, weed out those whose fit is clearly

inferior.

We can summarize the main results as follows. First, and to our surprise, the baseline

rule ranks 47th in terms of fit, out of the 55 rules we have estimated. Moreover, the evidence

against this specification is very strong, according to our model evaluation criterion (Kass

and Raftery, 1995). Second, the fit of the model improves significantly when we resort to a

statistical filter to measure slack in the policy rule. In this context, the quarterly HP filter

performs particularly well.

Third, the fit improves further when we let the intercept of the policy rule track the

effi cient rate of interest, the one that would prevail in the economy with no distortions. In

fact, this measure of the equilibrium interest rate is a better proxy for the real economic

developments, to which monetary policy seems to respond, than any of the several measures

of output gap we have experimented with. This is the main result of the paper, which sets

it apart from the large literature on the estimation of Taylor rules with partial information

techniques. It takes a complete general equilibrium model, in fact, to compute equilibrium

5Trehan and Wu (2007) discuss the biases in the reduced-form estimation of policy rules with a constant
intercept, when in fact the central bank responds to a time-varying equilibrium real rate, but do not estimate
this response.

6An and Schorfheide (2007) provide a comprehensive survey of the application of Bayesian methods to the
estimation and comparison of DSGE models. Lubik and Schorfheide (2007) use these methods to estimate
the response of monetary policy to exchange rate movements in several small open economies.
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measures of the interest rate of the kind analyzed here.

Fourth, policy rules with a slowly evolving inflation target perform best, since this target

captures some of the low frequency variation in inflation and the nominal interest rate that is

evident even in our relatively short sample (1987Q3 to 2009Q3). However, this improvement

in fit comes at the cost of introducing one more exogenous process into the model, even if

one with a clear economic interpretation. Therefore, we take the empirical success of this

specification as an indication that more research is needed to understand the low frequency

movements in nominal variables, rather than a reflection of the actual behavior of the Federal

Reserve.

Fifth, all these results survive when we embed the most representative policy rules of each

class within the medium-scale DSGE model of Justiniano, Primiceri and Tambalotti (2010),

estimated on the same set of observables as in our baseline specification.

Overall, these findings suggest that the specification of the interest rate rule can have a

significant impact on the fit of DSGE models. In our baseline small-scale model, the gap

in marginal likelihoods between the best and worst fitting rules is about fifty log-points

and reaches eighty log-points in the medium-scale model, which is on the order of magnitude

arising from the inclusion and exclusion of stochastic volatility in a similar model (Cúrdia, Del

Negro and Greenwald, 2011). This evidence underscores the importance for DSGE researchers

to pay significantly more attention to the specification of monetary policy than common

practice to date.

The rest of the paper proceeds as follows. The next section presents our model of private

sector behavior, together with the baseline interest rate rule. Section 3 discusses the econo-

metric methodology and the estimation results for the baseline model. Section 4 introduces

the alternative classes of policy rules we consider and compares their empirical performance.

Section 5 concludes.

2 A Simple Model of the Monetary Transmission Mechanism

We augment the purely forward-looking textbook New Keynesian framework (Woodford,

2003) with two sources of inertia, to improve its ability to fit the data. On the demand side,

we include habits in consumption in the utility specification. On the supply side, we allow

for partial indexation to past inflation of the subset of prices that are not reoptimized in each

period.

The resulting model is smaller than the workhorse empirical DSGE model of Smets and

Wouters (2007). It abstracts from capital accumulation and the attending frictions —such as
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endogenous utilization and investment adjustment costs —and from non-competitive features

in the labor market — such as monopolistic competition and sticky wages. This modeling

choice allows us to estimate and compare the fit of as many interest rate rules as we like —55

in the current version, and a multiple of this number if we consider various revisions —without

having to worry about computational constraints. This is an important consideration for our

exercise, given the very large number of policy specifications found in the literature, many of

which we have not (yet) considered.

The remainder of this section presents the linearized equilibrium conditions of the model,

which constitute the basis for estimation. Appendix A contains details of the model’s mi-

crofoundations, including the mapping of the tastes and technology parameters into those of

the approximate log-linear equations.

2.1 Private Sector

An Euler equation summarizes the demand side of the model

λt = Etλt+1 + (it − Etπt+1)− Etγt+1 − Etδt+1,

where λt is the marginal utility of real income, it is the (continuously compounded) nominal

interest rate and πt is inflation, while γt and δt are the (exogenous) growth rate of total

factor productivity and a shock to consumers’ impatience, both distributed as stationary

AR(1) processes. All variables are expressed as log deviations from their balanced growth

paths. The intertemporal elasticity of substitution is restricted to unity because we assume

logarithmic utility.

Manipulating this Euler equation, we can obtain the gap representation

x̃t = Etx̃t+1 − ϕ−1
γ (it − Etπt+1 − ret ) . (2)

Here, ret is the effi cient real interest rate and the measure of real activity x̃t,

x̃t ≡
(
xet − ηγxet−1

)
− βηγEt

(
xet+1 − ηγxet

)
,

is a distributed lag of the effi cient output gap xet ≡ yt − yet , where yt is output and yet is its
effi cient counterpart. The lead-lag structure in the definition of x̃t reflects the presence of

internal habits in consumption, to a degree indexed by the parameter ηγ .

The effi cient output yet is an important construct in what follows. It represents the level

of aggregate output that would prevail in equilibrium if prices were, and always had been,
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flexible and there were no markup shocks. Effi cient output evolves according to the difference

equation

ωyet + ϕγ
(
yet − ηγyet−1

)
+ βϕγηγ

(
Ety

e
t+1 − ηγyet

)
= ϕγηγ

(
βEtγt+1 − γt

)
+

βηγ
1− βηγ

Etδt+1,

(3)

from which we observe that yet is a linear combination of the past and future expected values

of the productivity and intertemporal taste shocks alone. This observation implies that the

counterfactual environment in which prices are flexible is a parallel universe, which evolves

independently from the outcomes observed in the actual economy. In this parallel universe,

the intertemporal Euler equation implies

ret = Etγt+1 + Etδt+1 − ω
(
Ety

e
t+1 − yet

)
,

where we used the production function and the intratemporal effi ciency condition (i.e. mar-

ginal rate of substitution equal to marginal product of labor) to map the effi cient marginal

utility of consumption λet into output y
e
t .

Turning now to the supply side of the model, the optimal pricing decisions of firms produce

a Phillips curve of the form

π̃t = ξ (ωxet + ϕx̃t) + βEtπ̃t+1 + ut, (4)

where

π̃t ≡ πt − ζπt−1

depends on the degree of indexation to past inflation, parametrized by ζ, and ut is an AR(1)

cost-push shock, generated by exogenous fluctuations in desired markups. These fluctuations

are the only source of a tradeoff between inflation and real activity in this model.

Without markup shocks, the effi cient level of aggregate production can be achieved to-

gether with price stability (i.e. πt = 0), as we can see by substituting ut = 0 and yt = yet ,

or xet = 0, ∀t in equation (4). This is the first best outcome in this economy, since no price
needs to change when aggregate inflation is zero, thus eliminating price dispersion across

monopolistic producers and the distortions in the allocation of resources associated with it

(Woodford, 2003). When markup shocks are present, on the contrary, the effi cient allocation

is no longer feasible, because the effi cient level of aggregate output could only be achieved

by allowing cost-push shocks to pass-through to inflation entirely, as we can see by solving
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equation (4) forward with yt = yet ∀t

πt = ζπt−1 +
∑∞

s=0 β
sEtut+s.

The resulting fluctuations in inflation would then produce an ineffi cient dispersion of prices

and production levels across varieties. At the other extreme of the policy spectrum, perfect

inflation stabilization would require cost-push shocks to show-through entirely in deviations

of output from its effi cient level. Optimal policy, therefore, will distribute the impact of

these shocks between output and inflation, as to balance the objectives of price stability and

effi cient aggregate production.

One implication of this trade-off is that an ex-ante real interest rate, it − Etπt+1, set to

perfectly shadow the effi cient rate of return ret , would not be optimal, although the Euler

equation (2) implies that such a policy would close the output gap every period and thus

achieve the effi cient level of aggregate production. This is the main reason for including some

feedback from inflation and the output gap even in the interest rate rules that include ret in

their intercept, as we do below.7

2.2 Monetary Policy: Baseline Specification

In the baseline policy specification, the central bank sets the nominal interest rate in response

to the current inflation rate and effi cient output gap, with a certain degree of inertia

it = ρit−1 + (1− ρ) (φππt + φxx
e
t ) + εit. (5)

Expression (5) represents a natural starting point for our comparative analysis, since it brings

the basic ingredients of the empirical literature on interest rate rules into the context of our

DSGE framework. Inflation and real activity are standard arguments of monetary policy

rules at least since Taylor (1993), while interest rate inertia typically improves their ability

to fit the data, as shown for example by Clarida, Galí and Gertler (2000). We choose the

effi cient output gap as the baseline policy measure of real economic developments for internal

consistency with the rest of our theoretical apparatus. In our model, in fact, this gap is both

the fundamental driver of inflation, as shown in equation (4), as well as the measure of slack

that is relevant for welfare analysis (e.g. Woodford, 2003).

7Another reason is that a policy rule of the form it = ret + Etπt+1 would not deliver the effi cient output
uniquely, since the nominal interest rate does not respond more than one-to-one to expected inflation (e.g.
Clarida, Galí and Gertler, 1999).
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3 Inference

We estimate the model laid out in the previous section, and all the variants discussed below,

with Bayesian methods, as surveyed for example by An and Schorfheide (2007). Bayesian

estimation combines prior information on the parameters with the likelihood function of the

model, to form a posterior density function. We construct the likelihood using the Kalman

filter based on the state space representation of the rational expectations solution of each

model under consideration, assuming a likelihood of zero for the parameter values that imply

indeterminacy. The observation equations are

∆ logGDPt = γ + yt − yt−1 + γt

∆ logPCEt = π∗ + πt

FFRt = r + π∗ + it,

where ∆ is the first difference operator, GDPt is real GDP, PCEt is the core PCE deflator

ex food and energy, and FFRt is the average effective Federal Funds rate, all sampled at a

quarterly frequency. The constants in these equations represent the average growth rate of

productivity, γ, the long run inflation target, π∗, and the average real interest rate, r. The

sample period runs from 1987:Q3 to 2009:Q3, although the main results are not affected by

truncating the sample at 2008:Q4, when the Federal Funds rate first hit the zero bound. We

start the sample with Alan Greenspan’s tenure as Fed chairmanship because, starting with

Taylor (1993), there seems to be general agreement that interest rate setting appropriately

characterizes U.S. monetary policy during this period.

The left panel of Table 1 reports our choice of the priors, which are maintained across all

the model specifications we consider. On the demand side, we calibrate the discount factor

as β = 0.99, and impose a loose prior between zero and one on the habit coeffi cient η, only

slightly favoring higher values. These two parameters, together with the average balanced

growth rate γ, determine the slope of the Euler equation (2), ϕ−1
γ ≡

(
1− ηγ

) (
1− βηγ

)
,

where ηγ ≡ ηe−γ .
On the supply side, the prior on the indexation parameter ζ is centered around 0.6, but

is quite dispersed over the unit interval. The slope of the Phillips curve is a convolution of

deep parameters, ξ ≡ (1−α)(1−αβ)
α(1+ωθ) , where α is the fraction of firms that do not change their

price in any given period, θ is the elasticity of demand faced by each monopolistic producer

and ω is the inverse Frisch elasticity of labor supply. Only the slope ξ can be identified from

our observables. We formulate our prior on this parameter as a Gamma distribution with

mean 0.1. This value is somewhat higher than the partial information estimates of the New
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Keynesian Phillips curve (e.g. Galí and Gertler, 1999, Sbordone, 2002), but is consistent with

the low degree of price stickiness found in microeconomic studies such as Bils and Klenow

(2004), given reasonable values for ω and θ.8

Turning now to the interest rate rule, the prior on the smoothing parameter ρ follows a

Beta distribution centered at 0.7, with a 90% probability interval wide enough to encompass

most existing estimates. The priors for the feedback coeffi cients on inflation and real activity

are normally distributed with means 1.5 and 0.5 respectively, as in the original Taylor (1993)

rule.

The autocorrelations of the exogenous shocks, the ρi’s in the table (for each shock i), have

Beta prior distributions with mean 0.5, while the standard deviations, denoted by σi, have

Inverse Gamma prior distributions centered at 0.5.

We obtain the posterior mode and inverse Hessian by minimizing the negative of the log

posterior density function and use Markov Chain Monte Carlo methods, more specifically a

Random Walk Metropolis algorithm, to build a representative sample of the parameters’joint

posterior distribution. We monitor the convergence of the chains of draws in each step using

a variety of tests. Finally, upon convergence, we combine the chains in the last step, after

discarding the initial 25% of the draws in each chain, to form a full sample of the posterior

distribution, which represents the source of our inference information.9

To evaluate the fit of different policy rules, we compare the marginal data densities, or

posterior probabilities, of the DSGE models in which the rules are embedded, using Geweke’s

(1999) modified harmonic mean estimator. In particular, we compute the log of the Bayes

factor (multiplied by two) of each alternative model against the baseline. Kass and Raftery

(1995) recommend this measure of relative fit since its scale is the same as a classic Likelihood

Ratio statistic.10 This procedure results in an overall ranking of the interest rate rules under

consideration, as well as in a measure of their individual fit against a common benchmark,

and thus implicitly against each other.

8For example, with ω = 1 and θ = 8, which corresponds to a desired markup of 14%, ξ = 0.1 implies
α = 0.4, or an expected duration of prices of about five months.

9Detailed convergence and inference analysis for each specification discussed in the paper is available upon
request.
10The Bayes factor of model 1 against model 2 is the ratio of their marginal likelihoods. Kass and Raftery

(1995) suggest that values of 2 logBF above 10 can be considered very strong evidence in favor of model 1.
Values between 6 and 10 represent strong evidence, between 2 and 6 postive evidence, while values below 2
are “not worth more than a bare mention.”We refer to this statistic as the KR criterion.
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3.1 Estimation Results in the Baseline Model

The right panel of Table 1 reports selected moments of the marginal posterior distributions

of the parameters under the baseline interest rate rule. Although the data are quite informa-

tive on most parameters, and many of the posterior estimates fall within reasonable ranges,

close inspection of the results also reveals some anomalies with this specification. To better

visualize these anomalies, Figure 1 graphs the prior and posterior marginal distributions for

the group of problematic parameters.

First, note that the posterior estimate of the slope of the Phillips curve, ξ, is minuscule,

with a mean of 0.002, two orders of magnitude smaller than the prior mean and at the extreme

lower edge of the available estimates in the DSGE literature (see for example the survey by

Schorfheide, 2008). This posterior estimate implies that there is no discernible trade-off

between inflation and real activity, and that inflation is close to an exogenous process driven

by movements in desired markups. As a consequence, there is little hope of distinguishing

between dynamic inflation indexation and persistent markup shocks, as drivers of the observed

inflation persistence. This lack of identification is reflected in the bimodal marginal posterior

distributions of the parameters ζ and ρu, which are generated by MCMC draws with high ζ

and low ρu, or vice versa, and that correspond to local peaks of the joint posterior density of

similar heights. Finally, the last two panels of Figure 1 show that the estimated parameters

of the interest rate rule imply a strong reaction of policy to the output gap, and an extremely

weak reaction to inflation, with about half of the posterior draws for φπ below one. These

values are puzzling, in light of the large literature that has argued that a forceful reaction to

inflation has been one of the hallmarks of U.S. monetary policy since the mid-eighties.

The anomalies of the posterior distribution highlighted above reduce the baseline model’s

marginal data density and contribute to its extremely poor overall fit. For now, we are not in

a position to quantify the extent of this empirical failure since we have not yet introduced an

alternative model, but we can say that the baseline specification ranks 47th in terms marginal

likelihood among the 55 evaluated in this version of the paper.

4 Evaluating Alternative Interest Rate Rules

Many aspects of our baseline model could be problematic. In the rest of the paper, we focus

on one potential source of these problems, which in our judgement has been largely, and

surprisingly, overlooked in the DSGE literature: the specification of the interest rate rule.

As we will see, relatively minor adjustments to the policy rule compared to the baseline

specification can improve the fit of our simple DSGE model dramatically, at the same time

10



contributing to solve some of the anomalous estimates and identification problems highlighted

in Figure 1.11

4.1 Statistical Output Gaps

The measure of economic slack that we chose to include in the baseline interest rate rule is

the deviation of GDP from its effi cient level. This choice is fairly common in DSGE work

(e.g. Smets and Wouters, 2007), although far from universal. One drawback is that this

approach makes the resulting policy rule impossible to compare with those estimated in the

vast literature that employs partial information econometric techniques, since the construc-

tion of the counterfactual effi cient output requires a general equilibrium model. Moreover,

the effi cient output gap might be considered an implausible choice as a summary statistic

for policymakers’ views on the level of resource utilization, precisely because of its model

dependency.

To bridge the gap between our general equilibrium framework and the work based on

single equation methods, we begin our catalog of alternative policy rules with specifications

in which the output gap is measured through statistical filters. In particular, we focus on the

Hodrick and Prescott (HP) filter as a tool to construct smooth versions of potential output,

given its popularity in applied macroeconomics.12

One diffi culty in making the HP filter operational within a DSGE model is that its ideal

representation is a two-sided, infinite moving average, whose standard approximation to finite

samples requires different coeffi cients on the observations at the beginning, in the middle, and

at the end of the sample. Such a pattern of coeffi cients is diffi cult to replicate within a dynamic

system of rational expectation equations with a parsimonious state space. To circumvent this

problem, we adapt the methodology proposed by Christiano and Fitzgerald (2003) for the

approximation of ideal band pass filters. Christiano and Fitzgerald (2003) suggest to use

forecasts (and backcasts) from an auxiliary time-series model — in their case a simple unit

root process — to extend the sample in the past and in the future. In our implementation

of their idea, the auxiliary model that generates the dummy observations is the linearized

DSGE itself.

This approach is particularly convenient for our purposes because it produces a very

11We do not address directly here the extent to which different policy rules aid or hinder the identification of
the model’s parameters, although this issue would deserve further scrutiny. For a recent study of identification
in DSGEs, see Canova and Sala (2009), who find that identification is often problematic in this class of models.
12See Orphanides and van Norden (2002) for a comprehensive survey of the use of statistical filters as

measures of the output gap and of their pitfalls.
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parsimonious recursive expression for the DSGE-HP gap[
1 + λ(1− L)2 (1− F )2

]
xHPt = λ(1− L)2 (1− F )2 yt, (6)

where the operators L and F are defined by Lyt = yt−1 and Fyt = Etyt+1, and the smoothing

parameter λ is set at the typical quarterly value of 1600. This expression can thus be added

to the system of rational expectations equations that defines the equilibrium of the model.

Of course, the time series for the output gap obtained through this procedure will not be the

same as the one produced by the finite sample approximation usually employed in applied

work. However, it has a very similar flavor, as we will see shortly. More details on the

derivation of equation 6 and on its interpretation, together with some background on linear

filtering, can be found in the Appendix.

When we estimate the model by replacing the effi cient output gap with xHPt in the in-

terest rate rule, the marginal likelihood increases by about 10 log-points, or 21.6 points on

the KR criterion. This improvement represents very strong evidence in favor of the latter

specification. For some insight into this result, Figure 2 reports prior and posterior marginal

distributions for the same parameters we highlighted as anomalous in the baseline model. Al-

though the slope of the Phillips curve remains extremely low, its mean is now twice as large

as before (0.004 vs 0.002). Moreover, the posterior points to a small indexation coeffi cient (ζ)

and to relatively little persistence in the cost-push shock (ρu), with no immediate evidence

of identification problems. Finally, the feedback coeffi cients on inflation and the output gap

in the Taylor rule are closer to more typical values, although φπ remains on the low side.

Another interesting posterior object in this model is the distribution of the time-series for

the DSGE-HP output gap, which is depicted in Figure 3, together with the standard finite

sample approximation of the HP filter, denoted by Data-HP, and the output gap computed

using the measure of potential output produced by the Congressional Budget Offi ce (CBO).

The two HP approximations co-move fairly closely, although far from perfectly. In particular,

the dips in the DSGE-based approximation around the NBER recessions, which are shaded

in grey, are more pronounced than in the standard HP. In fact, the DSGE-HP conveys a view

of the timing and extent of expansions and recessions over our sample period very similar

to that of the CBO output gap (at least in two of the three recessions experienced over the

sample period). Overall, this evidence supports our use of the DSGE-HP filter as an effective

de-trending tool, which produces a measure of capacity utilization similar to those often used

in single-equation estimates of the Taylor rule.

Given the promising empirical performance of the quarterly HP output gap as an argu-

ment of the model’s interest rate rule, we explored several alternative filter formulations. In
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particular, we consider HP filters in which the smoothing parameter λ is either estimated,

with a very diffused prior centered at somewhat higher values than 1600, or calibrated to a

“high”value of λ = 160000. The motivation for both these specifications is to test the data’s

appetite for a smoother trend than in the baseline HP, closer to those obtained through the

production function approach, for example by the CBO (2001). In addition, we evaluate

models with simpler, one-sided filters, such as the exponential filter13[
1 + λ̃(1− L)

]
xExpt = λ̃ (1− L) yt,

the four quarter moving average of GDP growth (yt − yt−4) /4 and its simple quarterly growth

rate ∆yt.

The impact on the model’s fit of using these alternative de-trending methods to measure

the output gap in the interest rate rule are summarized in Panel I of Table 2. This table

reports the log marginal likelihood of all the model specifications we have estimated, together

with twice the log Bayes factor for each model against the baseline (the KR statistic). More-

over, in the first column of the table, we report the ranking of each model, from the best to

the worst fitting. Column two reports a shortcut with which we sometimes refer to the rules

in the text, while column three describes each rule in mathematical notation, focusing on its

long-run arguments (i.e. ignoring interest rate smoothing). For example, the baseline model,

whose long-run arguments are φππt + φxx
e
t , has a logML of −379, which makes it number

47 in terms of fit out of the 55 rules we estimated in this paper.

From the table, we see that the DSGE-HP filter with λ = 1600 produces the best fit

among the models with a statistical output gap. The evidence in favor of this specification

(model HP in the table) against the baseline is very strong, as we already pointed out. The

model in which the HP smoothing parameter is estimated (HPλ̂) does only slightly worse.

The reason is that the posterior distribution of this parameter has a median of about 1100

(and the posterior distribution concentrates around this level), which produces a gap almost

identical to λ = 1600. The performance of all the other filters, on the contrary, is clearly

inferior, although most of them fit better than the baseline specification.

Finally, to round up our exploration of the role of the output gap in the policy rule, Table

2 reports results for two more specifications. The first one follows Smets and Wouters (2007)

(model SW), which also includes a term in the growth rate of the effi cient gap. The second

one is a “control”, in which the output gap is excluded altogether, and the federal funds rate

13 In one version of the exponential filter we set the smoothing parameter to λ̃ = 61.5, to match the gain of
the HP filter at frequency ω = 2π/32, which corresponds to an eight year cycle (King and Rebelo, 1993). We
also consider a version where λ̃ is estimated, with a prior centered at the same value as above.
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only responds to inflation (NoGap). Smets and Wouter’s (2007) rule performs significantly

better than the baseline, which probably explains the somewhat unusual inclusion of the

growth rate of the output gap in the first place. In fact, the fit of this rule is very close to

that of the HP rule, although it is still in the lower half of the overall ranking.

On the contrary, the restriction φx = 0 is strongly rejected by the data, leading to a

significant deterioration in fit even with respect to the baseline. This result confirms that

the identification of a good indicator of real economic developments is a crucial factor in

the search for a parsimonious, but reasonably accurate, description of the behavior of the

policy rate. Our results so far suggest that common measures of de-trended output, such

as those obtained through the HP filter, are more likely to represent such an indicator than

the flexible-price gap consistent with the structure of the DSGE model. In the next section,

we move the search for this indicator further, by exploring the properties of an alternative

flexible-price construct implied by our general equilibrium model: the effi cient real interest

rate.

4.2 Tracking the Effi cient Real Interest Rate

The idea that an “equilibrium”interest rate (EIR) might represent a useful reference point for

monetary policy was familiar to Federal Reserve policymakers well before Woodford (2003) re-

vitalized its Wicksellian roots. For example, in his Humphrey Hawkins testimony to Congress

in May 1993, Chairman Alan Greenspan stated that “...In assessing real rates, the central

issue is their relationship to an equilibrium interest rate, specifically, the real rate level that,

if maintained, would keep the economy at its production potential over time. Rates persisting

above that level, history tells us, tend to be associated with slack, disinflation, and economic

stagnation —below that level with eventual resource bottlenecks and rising inflation, which

ultimately engenders economic contraction. Maintaining the real rate around its equilib-

rium level should have a stabilizing effect on the economy, directing production toward its

long-term potential”(Greenspan, 1993).14

In this section, we investigate the extent to which Chairman Greenspan’s reasoning had

a measurable impact on the evolution of the observed nominal interest rate over our sample.

To measure the EIR within our DSGE model, we follow the Chairman’s description and

compute the counterfactual “real rate level that, if maintained, would keep the economy

at its production potential over time.”When “potential” output is defined as the effi cient

14Quantitative measures of the EIR are a regular input in the monetary policy debate at the Federal Reserve,
as demonstrated by the fact that a chart with a range of estimates of the EIR is included in most published
Bluebooks at least since May 2001 (see http://www.federalreserve.gov/monetarypolicy/fomc_historical.htm).
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aggregate level of production, yet , the EIR is the effi cient rate of return ret . This is our

preferred measure of the EIR, since it is grounded in the microeconomic structure of the

DSGE model. However, we also consider the equilibrium real rates that correspond to the

potential outputs implied by the HP and exponential filters.15 We then embed these measures

of the EIR, which we generically denote by r∗t , in a class of policy rules of the form

it = ρit−1 + (1− ρ) [r∗t + φππt + φxxt] + εit, (7)

where we consider several permutations in the definitions of both r∗t and xt.

The first rule in this class that we consider uses the DSGE’s effi cient equilibrium as its

notion of potential, so that r∗t ≡ ret and xt ≡ xet . This choice of arguments for the policy rule
improves the model’s marginal likelihood by approximately 20 log-points with respect to the

baseline specification and by 10 log-points with respect to the best fitting rule among those

discussed in the previous section. These differences represent very strong evidence in favor

of policy rules that allow a gradual adjustment of the nominal interest rate to movements in

the effi cient real rate. To our knowledge, this paper is the first to document this evidence,

although policymakers have been discussing the equilibrium real rate as a potentially useful

indicator for monetary policy for a long time, as witnessed by Chairman Greenspan’s remarks

above (see also Amato, 2005). This specification gains even more importance in light of the

current macroeconomic situation. In a model with credit frictions, Cúrdia and Woodford

(2009) show that movements in spreads induce fluctuations in the effi cient real interest rate.

In this environment, interest rate rules that track the effi cient real rate typically display

desirable stabilization properties, a result that generalizes to a broader class of models (Galí

and Gertler, 2007).

Panel II of Table 2 shows that the Re specification, the one that is probably most appealing

on theoretical grounds, is also preferred by the data over the others in the same class, although

in some cases only slightly. For example, the differences in fit with some of the specifications

in which the output gap is measured through statistical filters, rather than in deviation from

the DSGE’s effi cient output, are minor.

On the other hand, the deterioration in fit is more significant when we restrict the feedback

coeffi cient on the output gap, φx, to zero, as in model ReNoGap. This result suggests that r
e
t

is not a suffi cient statistic for the real developments in the economy that drive the movements

in the federal funds rate. However, there is strong evidence in favor of ret as a more useful real

15We report here only results for the filters with the quarterly smoothing parameters (λ = 1600 for the HP
and λ̃ = 61.5 for the exponential), although we also experimented with the other approaches to the choice of
these values described in the previous section.
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indicator for monetary policy than the DSGE-HP output gap, as we can see by comparing

model ReNoGap to model HP. Finally, alternative approaches to the measurement of the

EIR, in which potential output is measured through a statistical filter, and the equilibrium

real rate is one consistent with that notion of potential, do not fare nearly as well (models

RexpExp and RhpHP).

The reason for the success of specifications that include ret among the arguments of the

interest rate rule can be further appreciated from Figure 4, where we plot the posterior

distribution of ret implied by the model. As we can see, the estimated r
e
t is a good business

cycle indicator over our sample. It drops sharply during recessions and rises over booms.

However, ret conveys somewhat different information than the HP output gap, which is also

reported in Figure 4. For example, ret peaks earlier than the HP output gap before the

recessions of 1990 and of 2007, although the peaks coincide in the 2001 recession. Moreover,

the effi cient real rate is fairly stable above its mean in the mid-nineties, while the HP output

gap turns negative in 1995. These inferred movements in ret mirror those in the effective

federal funds rate quite closely, helping to explain the empirical success of the Re policy

specification.

The close co-movement between the effective federal funds rate and the estimates of ret ,

which is depicted in Figure 5, raises the concern that the observations on the nominal interest

rate might be “explaining” the estimates of ret , and not vice versa. This is not the case,

however, as demonstrated by the fact that we obtain almost identical estimates of the time

path of ret in the baseline model, in which the effi cient real rate is not included in the policy

rule. The main difference between the two estimates is that the posterior distribution is

tighter when ret enters the interest rate rule, as shown in Figure 6. This enhanced precision

of the estimates suggests that, indeed, the nominal interest rate carries useful information

on ret in specification Re, as we would expect, but that this information does not distort the

inference on its average time-path.

Some intuition for the robustness of the estimates of ret across models can be gleaned from

the expression for the effi cient rate of interest derived in section 2, which we report here for

convenience

ret = Etγt+1 + Etδt+1 − ω
(
Ety

e
t+1 − yet

)
.

If the log-deviations of effi cient output from the balanced growth path were a martingale (i.e.

Ety
e
t+1 = yet ), this expression would imply that the effi cient real interest rate is the sum of

the forecastable movements in the growth rate of productivity γt and in the intertemporal

taste shock δt. In our estimated models, the deviations from the condition Etyet+1 = yet are

“small”, as are the forecastable movements in γt. The taste shock δt, on the contrary, is
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persistent, and its innovations are sizable, so that its forecastable movements tend to be

the main driving force of the movements in ret .
16 Moreover, the cyclical behavior of these

forecastable movements in δt is precisely and robustly pinned down in our estimates, with

little variation across specifications. As a result, the inference on the evolution of the effi cient

real rate over time is remarkably consistent across all the models we consider.

4.3 A Time-Varying Inflation Target

In this section, we further enlarge the set of policy rules subject to our evaluation, by introduc-

ing a feature that is fairly common in the recent empirical DSGE literature: a time-varying

inflation target (TVIT). This addition creates a new class of feedback rules, of the form

it = ρit−1 + (1− ρ) [r∗t + π∗t + φπ (πt − π∗t ) + φxxt] + εit, (8)

where π∗t is an exogenous AR(1) process that represents persistent deviations of the inflation

target from its long-run value π∗.17 The motivation for considering this feature in the policy

rule is that it helps to capture the low-frequency movements in inflation and the nominal

interest rate that are evident even in our relatively short sample. In particular, inflation

hovered around 4% in the late 1980s, until the recession of the early 1990s contributed

to reduce it to its more recent range around 2%. This process of so-called opportunistic

disinflation took until the middle of the decade to complete. One simple way of capturing the

central bank’s willingness to delay the achievement of its ultimate inflation objective until

the “next”recession, which is at the heart of the opportunistic approach to disinflation, is to

allow smooth time-variation in its short-run inflation target, as in specification (8).

When we allow for this type of time-variation in the best rule so far, rule Re, the fit

improves by another 15 points on Kass and Raftery’s (1995) likelihood ratio scale. This

improvement constitutes very strong evidence in favor of the inclusion of a time-varying

inflation objective in the policy rule. With respect to the baseline, the marginal likelihood of

specification RePistar is 27 log-points higher. Moreover, specification RePistar, in which the

EIR is measured by the effi cient real rate and the output gap by the deviation of output from

its effi cient level, is the best-fitting one among those with a time-varying inflation objective,

as shown in Panels III and IV of Table 2.
16The important role of the intertemporal shock δt in reconciling this class of DSGE models with the

data is a manifestation of the well-known deficiencies of standard Euler equations in pricing returns, as first
documented by Hansen and Singleton (1982) and more recently re-emphasized in a DSGE context by Primiceri,
Schaumburg and Tambalotti (2006).
17The autocorrelation coeffi cient of π∗t has a Beta prior tightly distributed around a mean of 0.95.
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Two more results from the table are worth emphasizing. First, the role of ret remains crucial

even in the specifications that include a TVIT. In fact, rule RePistar improves the model fit

by about 17 KR points with respect to the best-fitting rule with a TVIT, but without the

equilibrium real rate among its arguments (rule PistarExp in Panel IV). The improvement

in fit is even larger (30 KR points) when rule RePistar is compared to a simple baseline

specification with a TVIT (rule Pistar), which is a more relevant comparison if we want to

isolate the marginal contribution of the EIR in the policy rule. Interestingly, this improvement

in performance is comparable to the one obtained when the EIR is included in the equivalent

specifications with a constant inflation target, i.e. when comparing the baseline rule to rule

Re. This result suggests that the effi cient real rate and a smoothly evolving inflation target

enhance the empirical performance of the model through fairly independent channels and

should thus be complementary features in policy specifications with good empirical properties.

Second, our ability to draw sharp conclusions on the most appropriate measure of the

output gap is complicated by the presence of a TVIT. For example, the deterioration in fit

when the output gap is measured through various statistical filters, rather than in deviation

from the effi cient level of output, or even excluded from the policy rule altogether, as in rule

RePistarNoGap, is negligible. This latter result, in particular, might suggest that the effi cient

interest rate and a TVIT are all that is needed to account for the movements in the federal

funds rate, and that measures of output slack are redundant. However, this conclusion is

probably unwarranted, since there are fairly clear signs of weak identification of the output

gap coeffi cient φx, especially in specification RePistar. This identification problem should not

be too surprising, since interest rate rules with a TVIT include at least three latent variables:

the inflation target itself, the i.i.d. monetary policy shock and potential output.18 Drawing

sharp inferences on the contributions of these three factors to the movements in the interest

rate, therefore, is bound to be problematic, even though the structure of the model imposes

restrictions on the behavior of potential output. In fact, this consideration suggests that

similar problems are likely to persist even in richer models —at least as long as the inflation

target is treated as an exogenous variable. Given the promising empirical performance of this

class of policy rules, these identification issues probably deserve further scrutiny.

18The equilibrium real rate is a fourth latent variable in some specifications, but this does not appear to
worsen the identification challenge, since ret is restricted to enter the intercept of the policy rule (i.e. to have
a coeffi cient of one) and its evolution is pinned down fairly precisely by the demand side of the model.
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4.4 Summary of Main Results

So far, we have surveyed the empirical performance of about 40 different interest rate rules,

while trying to develop some leads on the sources of their successes and failures. This exercise

brought four main themes to our attention. First, the simplest and most natural extension

of the original Taylor (1993) rule to our DSGE framework, which we adopted as our baseline

policy specification, fits the data extremely poorly, compared to most of the alternative spec-

ifications we have considered. Second, this poor performance can be improved significantly

if the model-implied effi cient output gap is substituted by an HP filter as the measure of

economic slack in the policy rule. Simpler, one-sided filters also perform better than the effi -

cient output gap, although worse than the HP filter. Third, further significant improvements

in fit can be achieved by allowing the policy rate to respond to movements in the effi cient

real interest rate implied by the DSGE model. Documenting the empirical success of policy

rules with this feature is the main contribution of this paper, given the normative appeal of

these rules and the frequent discussion of the potential uses of measures of the equilibrium

real rate in the policy debate. Fourth, feedback rules in which the inflation target evolves

smoothly over time perform best. However, tracking the effi cient real interest rate remains

an important feature even in this class of rules, suggesting that both these extensions to the

baseline specification should be standard in applied DSGE modeling.

In the next two sections, we investigate the extent to which these main themes survive

variations in the arguments of the policy rule, which have often appeared in the literature,

as well as in the model of the economy.

4.5 Robustness and the Best Rule

In this section, we conduct a series of robustness exercises that involve relatively small vari-

ations in the policy rule, but that result in specifications commonly found in the literature.

We subject to these experiments only the best-fitting rules within each class, to avoid an ex-

ponential proliferation of estimated models. In this process, we also discover the best-fitting

rule among those we have estimated.

The first variation we consider replaces the contemporaneous values of inflation and the

output gap in the interest rate rule with their rational expectations forecasts, as in Clarida,

Galí and Gertler (2000), for instance. The resulting policy rule specifications, and their fit,

are reported in Panel V of table 2. We emphasize two findings. First, the forward-looking

rules maintain the relative ranking of the broader classes of policy specifications emphasized

above. For example, rules that include ret and/or π
∗
t fit better than rules without these factors
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and the evidence in their favor is still very strong. Second, the forward-looking specification

with ret and π
∗
t is preferred to its contemporaneous counterpart.

However, this result does not hold when the measure of inflation we include in the feedback

rule is a four quarter moving average, rather than its quarterly value, as in Panel VI of table

2. Once again, the improvements in fit obtained by including ret and π
∗
t in the policy rule are

very similar to those documented before. The log marginal likelihood of rule RePistarPi4Q,

which includes both features, is 6 points higher than that of rule RePi4Q, in which the

inflation target is constant, and about 23 points higher than that of rule Pi4Q, which has the

same structure as the baseline. In fact, rule RePistarPi4Q is the best-fitting rule among the

55 analyzed in this paper.

Several features of this rule are worth emphasizing. First, the improvement in fit it

achieves over the baseline, 67 points on KR’s scale, is remarkable. The evidence in favor of

this rule against the equivalent version with quarterly inflation is also very strong, although

of course much less decisive. Second, the best rule is a sensible blend of theoretical and

practical considerations. For example, most policymakers would agree that a four quarter

moving average of inflation is a more reliable guide to inflationary pressures than a quarterly

measure. On the other hand, they might object to the proxies for real economic developments

included in this rule, the effi cient real rate and output gap. Nevertheless, these measures

have the virtue of being linked directly to the objectives that monetary policy should pursue

according to the DSGE model and are thus appealing on theoretical grounds. Finally, the

posterior estimates of the model that embeds the best rule are all reasonable and do not point

to any obvious identification or other specification problem. This is true for the parameters

as well as for the latent variables that enter the policy rule, whose posterior distributions we

report in Figures 7 and 8.

Among the parameters, the slope of the Phillips curve, ξ, has a posterior mode of 0.05,

and a mean of 0.07, very close to the typical values in the literature. Both the indexation

parameter (ζ) and the autocorrelation of the cost-push shock (ρu) are distributed around low

values, although both display a fairly long tail. This finding depends on the fact that the

observed persistence in inflation is well captured by the slow-moving inflation target, whose

estimated autocorrelation (ρπ∗) has a mode of 0.99. Finally, the coeffi cients on inflation

(φπ) and the output gap (φx) in the Taylor rule have modes (and means) of 1.7 and 0.6,

respectively, both in line with most empirical estimates for this period, although the data do

not appear very informative on the latter coeffi cient, as we already pointed out.

Turning now to the latent variables, Figure 8 shows that the posterior median of π∗t
captures well the step-down in inflation in the first few years of the sample, although the
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posterior uncertainty on the level of this target is very large. Of course, the estimates continue

to fluctuate even in the second half of the sample. In fact, a dip occurs both around 2003 and

in the more recent period, at the same time as observed inflation was falling. These movements

remind us that time-variation in the inflation target is a useful statistical device but not a

substitute for a more structural analysis of the low-frequency movements in inflation. The

second panel of the figure depicts the posterior distribution of the effi cient real interest rate,

which is very similar to the one reported in Figure 5. This similarity confirms the robustness

of the inference on ret across different models. Finally, the third panel of the figure reports

the posterior estimate of the effi cient output gap. Although the uncertainty on the level of

xet is large, its evolution over time is broadly consistent with the business cycle as identified

by the NBER, whose recessions are shaded in the picture.

4.6 A Medium-Scale DSGE Model

We conclude our investigation by evaluating the robustness of the results obtained so far

within a medium-scale DSGE model, along the lines of Christiano, Eichenbaum and Evans

(2005) and Smets and Wouters (2007). The exact specification we adopted for the private

sector behavior is the one in Justiniano, Primiceri and Tambalotti (2010), to which we refer

the reader for the details. Within this framework, we embed some of the best performing

and/or more popular rules in Table 2. We also take care to sample policy specifications from

each of the families considered above to explore the extent to which the themes highlighted

in section 4.4 survive in this more elaborate environment.

Table 3 reports the results of this investigation and displays relative rankings from the

small model for reference. The first three columns of numbers, under the heading 3 observ-

ables, refer to estimations based on the same set of observables as in the small-scale model —

GDP growth, inflation and the Federal Funds rate —and on the same sample. The rules we

considered are ordered from the best to the worst fitting in this estimation.

The results largely corroborate findings from the small model. First, the gap in marginal

likelihoods between the first and last rule is large, about 35 log-points, confirming that the

choice of the interest rate rule makes a difference in the fit of DSGE models. Second, the

baseline rule is at the bottom of the table and, as in the small model, the poor performance

of the baseline specification can be improved with an HP-filtered measure of the output gap.

Third, the best fitting rule from the small model, RePistarPi4Q, still performs well, ranking

among the top 5 rules from the JPT model (which are all within 6 log points of each other).

Fourth, specifications that include the effi cient real interest rate in the intercept dominate the

top of the table. These rules are uniformly better than identical specifications that exclude
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the effi cient real interest rate, which is a result that extends to forward-looking rules, as we

have found in the small model.

The only exception to this... “rule” is the SW specification. This rule ranks 38 of 55 in

Table 2 while is very close to the top in the medium-scale model. In addition, its fit slightly

deteriorates when we add ret in its intercept, suggesting that the unusual term in the growth

rate of the output gap ∆xt might act as a proxy for movements in the equilibrium real rate,

making the inclusion of the latter superfluous.

In fact, the SW rule is the best by a fairly large margin when we estimate the same model

with the more standard set of seven observables —including consumption, investment, hours

worked and wages —as in Smets and Wouters (2007) and Justiniano, Primiceri and Tambalotti

(2010). The results of these estimations are reported in the last three columns of Table 3.

The fit achieved by the SW rule in the medium-scale model may not be too surprising, given

the excellent empirical performance of the model in Smets and Wouters (2007). What our

analysis adds to this knowledge is that the SW’s policy rule is an important contributor to

this performance.

Nonetheless, even under the estimation with seven observables, a policy rule that responds

both to a time-varying inflation target, and to the effi cient real interest rate (RePistar),

ranks a relatively close second to the SW rule in terms of fit. This result confirms that these

two sources of time-variation in the intercept of the policy rule can improve a model’s fit

significantly, as we had found in the baseline specification. Unlike in the estimations with

three observables, though, the contribution of ret is less clear-cut when the medium-scale

model is estimated with seven observables. In many instances, in fact, the inclusion of ret in

a rule with otherwise given arguments worsens its fit. A more thorough investigation of the

reasons for this discrepancy between the model estimated with three and seven observables

might provide useful insights into this class of models, but lies beyond the scope of this paper.

5 Conclusions

The existing positive DSGE literature focuses an overwhelming share of its attention on

specifying the behavior of the private sector, while treating that of the central bank as

an afterthought. This state of affairs is not too surprising, since reducing the real world

complexity of the private sector to fit into a macroeconomic model offers a vast menu of

modeling choices. In comparison, capturing the broad contours of the behavior of monetary

policy is certainly much easier and less controversial. Yet, paying virtually no attention

to this step in the specification of a general equilibrium model seems suboptimal, for at
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least two reasons. First, in the current vintage of monetary DSGE models, the systematic

response of policy to economic developments can have large effects on the equilibrium, as

demonstrated by the vast body of normative work in the field (see Woodford, 2010, for a

survey). Second, one of the main objectives of these models is to offer a quantitative tool to

study the consequences of different approaches to the conduct of monetary policy. This study

is complicated by the lack of systematic guidance on the extent to which different plausible

policy rules, once embedded into a general equilibrium apparatus, enhance or detract from its

ability to account for the historical relations between the macroeconomic variables of interest.

This paper attempted to provide some of that guidance, by estimating a large set of interest

rate rules (55 in the current draft) in the context of a simple DSGE model, and comparing

their empirical fit. We can summarize what we learned from this exercise as follows. First,

the improvements in fit that can be achieved by a careful choice of the arguments of the

monetary policy rule, with respect to the specifications more often used in the literature, are

very strong. Second, a robust feature of the best fitting rules is that they include a previously

unexplored factor among their arguments, namely the effi cient real interest rate —the rate of

return that would prevail in equilibrium if the economy were perfectly competitive. Third,

this feature remains empirically important in the now canonical medium-scale DSGE model

of Christiano, Eichenbaum and Evans (2005) and Smets and Wouters (2007), although the

generality of this result depends on the set of observable variables deployed to estimate the

model.

Of course, our results do not represent a definitive guide to “good”interest rate rules, for

at least two related reasons. First, the exact model specifications we adopted matters. More

work on the results’robustness across different models would therefore be desirable. Second,

model comparison through marginal data densities and Bayes factors applied to DSGE models

is subject to some pitfalls, highlighted for example by Del Negro and Schorfheide (2010).

However, we hope to have at least contributed to narrowing significantly the set of rules that

researchers will entertain as empirically plausible in the future.

Going forward, we expect to devote some of our research to further scrutinize the role

of the effi cient real interest rate ret as a useful explanatory factor for the movements in

nominal interest rates. In particular, we would like to better understand the origins of

this combination of shocks, which in our baseline simple model is largely a reflection of the

empirical shortcomings of the intertemporal Euler equation, as captured by the presence of

the shock δt. Moreover, it would be interesting to explore more realistic assumptions on the

information available to policy makers when making their decisions, focusing in particular on

the fact that, unlike in our model, the effi cient real interest rate is not observable in practice.

23



References

[1] Adolfson, M., Laséen, S., Lindé, J., and L. Svensson (2008), “Optimal Monetary Policy

in an Operational Medium-Sized DSGE Model”, NBER Working Paper No. 14092.

[2] Amato, J. (2005), “The Role of the Natural Rate of Interest in Monetary Policy,”BIS

Working Paper No. 171.

[3] An, S. and F. Schorfheide (2007), “Bayesian Analysis of DSGE Models,”Econometric

Reviews 26, pp. 113-172.

[4] Baxter, M. and R. King (1999), “Measuring Business Cycles: Approximate Band-Pass

Filters for Economic Time Series,”Review of Economics and Statistics 81, pp. 575-593.

[5] Bils, M. and P. Klenow (2004), “Some Evidence on the Importance of Sticky Prices,”

Journal of Political Economy 112, pp. 947-985.

[6] Blanchard, O.J. and S. Fischer (1989) , Lectures on Macroeconomics, The MIT Press,

Cambridge, MA.

[7] Calvo, G.A. (1983) , “Staggered Prices in a Utility-Maximizing Framework,”Journal of

Monetary Economics 12(3): 383-398.

[8] Canova, F. and L. Sala (2009), “Back to Square One: Identification Issues in DSGE

Models,”Journal of Monetary Economics, 56(4): 431-449.

[9] CBO (2001), “CBO’s Method for Estimating Potential Output: An Update,”available

at www.cbo.gov.

[10] Christiano, L., Eichembaum, M. and C. Evans (2005), “Nominal Rigidities and the

Dynamic Effect of a Shock to Monetary Policy,”Journal of Political Economy 113, pp.

1-45.

[11] Christiano, L. and T. Fitzgerald (2003), “The Band Pass Filter,”International Economic

Review 44, pp. 435-465.

[12] Clarida, R., Galí, J. and M. Gertler (1999), “The Science of Monetary Policy: A New

Keynesian Perspective,”Journal of Economic Literature 37, pp. 1661-1707.

[13] Clarida, R., Galí, J. and M. Gertler (2000), “Monetary Policy Rules and Macroeconomic

Stability: Evidence and Some Theory,”Quarterly Journal of Economics 115, 147-180.

24



[14] Cúrdia, V., Del Negro, M. and D. Greenwald (2011), “Rare Large Shocks in the U.S.

Business Cycle,”Unpublished.

[15] Cúrdia, V. and M. Woodford (2009), “Credit Frictions and Optimal Monetary Policy, ”

Unpublished.

[16] Del Negro, M. and F. Schorfheide (2010), “Bayesian Macroeconometrics,”prepared for

the Handbook of Bayesian Econometrics.

[17] Edge, R., Kiley, M. and J.-P. Laforte (2007), “Natural rate measures in an estimated

DSGE model of the U.S. economy,”Finance and Economics Discussion Series 2007-08.

[18] English, William B., Nelson, William R.; and Brian P. Sack (2003) “Interpreting the

Significance of the Lagged Interest Rate in Estimated Monetary Policy Rules,”Contri-

butions to Macroeconomics 3(1), Article 5.

[19] Galí, J and M. Gertler (1999), “Inflation Dynamics: A Structural Econometric Analysis,”

Journal of Monetary Economics 44(2): 195-222.

[20] Galí, J and M. Gertler (2007), “Macroeconomic Modeling for Monetary Policy Evalua-

tion,”Journal of Economic Perspectives, 21(4): 25-45.

[21] Geweke, J. (1999), “Using Simulation Methods for Bayesian Econometric Models: Infer-

ence, Development,and Communication,”Econometric Reviews, 18(1): 1-126.

[22] Greenspan, A. (1993), “Statement on the Conduct of Monetary Policy before the Sub-

committe on Economic Growth and Credit Formation of the Committee on Banking,

Finance and Urban Affairs of the House of Representatives,”July 20.

[23] Hansen, Peter and Kenneth Singleton. 1982 "Generalized Instrumental Variables Esti-

mation of Nonlinear Rational Expectations Models." Econometrica, 50(5): 1269-86.

[24] Hodrick, R. and E. Prescott (1997), “Post-War U.S. Business Cycles: An Empirical

Investigation,”Journal of Money Credit and Banking 29, pp. 1-16.

[25] Judd, J.P. and G.D. Rudebusch (1998), “Taylor’s Rule and the Fed: 1970-1997,”Federal

Reserve Bank of San Francisco Economic Review, 3, 3-16.

[26] Juillard, M., O. Kamenik, M. Kumhof and D. Laxton (2006), “Measures of Potential

Output from an Estimated DSGE Model of the United States,”Czech National Bank

Working Paper 2006/11.

25



[27] Justiniano, A., Primiceri, G. and A. Tambalotti (2010) , “Investment Shocks and Busi-

ness Cycles,”Journal of Monetary Economics, 57(2): 132-145.

[28] Justiniano, A., Primiceri, G. and A. Tambalotti (2011), “Is There a Tradeoff between

Inflation and Outout Stabilization?,”Unpublished.

[29] Kass, Robert E. and A.E. Raftery (1995) , “Bayes Factors,” Journal of the American

Statistical Association, 90: 773-795.

[30] King, R. and S. Rebelo (1993), “Low Frequency Filtering and Real Business Cycles,”

Journal of Economic Dynamics and Control 17, 201-231.

[31] Kuttner, K. (1994), “Estimating Potential Output as a Latent Variable,” Journal of

Business and Economic Statistics 12, 361-368.

[32] Laubach, T. and J. Williams (2003), “Measuring the Natural Rate of Interest,” The

Review of Economics and Statistics 85, 1063-1070.

[33] Lubik, T. and F. Schorfheide (2007) , “Do Central Banks Respond to Exchange Rate

Movements? A Structural Investigation,”Journal of Monetary Economics 54(4), 1069-

1087.

[34] Mishkin, F. (2007), “Estimating Potential Output,”Remarks at the Conference on Price

Measurement for Monetary Policy, Federal Reserve Bank of Dallas, Dallas, Texas.

[35] Orphanides, A. (2003), “Historical Monetary Policy Analysis and the Taylor Rule,”

Journal of Monetary Economics 50:. 983-1022.

[36] Orphanides, A. and S. Van Norden (2002), “The Unreliability of Output-Gap Estimates

in Real Time,”The Review of Economics and Statistics 84, 569-583.

[37] Primiceri, G.E. and E. Schaumburg and A. Tambalotti (2006). “Intertemporal Distur-

bances,”NBER Working Paper No. 12243.

[38] Sbordone, A. (2002) “Prices and Unit Labor Costs: A New Test of Price Stickiness,”

Journal of Monetary Economics 49(2): 265-292.

[39] Schmitt-Grohé, S. and M. Uribe (2007), “Optimal Simple And Implementable Monetary

and Fiscal Rules,”Journal of Monetary Economics 54, pp. 1702-1725.

[40] Schorfheide, F. (2008), “DSGE Model-Based Estimation of the New Keynesian Phillips

Curve,”Federal Reserve Bank of Richmond Economic Quarterly 94(4): 397-433.

26



[41] Smets, F. and R. Wouters (2007), “Shocks and Frictions in US Business Cycles: A

Bayesian DSGE Approach,”American Economic Review 97, pp. 586-606.

[42] Svensson, L. (2003), “What Is Wrong with Taylor Rules? Using Judgment in Monetary

Policy through Targeting Rules,”Journal of Economic Literature 41, pp. 426-477.

[43] Svensson, L. (2007), “Inflation Targeting,”in The New Palgrave Dictionary of Economics

(2nd edition), L. Blum and S. Durlauf (eds.), Palgrave Macmillan —New York, NY.

[44] Taylor, J. (1993), “Discretion versus Policy Rules in Practice,”Carnegie-Rochester Con-

ference Series on Public Policy 39, pp. 195-214.

[45] Trehan, B. and T. Wu (2007). “Time-Varying Equilibrium Real Rates and Monetary

Policy Analysis,”Journal of Economic Dynamics and Control 31(5): 1584-1609.

[46] Watson, M. (2007), “How Accurate Are Real-Time Estimates of Output Trends and

Gaps?”Federal Reserve Bank of Richmond Economic Quarterly 93, pp. 143-161.

[47] Woodford, M. (2003), Interest and Prices: Foundations of a Theory of Monetary Policy,

Princeton University Press, Princeton, NJ.

[48] Woodford, M. (2010), “Optimal Monetary Stabilization Policy,”to appear in B.M. Fried-

man and M. Woodford (eds.), Handbook of Monetary Economics, vol. 3, Elsevier.

27



A The Model

This appendix presents the microfoundations of the model.

A.1 Households

A continuum of households of measure one populates the economy. All households, indexed

by j ∈ (0, 1), discount the future at rate β ∈ (0, 1) and have the same instantaneous utility

function, additively separable over consumption and labor, so that their objective is

E0

{ ∞∑
t=0

βteδt

[
log(Cjt − ηC

j
t−1)− (hjt )

1+ω

1 + ω

]}
.

The aggregate preference shock δt shifts the intertemporal allocation of consumption without

affecting the intratemporal margin between labor and leisure.19 We assume that δt follows a

stationary process with mean zero of the form

δt = ρδδt−1 + εδt .

The consumption index Cjt is a constant elasticity of substitution aggregator over differ-

entiated goods indexed by i ∈ (0, 1)

Cjt ≡
[∫ 1

0
cjt (i)

θ−1
θ di

] θ
θ−1

. (9)

Households supply their specialized labor input for the production of a specific final good.

As a consequence of labor market segmentation, the wage wjt differs across households. How-

ever, household j can fully insure against idiosyncratic wage risk by buying at time t state-

contingent securities Dj
t+1 at price Qt,t+1. Besides labor income, households earn after-tax

Γjt from ownership of the firm. The flow budget constraint for household j is∫ 1

0
pt (i) cjt (i) di+ Et(Qt,t+1D

j
t+1) = wjth

j
t +Dj

t + Γjt ,

where pt (i) is the dollar price of the ith good variety.

19We could have also introduced a purely intratemporal shock affecting labor supply decisions only. However,
in our empirical implementation of the model, hours and wages are not included among the observables.
Therefore, such a shock would only affect the flexible price level of output, making it indistinguishable from
a technology shock.
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A.2 Firms

Firm i produces the differentiated consumption good yt (i) with a linear production function

in labor

yt (i) = Atht (i) . (10)

We assume that productivity grows at rate γt ≡ ∆ logAt and that growth rate shocks display

some persistence

γt =
(
1− ργ

)
γ + ργγt−1 + εγt . (11)

Firms take wages as given and sell their products in monopolistically competitive goods

markets, setting prices in a staggered fashion, as in Calvo (1983). Every period, independently

of previous adjustments, each firm faces a probability (1− α) of optimally choosing its price.

The α firms that do not fully optimize in a given period adjust their price according to the

indexation scheme

pt (i) = pt−1 (i)

(
Pt−1

Pt−2

)ζ
e(1−ζ)π∗ ,

where Pt is the aggregate price level consistent with the consumption aggregator (9) and we

allow for partial indexation to the long run central bank’s inflation target π∗. In the event

of a price change at time t, firm i chooses pt (i) to maximize the present discounted value of

profits net of sales taxes τ t

Et

{ ∞∑
s=t

αT−tQt,s

[
(1− τ s) pt (i)

(
Ps−1

Pt−1

)ζ
e(1−ζ)π∗(s−t)yt,s (i)− ws (i)hs (i)

]}
, (12)

subject to its production function (10) and the demand for its own good conditional on no

further price change after period t

yt,s (i) =

[
pt (i)

Ps

]−θ
Ys, (13)

where Yt is an index of aggregate demand of the same form as (9).

A.3 Monetary Policy

The central bank sets the net nominal interest rate it with a certain degree of inertia in

response to departures of aggregate demand and inflation from their respective objectives.
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The non-linear formulation of the baseline interest rate rule is

Rt
R

=

(
Rt−1

R

)ρ [( Pt
Pt−1eπ

∗

)φπ ( Yt
Y e
t

)φx]1−ρ

eε
i
t , (14)

where the gross nominal interest rate is defined as

Rt ≡
1

EtQt,t+1

and its average can be decomposed via the Fisher equation as R = er+π
∗
, which defines the

steady state net real interest rate r. The continuously compounded nominal interest rate in

the text is defined as it ≡ logRt.

B Statistical Filters in DSGE Models

This appendix illustrates how to embed a linear filter into a dynamic rational expectation

model. We begin with a brief general description of linear filtering problems. We then focus

on the application to the Hodrick and Prescott (HP) filter (Hodrick and Prescott, 1997).

B.1 Linear Filters

The objective of “filtering” is to decompose the stochastic process xt into two orthogonal

components

xt = yt + x̃t,

where the process yt has power only in some frequency interval {(a, b) ∪ (−a,−b)} ∈ (−π, π).

Then, we can represent yt as

yt = B (L)xt,

where B (L) —the ideal band-pass filter —is of the form

B (L) =

∞∑
j=−∞

BjL
j .

Therefore, implementation of the ideal filter requires an infinite dataset. We can think

about approximating the ideal filter as a projection problem. Given a sample x = [x1, ..., xT ],
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the estimate of y = [y1,..., yT ] is ŷ = P [y|x], which is of the form

ŷt =

p∑
=−f

B̂p,f
j xt−j ,

where f = T − t and p = t− 1. The main problem of this estimates is that the B coeffi cients

require knowledge of fx (ω), the spectral density of x.

Christiano and Fitzgerald (2003) show that, for most macro variables, the coeffi cients ob-

tained by assuming that x is a random walk work quite well. One approach to the calculation

of these coeffi cients is then to “expand”the available sample with the least squares optimal

guesses of the missing data at the beginning and end of the sample. For the random walk,

these data are just x1 and xT . Our proposal is to adopt the same philosophy (i.e. to ex-

pand the available dataset) in the context of our framework, using the rational expectations

forecasts of the missing data obtained from the model.20

B.2 Application to the HP Filter

In this section, we discuss the application of our methodology to the HP filter. We focus

on the HP filter because of its wide use in macroeconomics as a flexible device (through the

choice of λ) to draw a smooth trend through the data. The HP filter provides a typical

example of a “traditional”smooth measure of potential output and of the associated output

gap. Its added advantage in out context is that the expression for the ideal filter is a relatively

simple function of lag polynomials. The result is a parsimonious (i.e. two leads and lags)

recursive representation, that requires only a modest expansion of the model’s state space.

The ideal HP filter is of the form (e.g. Baxter and King, 1999)

HP g =
λ(1− L)2 (1− F )2

1 + λ(1− L)2 (1− F )2

HP t =
1

1 + λ(1− L)2 (1− F )2

where HP g denotes the filter whose application results in the “gap”, while HP t denotes the

filter whose application produces the trend.21 Practical application of these filters requires an

20Watson (2007) proposes a similar procedure using unrestricted ARIMA processes as forecasting tools.
Julliard at al. (2006) is the only example we could find of an application to DSGEs models. The main
objective of all these papers is to improve the end-of-sample performance of the filters they consider.
21King and Rebelo (1993) originally derived these expressions as the solution of a “smoothing” problem.

However, they also showed that this filter, with λ = 1600, approximates very well a high pass filter with cutoff
frequency π/16 or 32 quarters.
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approximation, since they embed a two-sided, infinite moving average of the data.22 However,

application of Christiano and Fitzgerald’s (2003) insight to a rational expectations context

allows us to use the ideal filter directly, where the approximation relies on the substitution

of the infinite leads and lags implicit in HP (L) with rational expectation forecasts. In

particular, given observations on logGDPt = yt, we define the HP gap with parameter λ as[
1 + λ(1− L)2 (1− F )2

]
x
HP (λ)
t = λ(1− L)2 (1− F )2 yt,

where now the forward and backward operators are defined by

Lyt = yt−1

Fyt = Etyt+1

as it is standard in rational expectations models (e.g. Blanchard and Fischer, 1989).

22 Details on this approximation can be found, for example, in Baxter and King (1999).
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C Tables

Parameter Prior Posterior
Distribution 5% Median 95% Mode 5% Median 95%

ω G(1, 0.2) 0.70 0.99 1.35 0.96 0.67 0.96 1.32
ξ G(0.1, 0.05) 0.03 0.09 0.19 0.001 0.000 0.002 0.004
η B(0.6, 0.2) 0.25 0.61 0.90 0.56 0.46 0.59 0.70
ζ B(0.6, 0.2) 0.25 0.61 0.90 0.69 0.10 0.53 0.80
ρ B(0.7, 0.15) 0.43 0.72 0.92 0.70 0.62 0.72 0.80
φπ N(1.5, 0.25) 1.09 1.50 1.91 0.89 0.66 1.03 1.49
4φx N(0.5, 0.2) 0.17 0.50 0.83 1.19 0.97 1.21 1.45

400π∗ N(2, 1) 0.36 2.00 3.64 2.36 1.89 2.38 2.85
400ra N(2, 1) 0.36 2.00 3.64 1.90 0.83 1.90 2.95
400γa N(3, 0.35) 2.42 3.00 3.58 2.94 2.48 2.94 3.40
ρδ B(0.5, 0.2) 0.17 0.50 0.83 0.92 0.87 0.92 0.95
ργ B(0.5, 0.2) 0.17 0.50 0.83 0.56 0.29 0.53 0.72
ρu B(0.5, 0.2) 0.17 0.50 0.83 0.11 0.06 0.32 0.71
σδ IG1(0.5, 2) 0.17 0.34 1.24 1.23 0.95 1.37 2.04
σγ IG1(0.5, 2) 0.17 0.34 1.24 2.05 1.34 2.13 3.02
σu IG1(0.5, 2) 0.17 0.34 1.24 0.53 0.19 0.43 0.60
σi IG1(0.5, 2) 0.17 0.34 1.24 0.27 0.23 0.30 0.39

Table 1: Prior and posterior marginal distributions for the paramaters in the baseline model.
G stands for Gamma, B stands for Beta, N stands for Normal and IG1 stands for Inverse
Gamma 1, with mean and standard deviation in parenthesis
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Rank Name Policy Rule logML 2(logBF)

47 Baseline φππt+φxx
e
t -379.0 0.0

Panel I: Alternative Output Gaps
36 HP φππt+φxx

HP
t -368.2 21.6

38 SW φππt+φxx
e
t+

φ∆x
1−ρ∆xet -369.0 20.1

39 HPλ̂ φππt+φxx
HP (λ̂)
t -369.8 18.4

42 Growth φππt+φ∆y∆yt -374.8 8.3

43 Expλ̂ φππt+φxx
Exp(λ̂)
t -375.1 7.9

44 Growth4Q φππt+
φ∆y

4

(
yt−yt−4

)
-375.5 7.1

46 Exp φππt+φxx
Exp
t -378.6 0.7

48 HPλH φππt+φxx
HP (λH)
t -380.8 -3.5

52 NoGap φππt -393.2 -28.3
Panel II: Equilibrium Real Rate

16 Re ret+φππt+φxx
e
t -359.3 39.4

17 ReHPλH ret+φππt+φxx
HP (λH)
t -360.0 38.0

20 ReExp ret+φππt+φxx
Exp
t -360.4 37.2

22 ReExpλ̂ ret+φππt+φxx
Exp(λ̂)
t -361.3 35.5

23 ReHPλ̂ ret+φππt+φxx
HP (λ̂)
t -361.4 35.1

27 ReNoGap ret+φππt -364.6 28.9
29 ReHP ret+φππt+φxx

HP
t -366.1 25.7

30 RexpExp rExpt +φππt+φxx
Exp
t -366.3 25.4

32 ReGrowth4Q ret+φππt +
φ∆y

4

(
yt−yt−4

)
-367.5 22.9

33 ReGrowth ret+φππt+φ∆y∆yt -367.7 22.6
55 RhpHP rHPt +φππt+φxx

HP
t -397.3 -36.6

Table 2: Ranking of alternative policy rules. First column shows the overall ranking, the
second column the designation of the policy rule, the third column the long run component
of the policy rule equation (excluding the smoothing component), the fourth column the log
marginal likelihood and the fifth column the log of the Bayes factor. The table shows six
panels, corresponding to different groups of policy rules.
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Rank Name Policy Rule logML 2(logBF)

Panel III: Time-Varying Inflation Target and Equilibrium Real Rate
5 RePistar ret+π

∗
t+φπ(πt−π∗t ) + φxx

e
t -351.8 54.4

6 RePistarNoGap ret+π
∗
t+φπ(πt−π∗t ) -353.6 50.7

7 RePistarHPλ̂ ret+π
∗
t+φπ(πt−π∗t ) + φxx

HP (λ̂)
t -355.0 48.0

8 RePistarGrowth4Q ret+π
∗
t + φπ(πt−π∗t )+

φ∆y

4

(
yt−yt−4

)
-355.7 46.6

9 RePistarExpλ̂ ret+π
∗
t+φπ(πt−π∗t ) + φxx

Exp(λ̂)
t -355.8 46.4

10 RePistarHP ret+π
∗
t+φπ(πt−π∗t ) + φxx

HP
t -356.2 45.6

11 RePistarGrowth ret+π
∗
t+φπ(πt−π∗t ) + φ∆y∆yt -356.4 45.1

12 RePistarHPλH ret+π
∗
t+φπ(πt−π∗t ) + φxx

HP (λH)
t -356.6 44.8

13 RePistarExp ret+π
∗
t+φπ(πt−π∗t ) + φxx

Exp
t -356.7 44.6

18 RexpPistarExp rExpt +π∗t+φπ(πt−π∗t ) + φxx
Exp
t -360.2 37.7

51 RhpPistarHP rHPt +π∗t+φπ(πt−π∗t ) + φxx
HP
t -388.8 -19.6

Panel IV: Time-Varying Inflation Target

19 PistarExp π∗t+φπ(πt−π∗t ) + φxx
Exp
t -360.2 37.5

21 PistarExpλ̂ π∗t+φπ(πt−π∗t ) + φxx
Exp(λ̂)
t -360.6 36.9

24 PistarHP π∗t+φπ(πt−π∗t ) + φxx
HP
t -361.6 34.9

25 PistarHPλ̂ π∗t+φπ(πt−π∗t ) + φxx
HP (λ̂)
t -362.0 34.0

26 PistarHPλH π∗t+φπ(πt−π∗t ) + φxx
HP (λH)
t -362.0 34.0

28 PistarGrowth4Q π∗t+φπ(πt−π∗t )+
φ∆y

4

(
yt−yt−4

)
-365.0 28.0

31 Pistar π∗t+φπ(πt−π∗t ) + φxx
e
t -366.8 24.4

34 PistarGrowth π∗t+φπ(πt−π∗t ) + φ∆y∆yt -367.8 22.3

40 PistarNoGap π∗t+φπ(πt−π∗t ) -371.4 15.1

Table 2: (Continued) Ranking of alternative policy rules. First column shows the overall
ranking, the second column the designation of the policy rule, the third column the long
run component of the policy rule equation (excluding the smoothing component), the fourth
column the log marginal likelihood and the fifth column the log of the Bayes factor. The
table shows six panels, corresponding to different groups of policy rules.
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Rank Name Policy Rule logML 2(logBF)

Panel V: Forward-Looking Rules
3 RePistarEPiEx ret+π

∗
t+φπEt(πt+1−π∗t+1) + φxEtx

e
t+1 -346.6 64.9

15 ReEPiEx ret+φπEtπt+1+φxEtx
e
t+1 -358.6 40.9

50 EPiExHP φπEtπt+1+φxEtx
HP
t+1 -388.1 -18.3

53 EPiEx φπEtπt+1+φxEtx
e
t+1 -394.7 -31.5

54 EPi φπEtπt+1+φxx
e
t -394.9 -31.7

Panel VI: 4Qtr Inflation

1 RePistarPi4Q ret+π
∗
t+φπ(π4Q

t −π∗t ) + φxx
e
t -345.4 67.2

2 RePistarEPi4QEx ret+π
∗
t+φπEt(π

4Q
t+4−π∗t ) + φxEtx

e
t+1 -345.6 66.9

4 RePi4Q ret+φππ
4Q
t +φxx

e
t -351.4 55.1

14 RePi4QEx ret+φπEtπ
4Q
t+4+φxEtx

e
t+1 -357.7 42.7

35 Pi4QHP φππ
4Q
t +φxx

HP
t -368.0 22.0

37 Pi4Q φππ
4Q
t +φxx

e
t -368.6 20.8

41 EPi4QExHP φπEtπ
4Q
t+4+φxEtx

HP
t+1 -373.1 11.7

45 Pi4QGrowth4Q φππ
4Q
t +

φ∆y

4 ∆4yt -377.8 2.4

49 Pi4QEx φπEtπ
4Q
t+4+φxEtx

e
t+1 -385.1 -12.1

Table 2: (Continued) Ranking of alternative policy rules. First column shows the overall
ranking, the second column the designation of the policy rule, the third column the long
run component of the policy rule equation (excluding the smoothing component), the fourth
column the log marginal likelihood and the fifth column the log of the Bayes factor. The
table shows six panels, corresponding to different groups of policy rules.
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3 Observables 7 Observables
Name Rank logML 2(logBF) Rank logML 2(logBF)

RePistar 1 -11.6 65.9 3 -455.1 30.3
SW 2 -15.9 57.3 2 -443.4 53.7
SWRe 3 -16.3 56.5 10 -475.3 -10.0
ReEPiEx 4 -16.4 56.3 12 -496.0 -51.5
RePistarPi4q 5 -16.9 55.3 1 -442.1 56.4
Re 6 -17.2 54.6 16 -508.0 -75.5
RePi4QEx 7 -18.4 52.3 13 -497.0 -53.4
ReHP 8 -19.1 50.9 15 -506.4 -72.3
RePi4q 9 -19.7 49.7 17 -527.3 -113.9
Pi4qEx 10 -21.5 46.1 6 -462.2 16.2
ReGrowth4q 11 -21.9 45.4 14 -504.8 -69.0
Pi4q 12 -22.8 43.6 11 -477.3 -14.0
EPiEx 13 -31.3 26.6 5 -460.7 19.2
HP 14 -31.5 26.1 9 -472.1 -3.6
Pistar 15 -31.7 25.7 4 -457.6 25.3
Baseline 16 -44.6 0.0 8 -470.3 0.0
Growth4q 17 -46.3 -3.5 7 -465.7 9.2

Table 3: Select policy rules estimated with JPT (2010) model on three observables and
comparison with small model rankings. The first column shows the interest rate specification
name. The next three columns show the overall ranking, log marginal likelihood, and KR
criterion for the JPT model estimated on 3 observables. The latter three columns show the
same three statistics corresponding to estimates from the small model, where the ranking is
derived from the subset of rules listed.

37



D Figures

0.0259 0.1096 0.1934

ξ

0.1254 0.496 0.8667

ζ

0.1106 0.4367 0.7628

ρ
u

0.3822 1.175 1.9677

φ
π

0.3414 1.0241 1.7067

φx

Figure 1: Prior and posterior distributions for ξ, ζ, ρu, φπ, and φx under the baseline speci-
fication of interest rate rule: it = ρit−1 + (1− ρ) (φππt + φxx

e
t ) + εit. For each parameter, the

solid red line represents the prior while the blue histogram is the posterior.
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Figure 2: Prior and posterior distributions for ξ, ζ, ρu, φπ, and φx under the HP specification
of interest rate rule: it = ρit−1 + (1− ρ)

(
φππt + φxx

HP
t

)
+ εit. For each parameter, the solid

red line represents the prior while the blue histogram is the posterior.
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Figure 3: Evolution of the model HP output gap (DSGE-HP) and empirical HP output gap
(Data-HP), all in percentage points. The blue continuous line and the shaded area around
it are the posterior median estimate of the model-based HP-filtered output gap xHPt and the
90% uncertainty bands when the interest rate rule is it = ρit−1 +(1− ρ)

(
φππt + φxx

HP
t

)
+εit.

The red dashed line is the cyclical component which results from applying the HP filter on
the real GDP data used in the estimation. The black dash-dotted line is the output gap
produced by the CBO.
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Figure 4: Evolution of model effi cient annualized real interest rate (re) and empirical HP out-
put gap (Data-HP), both in percentage points. The blue continuous line and the shaded area
around it are the posterior median estimate of the model effi cient real interest rate ret and the
90% uncertainty bands when the interest rate rule is it = ρit−1 +(1− ρ) (ret + φππt + φxx

e
t )+

εit. The red dashed line is the cyclical component which results from applying the HP filter
on the real GDP data used in the estimation.
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Figure 5: Evolution of model effi cient real interest rate (re) and demeaned Federal Funds
Rate (FFR demeaned), both annualized and in percentage points. The blue continuous
line and the shaded area around it are the posterior median estimate of the model effi cient
real interest rate re and the 90% uncertainty bands when the interest rate rule is it =
ρit−1 + (1− ρ) (ret + φππt + φxx

e
t ) + εit. The red dashed line is the demeaned FFR (sample

mean equal to 4.5%).
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Figure 6: Evolution of effi cient real interest rate (re) in baseline model (Baseline) versus
model with time-varying intercept (Re), both annualized and in percentage points. The blue
continuous line and the dashed blue lines around it are the posterior median estimate of the
model effi cient real interest rate ret and the 90% uncertainty bands when the interest rate
rule is it = ρit−1 + (1− ρ) (ret + φππt + φxx

e
t ) + εit. The red continuous line and the dotted

red lines around it are the posterior median estimate of the model effi cient real interest rate
ret and the 90% uncertainty bands around it when the interest rate rule is it = ρit−1 +
(1− ρ) (φππt + φxx

e
t ) + εit.
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Figure 7: Prior and posterior distributions for ξ, ρ∗π, ζ, ρu, φπ, and φx under the RePistarPi4Q

specification of the interest rate rule: it = ρit−1+(1− ρ)
(
ret + π∗t + φπ

(
π4Q
t − π∗t

)
+ φxx

e
t

)
+

εit. For each parameter, the solid red line represents the prior while the blue histogram is the
posterior.
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Figure 8: Evolution of inflation target (π∗t ), effi cient real interest rate (r
e), and effi cient

output gap (xet ) in the RePistarPi4Q specification of the interest rate rule: it = ρit−1 +

(1− ρ)
(
ret + π∗t + φπ

(
π4Q
t − π∗t

)
+ φxx

e
t

)
+ εit. Inflation and interest rate are annualized

and all are shown in percentage points. The blue continuous lines and the shaded areas
around them are the posterior median estimates and the 90% uncertainty bands.
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