
Computing continuous-time growth models with
boundary conditions via wavelets
Mercedes Esteban-Bravo�, Jose M. Vidal-Sanz

Department of Business, Universidad Carlos III de Madrid, C/Madrid no 126, 28903 Getafe, Madrid, Spain

Abstract

This paper presents an algorithm for solving boundary value differential equations, which

often arise in economics from the application of Pontryagin’s maximum principle. We propose

a wavelet-collocation algorithm, study its convergence properties and illustrate how this

approach can be applied to different economic problems.
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1. Introduction

Many economic problems with finite time horizon have the form of boundary
value problems (BVP) for differential equations, resulting from Pontryagin’s
maximum principle. In rare cases the solution can be obtained analytically, but in
general, numerical approximation methods are required. Despite the rapid growth
on numerical methods for approximating solutions to continuous-time models (for
recent surveys see Rust, 1996, Santos, 1999, the text by Judd, 1998 and the collection
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of essays edited by Marimon and Scott, 1999), few algorithms have been developed
to cope with boundary conditions (see, e.g. Goffe, 1993).

Given a continuous function f : RRþ1 ! RR, and a vector of continuous linear
functionals a ða1; . . . ; aRÞ

0, with aj : C1ð½a; b�ÞR ! R linearly independent, consider
the BVP

DyðtÞ f ðt; yÞ,

aðyÞ c, ð1Þ

where y ðy1; . . . ; yRÞ
0, yj 2 C1ð½a; b�Þ for j 1; . . . ;R, and Dy denotes the

differential operator. The boundary condition specification aðyÞ c includes most
of the initial and BVP considered in macroeconomic analysis. In particular, we are
concerned with the boundary conditions of the form yðtÞ 0 for some t 2 ½a; b�,

or other more general specifications such as aðyÞ
PK

k 1AkyðtkÞ, where Ak is an

R dimensional square matrix and tk 2 ½a; b�, or integral conditions where

aðyÞ
R

AðsÞyðsÞds.

Several different algorithms have been proposed in numerical analysis literature.
Shooting methods are probably the most popular method for solving BVP.
A shooting method is a successive substitution method based on the idea of guessing
the initial condition which associate solution satisfies the desired boundary
condition. Then, any finite difference algorithm can be considered to solve this
‘new’ initial value problem. For details see, e.g. Ascher et al. (1995), Roberts and
Shipman (1972) and Keller (1976). Unfortunately, these methods can be quite
inefficient as they may often converge quite slowly, or not at all, and a wrong guess
could substantially increase the computer time. Furthermore, the numerical errors
can be magnified. The possible difficulties with shooting methods are frequently
discussed in the literature, see, e.g. Conte (1966), Keller (1968, 1976), and Osborne
(1969).

Alternatively, BVP can be solved using some projection based methods, such as
Galerkin or collocation techniques. Those based on splines are commonly used and
their theory is well developed in numerical analysis (see, e.g. Varga, 1971; Russell
and Shampine, 1972; Lucas and Reddien, 1972; de Boor and Schwartz, 1973;
Prenter, 1975). In this context collocation methods often have better performance
than Galerkin methods, but the choice of the collocation points greatly influences the
effectiveness of the method. Furthermore, if the solution path exhibits some abrupt
changes, the approximation could be inaccurate.

The use of wavelets in the projection methods is superficially similar to other
bases. Wavelet bases have the attractive property that once one of the basis functions
is known the rest may be obtained by dilation and integer translation of a single
function. Wavelets have been applied to a wide range of problems such as signal
processing, image analysis, data compression and time series econometrics.
Particularly, the discovery of compactly supported wavelets has proven to be a
useful tool for the approximation of functions, differential and integral operators.
The Daubechies wavelets that we use in this paper form an orthogonal basis with
compact support. A short support is a desirable property because this makes the
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approximation analysis local. These and other features are that they allow us to treat
a large class of operators in an efficient way (as documented in, e.g. Beylkin, 1992,
1993).

In this paper we propose a methodology for approximating the solution of BVP.
Given a wavelets basis, we approximate the solution of the trapezoidal discretization
of the BVP. The use of trapezoidal discretization avoids the numerical instabilities
often observed in many algorithms for solving ordinary differential equations (e.g.
the Euler finite approximation for stiff problems). For approximating the solution to
models in which inequality constraints occasionally bind, we present an extension of
the proposed algorithm that deals appropriately with inequality constraints.

The rest of the paper is organized as follows. Section 2 contains an introduction to
wavelets and the Daubechies wavelets that we use in this paper are presented in
detail. Section 3 describes a wavelet collocation for solving a BVP and some
examples that illustrate the good performance of the algorithm (Appendix A
presents a MATLAB code for solving a simple example). Section 4 presents the
theoretical convergence analysis. All the proofs can be found in Appendix B.
2. An introduction to wavelets

The proposed algorithm for solving BVP relies heavily on wavelets approximation
theory. Thus, before presenting the wavelet collocation approach, let us introduce
wavelets in some detail.

Let L2ðRÞ denote the vector space of all classes of Lebesgue measurable functions
y defined on R (we identify functions that are equal almost everywhere) such thatR
jyðtÞj2 dto1, which is a Hilbert space endowed with the inner product
hx; yiL2

R
xðtÞyðtÞdt.

Consider a sequence of closed subspaces fV ngn2Z of L2ðRÞ such that Vn � Vnþ1,
for all n 2 Z,

T
n2ZV n f0g, and

S
n2ZVn is dense in L2ðRÞ. We say that fVngn2Z is a

multiresolution if it satisfies the conditions

(i) xðtÞ 2 Vn3xð2tÞ 2 Vnþ1.
(ii) xðtÞ 2 V 3xðtþ 1Þ 2 V .
0 0
(iii) There exists a function f 2 V0, known as the father wavelet or scaling function,
with a nonvanishing integral and such that ffðt kÞgk2Z is an orthonormal basis

of V 0. (Actually, it is sufficient that ffðt kÞgk2Z form a Riesz basis1).
The multiresolution concept was introduced by Mallat (1989). If Vnf g is a
multiresolution, then each subspace V n is the span of an orthonormal basis ffn;kgk2Z,

n=2 n
with fn;kðtÞ 2 fð2 t kÞ.

Wavelet theory considers the representation of general functions in terms of

simpler, fixed building blocks fn;k at different scales and positions. As the set of

1A countable set ff ng of a Hilbert space is a Riesz Basis if every element y of the space can be written

uniquely as f ¼
P

ncnf n, and there exists positive constants A;B such that Akf k2o
P

njcnj
2oBkf k2.

Orthonormal and biorthogonal basis are particular cases.
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functions ffðt kÞgk2Z is orthonormal, the orthogonal projection of an arbitrary
y 2 L2ðRÞ into Vn can be written as PVnðyÞðtÞ

P
k2Zhy;fn;kiL2

fn;kðtÞ, yielding the
best L2 approximation of the function y in Vn, and furthermore

yðtÞ lim
n!1

PVnðyÞðtÞ lim
n!1

X
k2Z

hy;fn;kiL2
fn;kðtÞ, (2)

i.e. ky PVn ðyÞk ! 0 in the sense of L2. For each t 2 R the summation in (2)
contains a finite number of nonnull terms whenever f has compact support,
otherwise it should be truncated for practical applications. Under appropriate
conditions, the approximation property holds in the supremum norm, for
continuous functions yðtÞ with compact support. The wavelet multiresolution can
be analogously defined on L2ð½a; b�Þ, considering subspaces fV ng

1
n 1 and f supported

on ½a; b�.
Each wavelet system contains functions fn;k that vary in time and frequency.

Wavelets decompose functions in components with different frequencies, and then
study each component with a resolution matched to its scale. The efficiency of a
wavelet system approximating functions depends on the Fourier transform of the

scaling FðoÞ
R
fðtÞe�iot dt. For example, the speed to which ky PVnðyÞk ! 0 for

functions y with several continuous derivatives is typically higher when the scaling

satisfies DjFðoÞjo 0 0 for j 1; . . . ; q for a larger q. This property is known as the

vanishing moments property, since it is equivalent to
R
fðuÞuj du 0 for j 1; . . . ; q

(i.e. the basis functions are chosen to be orthogonal to the lower degree
polynomials). Note also that ffðt kÞgk2Z is an orthonormal basis whenP

k2ZjFðoþ 2pkÞj2 1 a.e. Lemarié (1988) proposed an orthogonalization proce

dure to find orthonormal wavelets. If the integer translations of f form a Riesz basis

of V 0, then an orthonormal basis can be defined by forth and its integer translations,

where ForthðoÞ FðoÞ=
P

k2ZjFðoþ 2pkÞj2
q

. But if f is compactly supported, forth

will not be so in general.
Wavelets are well suited for approximating functions with discontinuities and

sharp spikes. In order to approximate functions with isolate discontinuities, one
would like basis with a very short support. At the same time, to obtain a detailed
frequency analysis (a good representation of small bumps and cycles) it is preferable
that the support of the Fourier transform F is a short interval (which means that f is
smooth). This implies that the support of f cannot be short (the Heisenberg
Uncertainty Principle establishes that functions cannot be frequency band limited
and time limited simultaneously). Different wavelet families make a different trade
off between how compactly the basis functions are localized in time (how well rough
functions are approximated) and frequency (how smooth they are).

Many wavelet families have been considered in the literature. The simplest father
wavelet is the Haar wavelet

f1ðtÞ I ½0;1ÞðtÞ,
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where IAðtÞ 1 if t 2 A and zero otherwise. Another classical example is the
Shannon function

fs
ðtÞ sinðptÞ=pt,

with Fourier transform FsðoÞ I ½�p;pÞðoÞ. Haar and Shannon wavelets are extreme

opposite cases, regarding their efficacy in the time and frequency domain. The first
scaling function has very low regularity and the second a very slow decay in the time
domain, and reciprocally in the frequency. Haar wavelets can be generalized to the
cardinal B spline biorthogonal wavelets of order N, defined recursively as a
convolution fNðtÞ fN�1ðtÞ � f1ðtÞ, with f1 the Haar wavelet. The Fourier

transform of fN is FN ðoÞ ðð1 e�ioÞ=ioÞN . These bases are not orthogonal
(orthogonality means no redundancy in the representation and hence, it is not
required unnecessary computer time or storage). When the Lemarié’s orthogonaliza
tion process is applied to the B splines biorthogonal wavelets, we obtain the
Battle Lemarié wavelets (see, e.g. Battle, 1987; Lemarié, 1988). The Battle Lemarié
scaling functions do not have compact support but have an exponential decay.

Probably, the most frequently used wavelets systems are the compactly supported
wavelets proposed by Daubechies (1992). Daubechies’ wavelets are indexed by
N 2 f1; 2; 3; . . .g, which is the number of vanishing moments. Due to the fact that
V 0 � V 1, any father wavelet can be expressed as

fðtÞ
X
k2Z

akfð2t kÞ, (3)

for some fakgk2Z 2 l2. Taking Fourier transforms, we can express (3) as

FðoÞ Aðo=2ÞFðo=2Þ, (4)

where AðoÞ ð1=2Þ
P

k2Zake
�iko. A multiresolution can be defined by finding a

function AðoÞ, which means finding a sequence fakg such that the Fourier inverse of
F satisfying (4) is a father wavelet. Daubechies proposed a procedure to construct a
finite sequence fakg

2N�1
k 1 such that

fðtÞ
X
k 1

2N�1

ak fð2t kÞ, (5)

and the resulting f has compact support with length 2N 1. From the
computational point of view, a high number of vanishing moments N translates
into a sparse representation (2) of a piecewise smooth function yðtÞ, as the wavelet
coefficients hy;fn;kiL2

will be zero when 2n=2fð2nt kÞ is supported on regions where
y is well approximated by an N 1 degree polynomial. The support for the scaling
function fn;k is ½2�nk; 2�nðk þ 2N 1Þ�. Then, the higher the N the longer the
support of f and this effect reduces the localization, increasing the number of
functions fn;kðtÞ required to approximate y at t for a particular n. For N41 the
Daubechies wavelets do not have analytic expression (N 1 leads to the Haar
wavelets), but can be computed by a recursive algorithm known as the cascade
algorithm. Figs. 1 and 2 present Daubechies scaling functions of order N 3 and 4,
respectively, where it can be observed the support enlargement with the order N. For
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a detailed exposition about Daubechies wavelets of order N and their properties, see
Daubechies (1992). Daubechies wavelets have been adapted to suit specific
requirements such as symmetry (called symlets) or subspaces such as L2ð½a; b�Þ (see
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Fig. 1. Daubechies scaling function of order N ¼ 3.
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Fig. 2. Daubechies scaling function of order N ¼ 4.
Daubechies, 1994).
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Let W r
2ðRÞ be the Sobolev space in L2 (i.e. the L2 closure of CrðRÞ). The elements

of W r
2ðRÞ are all the functions weakly differentiable2 up to order r with weak

derivatives square integrable. Therefore, Dmy can be approximated byP
k2ZhD

my;fn;kiL2
fn;k when n!1. Some wavelet bases have a scaling function

f in the Sobolev space (for example, the Daubechies wavelets of order N satisfy
f 2W N

2 ðRÞ), which can be used to approximate the derivatives of smooth functions
y 2W r

2ðRÞ, as follows:

DmyðtÞ lim
n!1

X
k2Z

hy;fn;kiL2
Dmfn;kðtÞ,

for any derivative of order mpN. This convergence is uniform if y 2 CrðRÞ and has
compact support (Daubechies wavelets have a scaling function f 2 CN ðRÞ). As
Dmf 2 L2ðR

dÞ, we can also express the derivative Dmfn;k in terms of the wavelet
basis,

Dmfn;kðtÞ lim
s!1

X
r2Z

hDmfn;k;fs;riL2
fs;rðtÞ lim

s!1

X
r2Z

Gm
n;k;s;rfs;rðtÞ,

where the coefficients Gm
n;k;s;r, known as the connection coefficients, have been

computed for the most commonly used wavelets (see Latto et al., 1991 and Beylkin,
1992). Therefore, the derivatives of y 2W r

2ðRÞ can be expressed as

DmyðtÞ lim
n;s!1

X
r2Z

X
k2Z

hy;fn;kiL2
Gm

n;k;s;rfs;rðtÞ.

However, we avoid the numerical computation of derivatives to reduce the
computational cost and to increase the numerical stability in the numerical
algorithm presented later in this paper.

Wavelet representations have additional nice properties. For example, given the
multiresolution fVng we can define a Wold type decomposition of L2ðR

dÞ, i.e. a
sequence of linear subspaces fW ngn2Z, such that W n ?W m if nam, V nþ1

V n �W n (this requires that V n ?W n) and �n2ZW n is dense in L2ðR
dÞ. The subspace

W n is called the detail space at level n. The sequence fW ng characterizes the
multiresolution fVng and vice versa, as V n �n

j �1W j and W n V nþ1 � Vn.
There exists a function c 2 L2ðR

dÞ, called mother wavelet, such that
W n spanf2nd=2cð2nt kÞ: k 2 Zdg, and we can express any y 2 L2ðR

dÞ as

yðtÞ lim
N!1

XN

n �1

PWnðyÞ
X
n2Z

X
k2Z

hy;cn;kiL2
cn;kðtÞ.

2We say that a Lebesgue-measurable function f is weakly differentiable if it is integrable on compact

subsets and there exists a function Df, known as the weak derivative of f, such that
R
f � f ¼

R
ðf �Df Þ
for all smooth functions f with compact support.
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Moreover, as Vnþk V n�
k
j 1W nþj and V 0 �0

n �1W n, the subspace V 0 � ð�
1
n 1W nÞ

is dense in L2ðR
dÞ, and we can express

yðtÞ PV0
ðyÞ þ lim

N!1

XN

n 1

PWn ðyÞ

X
k2Z

hy;f0;kiL2
f0;kðtÞ þ

X1
n 1

X
k2Z

hy;cn;kiL2
cn;kðtÞ.

At the request of R. Coifman, Daubechies developed a variation of her basis (called
coiflets) to have both scaling and mother functions with vanishing moments, for
details, see Daubechies (1992).

The first wavelet basis can be at least traced to Haar’s work (1910), but the
theoretical foundations of wavelets were established by physicists and mathemati
cians from the early 1930s to the 1980s. The interest in wavelets has increased since
Mallat (1989) and Meyer (1992) introduced the use of multiresolution as a
framework to study wavelet expansions. A historical perspective can be found in
Daubechies (1992) and Meyer (1993). Excellent monographs in wavelets are Chui
(1992), Daubechies (1992), Meyer (1992, 1993) and Walnut (2001).

While wavelets may seem ‘just another basis’, nonetheless they offer considerable
advantages. Beylkin (1992, 1993) established the efficiency of wavelets for solving
ordinary differential equations. The Laplace operator is diagonally dominant with
respect to appropriate wavelet basis, and the matrices associated to this operator are
usually sparse. As a consequence, the number of iterations required for solving large
classes of ordinary differential equations is fairly small by contrast to other bases.
Furthermore, the accuracy of the solution is controlled by a single parameter n, and
different resolutions can be used in different regions of space. This is particularly
useful if the solution of the differential equation is rapidly varying in a particular
time region, and the coupling between different resolution levels is simple.

Finally, notice that a large number of software sources is available. For example,
MATLAB has a toolbox specialized in wavelets. In addition, WaveLab is a collection
of MATLAB toolboxes (libraries) available from Stanford University that can be
found at http://www stat.stanford.edu/	wavelab/. The Computational Mathematics
Laboratory has made available another MATLAB wavelet toolbox that can be
found at http://www dsp.rice.edu/software/.

3. The wavelet-collocation method

In this section we describe a wavelet collocation algorithm for solving BVP (1).
The first step of the proposed method is to consider the best approximation of y.

For the sake of convenience, let us consider a real wavelet multiresolution fVng
1
n 1 in

L2ð½a; b�Þ as defined in (2). Throughout the remainder of the paper, we denote the
wavelet approximation of a vector of R functions yðtÞ ðy1ðtÞ; . . . ; yRðtÞÞ

0 as follows:

PVn ðyÞðtÞ
X
k2Z

yR
n;kfn;kðtÞ, (6)

88

http://www-stat.stanford.edu/wavelab/
http://www-stat.stanford.edu/wavelab/
http://www-stat.stanford.edu/wavelab/
http://www-stat.stanford.edu/wavelab/
http://www-stat.stanford.edu/wavelab/
http://www-stat.stanford.edu/wavelab/
http://www-stat.stanford.edu/wavelab/
http://www-stat.stanford.edu/wavelab/
http://www-dsp.rice.edu/software/
http://www-dsp.rice.edu/software/
http://www-dsp.rice.edu/software/
http://www-dsp.rice.edu/software/


where yR
n;k 2 RR is a vector of coefficients and f is a scaling function. Daubechies

wavelets are a good candidate because of their orthogonality, smoothness, compact
support and their large number of vanishing moments. Then, a finite set of functions
fn;k is only needed to approximate yðtÞ for any t (in particular we consider those
functions fn;k whose support contains t) and, for the domain ½a; b�, the number of
coefficients fyR

n;kg is 2
nb 2naþ 2N 2, using Daubechies wavelets of order N and a

multiresolution level of n. (Recall that support fn;k ½2nk; 2nðk þ 2N 1Þ� and the
nonzero terms in the summation in Eq. (6) ranges from 2naþ 2 2N to 2nb 1). In
practice, we may save some computation time using a change of variables to shorten
the domain ½a; b� in (1).

Rather than solving (1) as a standard wavelet collocation approach would do (see
Judd, 1998, pp. 378 384), we are content with a finite difference approximation. Our
wavelet collocation approach owes its efficiency to the manner in which the BVP is
finite difference approximated. For this reason, we propose the trapezoidal approach

ynðtiÞ ynðti�1Þ
hn

2
ðf ðti; ynðtiÞÞ þ f ðti�1; ynðti�1ÞÞÞ, (7)

where hn ðti ti�1Þ (see Judd, 1998, p. 344). This is an implicit single step method,
commonly used for stiff problems due to its good stability properties and its
applicability to systems without high order differentiability requirements. Note also,
that the computation of the derivatives Dyn is not required (i.e. the computation of
Dfn;k), reducing the computational costs with the algorithm in terms of function
evaluations. Thus using Eq. (6) in the finite difference approximation (7), our
problem is to solve the following system of equations in yR

n;k 2 RR:X
k2Z

yR
n;k ðfn;kðti;nÞ fn;kðti�1;nÞÞ

hn

2
f ti;n;

X
k2Z

yR
n;kfn;kðti;nÞ

 !
þ f ti�1;n;

X
k2Z

yR
n;kfn;kðti�1;nÞ

 ! !
,X

k2Z

yR
n;kaðfn;kÞ c, ð8Þ

at the points ti;n 2�ni for i 2 Z, taking values in ½a; b� (i.e. ti;n 2�ni for all
i 2 f2na; . . . ; 2nbg). There are 2nb 2naþ 1 equations and 2nb 2naþ 2N 2
unknowns. The coefficients fyR

n;kg should be determined such that the residual is
minimized. The solution coefficients fy�Rn;kg determine an approximated solution to
the BVP given by

y�nðtÞ
X
k2Z

y�Rn;kfn;kðtÞ.

We have implemented the algorithm using MATLAB 6.0 on an Inter Centrino
Pentium M 1.6GHz with machine precision 10�16. In Appendix A we present a
MATLAB code to solve the stiff problem y



þy 0, yð0Þ 1, that illustrates how to

compute the solution of a simple differential problem using the proposed method.
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Next a numerical experiment is introduced to show the performance of the proposed
approach.

Example 1. A two body problem.

Consider the periodic problem

y


 y

y2 þ z2
p ; yð0Þ 1; y



ð0Þ 0,

z


 z

y2 þ z2
p ; zð0Þ 0; z



ð0Þ 1, ð9Þ

whose analytical exact solution is given by x� ðy�; z�Þ with y�ðtÞ cos t and
z�ðtÞ sin t. We rewrite Problem (9) as

y



u; u

 y

y2 þ z2
p ; yð0Þ 1; uð0Þ 0,

z



v; v

 z

y2 þ z2
p ; zð0Þ 1; vð0Þ 0. ð10Þ

x�n ðy�n; u
�
n; z
�
n; v
�
nÞ denotes the exact solution of (10). We approximate x�n

using Daubechies wavelets of order N 3 and at a resolution level of n 2. Then,
we consider the system of equations (8) for (10). This is a system of nonlinear
equations that is solved to optimality by the subroutine lsqnonlin corresponding
to the optimization toolbox (which is a MATLAB subroutine to solve nonlinear
least squares problems). The approximate solution ðy�n; z

�
nÞ of (9) is shown in Figs. 3

and 4. The approximation error obtained is ky�ðti;nÞ yy�;nðti;nÞk1 4:3� 10�3 and
kz�ðti;nÞ zy� ;nðti;nÞk1 2:8� 10�3.

1.2
∗
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Approx. yθ ,n

Exact y∗

Fig. 3. Approximate solution yy� ;n of (9) with N ¼ 3 and n ¼ 2.
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Increasing the resolution level n improves the accuracy of the solution. Fig. 5
shows the approximation error ky�ðti;nÞ yy�;nðti;nÞk1 and kz�ðti;nÞ zy�;nðti;nÞk1
versus the number of unknowns for a fixed N 2 and multiresolution levels
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Fig. 4. Approximate solution uy� ;n of (9) with N ¼ 3 and n ¼ 2.

2 2.5 3 3.5 4 4.5 5
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

n levels

Error of approx. y ∗

Error of approx. z ∗

Fig. 5. Error approximation versus number of coefficients for fixed N ¼ 2 and different levels n.
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Fig. 6. Running times (in log scale) for (9) for fixed N ¼ 2 and different levels n.
n 2; 3; 4; 5. We will prove in Section 4 that the approximation error is Oð2 Þ. The
parameter N makes little impact on the approximation accuracy, although it can be
expected to be a better fit for higher values of N when the solution path exhibits
stronger (smooth) fluctuations. Fig. 6 shows the running time (seconds in
logarithmic scale) to obtain the approximate solution for levels n 2; 3; 4; 5. When
examining accuracy and computing time together, the choice of moderate order N

and level n is favoured.
Daubechies wavelets constitute a basis on the entire real line, instead of on a finite

interval. When such bases are used for problems on a finite interval of the real line,
large errors may be encountered in the border of the interval which is not determined
by any boundary condition. Fig. 7 shows the error distribution of the approximate
solutions. When the results are not accurate enough, wavelet bases on a finite
interval should be considered (see Daubechies, 1994).

A similar approximation error is obtained using other orthogonal wavelet bases,
whose scaling functions have similar properties of smoothness, compact support and
number of vanishing moments to Daubechies. Examples of this type are symlets or
coiflets. We limit our study to Daubechies wavelets as the additional properties of
these other wavelets does not really concern our problem.

3.1. Continuous time life cycle consumption models
In this section we use the proposed algorithm to solve two continuous time life

cycle models to illustrate our approach.
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3.2. Solving a continuous time life cycle problem
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Fig. 7. Error distribution of the approximate solution of (9) with N ¼ 3 and n ¼ 2.
Consider the continuous time life cycle model for an economy with one good and
one capital stock per capita (Judd, 1998, pp. 389 392):

max

Z T

0

e�rtuðctÞdt

s:t: A



t f ðAtÞ þ wt ct,

Að0Þ a0; AðTÞ aT .

Assume that the asset return function is given by f ðAÞ rA, with r 0:10; uðcÞ

c1þg=ð1þ gÞ with r 0:05, g 2; wðtÞ 0:5þ ðt=10Þ 4ðt=50Þ2; T 50. The
solutions ðcðtÞ;AðtÞÞ of this problem are characterized by the BVP

c



t 0:025 ct 0,

A



t 0:1 At þ ct 0:5þ ðt=10Þ 4ðt=50Þ2,

Að0Þ Að50Þ 0. ð11Þ

c�ðtÞ and A�ðtÞ denote the true solution to (11).
First, we consider a change of the time scale to reduce the domain support from
½0; 50� to ½0; 5� and we approximate both consumption and asset return with
Daubechies wavelets of order N 3 and at a resolution of n 2:

cðtÞ
X

k 2�2�3

225�1

yc
k f2;kðtÞ; AðtÞ

X
k 2�2�3

225�1

yA
k f2;kðtÞ.
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Then, we obtain the coefficients of the approximate solution by solving the following
system of linear equations:

X
k 2�2�3

225�1

yc
kðf2;kðtiÞ f2;kðti�1ÞÞ

hn

2
0:025

X
k 2�2�3

225�1

yc
kðf2;kðtiÞ þ f2;kðti�1ÞÞ 0,

X
k 2�2�3

225�1

yA
k ðf2;kðtiÞ f2;kðti�1ÞÞ

hn

2
0:1

X
k 2�2�3

25�1

yA
k ðf2;kðtiÞ þ f2;kðti�1ÞÞ

0:5
hn

2
ð1þ 1Þ

hn

2
ðti þ ti�1Þ þ 4

hn

2

ðti þ ti�1Þ
2

25

þ
X

k 2�2�3

225�1

yc
kðf2;kðtiÞ f2;kðti�1ÞÞ 0,

X
k 2�2�3

225�1

yA
k f2;kð0Þ 0,

X
k 2�2�3

225�1

yA
k f2;kð5Þ 0, ð12Þ

for all ti 2�2i with i 0; . . . ; 20 (as ti 2 ½0; 5�). The approximate solution
ðcyc�;n;AyA�;nÞ and the exact solution are shown in Figs. 8 and 9.

The maximum approximation error obtained is kEcðti;nÞk1 kc�ðti;nÞ

cyc� ;nðti;nÞk1 1:6� 10�3 and kEAðti;nÞk1 kA�ðti;nÞ AyA� ;nðti;nÞk1 3:7� 10�4

and the error distribution is given in Fig. 10. The maximum relative error for

1.75
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1.6

1.65
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ti

Aprox. consumption path

Exact consumption path

Fig. 8. Approximate solution cyc� ;n of (11) with N ¼ 3 and n ¼ 2.
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consumption and asset return defined by

REcðti;nÞ
c�ðti;nÞ cyc�;nðti;nÞ

c�ðti;nÞ

���� ����; REAðti;nÞ
A�ðti;nÞ AyA�;nðti;nÞ

A�ðti;nÞ

���� ����
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Fig. 9. Approximate solution AyA� ;n of (11) with N ¼ 3 and n ¼ 2.
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Fig. 10. Error distribution of the approximation with N ¼ 3 and n ¼ 2.
is shown in Fig. 11.
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As documented in, e.g. Beylkin (1992), wavelet bases with a large number of
vanishing moments (such as Daubechies) tend to enhance the sparsity of matrix
operators to a greater extent. Fig. 12 plots the sparsity pattern of the matrix. This

0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.002
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0.014
Relative error of approx. C ∗

Relative error of approx. K ∗

Fig. 11. Relative error distribution of approximation with N ¼ 3 and n ¼ 2.
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Fig. 12. The sparsity pattern of the right side of (12). The parts containing nonzero entries are shaded.
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Table 1

Maximum (absolute and relative) approximation errors and running times (seconds) until convergence for

different resolution levels

kEcðti;nÞk1 kEcðti;nÞk1 kREcðti;nÞk1 kREAðti;nÞk1 CPU time

n ¼ 2 1:6� 10 3 3:7� 10 4 9:5� 10 4 1:3� 10 2 0:08

n ¼ 3 4:1� 10 4 9:2� 10 5 2:3� 10 4 8:0� 10 3 0:09

n ¼ 4 1:0� 10 4 2:3� 10 5 5:9� 10 5 3:0� 10 3 0:11
property is remarkable since the computing time required to solve (12) using
Daubechies wavelets with N 3 and n 2 is 0.079 s.

Table 1 reports the main properties of the approximate solution ðcyc� ;n;AyA�;nÞ for
different resolution levels n. From Table 1 and Figs. 10 11 it can be deduced that the
proposed method obtains sufficiently accurate results for practical purposes.

3.3. A continuous time life cycle problem with borrowing constraints

Consider the problem:

DyðtÞ f ðt; yÞ;

bðyÞX0;

aðyÞ c;

9>=>; (13)

where f is a continuous function, a ða1; . . . ; aRÞ
0 a vector of continuous linear

functionals, linearly independent, and b a continuous operator defined on C1ð½a; b�Þ.
This is a BVP with inequality constraints bðyÞX0. These problems typically arise as
the solution of optimal control problems with inequality constraints, such as

min JðutÞ jðt1;xt1
Þ þ

Z t1

t0

Cðt;xt; utÞdt

s:t: x



t f ðt;xt; utÞ,

gðt; xt; utÞp0,

hðt1;xt1
Þp0,

xt0
x0,

see, e.g. Venkatesh (2001). These problems are used to study many questions in
economics, such as multisectoral models with limitations on the intersectoral
mobility of factors of production, models of inventory investment or a
heterogeneous agent model with borrowing constraints.

In this section, we extend the collocation wavelets algorithm to solve BVP of the
type (13). Given a wavelet approximation of y 2 CrðRÞR, the inequality bðyÞX0 can
be replaced by

bðynÞðti;nÞ þ si 0; ti;n 2�ni for all i 2 f2na; . . . ; 2nbg,
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adding slack variables siX0. With this approach, an approximate solution to
problem (13) is given by the coefficients fy�Rn;kg 2 RR and the slack variables fsig 2 Rþ

satisfyingX
k2Z

yR
n;kðfn;kðti;nÞ fn;kðti�1;nÞÞ

hn

2
f ti;n;

X
k2Z

yR
n;kfn;kðti;nÞ

 !
þ f ti�1;n;

X
k2Z

yR
n;kfn;kðti�1;nÞ

 ! !
,

b
X
k2Z

yR
n;kaðfn;kÞ

 !
ðti;nÞ þ si 0,

a
X
k2Z

yR
n;kfn;k

 !
c,

with ti;n 2�ni, for all i 2 f2na; . . . ; 2nbg. This problem can be solved using any
standard programming packages such as the MATLAB subroutine fmincon
corresponding to the optimization toolbox (this routine is suited for optimization
problems with nonlinear objective function and constraints).

To illustrate the implementation of this extension, consider the continuous time
life cycle model for an economy with one good and one capital stock per capita and
borrowing constraints:

max

Z T

0

e�rtuðctÞdt

s:t: A



t f ðAtÞ þ wt ct,

AtX0,

Að0Þ a0; AðTÞ aT .

As before, assume that the asset return function is given by f ðAÞ rA, with r 0:10;
the utility function uðcÞ c1þg=ð1þ gÞ with r 0:05, g 2; wðtÞ 0:5þ
ðt=10Þ 4ðt=50Þ2; T 50. The true solutions of this problem are denoted by c�ðtÞ

and A�ðtÞ. The solutions ðcðtÞ;AðtÞÞ of this problem are characterized by

c



t 0:025 ct 0,

A



t 0:1 At þ ct 0:5 ðt=10Þ þ 4ðt=50Þ2 0,

with the boundary conditions Að0Þ Að50Þ 0 and the borrowing constraints
AtX0, for all t 2 ½0; 50�. The inequalities are equivalent to

At st 0 with stX0 for all t 2 ½0; 50�,

Furthermore, let us consider a change of the time scale to reduce the domain support
from ½0; 50� to ½0; 5�.
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We first approximate both consumption and asset return with Daubechies
wavelets of order N 3 and at a resolution of n 2:

cðtÞ
X

k 2�2�3

225�1

yc
k f2;kðtÞ; AðtÞ

X
k 2�2�3

225�1

yA
k f2;kðtÞ.

We obtain the coefficients of the approximate solution by solving the following
problem:

H1ðiÞ
X

k 2�2�3

225�1

1
hn

2
0:025

� �
yc

kðf2;kðtiÞ f2;kðti�1ÞÞ 0,

H2ðiÞ
X

k 2�2�3

225�1

1
hn

2
0:1

� �
yA

k ðf2;kðtiÞ f2;kðti�1ÞÞ

þ
X

k 2�2�3

225�1

yc
kðf2;kðtiÞ f2;kðti�1ÞÞ

hn

2
1þ ðti þ ti�1Þ 4

ðti þ ti�1Þ
2

25

� �
0,

H3ðiÞ
X

k 2�2�3

225�1

yA
k f2;kðtiÞ si 0 with siX0,

H4ðiÞ
X

k 2�2�3

225�1

yA
k f2;kð0Þ 0,

H5ðiÞ
X

k 2�2�3

225�1

yA
k f2;kð5Þ 0, ð14Þ

for all ti 2�2i and for all i 0; . . . ; 20. Problem (14) can be written with the
equivalent formulation:

min
1

2

X3
j 1

X20
i 0

HjðiÞ2,

s:t: H4ðiÞ H5ðiÞ 0; siX0 for all i 0; . . . ; 20.

This is a least square problem with linear inequality constraints. We use an interior
point approach to solve this problem, as these methods have been proven to be efficient
for bound constrained programming. In particular, we consider the algorithm
presented in Esteban Bravo (2004). The approximate solution ðcyc� ;n;AyA�;nÞ is shown
in Figs. 13 and 14, respectively.

To make our approach comparable to standard approaches in computational
economics literature, Table 2 reports the accuracy of the solution measured by the
L1 norm of the approximate Euler equation error; i.e. kH1ðiÞk1 maxi 0;...;20

jH1ðiÞj and kH2ðiÞk1 maxi 0;...;20jH
2ðiÞj. As expected, the accuracy of the solution
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increases with the resolution level n. Table 2 also reports running times until
convergence for different resolution levels, being moderate in all cases.

We can see a better view of the distribution of the approximate Euler equation
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Fig. 13. Approximate solution cyc� ;n of (14) with N ¼ 3 and n ¼ 2.
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Fig. 14. Approximate solution AyA� ;n of (14) with N ¼ 3 and n ¼ 2.
errors in Fig. 15, using Daubechies wavelets with N 3 and n 5. From this figure
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and Table 2, it can be shown that the results are satisfactory in every case, although
there is room for improvement in the extremes of the domain.

Table 2

Maximum approximate Euler errors and running times (seconds) until convergence for different resolution

levels

kH1ðiÞk1 kH2ðiÞk1 CPU time

n ¼ 2 1:6� 10 2 4:3� 10 2 4:34

n ¼ 3 4:5� 10 3 1:2� 10 2 8:19

n ¼ 4 1:2� 10 3 3:4� 10 3 17:5

n ¼ 5 3:0� 10 4 8:9� 10 4 69:4
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Fig. 15. Approximate Euler errors of (14) with N ¼ 3 and n ¼ 5.
4. Convergence analysis
In this section, we will prove the convergence of the method. First, we will

establish an interpolative property for wavelets. We will formulate the following
assumption, which is satisfied for the commonly used wavelets:

A.1. Let fV ng be a multiresolution in L2ðRÞ, with compactly supported father
wavelet f and assume for all y 2W r

2ðRÞ, with 1prpq, qX1, and all inte
ger n, 0pnpr 1, it is satisfied kDny DnPVn ðyÞkL2

Oð2�ðr�nÞnÞ. Whenever
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y 2 CrðRÞ with compact support, the same rates are satisfied replacing the L2

norm by the supremum norm. In spaces L2ð½a; b�Þ, an analogous behaviour is

assumed.
There are several sufficient conditions for this result that can be found in the
literature, often based on the regularity of order q assumption. The father wavelet f
is said to be regular of order q 2 N, if f has a version q times continuously
differentiable and for 0pknk1pq, and any positive integer p 2 N, there exists a
constant Cp40 such that jDnfðtÞjoð1þ ktkÞ�pCp, for all t 2 R. See Meyer (1992) for
further details. Convergence rates similar to A.1. can be also established assuming
that the father wavelet has q vanishing moments.

In order to prove the convergence of the proposed method, we first provide a
result on interpolation which plays a crucial role in proving the wavelet collocation
convergence, then we will prove the convergence of the wavelet Galerkin and finally,
the convergence of the wavelet collocation methods. All the proofs can be found in
Appendix B.

Theorem 2. Consider a multiresolution fVng in L2ðRÞ satisfying A.1. For each y 2

L2ðRÞ with an a.e. continuous version with compact support, we define GVn ðyÞ as the

function gn 2 Vn such that gnðtn;iÞ yðtn;iÞ, for all ftn;i 2�nigi2Z; that is, the function

gnðtÞ
P
k2Z

yn;kfn;kðtÞ satisfiesX
k2Z

yn;kfn;kðtn;iÞ yðtn;iÞ.

Then, there exists a unique GVn ðyÞ.
Furthermore, assuming

1. f is regular of order qX1, and
2. the Poisson summa
P

Fðoþ 2pkÞ40, for almost every o 2 ½0; 2p�, with
k2Z

FðoÞ
R
R
fðtÞe�ito dt;
for all y 2W
q
2ðRÞ with compact support, there exist K40 and n0 such that, 8n4n0,
kGV ðyÞ ykL pKkPV ðyÞ yk q .
n 2 n W
2

The same result trivially holds for multiresolutions in L2ð½a; b�Þ.
Next, we prove the convergence of the wavelet Galerkin and wavelet collocation

methods. Note that there is a unique solution associated to the homogeneous
problem DyðtÞ 0 with aðyÞ c since a are linearly independent (at least over
KerfDg). Moreover, let us define Green’s matrix of functions Gðt; zÞ such that any g

continuous in ½a; b� with Dg integrable can be expressed as follows:

gðtÞ P0ðgÞðtÞ þ

Z b

a

Gðt; zÞDgðzÞdz,
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where P0ðgÞ is the unique element in KerfDg which agrees with aðgÞ. Furthermore,

DgðzÞ DtP0ðgÞðtÞ þ

Z b

a

DtGðt; zÞgðzÞdz.

As a consequence, the following property can be used to express the BVP in a
more convenient way: let us define Dy u, thus u G½y� and G�1½u� y,
reciprocally, with

G½y�ðtÞ P0ðyÞðtÞ þ

Z b

a

Gðt; zÞyðzÞdz,

G�1½u�ðtÞ DtfP0ðyÞðtÞg þ

Z b

a

DtGðt; zÞyðzÞdz. ð15Þ

Therefore, rewriting the BVP as u f ðt;G�1½u�Þ and defining TðuÞ: f ðt;G�1½u�Þ,
we can guarantee the existence of a solution in BVP by proving the existence of a
fixed point u for T , u Tu. It is sufficient to prove that T is a continuous retraction
on the Banach space Cð½a; b�ÞR, and a unique solution u0 exists, so that y0 G�1ðu0Þ

is the unique solution of BVP.
Now, given the multiresolution fVng, let yn 2 V n be the wavelet Galerkin solution

to the BVP, and therefore yn satisfies

PVnfDyn f ðt; ynÞg 0; aðynÞ c.

The next result establishes the rate of approximation of the wavelet Galerkin
method.

Theorem 3. Let us consider the problem BVP with solution y0ðtÞ, and a multiresolution

sequence fV ng in L2ð½a; b�Þ such that ky PVnðyÞkL1 ! 0, for all y 2 Cð½a; b�Þ. Let us

define the curve C fðt; y0ðtÞ
0
Þ
0: t 2 ½a; b�g. Assume that, f 2 C2ðNÞ where N � RRþ1

is an e neighbourhood of C in the L1 norm, and it is satisfied that

detfðI Dyf ðt; y0ðtÞÞÞga0, for all t 2 ½a; b�. Then there exist d40 and an integer M

such that y0 is unique in Bðy0; dÞ fy: ky y0kL1pdg, and the projected system

PVnfDyn f ðt; ynÞg 0,

has a unique solution yn 2 V n \ Bðy0; dÞ. Furthermore, there exists c40 such that

maxfkyn y0kL1 ; kDyn Dy0kL1gpckDy0 PVnðDy0ÞkL1 .

If fV ng satisfies assumption A.1. and y 2 C1ð½a; b�Þ, then

maxfkyn y0kL1 ; kDyn Dy0kL1g Oð2�nÞ.

Given the multiresolution fVng, let yc
n 2 Vn denote the wavelet collocation

solution to the BVP, i.e. the solution to

Dyc
nðtn;iÞ f ðtn;i; y

c
nÞ 0; aðyc

nÞ c.

The following result is an immediate consequence of Theorems 2 and 3.

Corollary 4. Under the assumptions of Theorems 2 and 3, the wavelet collocation

method satisfies the kyc
n y0k Oð2�nÞ.
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Therefore, we only need to prove the consistence of the proposed method based on
the trapezoidal rule:

eynðti;nÞ eynðti�1;nÞ
hn

2
ðf ðti;n; eynðti;nÞÞ þ f ðti�1;n; eynðti�1;nÞÞÞ, (16)

for eyn 2 V n.

Proposition 5. Under the assumptions of Theorems 2 and 3. Let eyn 2 V n denote the

approximation generated by the proposed method and yn the solution of the wavelet

collocation method. Then, it is satisfied keyn yc
nk Oð2�nÞ and therefore

keyn y0k Oð2�nÞ.

Therefore, using the Daubechies wavelets at resolution n, the higher the value of n

the smaller the approximate solution error as Fig. 5 shows.
5. Conclusions

There are many economic problems with a boundary value structure. The finite
horizon life cycle model and its extensions are relevant examples. In this paper we
propose a type of collocation wavelets approach for computing BVP. Given a
wavelets approximation, we use the trapezoidal discretization of the BVP to
approximate the solution of the BVP. The numerical results have revealed the good
performance of this methodology in terms of computing time and accuracy,
concluding that the proposed algorithm is promising for application in many
economic problems with similar structure. Also, we have shown that the proposed
approach works very well when solving BVP with inequality constraints.
Acknowledgment
We thank Prof. K. Judd, Prof. B. Rustem and an anonymous referee for their
constructive comments that have led to an improved version of this paper. This
research has been supported by two Marie Curie Fellowships of the European
Community programme IHP under contract numbers HPMF CT 2000 00781 and
HPMF CT 2000 00449.

Appendix A. MATLAB code example
This MATLAB program computes the solution of the problem dyðxÞ=dxþ
AyðxÞ 0, and the initial condition yð0Þ 1, for all x, T1o xo T2, by the
proposed wavelet based method using the implicit trapezoidal method. Solution
y expð xÞ.

y0 1;
N 3; % N order of the Daubechies wavelets.
n 2; % n level of resolution of the wavelets
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T1 0; % [T1,T2] interval
T2 6;
wname ‘db3’; % wavelet function: Daubechies, dbN with N 3
h 2 ^( n); % distant between points where the wavelet function is defined
% definition of the wavelet and scaling function given by the Wavelet toolbox
[phi,psi,x] WAVEFUN(wname,n);
dimension length(x);
% number of points where the wavelet and scaling function is defined
n_vars T2*2 ^n 1 (T1*2^n+2 2*N)+1; % number of coefficients
theta zeros(n_vars,1); % initialization of the coefficients to zero
% Computing the value of sum(phi(x(i,n))) in k
for i T1*2^n+2 2*N:T2*2^n 1,
summ(:,i (T1*2^n+2 2*N)+1) zeros(dimension,1);
for l 1:length(x),
phi_i(l) 0;
if ( ((2^n)*x(l) i4 0) & (((2^n))*x(l) i o 2*N 1)),
phi_i(l) (2^(n/2)) * phi(((2^n)*x(l) i)*2^ n+1);
end
end
summ(:,i (T1*2^n+2 2*N)+1) phi_i(:);
end
% Compute sum(phi(x0(i,n))) in k
aux_K zeros(n_vars,1);
for j T1*2^n+2 2*N:T2*2^n 1,
if (( j4 0) & ( jo 2*N 1)),
aux_K(j (T1*2^n+2 2*N)+1) (2^(n/2))*phi(( j)*2^n+1); end
end
% Compute K and b such that K*theta b.
K [
(1+(h/2)).*summ(2:dimension,:)+( 1+(h/2)).*summ(1:dimension 1,:);
aux_K’];
b [zeros(dimension 1,1);y0];
% Solve the system K*theta b.
theta K nb;
% Then, compute the approximation
x 0:h:T2;
aprox zeros(length(x),1);
for k T1*2^n+2 2*N:T2*2^n 1,
for i 1:dimension,
phijk(i,k (T1*2^n+2 2*N)+1) 0;
if (((2^n)*x(i) k4 0) & (((2^n))*x(i) ko 2*N 1)),
phijk(i,k (T1*2^n+2 2*N)+1) (2^(n/2))*phi(((2^ n)*x(i) k)*2^n+1);
end
aprox(x(i)*2^n+1) aprox(x(i)*2^n+1)+theta(k (T1*2^n+2 2*N)+1).
*phijk(i,k (T1*2^n+2 2*N)+1);
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end
end
% Plot of the approximation and the exact solution.
f (y0).*exp( x);
figure(1)
plot(x,f,‘ *’,x,aprox,‘s ’)
h title(‘Exactand Approximate solution to dy/dx+y 0’);
h legend(‘Solution’,‘Approx.’,2);
xlabel(‘0 nleq x nleq 6’)
disp(‘jjSolution Aproxjj’)
disp(norm((y0).*exp( x)’ aprox))
disp(‘x, Solution, Approximation, Error’)
disp([x’,f’,aprox,f’ aprox])

Appendix B. Proofs

B.1. Proof of Theorem 2

The problem of interpolation in Vn at points tn;i 2�ni can be reduced to solve the
problem g0ðiÞ yðtn;iÞ in g0 2 V 0 and then take gnðtÞ 2n=2g0ð2

ntÞ. Therefore,
assume that g0ðtÞ

P
k2Zykfðt kÞ solves this problem, i.e.X

k2Z

ykfði kÞ yðtn;iÞ.

Clearly, a unique solution exists since ffðt kÞgk2Z are linearly independent
functions. To simplify the notation, we denote yi yðtn;iÞ, hence

P
k2Z

ykfði kÞ yi. This is a convolution equation that we will solve in the spectral
domain. Let define the discrete Fourier transform of f byeFðoÞ X

k2Z

fðkÞe�iko.

The Poisson formula states that eFðoÞ P
k2ZFðoþ 2pkÞ. If f is regular of at least

order 1, this series converges uniformly on compact sets. Furthermore, as eFðoÞ40
a.e. for o 2 ½0; 2p�, the inverse has a Fourier expansion ð1=eFðoÞÞ P

k2Zbke
�iko

where b:
P

k2Zjbkjo1, by the Wiener Lévy theorem. Thus, we can explicitly
evaluate the coefficients fykg as

yk

X
k2Z

bk�iyi.

Obviously,X
k2Z

jykj
2

X
k2Z

X
l2Z

bl�iyi

�����
�����
2

pb2
X
k2Z

jyij
2 b2

X
i2Z

jyðtn;iÞj
2,

with supn41

P
i2Zjyðtn;iÞj

2o1 as y is continuous with compact support.
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Next, we will prove that

kGVn ðyÞkL2
pbkykn,

where kykn ð2�nP
i2Zjyðtn;iÞjÞ

1=2.
Notice that kgnkL2

2�nkg0kL2
2�nkFðg0ÞkL2

, where Fðg0ÞðoÞ is the contin
uous Fourier transform of g0. We will prove that kFðg0Þk

2
L2

P
k2Zjykj

2 and the
result follows. Let define ecðoÞ P

k2Zyke
�iko, then

kFðg0Þk
2
L2

Z
R

F
X
k2Z

ykf0;k

 !
ðoÞ

�����
�����
2

do
Z
R

FðoÞ
X
k2Z

yke
�iko

 !�����
�����
2

do

Z
R

jFðoÞecðoÞj2 do X
k2Z

Z 2ðkþ1Þp

2kp
jFðoÞecðoÞj2 do

Z 2p

0

jecðoÞj2 X
k2Z

Fðoþ 2pkÞ

�����
�����
2

do

Z 2p

0

jecðoÞj2 do X
k2Z

jykj
2,

as ffðt kÞgk2Z is orthonormal if and only if
P

k2ZjFðoþ 2pkÞj2 1 a.e., for details
see Daubechies (1992). Hence, we have that kGVn ðyÞk

2
L2
pb2
kyk2n.

Defining yn PVn ðyÞ, we have that GVnðynÞ yn since yn 2 Vn and has compact
support. And as a consequence

kGVnðyÞ ykL2
kGVn ðyn yÞ þ yn ykL2

pb2
kyn ykn þ kyn ykL2

b2
kPVn ðyÞ ykn þ kPVn ðyÞ ykL2

.

Moreover, as for all y 2W r
2ðRÞ, with rX1,

kyk2npCf

Z 2np

�2np
jFðyÞðoÞj2 doþ 2�nrkyk2Wr

2
g

see Thomée (1973, Lemma 4.4), the result follows applying the same bound to
kPVn ðyÞ yk2n.

B.2. Proof of Theorem 3

We will use the following theorem,

Theorem 6. Let B a Banach space, fV ng � B a sequence of increasing linear subspaces,
and PVn a sequence of continuous projections converging pointwise to the identity

operator on B. Let T a (nonlinear) operator in B. If ð1 TÞu 0 has a solution u0, T is

continuously Frechet differentiable at u0 and ð1 T 0u0
Þu 0 has only the trivial

solution in B, then u0 is unique in some sphere Bðu0; dÞ fu 2 B: ku u0kpdg for

some d40, and there exists an integer M such that for all n4M the equation

PVnfð1 TÞug 0 has a unique solution un 2 Vn \ Bðu0; dÞ. Moreover, 9K40
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such that

kun u0kpKkPVnu0 u0k.

Proof. See e.g. Vainikko (1967, Theorem 5). &

Using the properties of the Green’s function and the continuity of f, the functional
T is continuous relative to the uniform norm on a neighborhood of u0 Gðy0Þ. Since
ð1 TÞu 0 can be seen as an equation in Cð½a; b�Þ, we will consider the equation
PVn ðI TÞun 0 in V n.

First, we check the continuously Frechet differentiability of T . For any u 2

Bðu0; dÞ define h u u0. Notice that N contains all line segments in RRþ1 such as
fu0 þ yh: y 2 ½0; 1�g, since

yðtÞ y0ðtÞ

Z b

a

DtGðt; zÞhðzÞdz,

with ky y0kL1oe whenever d is small enough, using that

w: ess sup
t2½a;b�

Z b

a

jDtGðt; zÞjdzo1.

Notice that u0 Gðy0Þ. We will see that the Frechet derivative T at u0ðtÞ Dy0ðtÞ

respect to the direction h ðu u0Þ is given by

T 0u0
ðhÞðtÞ Duf ðt; u0Þ

Z b

a

DtGðt; zÞhðzÞdz,

and the error term is given by

�u0
ðuÞðtÞ jkhkj2

Z b

a

ð1 yÞf 00ðt; u0ðtÞ þ yhðtÞÞdz,

being f 00 the second directional derivative of f ðt; �Þ in the direction h=jkhkj, and
jkhkj2

PR
r 1khrk

2. Clearly k�u0 ðuÞkL1pc1ku u0k
2
L1

, where c1 is the maximum
between the bound on f 00 over all directions on adh ðNÞ and w.

Notice also that T 0u0
ðhÞðtÞ can be expressed in the original domain as the operator

T 0y0
ðyÞ Dyf ðt; y0ðtÞÞDy. Since detfðI Dyf ðt; y0ðtÞÞÞga0, for all t 2 ½a; b�, there

exists a unique trivial solution for

ðI Dyf ðt; y0ðtÞÞÞDy 0

with aðyÞ c. This implies the same result for ðI T 0u0
Þu 0, hence assumptions of

Theorem 6 are satisfied.
Thus, there exists an integer M40 such that, for all n4M a solution un 2 V n

exists and is unique in the same sphere. Moreover, there exists a constant c40 such
that un Dyn, u0 Dy0 and

kun u0kL1pckPVnu0 u0kL1 .

2828



By the Banach Steinhaus theorem,

kPVnu0 u0kL1 kPVn ðu0 uÞ ðu u0ÞkL1 kð1 PVn Þðu0 uÞkL1

pc0 inffku0 ukL1 : u 2 Vng,

therefore, 9K40 such that

kDyn Dy0kL1 kun u0kL1pK inffku0 ukL1 : u 2 V ng.

Finally, using that yn y0 G�1ðun u0Þ, we have

kyn y0kL1pkG
�1kL1kun u0kL1 ,

and the rate Oð2�nÞ follows from Assumption A.1.

B.3. Proof of Proposition 5

By assumption f 2 C2ðNÞ. The collocation solution satisfies the system yc
nðti;nÞ

yc
nðti�1;nÞ

R ti;n
ti�1;n

f ðt; yc
nðtÞÞdx, and we have proved that yc

n ! y0 uniformly. Using

the trapezoidal integration rule it can be expressed as

yc
nðti;nÞ yc

nðti�1;nÞ
hn

2
½f ðti;n; y

c
nðtiÞÞ þ f ðti�1;n; y

c
nðti�1;nÞÞ�

h3
n

12
f 00ðxi;n; y

c
nðxi;nÞÞ,

with xi;n 2 ½a; b�. Let Anðy
c
nÞ bnðy

c
nÞ denote this system of nonlinear equations,

where kbnðy
c
nÞkph3

nM=12.
Let eynðtÞ denote the solution of the proposed method that satisfies (16). Let

AnðeynÞ 0 denote this system of nonlinear equations. Then, applying the mean value
theorem, we have

bnðy
c
nÞ Anðy

c
nÞ AnðeynÞ þDAjn

ðyc
n eynÞ DAxnðy

c
n eynÞ,

where DAjn
is the Frechet derivative at some intermediate point jn. Since DAjn

ð�Þ

has uniformly continuous inverse, it is satisfied

kyc
n eynkpch3

nM=12,

and the result follows.
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