
Note on the Role of Natural 
Condition of Control in the 
Estimation of DSGE Models 
 
Martin Fukac and Vladimir Havlena 

August 2011 

RWP 11-03 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6230191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Note on the Role of Natural Condition of Control in

the Estimation of DSGE Models
∗

Martin Fuka£
†

Vladimír Havlena
‡

Abstract

This paper is written by authors from technical and economic �elds,
motivated to �nd a common language and views on the problem of
the optimal use of information in model estimation. The center of
our interest is the natural condition of control � a common assump-
tion in the Bayesian estimation in technical sciences, which may be
violated in economic applications. In estimating dynamic stochastic
general equilibrium (DSGE) models, typically only a subset of endoge-
nous variables are treated as measured even if additional data sets are
available. The natural condition of control dictates the exploitation
of all available information, which improves model adaptability and
estimates e�ciency. We illustrate our points on a basic RBC model.

Key words: natural condition of control, Bayesian estimation, DSGEmodel,

model adaptability

JEL: C11, C18

∗This version: July 2011. Comments are welcome. This paper was prepared for the
Conference in honor of Osvald Va²i£ek, held at Masaryk University in Brno, Czech Re-
public, 22-23 October 2010. The views expressed in this paper are those of the authors
and do not necessarily re�ect those of the Federal Reserve Bank of Kansas City or the
Federal Reserve System.
†Federal Reserve Bank of Kansas City, 1 Memorial Drive, Kansas City, Missouri 64198;

e-mail: �rst.lastname kc.frb.org.
‡�VUT and Honeywell; email: �rst.lastnamehoneywell.com

1



1 Introduction

Since the seminal paper by Peterka (1981), it has been well understood in

the technical sciences that on the way from the Bayesian formula to the

standard recursive least square method for an ARX model estimation, or the

Kalman �lter estimation, several assumptions about information contained

in observed input and output variables must be adopted. While such as-

sumptions are well justi�ed and easy to interpret in technical applications

like LQG observer-based state feedback or adaptive control, the technical

assumptions may be violated in some other areas like economics.

Our attention is focused on the natural condition of control (henceforth

NCC or condition). We would like to stimulate the discussion on the proper

use of the information available to econometricians and on the adaptation of

theoretical model concepts to particular estimation algorithms. We review

the development of model estimation from a conceptual Bayesian solution -

resulting in a generic functional recursion on conditioned probability density

functions (c.p.d.f.) � to famous Kalman �lter equations. We demonstrate the

loss of optimality in the case when the assumptions used for the development

of the standard Kalman �lter are not satis�ed.

The natural condition of control is an assumption made in the control

system literature that simpli�es the algorithm for the optimal estimation

of unknown variables like parameters or state (latent) variables using the

Kalman Filter. The condition says that if an external observer (econome-

trician/statistician) simultaneously observes and controls the system, then

his control decisions, if optimal, do not provide any additional information

about the state of the system, and vice versa.

The violation of NCC is di�cult to detect in the data. It may be more

of an argument than a directly testable hypothesis. The problem is di�erent

from that of model misspeci�cation which manifests itself in residuals, shock

estimates, or inconsistent, model implied expectations. But if econometri-

cians and economic agents with a signi�cant market power objectively know

that the condition does not hold (i.e. there are observed control variables

that are not explicitly included in their models while they should be and thus
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the NCC is violated), the NCC entitles them to use that knowledge in their

favor.

In contrast to many economic applications, the NCC is a credible assump-

tion in the technical sciences. The observer and controller are one person,

the system under his control is well identi�ed, and he uses algorithms that

lead to optimal estimation and decisions. On the other hand, in economic

applications it is almost always di�cult to argue that the condition holds,

because the observer (econometrician) is almost always di�erent from the

controller. The econometrician observes the real-time decisions (about tax

revenues, production, consumption or prices) with a substantial time delay.

To avoid this problem, we assume that the models here describe economic

agents with signi�cant market power. Natural candidates for the controller-

observer in economics are policy institutions like monetary or �scal authori-

ties which observe the markets' behavior and, most importantly, have e�ec-

tive tools to in�uence them. The NCC does not apply to economic agents in

perfectly competitive markets because their size prevent their behavior from

impacting the aggregate markets. The condition may apply to the abstract

concept of a representative agent (which we do not explore here), or agents

with a signi�cant market power such as policy institutions.

We review the condition's validity for the estimation of dynamic stochas-

tic general equilibrium (DSGE) models. We choose them because they have

become the norm for an optimal policy and decision analysis in policy insti-

tutions. At the same time, they are exactly the class of economic models for

which the NCC is the most relevant because they capture optimal decisions.

There are two direct implications of the NCC on DSGE models. First,

we can improve the e�ciency of our estimates. Second, because the observed

control variable is a result of optimal decisions in these models, we can use

that variable to infer the encoded underlying information to improve our own

knowledge about the modeled system. The performance of our own model

can bene�t if the underlying model of the particular optimal decision is of a

better quality than ours.

We show that the choice of observable variables matters. There are many

decision variables that are implicit in the DSGE models, but the variables
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have direct observable counterparts such as labor income, capital income, or

all kinds of fees or tax revenues. For model dynamics, they are of second-order

importance because they do not carry any extra information for the aggregate

dynamics, because output, prices, and interest rates carry the entire set of

information. But from the estimation point of view, the variables, if observed,

carry an important piece of information from which we can infer the beliefs

of the other (representative) agents with higher precision and use them to

improve our own (policy authority) beliefs. Every decision is a DSGE model

is, by de�nition, optimal. And by the construction NCC, every decision

variable must be present in the estimation. Otherwise the Kalman �lter

does not provide optimal estimates.

The NCC provides a theoretical explanation and support, for example,

to the literature on the choice of observable variables (Guerron-Quintana,

2010), or DSGE models in a data rich environment (Boivin and Giannoni,

2006). Guerron-Quintana (2010) addresses the question of �why one should

be concerned with the choice of observable?� He experiments with di�er-

ent sets of observables, and on a standard New Keynesian model he shows

the e�ects that their choice have on the parameter estimates and overall

model dynamical behavior. At �rst sight his approach may appear as data

mining, because it is a very data intensive analysis, but in the light of our

argument, Guerron-Quintana exploration and �ndings may be justi�ed by

natural-condition-of-control arguments.

Our arguments also go a similar direction like in Boivin and Giannoni

(2006) who propose a framework for exploiting information from a large

datasets to improve the estimation of DSGE models. In comparison to the

data-rich literature we provide justi�cation why the use of all available in-

formation in estimation is a must: it is the dictate of the natural condition

of control. In contrast to Boivin and Giannoni, who work with empirical

relationships, we use only the information that can be linked directly to a

decision process captured by the model.1 In that respect we are also using

1From the logic of NCC, the methodology proposed in Schorfheide, Sill and Kryshko (2010)
may be viewed as an ine�cient use of available information. The o�-model variables, if
relevant at all, should be used to update the information about the model states (variables,
endogenous factors), instead of being treated exogenously.
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the information springing from cross-equation restrictions.

The rest of the paper is structured as follows. In the next section, we re-

view the derivation of the basic Kalman �lter equations from an engineering

perspective. It will help us to understand the motivation and consequences

of the natural condition of control. In the third section, we show how the

engineering world maps in to the world of dynamic stochastic general equilib-

rium models. In the fourth section, we illustrate our points on a neoclassical

growth model.

2 State Estimation and Output Prediction

In engineering, the typical motivation of parameter and/or state estimation

is the optimal control problem. The de�nition of the model is then implied

by this task. Consider a discrete-time dynamic system depicted in Figure 1

with the observable/measurable input sequence ut and output sequence yt

and some hidden variables that can be interpreted as the system parameters

θ or system state xt. The input sequence enters in a closed loop, in which

the control decision is based on the system states estimates.

Figure 1: Dynamic system (e.g., DSGE model)

 

yt ut 
(θ, xt) 

ετ 

(θ, xt) 
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2.1 Optimal control problem

Let the sequence of input and output data observed at time interval from t1

up to time t2 be D
t2
t1 = {ut1 , yt1 , ..., ut2 , yt2}. If the initial time t1 = 1, it can

be omitted, i.e. Dt
1 = Dt.

Suppose we have observed the input-output sequence up to time t and are

looking for optimal control on T step prediction horizon with optimality cri-

terion minE
{
J
(
Dt+T
t+1

)∣∣Dt
}
. This optimization problem requires the joint

probability density function p(Dt+T
t+1 |Dt). Using the chain rule, this c.p.d.f.

can be written as

p(Dt+T
t+1 |Dt) = p(yt+T |Dt+T−1

1 , ut+T )p(ut+T |Dt+T−1
1 )×...×p(yt+1|Dt

1, ut+1)p(ut+1|Dt)

The set of c.p.d.f.s p(yτ |Dτ−1, uτ ) for τ = t + 1, ..., t + T de�nes the

dependence of system output yτ on system history up to the time τ − 1, and

the system input at time τ . These c.p.d.f.s de�ne the model of the system.

The set of c.p.d.f.s p(uτ |Dτ−1
1 ) for τ = t = 1, ..., t+T is a general descrip-

tion of the law by which the input uτ is generated. We will call this set of

c.p.d.f.s as the control law. Note the information delay in the control law;

while the input uτ is applied to the system to generate its output in the τ -th

period, the output yτ is not available to calculate the control law uτ .
2

2.2 State Estimation

If there exists a hidden (latent) variable xt of �xed dimension such that

p(xt+1, yt|Dt−1, xt, ut) = p(xt+1, yt|xt, ut)

it is called the state of the system. The state of the system xt constrains

all the information about the system history that is relevant to predict the

values {xt+1, yt}. Using the state de�nition above, the output model can be

2In engineering applications it is typically assumed that a continuous process is observed
at regular intervals τ = tTs with sampling period Ts and the input is constant during the
sampling period, i.e. u(τ) = ut for tTs ≤ τ < (t+ 1)Ts.
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obtained as a marginal distribution

p(yt|xt, ut) =

∫
p(xt+1, yt|xt, ut)dxt+1

and the state transition model as a conditioned distribution

p(xt+1|xt, ut, yt) =
p(xt+1, yt|xt, ut)
p(yt|xt, ut)

.

This re�ects the fact that for the prediction of state xt+1, the information

about the output in the t-th period is available and should be incorporated

in the optimal prediction (see the sampling scheme in Figure 2). To calculate

the output prediction

p(yt|Dt−1, ut) =

∫
p(yt|ut, xt)p(xt|Dt−1, ut)dxt

information about the state given by the c.p.d.f. p(xt|Dt−1, ut) is required at

each step of the recursion. That is the point at which the NCC comes in to

play.

Suppose the information about the state p(xt|Dt−1) based on the data

up to time t − 1 is available. This information can be updated after a new

input-output observation {ut, yt} has been obtained using the Bayes formula

p(xt|Dt) =
p(yt|Dt−1, xt, ut)p(xt|Dt−1, ut)

p(yt|Dt−1, ut)
=

p(yt|xt, ut)
p(yt|Dt−1, ut)

p(xt|Dt−1),

where the properties of the state and the natural condition of control for the

state estimation (Peterka, 1981) p(xt|Dt−1, ut) = p(xt|Dt−1) are used to get

the second term.

The NCC assumption cannot be deduced from the properties of the dy-

namic system itself but rather from the process of information accumulation.

In the technical context, its interpretation is twofold:

1. The condition p(xt|Dt−1, ut) = p(xt|Dt−1) says that the control variable

ut does not provide any additional information about the state of the

system xt. This assumption is valid e.g. in the framework of observer-
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based LQG control � incomplete information feedback � with the control

variable based on state estimate ut = f (E[xt|Dt−1]). In this case the

control variable ut does not provide any additional knowledge than the

information contained in the data set Dt−1.

2. Using the equality

p(xt|Dt−1, ut)p(ut|Dt−1) = p(ut|xt, Dt−1)p(xt|Dt−1)

the condition p(xt|Dt−1, ut) = p(xt|Dt−1) implies that also p(ut|Dt−1, xt) =

p(ut|Dt−1). If the state-estimation and control is performed by the same

subject, the system input is based only on the available data and is not

modi�ed by the state estimate, which does not provide any �new� infor-

mation for the calculation of the control law.

3 General Equilibrium Models

Now we turn our attention to the dynamic stochastic general equilibrium

(DSGE) models. Their (log)linear form is

Γ0(θ)xt = Γ1(θ)Etxt+1 + Γ2(θ)xt−1 + Γ3(θ)εt, (1)

where xt is a (n × 1) vector of endogenous variables (log-deviations from

their steady state), and εt is a (k×1) vector of unobservable exogenous i.i.d.

shocks. For a simple notation, we assume that n = k. This assumption will

be relaxed in the later discussion. Γ0(θ), Γ1(θ), Γ2(θ) and Γ3(θ) are time

invariant matrices of structural parameters. Their elements are functions of

deep structural parameters, θ. Et(.) is the rational expectation operator con-

ditional on the modelM and information available to the economic agents at

time t � the information matrix is Ωt ∈ (xt, xt−1, ..., x0, εt,M). The structural

matrices Γ0(θ), Γ1(θ), Γ2(θ) and Γ3(θ) are such that the model has unique

and stable equilibrium.

Solving for the rational expectations Et(.), model (1) has a minimum
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state representation

xt = A(θ)xt−1 +B(θ)εt. (2)

Equation (2) characterizes the dynamic equilibrium in the reduced form.

A(θ) and B(θ) are functions of Γs and through them they are functions of

the deep structural parameters θ.

The model states xt are linked to their observed counterparts via the

measurement equation

yt = Cxt, (3)

where yt is (m × 1) vector of observable variables, and C is the (m × n)

(usually identity) matrix that maps the model variables into yt.

Equations (2) and (3) establish together the state-space representation

of the original model (1).3 When estimating (2) and (3), it is standard to

assume that (i) model (1) is a reasonable representation of the world and

the decisions taken in it, and (ii) yt is the only information that the outside

observer has available to estimate and evaluate xt.

If an external observer does not use all available information, the NCC is

violated and the Kalman �ltering may not be optimal, which sacri�ces the

estimation e�ciency of parameters and unobservable variables. We consider

two instances in which the NCC is violated.

3.1 Learning from others

If any additional information about the system state is available to calcu-

late the control law, the standard Kalman �lter is not optimal from the

Bayesian inference/information accumulation point of view. That is why

some applications in the economic literature may not fully comply with the

NCC assumption: typically in multi-agent environment where individual

agents operate based on di�erent information content, the control action

of one agent may provide additional information to the remaining agents,

i.e. p(xt|Dt−1) 6= p(xt|Dt−1, ut). If this additional information is not used to

3It is useful to note at this point that if n = m the state-space model can be written as a
�nite order VAR. If n > m, the model can be written as an in�nite order VAR. If n < m,
the state space model is stochastically de�cient.
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evaluate their optimal control strategy, their behavior is not optimal from

the Bayesian inference/information accumulation point of view.

As an example, assume a statistician observing a linear system controlled

by (complete information) state feedback. Then his (noisy) observation of

controlled variable ut = −Kxt + eut provides signi�cant information about

the state.

If the statistician knows the control law K, interpreting the control vari-

able ut as an additional observation de�ned by c.p.d.f. p(ut|xt) = peu(ut +

Kxt) in parallel to the observed outputs yt = Cxt + Dut + eyt de�ned by

p(yt|xt, ut) = pey(yt − Cxt − Dut), the optimal data update step of state

estimation process (Kalman �lter) should cover input update step

p(xt|Dt−1, ut) ∝ p(ut|xt)p(xt|Dt−1)

and output update step

p(xt|Dt) = p(xt|Dt−1, ut, yt) ∝ p(yt|xt, ut)p(xt|Dt−1, ut).

If the statistician does not know the control law K, he is not able to

incorporate this information into the state estimation process. However, if

he knows that NCC are not satis�ed 4 and he is sure that the observed control

variable ut provides additional information about the state xt, he may try

to recover this information. One of his options is adaptation of his behavior

based on estimation of the control law K as an unknown parameter of the

observation model p(ut|xt, K).

The NCC adds on an additional dimension to adaptive learning. The

basic Kalman �lter algorithm already utilizes the information from one's

own past prediction errors. In contrast to learning from one's own errors, the

violation of NCC calls for learning from the decisions and errors of others.

4detection of NCC violation may be a separate topic of interest
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Figure 2: Sampling from a continuous process - logic for the Kalman �lter
timing

timeτ = (t-1)Ts τ = tTs τ = (t+1)Ts

yt

ut

ut+1
yt-1

ut-1

3.2 Unobserved-observed variables

The state equation (2) can be viewed as a model of control in closed loop (or

full-state control). The latent endogenous variables xt can be split in to two

parts:

Γ0(θ)xt = Γ0(θ1)xt + ut.

ut = Γ0(θ2)xt is the cumulative e�ect of the structural parameters Γ0(θ2).

If there is ut that is observed, we have to extend the observation equa-

tion (3) to inform the estimates of θ and xt, similarly like in the previous
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subsection. Therefore, we augment measurement equation (3) to the form of

xt = A(θ)xt−1 +B(θ)εt (4)[
ut

yt

]
=

[
Γ0(θ2) 0

0 CA(θ)

]
xt−1 +

[
I 0

0 CB(θ)

]
+

[
εut

εt

]
(5)

An example of a variable ut in DSGE models can serve income tax, con-

sumption tax, or capital (property) tax revenues. They almost never explic-

itly appear in DSGE models. These variables are determined by a passive

�scal policy. Tax rates a�ect dynamics indirectly via resource allocation,

but the tax revenues per se never explicitly appear in the minimum-state

representation because they do not bring any additional information about

the aggregate dynamics. From the estimation perspective, including obser-

vations on tax revenues may be important. It is very often the case that

some of the variables in the minimum-state model do not have an observable

counterpart (e.g. capital stock or output gap). Then to minimize the un-

certainty around their estimates, any information on capital tax revenues is

very useful because it is structurally linked to the unobserved capital stock

and thus helps to e�ectively infer its level.5

5Similarly, the demand for money may add additional power to output gap forecasts. It
does not carry any additional information about the in�ation rate and output gap, because
money demand on those factors. But exactly the very same reason dictates to include
money demand among observable variables if output gap is unobservable.
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4 Illustration

This section illustrates our point that using the whole disposable informa-

tion may improve models' adaptability and estimation e�ciency. We use a

simple real business cycle (RBC) model to generate arti�cial data of private

consumption, hours worked, investment, consumption tax receipts, and of

disposable income, which form our set of disposable information. First, we

assume that an econometrician (observer) uses only two series out of the

complete information set. Next, we gradually expand the set that the econo-

metrician utilizes. Then a similar exercise is repeated on actual data.

The RBC model is comprised of two sets of agents � household and �rm.

Households maximize their expected lifetime welfare E0[
∑∞

t=0 β
t (Ct+Ht)

1−σ

1−σ +

ξ log (1− Lt)] subject to a budget constraint wtLt + (1− rt − δ)Kt−1 + Tt =

(1 − τc)Ct + Kt. The parameter σ > 0 is the measure of household's risk

aversion, and the parameter β ∈ (0, 1) is the time discount factor. The

household's welfare derives from consumption Ct and leisure 1 − Lt. The

level of consumption is fueled by the habit Ht, which depends on the past

consumption and an i.i.d. habit shockHt = φCt−1e
εt , with φ ∈ (0, 1) and εt ∼

N(0, σ2
c ). Time spent by work Lt causes disutility but it is compensated by

the hourly real wage wt. The consumption is taxed by the government at the

rate of τc ∈ (0, 1). The household is the only owner of physical capital Kt in

the economy, which is, together with labor, a factor of production. Firms rent

the capital and pay the households the interest rt in return, but the physical

capital depreciates over time by the rate δ ∈ (0, 1). The household further

receives the lump-sum transfers Tt from the government, which operates on

a balanced budget.

Firms maximize their pro�ts Πt = Yt− rtKt−1−wtLt by optimally hiring

labor and capital to produce the consumption good Yt using Cobb-Douglas

technology: Yt = AtK
α
t−1L

1−α
t . At is the total factor productivity and follows

a log-linear AR(1) process: logAt = ρ logAt−1 + εAt . The exogenous shock

εAt ∼ N(0, σ2
A) and we interpret it as the productivity shocks. α ∈ (0, 1) is

the share of capital in production.

In equilibrium, all (labor, capital, and consumption goods) markets clear.
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The dynamic equilibrium is characterized by the Euler equation for con-

sumption, labor demand, resource constraint, and the exogenous supply of

technology. (
Ct + φCt−1e

εt

Et{Ct+1}+ φCt

)−σ
= β(1− δ − αAtKα−1

t−1 L
α
t ) (6)

ξ
1− Lt
Cσ
t

=

(
1− τc
1− α

)
Lαt

AtKα
t−1

(7)

AtK
α
t−1L

1−α
t = Ct +Kt − (1− δ)Kt−1 (8)

logAt = ρ logAt−1 + εAt (9)

We use the following values to parameterize the equilibrium: α = 0.60,

β = 0.97, ξ = 1, σ = 3, τc = 0.2, δ = 0.01, φ = 0.5, ρ = 0.9, σc = σA = 0.01.

The model is solved using the methodology proposed by King, Plosser

and Rebelo (1988). First, the model steady state is computed. Second, (6)

- (9) are log-linearized around the steady state, and we obtain the model

in the form of (1). Finally, the log-linear model is solved for the rational

expectations Et(.). The result is the state equation (2), in which there are

four endogenous variables
[
Ct Kt Lt At

]
, three of which are truly state

variables,6 and there are two structural shocks
[
εt εAt

]
.

Having the model, we simulate the set of disposable information. The set

consists of the measures of private consumption C̄t, hours worked L̄t, gross

private investment Īt, sales tax receipts T̄t, and disposable income D̄I t. We

assume that the measures of these variables are published by a statistical

o�ce. We do not measure any direct counterparts of the physical capital

stock and the total factor productivity. Those variables remain latent states

in the exercise.

The �rst two observed variables are direct counterparts of the state vari-

ables Ct and Lt. The other three are de�nitions implicitly included in (6)-(9).

They are functions of the model's endogenous variables. The gross private

investment is de�ned as Īt = Kt − (1 − δ)Kt−1, consumption tax receipts

6[Ct−1,Kt−1, At−1] are the truly state variables. They form the minimum-state-variable
solution to the DSGE model. The equilibrium level of Lt follows from the marginal rate of
substitution between work and consumption, which is an intratemporal/static relationship.
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are T̄t = τcCt, and the disposable income is equal to equilibrium production

D̄I t = AtK
α
t−1L

1−α
t . All the variables are measured with an error that is i.i.d.

4.1 Monte Carlo Experiment

We assume that an econometrician (observer), who wants to estimate the

model (6)-(9) decides to use the information contained only in the measures

of consumption C̄t and hours worked L̄t. He knows the structural model and

its parametrization, and he wants to estimate the latent states Kt and At.

The assumptions of this experiment resemble a set up common to eco-

nomic applications. The econometrician knows the disposable data, but he

decides to use the measures that are naturally the closest to the model vari-

ables. Because there are no direct counterparts of Kt nor At in his database,

he treats them as latent and estimate them. The structural parameters

are known to him and thus the econometrician only seeks Kt and At. The

Kalman �lter can deliver their optimal estimates.

The estimation results of this experiment are plotted in Figure 3. The

solid (pink) lines are the actual (simulated and known to us) series of Kt (top

panel) and At (lower panel). The widest (blue) interval corresponds in both

panels to the uncertainty of the estimates.

The econometrician's choice of observable variables results in the loss of

e�ciency and consistency. We see that very often the estimate of capital or

technology is indistinguishable from zero. The con�dence intervals are wide

but at the same time may not include the actual series.

In the next step, the econometrician exploits the disposable information

a bit more. He realizes that the statistical o�ce provides more data that is

structurally linked to his model and they can help to inform his estimates.

The light intervals in Figure 3 show the gain in e�ciency and consistency

when the disposable income is introduced in the set of observable variables,

data on investment are similarly informative. The con�dence intervals for

the capital stock and technology estimates shrink. The estimates become

statistically signi�cant and more closely match the actual underlying trajec-

tory of the latent variables. The tax revenues contribute only marginally to
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the estimates accuracy.

Figure 3: Estimates of capital stock and labor productivity (MC experiment)
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Note: The graph presents the results of a Monte Carlo experiment with model (6)-(9) as
parameterized in the text. The shocks are drawn from iids. In both panels, the solid line
is the actual series (capital stock - top panel; technology - lower panel). The shaded bands
around the actual series are the estimated 2std (smoothed) con�dence intervals conditioned
on a set of observables. The baseline information set (Obs)� consumption and hours work
observed � and the baseline set extended for the consumption tax receipts (Obs+T) yield
the two widest con�dence intervals. The baseline set extended for disposable income
(Obs+DI) or investment (Obs+I) provide the most narrow con�dence intervals and pin
down the level of the actual states very precisely.
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This Monte Carlo experiment also illustrates why the violations of the

NCC di�er from the problem of model misspeci�cation and therefore is hard

to detect. Unlike model misspeci�cation, the violation of the NCC does not

have a clear manifestation in the estimation outcome, e.g. shock estimates

are not i.i.d. The Kalman �lter optimally process data information. It

always provides optimal estimates of all latent variables. For example, all

con�dence intervals plotted in Figure 3 are based on a well speci�ed model

and well behaved estimates so more of them can be dismissed as ine�cient

or inconsistent. And still some of the data sets well outperform others in

estimation.

In practice, it is di�cult to make ad hoc claims which of available data

add the most e�cient information, but the model structure may help with

the inference. Prior to any estimation we can evaluate the Fisher informa-

tion matrix. We may infer how much new information we can expect to

obtain when asking a particular set of data. It is a coherent way to summa-

rize and analyze the information content for example presented in Figure 3.

The Fisher Information matrix can help us to prioritize among variables we

consider to select from the set of available information, which may be par-

ticularly helpful if we happen to have a constraint on available computation

power. In contrast to the selection criteria proposed in Guerron-Quintana

(2010), the analysis of the Fisher information matrix appears as a cleaner

way to prioritize among observable variables, because it does not require any

prior data information.

4.2 Estimated Model

Now we repeat the above experiments with actual US data. In contrast

to the prior analysis, we will see that, empirically, consumption, and hours

worked su�ciently inform the estimates of capital and technology. Adding

the observations on the �xed private investment does not add to the e�ciency

very much.

The data used in this section are taken from the Federal Reserve Eco-
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nomic Data managed by the Federal Reserve Bank of St. Louis.7 We use

the annual series of the real personal consumption expenditures (mnemonic:

PCECCA96), annual series of real private �xed investment (mnemonic: FPICA),

and annualized series of total hours worked, which is the product of monthly

seasonally adjusted series of average weekly hours worked in private industries

(mnemonic: AWHNONAG) and of the total non-farm payrolls (mnemonic:

PAYEMS). Per capita terms are taken with respect to the total civilian la-

bor force (mnemonic: CLF16OV). There are two time spans we consider.

The �rst one is relevant for consumption and spans from 1949 to 2009. The

second time span is for hours worked and investment that we observe from

1965 and 1967, respectively, to 2009. The model is estimated on the relevant

samples between 1950 and 2009.

Because model (6)-(8) is without nominal rigidities, we treat it as a growth

model and estimate it on an annual frequency. Because of the non-stationary

nature of the actual data, we modify the technological process to include a

stochastic trend. Instead of (9) we now assume that the technology At is labor

augmenting and follows the �rst-di�erence stationary process with drift:

∆ logAt = (1− ρ)∆Ā+ ρ∆ logAt−1 + εAt . (10)

∆Ā > 0 is the drift term, which sets the economy on an exogenous but

balanced growth path. Both capital and consumption grow at that rate in

the long run.

The transitory parameters {φ, ρ} and the variances {εct , εat } are estimated

using the maximum likelihood.8 The other parameters are kept �xed at their

parameterized values mentioned above. We will not report their estimates

and instead we again focus on the estimates of the capital stock Kt and labor

augmenting technology At.

Figure 4 summarizes the basic results. In the top two panels, we compare

the con�dence intervals for the smoothed estimates of Kt and At. The panels

show the relative e�ciency of the capital stock estimate (top left) and labor

7Web page http://research.stlouisfed.org/fred2/.
8The parameters are estimated to allow for a better data match. It does not pose a
fundamental change to the setup of the experiment.
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augmenting technology estimated (top right) when (i) the information on the

growth of consumption and hours worked is used (model 1), and (ii) when

that information is extended with the investment growth (model 2). The

shaded areas are then computed as 100(std(Xt,model1)/std(Xt,model2) − 1).

Positive values mean that the model two � model with more information,

outperforms the model one � model with less information.

The model with more information (Figure 4, model two) helps to improve

the estimate of the labor augmenting technology (right panel). Early in the

sample the relative e�ciency of model two is 7 times higher than of the

model with less information. The relative advantage of model two gradually

diminishes as model one adapts and as its e�ciency improves over time. In

2010, the relative e�ciency of model two is already only 2 times better than

of model one.

We recall that the estimates are smoothed estimates; that is, the early

estimates of At are based on the complete information set available at time

T . That is why the model with more information performs better over the

whole sample even if the extra information in the form of investment growth

comes in after 1967.

In the instance of capital stock (Figure 4, left panel), model two starts to

outperform model one shortly before the year 1971, when the new information

from hours worked and investment begins to feed in. Early in the sample,

the model with less information performs almost 7 times better than the

model two. This is the price of the improved estimate for the technological

process in this time period. After 1971, the model with more information

again clearly outperforms model one, delivering estimates of the capital stock

that are twice as e�cient as in model one.

One may wonder why the observations on investment do not provide even

higher gains in e�ciency. The model's good (in-sample) predictive power for

investment provides an explanation. The graph in the bottom panel of Figure

4 compares the model implied investment (when treated as latent in model

one) to the actually realized (observed) data. Clearly, the data on private

consumption expenditures and hours worked by themselves contain enough

information about investment and thus the capital stock and also technology.
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Figure 4: Estimates of capital stock and labor productivity (US data)
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Note: The top two panels show the relative e�ciency of the capital stock estimate (top
left) and labor augmenting technology estimated (top right) when (i) the information on
the growth of consumption and hours worked is used (model 1), and when that information
is extended with (ii) the investment growth (model 2). The shaded areas are computed as
100(std(Xt,model1)/std(Xt,model2)− 1).

5 Final Remarks

We reviewed the basic derivation of Kalman �lter equations with the focus

on the role of the natural condition of control. We were interested in what

this condition implied for the estimation of DSGE models used in economics.

We provided a theoretically consistent justi�cation for the use of all available

(observable) information that can be structurally linked to the model. Under

the assumption of information pooling, we illustrated that this leads to a

signi�cantly improved estimate e�ciency.
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The NCC can provide an alternative structural perspective for DSGE

model developers. The model may be well speci�ed but the NCC still can be

violated. It is because the condition does not deal with the model structure

per se, but rather with the �ow of information in it.

In future work we would like to look at the possible avenues for formal

testing of the NCC, which can be used for an empirical assessment of en-

dogenous decision rules. DSGE models consist of optimal decision (control)

rules, so each equation can be subject to testing. Another possible avenue for

research is to relax the assumption of information pooling, and look at the

case of an agent with signi�cant market power and private information. If

the NCC should hold, the remaining market players can try to infer the pri-

vate information encoded in the decisions of the dominant player and adapt

to it.
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