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Chapter 1

Introduction

It is widely accepted that the traditional microfoundations of economics, the so-
called homo economicus, have some severe flaws. The elegant framework put for-
ward by Bernoulli, von Neumann, Morgenstern and many others, while powerful
and flexible to construct most of the economic literature, from health economics
to finance, from environmental economics to game theory, fails to agree with
simple behavioral observations that experimental economics and other fields
have established.

In the Expected Utility Model the utility of a sequence of possible outcomes
is given by the sum of the utility of each possible outcome (which are therefore
assumed to be separable and additive), across time periods and states of na-
ture, weighted with its probability of happening. When different time periods
are involved, each period is usually also weighted with a time discount, which
has a constant discount factor between equally distant periods. Savage (1954)
proposes an extension of this model to the cases where the probability of each
state of nature is not given, using only simple rationality postulates. This is the
so-called Subjective Expected Utility.

Deviations from this standard framework include for instance the fact that
individuals seem to have loss aversion (see Kahneman and Tversky (1979)),
that is, the marginal utility of a gain from the status quo is considerably lower
than the (absolute) marginal utility of a loss. This affects their choices under
risk, when gains and losses are possible, in a way not explained by risk aversion.
Moreover, there is evidence that individuals do not discount the same time
intervals at a constant rate (see Ainslie (1991)). This implies that there may be
preference reversals as time passes.

While some departures from the standard theory may be considered sim-
ple psychological anecdotes, others have serious implications both for microeco-
nomics and macroeconomics. And while experimental economics and behavioral
economics became well established fields inside economics in the last 40 years,
much of its accumulated knowledge has not been used completely in other fields.

It is the purpose of this thesis to contribute to this connection and to study
the impact of some of the behavioral economics ideas in other fields. To be
specific, three behavioral departures from the Expected Utility Model are con-
sidered: ambiguity aversion, time inconsistent preferences and imperfect recall
in games. The first one is applied in auction theory, the second one to savings
decisions, and the last one in a price competition model.
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Chapter 2 presents the outcome of a dynamic price-descending auction when
the distribution of the private values is uncertain and bidders exhibit ambigu-
ity aversion. In contrast to sealed-bid auctions, in open auctions the bidders
get information about the other bidders’ private values and may therefore up-
date their beliefs on the distribution of the values. The bidders have smooth
ambiguity preferences and update their priors using consequentialist Bayesian
updating.

It is shown that ambiguity aversion usually affects bidding behavior the
same way risk aversion does, but the main result is that this is not the case for
continuous price descending auctions. This is new among a few theoretical cases
where ambiguity aversion does not reinforce the risk aversion implications.

Chapter 3 focuses on the behavior of a decision maker whose preferences are
dynamically inconsistent, when that inconsistency is acknowledged by the indi-
vidual. This chapter proposes a new model on this issue, inspired by the model
of staggered prices from Calvo (1983). Individuals are modeled as lacking self-
control and being prone to present-biased impulses. In some random periods
they decide according to a constant discount rate but in the other periods they
follow their present-biased impulses. In the former they recognize that incon-
sistent actions may be chosen, but in the latter they naively believe that their
momentary optimal plan will be followed in the next periods and make up for
it. The possible sequences of naive and consistent decisions form a tree, where
the upper decisions dominate the lower ones, composing a socially structured
game (see Herings, van der Laan, and Talman (2007)). It is shown that this
model solves some of the puzzling results of other theoretical frameworks.

Furthermore, aggregating the possible trajectories according to their prob-
ability, leads to a unique outcome. It is suggested that this outcome can be
interpreted as the the behavior of a representative agent of a macroeconomic
model. Some examples of consumption and savings decisions are discussed.

Chapter 41.1 studies the consequence of an imprecise recall of the price by the
consumers in the Bertrand price competition model for a homogeneous good.
It is shown that this creates room for firms to be able to charge prices above
the competitive price, the markup increasing with the size of the recall errors.
Moreover, firm with higher costs may still persist in the market. They will
however have a higher equilibrium price, so that price dispersion arises.

Furthermore, if bigger recall errors happen then both consumers and firms
on the aggregate level may be worse off, when the cost difference between firms
is big enough. Thus, there are situations where the protection of a monopolist
against entrants is a welfare maximizing policy. The introduction of more firms
in the market does not have a significant impact on the prices.

1.1This chapter is based on Carvalho (2009).
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Chapter 2

Static and Dynamic
Ambiguous Auctions

2.1 Introduction

In auction theory it is assumed that bidders know the distribution from which
the private values are drawn. If this distribution is uncertain, a subjective
distribution of possible distributions is still needed for modeling purposes, which
can then be reduced to a single distribution.

This is not the case under ambiguity aversion, the case where a decision
maker is averse to uncertainty about the risk. Ambiguity aversion is portrayed
by the seminal experiment in Ellsberg (1961), where decision makers prefer to
bet on lotteries with known probabilities, instead of unknown, even if a priori
their expected payoff is the same.

This chapter studies the consequences of relaxing the assumption of knowl-
edge of the distribution of private values, on equilibrium bidding behavior. Am-
biguity averse preferences are modeled using the smooth ambiguity model devel-
oped in Klibanoff, Marinacci, and Mukerji (2005). In the first-price sealed-bid
auctions, ambiguity aversion leads to higher bids even if bidders are risk neu-
tral, whereas ambiguity has no consequence on dynamic auctions, either price
ascending or descending, if the price changes continuously. This later result is
independent of the risk attitude of bidders, and it is a new qualitative result on
ambiguity aversion.

This chapter is structured as following. Section 2.2 describes the evolution
of the literature and some of its issues, Section 2.3 presents and explains the
basics, Section 2.4 discusses static auctions under ambiguity aversion, Section
2.5 goes through a dynamic auction, and Section 2.6 concludes.

2.2 Literature

Knight (1921) makes apparently the first distinction between risk and ambiguity,
calling the latter uncertainty, reason for which the terms ambiguity, uncertainty
and Knightian uncertainty are used interchangeably in the literature. Knight
refers to “measurable uncertainty” as risk, whereas uncertainty should be re-
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stricted to cases not “susceptible of measurement“. Ellsberg (1961) provides
on the other hand the first formal definition of ambiguity, through some ex-
periments that violate Savage’s Subjective Expected Utility Axioms. In these
experiments, later called the Ellsberg paradox, subjects tend to prefer unam-
biguous lotteries in a way that cannot be reproduced by risk aversion.

The Ellsberg’s paradox consists in an experiment with an urn with 30 red
balls and 60 being either black or yellow with unknown distribution. Define
lotteries as the vector (rR, rB , rY ) which pays ri, i ∈ {R,B, Y }, if a ball of color
i is drawn. Subjects are to make two choices, first between lottery (1, 0, 0) and
lottery (0, 1, 0), second between lottery (1, 0, 1) and lottery (0, 1, 1). Typically
subjects prefer (1, 0, 0) over (0, 1, 0) implying that their subjective probability
for red is higher than that for black. However they tend to prefer lottery (0, 1, 1)
over (1, 0, 1) which implies the opposite, their subjective probability for red is
lower than that for black. This paradox is independent of the risk aversion
of the subjects. Intuitively subjects have a preference towards known risks,
i.e. unambiguous lotteries. Ellsberg’s results have been replicated by other
experiments, see Camerer and Weber (1992) for a survey.

Schmeidler (1989) suggests that individuals act as if their subjective proba-
bility for ambiguous events were lower than for objective equivalent ones. That
is, the subjective probability attached to black in the experiment, is lower than
that for red. This leads to non-additive probabilities, i.e. subjective probabili-
ties that do not add up to one. Taking this to calculate the expected utility using
the usual Riemann Integral with a probability measure leads to inconsistencies
like discontinuities in the integrand and violation of monotonicity (see Chapter
16 in Gilboa (2009)). Schmeidler (1989) uses therefore capacities, generalized
probabilities. The expected utility of an act using capacities is given by the
Choquet Integral, from which this model derives its name, Choquet Expected
Utility. Taking v to be the capacity (probability), the Choquet Expected Util-
ity of a given act (a mapping from the states of nature to outcomes) f , with
f(ω) ≥ 0 for all ω ∈ Ω, is given by

V (f) = (C)

∫
Ω

fdv ≡
∫ ∞

0

v(f ≥ t)dt,

where (C)
∫

stands for the Choquet Integral and Ω is the state space. If the
capacity of event A, v(A), is interpreted as the worth of coalition A in a Trans-
ferable Utility Cooperative Game, the Choquet Integral can be written in a more
intuitive way. Given the non-additivity of v(·) and its ambiguity aversion inter-
pretation given above, v(·) should be convex - some authors take this convexity
as the definition of ambiguity aversion (for a discussion on the formal definition
of Ambiguity Aversion see Epstein (1999)). If it is convex, then the correspond-
ing TU game has a non-empty core Core(v). Schmeidler (1986) shows that in
this case, the above Choquet integral can be written as

(C)

∫
Ω

fdv = min
p∈Core(v)

∫
Ω

fdp. (2.1)

As in the core of a TU game where the allocation of a player should not only
be checked against its value alone but also against all coalitions she may belong
to, the probability of a state should not enter directly but checked over all the
capacities of subsets of the states of nature to which it belongs.
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The Multiple Priors or Maxmin Expected Utility model proposed by Gilboa
and Schmeidler (1989), while derived from independent axioms, has an intuition
which is related to expression (2.1). It assumes that the individual acts as if
she had multiple (additive) priors for the subjective probability. The expected
utility of an act is the minimum expected utility across the priors. In the trans-
ferable utility game interpretation, this minimum is then the socially stable core
(defined in Herings, van der Laan, and Talman (2007)) where the least favorable
outcomes have higher power. The individuals then proceed to maximize across
these minima, therefore the name Maxmin Utility. Utility of act f over the set
of priors P is given by

V (f) = min
p∈P

Ep[f ].

This model coincides with the Choquet Expected Utility if the set of priors
P equals the core of some capacity v. As Gilboa (2009) points out the set of
priors should not be interpreted as the set of all possible (given the available
information) probability distributions, which would be too broad, but as implicit
subjective probabilities in line with Savage’s Subjective Probability Framework.

Bewley (2002) (originally from 1986) proposes another multiple priors model,
where act f is preferred over act g if its expected utility is higher for all priors.

Ghirardato, Maccheroni, and Marinacci (2004) suggest that ambiguity, i.e.
uncertainty on the probabilities of the states of nature, and ambiguity attitude,
i.e. the way agents react to ambiguity, should be separated in the utility func-
tionals. They propose axiomatically the α-Maxmin Expected Utility where the
utility of act f is given by

V (f) = αmin
p∈P

Ep[f ] + (1− α) max
p∈P

Ep[f ],

where α is a parameter that captures the ambiguity attitude of the agent. For
α = 1 the agent will be ambiguity averse as in the Maxmin model.

Variational Preferences were proposed by Maccheroni, Marinacci, and Rus-
tichini (2006), inspired on the Multiplier Preferences from Hansen and Sargent
(2001) which draws from Robust Control, where different priors p are weighted
through an ambiguity index c(p), whose value increases with the ambiguity level
of the prior,

V (f) = min
p∈∆(Ω)

(∫
Ω

u(f)dp+ c(p)

)
,

u(·) being the usual Bernoulli utility function and ∆(Ω) being the set of distri-
butions over the state space Ω. Notice that the minimization is carried out over
all possible priors.

A further set of models also weights priors, in a similar way that outcomes
are weighted with their probability of occurring in the Expected Utility Model.
This class is called Recursive Expected Utility or Second Order Beliefs, because
each prior is assigned a (second-order) probability of being the correct one, these
second-order being distributed with probability measure µ. Usually priors are
indexed through some parameter θ ∈ Θ and pθ is the probability distribution
for prior θ. The utility of an act will be calculated by aggregating the certainty
equivalent of each probability prior, across all priors. The most common model
in this category, the Smooth Ambiguity Preferences, is proposed in Klibanoff,
Marinacci, and Mukerji (2005) where this aggregation is a concave (convex for
ambiguity loving preferences) functional φ(·) which could be interpreted as a
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second order Bernoulli function. Its concavity represents the aversion to uncer-
tainty on the correct prior. The utility of act f is defined as

V (f) =

∫
Θ

φ

(∫
Ω

u(f)dpθ

)
dµ.

While clearly routed in the multiple priors model, the smooth ambiguity
preferences have a straightforward intuition. In terms of attitude towards risk,
a concave Bernoulli utility function performs the task of assigning lower weight
to high outcomes and higher weight to low ones when adding the outcomes up,
so that a risk averse individual focuses more on the bad results. With ambiguity,
an ambiguity averse individual with a concave φ(·) will analogously stress those
priors, i.e. those possible probability distributions, that yield the worst scenarios
in terms of expected outcome.

Ambiguity aversion and dynamics, i.e. preference updates as new informa-
tion is gathered, have been two concepts difficult to be reconciled. The main
issue can be discussed using a dynamic version of the Ellsberg paradox proposed
by Epstein and Schneider (2003). Consider the same experiment but with an
additional step after the ball is taken from the urn, where the individual gets
to know whether the ball is yellow or not. Initially an ambiguity averse indi-
vidual prefers lottery (0, 1, 1) over (1, 0, 1). After the ball is drawn, she will
have (0, 1, 1) ∼ (1, 0, 1) if the ball is yellow. In the other case, if she bayesianly
updates the priors for the remaining balls, she shall have (1, 0, 1) � (0, 1, 1).
Take for instance the Maxmin Expected Utility model with the following set of
priors P = {( 1

3 ,
1
2 ,

1
6 ), ( 1

3 ,
1
6 ,

1
2 )}. Conditional on not being yellow these priors

become {( 2
5 ,

3
5 , 0), ( 2

3 ,
1
3 , 0)} using Bayes rule. So the maxmin expected utility

for (0, 1, 1) is initially 2
3 and then 1

3 , while for (1, 0, 1) it decreases only from 1
2

to 2
5 . Thus, the individual does not keep his preferences in none of the interme-

diate states, that is the preferences do not satisfy dynamic consistency, which is
loosely defined as the non-reversal of preferences from period t to t+ 1 between
two acts which are equal until t, but one is preferred for every possible prior in
t+ 1.

Different solutions have been followed in the literature. These are to enforce
dynamic consistency through the choice of the time aggregating functional (as
in Klibanoff, Marinacci, and Mukerji (2009) for the Smooth Ambiguity Model),
backward induction like the sophisticated agents in Pollak (1968) (as in Sinis-
calchi (2010)), the imposition of consistency conditions on the priors (as in
Epstein and Schneider (2003)), or discretionary priors update rules which de-
pend on the preferences, the events and the choice problem (as in Klibanoff and
Hanany (2007) and Hanany and Klibanoff (2009)). In the above example, a dy-
namically consistent ambiguity averse individual would then compulsory prefer
(1, 0, 1) over (0, 1, 1) in the beginning.

Another approach is to discard dynamic consistency, accept the above ap-
parent preference change and impose consequentialism, which states that the
decision maker is indifferent between two acts which yield the same payoffs for
all priors, irrespectively of what happened in the previous periods. To under-
stand the implication of this assumption in the above example, consider the
preference on (1, 0, 0) vs. (0, 1, 0). The intermediate step bares no change, ei-
ther the ball is yellow and payoff is zero in both or it is not yellow and the two
available lotteries are still between red and black, so an ambiguity averse indi-
vidual should prefer the first over the second in both periods. If now compared
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to the preferences (0, 1, 1) � (1, 0, 1) in the first period, consequentialism then
states that the ambiguity averse decision maker should switch its preference
in the intermediate step if the ball is not yellow, because (1, 0, 1) and (0, 1, 1)
coincide with (1, 0, 0) and (0, 1, 0), respectively, in the remaining nodes. Conse-
quentalism is satisfied if the decision maker follows a Bayesian update rule for
the priors.

Consequentialist priors update rules have been axiomatized according to
different requirements. Gilboa and Schmeidler (1993) axiomatize the Dempster-
Shafer update rule for the Multiple Priors Model. As new information becomes
available for the decision maker, she picks those priors that assign maximum
likelihood to the information and updates them with Bayes rule. They also
show this coincides with Bayesian updating for capacities, provided that the
Choquet and Maxmin preferences coincide. Pires (2002) axiomatizes a different
Bayesian update rule where all priors are kept and all are updated according to
Bayes rule.

Ozdenoren and Peck (2008) further suggests that dynamic inconsistent be-
havior of ambiguity averse individuals can be interpreted as consistent subgame
perfect equilibrium strategies in a game against nature, which influences am-
biguous outcomes.

There is also a rich empirical, applied and experimental literature on Ambi-
guity Aversion.

Hey, Lotito, and Maffioletti (2007) use an inventive device to simulate am-
biguity in the lab. Subjects can see a bingo blaster and estimate the number
of balls with different colors. Through a series of binary tests, the authors con-
clude that Choquet Expected Utility fits the date best, but also claim that the
decisions vary a lot across individuals.

In a portfolio choice application, Dow and Werlang (1992) show that an
agent with Maxmin Expected Utility has a price range for which she chooses
not to buy and not to sell an asset. This behavior is not due to some status quo
bias (as in the Bewley (2002) model) but as a safe allocation consideration.

Epstein and Schneider (2003) claim that ambiguity aversion may explain the
home bias that investors exhibit. Ju and Miao (2009) use ambiguity aversion in
an asset pricing model to show that it can explain the equity premium and its
volatility.

This is not to say that this literature is consensual. For instance, the ex-
periments in Halevy (2007) show that there is a significant positive correlation
between displaying ambiguity aversion and violation of reduction of compound
objective lotteries. See Al-Najjar and Weinstein (2009) for further criticism.

Dominiak, Dürsch, and Lefort (2009) test the dynamic version of the Ells-
berg experiment and find that most subjects tend to follow consequentialism,
meaning that they are not acting in a dynamically consistent way.

For more comprehensive reviews on the literature see Etner, Jeleva, and
Tallon (2009).

Few work has been put forward assessing the impact of ambiguity aversion
on auctions. Using Choquet Expected Utility, Salo and Weber (1995) show that
ambiguity aversion may explain the (beyond risk aversion) overbidding in first-
price sealed-bid auctions when the distribution of private values or the number
of bidders is ambiguous. Lo (1998) examines first and second-price sealed-bid
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auctions when both the bidders’ and the auctioneer’s preferences follow the
Maxmin model, indicating that the effects of ambiguity attitudes are similar,
but not equal, to those of risk in terms of bidding and revenue. Bose, Ozdenoren,
and Pape (2006) study the optimal static auction mechanism with ambiguity.
Chen, Katuscak, and Ozdenoren (2007) test experimentally the bidding behavior
in first-price sealed-bid auctions and get lower over-bidding in the ambiguity
treatment. Bose and Daripa (2009) is the first analyzing dynamic auctions with
ambiguity (bidders choose strategies from backward induction), but from the
optimal auction point of view. They show that with ambiguity, modeled with
Maxmin preferences, the auctioneer can extract almost all surplus, in contrast
to the unambiguous case.

The experiments in Armantier and Treich (2009) indicate that probabilistic
bias are the main drive of overbidding in first-price sealed-bid auctions. Some
experimental literature use compound lotteries to simulate ambiguity. While
theoretically they are very different concepts, most ambiguity aversion models
can also have a bad reduction of compound lotteries interpretation. Moreover as
mentioned above, there seems to be a high correlation between individuals ex-
hibiting one and the other behavior. Liu and Colman (2009) compare decisions
between single-choice and repeated-choice Ellsberg urn choices. In the latter,
decision makers tend to pick the ambiguous option more frequently. Kocher and
Trautmann (2011) run an experiment where subjects can choose to participate in
a risky or in an ambiguous first-price sealed-bid auction. While the equilibrium
price is the same in both, bidders tend to avoid the ambiguous auction.

2.3 Framework

In conventional Auction Theory the bidders (and the auctioneer) have limited
information of each other. They are not aware of the value that the auctioned
object represents for the other players and therefore they do not know the other
players’ payoffs. For any results to be established one must clearly make quanti-
tative assumptions, so it is assumed that the probabilistic distribution of these
values is common knowledge. While the assumption of perfect information on
the probabilistic distribution may be too strong, any more elaborate assump-
tions end up to be equivalent through compound lottery reduction. It is known
that, risk aversion aside, individuals display aversion to risky choices where the
probability distribution of the outcomes is not perfectly known, i.e. they display
Ambiguity Aversion. A popular method to generalize Expected Utility Theory
to allow for these preferences to be included, is the Smooth Ambiguity Model
from Klibanoff, Marinacci, and Mukerji (2005). Instead of using a single distri-
bution of the unknown parameters, ambiguity is introduced through multiple
possible distributions.

Formally there are multiple prior probability measures πθ, where θ ∈ Θ
indexes the priors, over the possible states of nature ω, with ω ∈ Ω. Particular
to this ambiguity model is the assumption of a probability measure over the
different priors, represented by µ defined from 2Θ to [0, 1]. Ambiguity Aversion
is then modeled in a similar way as Risk Aversion, that is using a concave
function φ(·) to aggregate the (certainty equivalent) outcomes of act f over
all priors with µ, that is aggregating

∫
Ω
u(f(ω))dπθ over θ. Act f maps a

state of nature ω ∈ Ω to an outcome f(ω) yielding utility u(f(ω)), where the
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utility function u(·) is taken to be (weakly) concave to represent risk (neutrality)
aversion. The utility of f in the smooth ambiguity model is given by

U(f) =

∫
Θ

φ

(∫
Ω

u(f(ω))dπθ

)
dµ. (2.2)

This model is chosen for several reasons. It is a smooth model, meaning that
differentiable functionals may be used so that the utility itself is differentiable,
in opposition to most Ambiguity Aversion models. Moreover the model allows
to distinguish between the consequences of different levels of ambiguity, given
by the spread of the prior, and those of idiosyncratic ambiguity aversion, given
by the shape of φ(·). A further reason is related to dynamic decisions under
ambiguity, namely the update of priors as new information is received. Having
a probability measure on the priors allows to put more weight on priors that
seem to be more credible with the new information2.1.

In all the basic auctions being considered here an indivisible good is being
auctioned. The private values of the good to the n bidders are randomly drawn
from distribution Fθ with support [0, 1], with θ ∈ Θ. Private values are assumed
to be independently drawn across agents. The probability of each possible dis-
tribution Fθ is given by the measure µ on 2Θ.

To enable a comparison with the unambiguous case, an equivalent subjective
probability distribution FU will be defined, satisfying∫

Fn−1
θ (x)dµ = Fn−1

U (x), ∀x ∈ [0, 1]. (2.3)

FU can be interpreted as the reduced probability distribution that an ambiguity
neutral bidder considers. Let Gθ(x) = Fn−1

θ (x) and similarly for GU (x),∫
Gθ(x)dµ = GU (x), ∀x ∈ [0, 1].

Notice that this implies∫
d

dx
Gθ(x)dµ =

d

dx
GU (x), ∀x ∈ [0, 1].

Moreover it is assumed that all priors θ, θ ∈ Θ, are such that an auction
with Fθ as the value distribution has a unique monotonic equilibrium pricing
strategy.

It should be underlined that these priors are the same across all bidders and
they represent the beliefs that the bidders have after learning their own value.
Otherwise, given their own value they would update their second order beliefs
µ according to it.

2.4 Static ambiguous auctions

The two most common types of static auctions are considered, the first-price
sealed-bid auction and the second-price sealed-bid auction.

2.1For a critic on the Smooth Ambiguity Model see Epstein (2010).
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2.4.1 First-price sealed-bid auction

In the first-price sealed-bid auction, all bidders submit one bid at the same time.
The good is then given to the bidder with the highest bid, for which she pays
the offered price.

Ambiguity neutrality

Consider the case of ambiguity neutral bidders with Fθ for priors and µ the
measure on the priors. The first-price sealed-bid auction will be equivalent to the
unambiguous case where values follow the FU distribution defined in equation
(2.3). This follows directly from the usual reduction of compound lotteries,
or mathematically as the combination of the two integrals (2.2) to a single
measure. With ambiguity neutrality, that is with φ(y) = y, any expectation
becomes simply

U(f) =

∫
Θ

φ

(∫
Ω

f(ω)dFθ

)
dµ

=

∫
Θ

∫
Ω

f(ω)dFθdµ

=

∫
Ω

f(ω)dFU ,

which is the ambiguity neutrality case.

Ambiguity aversion

If bidders have ambiguity aversion modeled as in (2.2), the priors cannot be
reduced to a single distribution. For a given increasing differentiable strategy
for the first-price sealed-bid auction β1(·), where the index 1 stands for first-
price, followed by the n − 1 opponents, a bidder with value v who chooses to
bid as if she had value z, will win the auction with probability Gθ(z), yielding
in that case a utility of u(v − β1(z)), according to prior θ ∈ Θ. The certainty
equivalent of this choice is then, still according to prior θ, Gθ(z)u(v−β1(z)). To
compute the expected utility one has to aggregate over all priors, which leads
to the expected utility ∫

φ (Gθ(z)u(v − β1(z))) dµ.

The best response for the strategy β1(·) will therefore solve

max
z

∫
φ (Gθ(z)u(v − β1(z))) dµ.

First order condition yields ∫
φ′ (Gθ(z)u(v − β1(z)))×

[G′θ(z)u(v − β1(z))−Gθ(z)u′(v − β1(z))β′1(z)] dµ = 0. (2.4)

The term in the second bracket is the optimum condition for the unambiguous
case for each prior θ. The equilibrium can be seen as a weighted mean, the
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φ′(·) terms being the weights. Introducing ambiguity aversion renders φ′(·)
decreasing, stressing those terms in the integral where Gθ(z) is lower.

In equilibrium the bidders bid according to their value, i.e. z = v, hence the
above equation may be rewritten as

β′1(v) =

∫
φ′ (Gθ(v)u(v − β1(v)))G′θ(v)dµ∫
φ′ (Gθ(v)u(v − β1(v)))Gθ(v)dµ

× u(v − β1(v))

u′(v − β1(v))
.

Assume for this section that φ(·) is such that φ′(ab) = φ′(a)φ′(b), for example
with the usual exponential form, φ(h) = 1

αh
α, for some α ∈ (0, 1), this simplifies

to

β′1(v) =

∫
φ′ (Gθ(v))G′θ(v)dµ∫
φ′ (Gθ(v))Gθ(v)dµ

× u(v − β1(v))

u′(v − β1(v))
. (2.5)

Suppose now that all priors are such that they can be ordered in the following
way, Fθ1(x) < Fθ2(x) for any x > 0 if θ1 < θ2. This implies that Gθ1(x) <
Gθ2(x) for any x > 0. Thus for higher θ, the term φ′(Gθ(v)) will be lower for
the same v > 0. Following this assumption on the ordering of the cumulative
distribution functions, it is also assumed2.2 that for the hazard rate

F ′θ1(x)

Fθ1(x)
>
F ′θ2(x)

Fθ2(x)
∀x > 0, if θ1 < θ2.

Following the definition ofGθ(·), its derivativeG′θ(x) equals (n−1)Fn−2
θ (x)F ′θ(x)

so that
G′θ(x)

Gθ(x)
= (n− 1)

F ′θ(x)

Fθ(x)
.

Using the last assumption this implies that

G′θ1(x)

Gθ1(x)
>
G′θ2(x)

Gθ2(x)
.

See below for some examples.
Now, it is easy to see that the expression a−i+cai

b−i+cbi
moves monotonously from

a−i
b−i

to ai
bi

as c goes from 0 to∞. Therefore in the first fraction of expression (2.5)

the terms of priors with lower θs will have a higher weight as ambiguity aversion

increases. Given that lower θs have a higher
G′θ(x)
Gθ(x) ratio, the first fraction in

(2.5) will be higher for higher ambiguity aversion. Therefore the concavity of
φ(·) implies ∫

φ′ (Gθ(v))G′θ(v)dµ∫
φ′ (Gθ(v))Gθ(v)dµ

>

∫
G′θ(v)dµ∫
Gθ(v)dµ

, (2.6)

and the ratio on the left-hand side is decreasing with the ambiguity aversion
parameter α, i.e. increasing with ambiguity aversion. The ratio in the right-
hand side is the ratio that appears in the differential equation defining the
ambiguity neutral bidding equilibrium strategy, β1,N (·), where the index N
stands for Neutrality, that is the one in case of linear φ(·),

β′1,N (v) =

∫
G′θ(v)dµ∫
Gθ(v)dµ

× u(v − β1(v))

u′(v − β1(v))
.

2.2The second assumption while independent from the first, is not a strong one. To see this
notice that the numerators are ordered in an increasing way.
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Now if β1(v) < β1,N (v) then u(v−β1(v))
u′(v−β1(v)) >

u(v−β1,N (v))
u′(v−β1,N (v)) , and given (2.6) one gets

β′1(v) > β′1,N (v). But at v = 0 it is easy to see that β1(0) = β1,N (0) = 0. One
can therefore not have β1(v) < β1,N (v) for any v > 0 because that would imply
β′1(v) > β′1,N (v), a contradiction. Thus it must be that β′1(v) is higher than
β′1,N (v) for any v > 0. This implies the following result.

Lemma 2.1 In the First-Price Sealed-Bid Auction with Smooth Ambiguity the
equilibrium bid increases as ambiguity aversion arises.

The following examples illustrate the lemma.

Ambiguous order with linear priors

Consider a set of priors in [0, 1] where values are drawn from distributions with
the following probability density functions F ′θ(x) = (1+θ)−2θx, with θ ∈ [−1, 1].
For θ1 < θ2 it holds that Fθ1(x) < Fθ2(x) and

F ′θ1(x)

Fθ1(x)
>
F ′θ2(x)

Fθ2(x)
,

because
F ′θ(x)
Fθ(x) = 1

x −
1

1/θ+1−x for any x.

Recall that the ambiguity aversion term φ′(Fθ(x)) stresses those priors with
lower Fθ(x), i.e. those with lower θ. Take for instance θ = −1. According to
this prior, the value of the opponent will be drawn from F−1(x) = x2, meaning
that there is higher probability of confronting a bidder with a higher value,
in comparison to the other extreme case θ = 1, when F1(x) = 2x − x2 for
example. The ambiguity averse bidder will therefore choose to place a higher
bid in equilibrium.

Ambiguous order with exponential priors

Consider the priors Fθ(x) = xθ for 0 ≤ x ≤ 1 with θ > 0. The hazard rate will
be

F ′θ(x)

Fθ(x)
=
θ

x
.

The assumptions are clearly satisfied (in reverse order though), i.e. Fθ1(x) >

Fθ2(x) and
F ′θ1

(x)

Fθ1 (x) <
F ′θ2

(x)

Fθ2 (x) for any x if θ1 < θ2.

Ambiguous mean

Consider the case with two equally likely priors θ = 1, 2 with uniform distri-
bution of length a < 1, whose total support is [0, 1]. These priors create the
following conceptual problem to a bidder whose private value v is not included
in the support of all priors, for instance if v = 0.1 and there are two priors with
support [0, 0.8] and [0.2, 1]. This bidder will reject the second prior from the
start, so that the ambiguity is not the same across bidders.

It is therefore assumed that the prior distributions are of the following type
for some 0 < ε < 1

1−a ,

F ′θ(x) =

{
a−1 − 1−a

a ε if x ∈ [0, a] for θ = 1 or if x ∈ [1− a, 1] for θ = 2,

ε otherwise.
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As ε→ 0, some of the fractions
F ′θ(x)
Fθ(x) become undetermined. Using φ(h) = 1

αh
α,

α ∈ (0, 1), it can still be proved that∑
θ φ
′ (Gθ(v))G′θ(v)∑

θ φ
′ (Gθ(v))Gθ(v)

weakly decreases with α. See the appendix.

Closed-form solutions

One can get an explicit solution for the equilibrium bidding strategies if the
priors are chosen appropriately. Take n risk neutral bidders and a finite set of
priors P = {F1, . . . , Fm}, all equally probable (i.e., µi = 1

m for all i = 1, . . . ,m),
such that 1

m

∑m
i=1 F

′
i (x) = 1 for all x ∈ [0, 1]. Such set of priors satisfies

1
m

∑m
i=1 Fi(x) = x, meaning that for an ambiguous neutral bidder with only

one opponent (n = 2), these priors correspond to a uniform distribution. For
n > 2 and x ∈ (0, 1) one has that 1

m

∑m
i=1 F

n−1
i (x) ≥ xn−1 or FU (x)n−1 ≥ xn−1,

with strict inequality if there are at least two priors with different values.
In words, with this set of priors P the reduced cumulative distribution of the

opponents, FU , has a higher value for any value x than a uniform distribution
with n − 1 opponents would have. That is for any value v that the bidder
may have, there is here a lower probability of having opponents with higher
values than it would happen with a uniform distribution. In an auction with
ambiguous neutral bidders, the equilibrium bidding strategy would therefore
assign lower bids for each value than the corresponding bid in an auction with
uniform distribution.

Choosing the ambiguity aversion parameter α = 1
n−1 , simplifies the equilib-

rium conditions considerably,

β′1(v) =

∫
φ′ (Gi(v))G′i(v)dµ∫
φ′ (Gi(v))Gi(v)dµ

× u(v − β1(v))

u′(v − β1(v))

= (n− 1)

∑m
i=1 Fi(v)(α−1)(n−1)Fi(v)n−2F ′i (v)∑m

i=1 Fi(v)(α−1)(n−1)Fi(v)n−1
(v − β1(v))

= (n− 1)

∑m
i=1 Fi(v)α(n−1)−1F ′i (v)∑m

i=1 Fi(v)α(n−1)
(v − β1(v))

= (n− 1)

∑m
i=1 F

′
i (v)∑m

i=1 Fi(v)
(v − β1(v))

=
n− 1

n
(v − β1(v)).

The equilibrium bid is thus the same as the basic non-ambiguous with uni-
formly distributed values, β1(v) = n−1

n v, even if there are less opponents with
higher values. Like risk aversion, aversion to ambiguity pushes the bidders to
play a safer strategy which increases their chance to win at the expense of lower
payoffs.

Take for instance the set of equally probable priors P = {F1, F2} with
F1(x) = xa and F2(x) = 2x − xa, where 0 ≤ x ≤ 1, a ∈ [1, 2] and n = 3. At
a = 1 the priors are both the uniform distribution so there is no ambiguity and

13



the usual equilibrium arises. At a > 1, however, the reduced distribution with
which an ambiguous neutral bidder (α = 1) calculates her expected payoff is
different. For a = 2 it will be F 2

U (x) = 1
2 (x4 +(2x−x2)2) = x2(1+(1−x)2) > x2

for any x > 0. Now for α = 1
2 and for any a ∈ [1, 2], the ambiguity averse bidders

have as equilibrium strategy the usual β1(v) = 2
3v. Notice that increasing the

parameter a increases the probability of a low value of opponents but increases
the ambiguity, and has no effect in this solution because the two effects cancel
out.

2.4.2 Second-price sealed-bid auction

Lemma 2.2 In the ambiguous Second-Price Sealed-Bid Auction with ambiguity
averse bidders with smooth ambiguity preferences, bidding their own value, i.e.
β2(v) = v, is an equilibrium.

Proof. The proof is straightforward as in the ambiguity neutral and risk neu-
tral case. Provided that other bidders play according to β2(v), bidding less than
v decreases the probability of winning the auction without yielding higher pay-
ments, and bidding more than v increases the number of chances in which the
auction is won, but all of which will yield negative payoffs.

This result is confirmed experimentally in Chen, Katuscak, and Ozdenoren
(2007).

2.5 Dynamic ambiguous auction

Dynamics and Ambiguity Aversion have been difficult to stitch together in the
literature, as it was remarked in Section 2.2. Different approaches yield quite
different forecasts. In this chapter a consequentialist Bayesian update2.3 rule is
adopted for various reasons. First, the only empirical evidence available indi-
cates that subjects follow consequentialist update rules in the simple dynamic
Ellsberg experiment, see Dominiak, Dürsch, and Lefort (2009). Second, models
with dynamically consistent preferences use recursive update rules. In a price-
descending auction where the price decreases continuously it is not clear how
this recursive rule should be applied. And if a discrete process is considered,
the size of the price decrease in each period would have an important impact on
the outcome of these models2.4.

The setting in an open price descending auction bidders is much richer, since
bidders can collect information as the auction runs. When the distributions are
not ambiguous, as the auction price descends and no bid is placed, there is only
one type of information that bidders learn, namely they learn that there are no
opponents with values above some given threshold.

2.3Updating is arguably not the best term given that strictly speaking there is no new
information. Put differently, in the beginning of the auction bidders can infer what will be
their beliefs at some future point, provided that that point is reached.

2.4It could still be argued that forward looking decision makers could recognize their changing
preferences and choose suboptimal bidding strategies, i.e. stopping earlier, to prevent the
predicted outcome if that would maximize their expected payoff, in line with Siniscalchi (2010).
While proving that that cannot be the case is beyond the scope of this chapter, all numerical
simulations that were conducted show that at no point the bidders prefer to bid at the current
price instead of the equilibrium one - except obviously for the equilibrium price bid.
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But that is not the case with ambiguity. Consider the case where bidders
have two priors on the distribution of the opponents. One indicates a higher
probability of higher values, and the other of lower values. As the price descends
and bidders exclude the possibility of having opponents with the highest possible
values, the first prior starts to look less likely than in the beginning, since the first
prior decrees that there is a stronger possibility of the auction ending with a high
bid. As the auction goes on, bidders take the second prior to be more believable
and evaluate their strategies according to this update believe. Conditional on
the fact that no bidder stopped the auction until price p, the prior beliefs, both
Fθ, θ ∈ Θ, and µ, will be ’updated’.

Let the conditional Bayesian beliefs, conditional on the fact that x ≤ y for
some given y, 0 ≤ y ≤ 1, be represented by Fθ,y(x), i.e.,

Fθ,y(x) =
Fθ(x)

Fθ(y)
, x ≤ y, θ ∈ Θ.

The probability measure on the priors is also updated to µy. For given y,
0 ≤ y ≤ 1, it is defined by

µy(A) =

∫
A
Fn−1
θ (y)dµ∫

Θ
Fn−1
θ (y)dµ

=

∫
A
Gθ(y)dµ∫

Θ
Gθ(y)dµ

, A ∈ 2Θ.

Ambiguity neutrality

When individuals are ambiguity neutral, the existence of ambiguity should not
affect the equilibrium, even if their probability measure µ is updated. In this
section it is shown that indeed ambiguity does not affect the equilibrium out-
come.

Take βD,N (v) to be the monotonous equilibrium bidding strategy for a bidder
with value v, D standing for Dutch auctioneer. Suppose the n − 1 opponents
are playing this strategy and the descending price reaches level p, implying that
the values of the opponents are smaller than β−1

D,N (p). For a given own private
value v, the bidder may bid the good at p receiving

∫
v − pdµz = v − p = v − βD,N (z),

where z is the private value for which p is the optimal bid, z = β−1
D,N (p). The

bidder may consider to bid as a lower type y < z, whose bid wins with probability
(according to the updated priors) Gθ,z(y) = Fn−1

θ,z (y), receiving

∫
Gθ,z(y)(v − βD,N (y))dµz.

Let y be marginally smaller than z, y = z − ∆, and let ∆ go to zero. The
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marginal gain from ∆ will be

∫
Gθ,z(z) (v − βD,N (z))−

∆
(
G
′

θ,z(z)(v − βD,N (z))−Gθ,z(z)β′D,N (z)
)
dµz − (v − βD,N (z))

=

∫
(v − βD,N (z))−

∆
(
G
′

θ,z(z)(v − βD,N (z))− β′D,N (z)
)
dµz − (v − βD,N (z))

=

∫
−∆

(
G
′

θ,z(z)(v − βD,N (z))− β′D,N (z)
)
dµz,

where Gθ,z(z) = 1 for any θ is used. In equilibrium the optimal response has
v = z such that the marginal gain is zero,

β′D,N (v)− (v − βD,N (v))

∫
G
′

θ,v(v)dµv = 0,

β′D,N (v)− (v − βD,N (v))

∫
G
′

θ(v)

Gθ(v)

Gθ(v)∫
Gϑ(v)dµ

dµ = 0,

β′D,N (v)− (v − βD,N (v))

∫
G
′

θ(v)

GU (v)
dµ = 0,

β′D,N (v) = (v − βD,N (v))
G
′

U (v)

GU (v)
.

The best response satisfies the same condition as the optimal bid in the static
auction. The equilibrium conditions for both auctions are therefore equivalent.

Ambiguity aversion

Let βD(v) be the equilibrium bid in an Open Price Descending Auction. The
gains from delaying ∆ are now

∫
φ (Gθ,z(z −∆)u(v − βD(z −∆))) dµz − φ (u(v − βD(z)))

≈
∫
φ (Gθ,z(z)u(v − βD(z)))−∆φ′ (Gθ,z(z)u(v − βD(z)))(
G
′

θ,z(z)u(v − βD(z))−Gθ,z(z)u′(v − βD(z))β′D(z)
)

−φ (u(v − βD(z))) dµz

= −∆φ′ (u(v − βD(z)))

∫
G
′

θ,z(z)u(v − βD(z))− u′(v − βD(z))β′D(z)dµz.
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As ∆→ 0, in equilibrium the marginal gain should be zero at z = v,

φ′ (u(v − βD(v)))

[
u′(v − βD(v))β′D(v)−

∫
G
′

θ,v(z)u(v − βD(v))dµv

]
= 0,

u′(v − βD(v))β′D(v)− u(v − βD(v))

∫
G
′

θ,z(v)dµz = 0,

u′(v − βD(v))β′D(v)− u(v − βD(v))

∫
G
′

θ(v)

Gθ(v)

Gθ(v)∫
Gϑ(v)dµ

dµ = 0,

u′(v − βD(v))β′D(v)− u(v − βD(v))

∫
G
′

θ(v)

GU (v)
dµ = 0,

β′D(v) =
u(v − βD(v))

u′(v − βD(v))

G
′

U (v)

GU (v)
.(2.7)

This result holds for any differentiable φ(·), implying that in the dynamic auc-
tion, the optimal strategy does not depend on the ambiguity aversion level of
the bidders.

Lemma 2.3 In a Dutch Auction with Smooth Ambiguity the equilibrium bidding
strategy is independent of the Ambiguity Attitude of the bidders, i.e. βD = βD,N .

Proof. Above.

Lemma 2.4 Expected utility, given by smooth ambiguity preferences, from an
ambiguous Dutch auction is lower than that of the equivalent unambiguous one.

Proof Given the concavity of φ, it follows that∫
φ (Gθ(v)u(v − βD(v))) dµ < φ

(∫
Gθ(v)u(v − βD(v))dµ

)
= φ

(∫
Gθ(v)u(v − βD,N (v))dµ

)
.

One important corollary follows from the previous results.

Corollary 2.1 If there is any participation cost in the Dutch Auction, less bid-
ders will choose to participate in an ambiguous auction than in the equivalent
unambiguous one.

These results also show that first-price sealed-bid auctions are not equiva-
lent to open price descending auctions when ambiguity and ambiguity aversion
are present. Karni (1988) points out that that equivalence only holds necessar-
ily with expected utility maximizing agents. Moreover, this bidding difference
which cannot be explained by risk aversion, is in agreement with the experi-
mental literature (see e.g. Kagel and Roth (1995)) which shows that first-price
sealed-bid auctions have bids and revenues which are higher than those of the
risk neutral Nash Equilibrium and of the Dutch auctions.
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Anticipating consequentalism

As discussed in the introduction of this section, it is not clear how dynamic am-
biguity should be modeled. It is possible however to see that even if the bidder
anticipates his consequentialist and therefore possibly dynamic inconsistent be-
liefs, she still chooses to play the same equilibrium bidding strategy - provided
that the others do the same.

A bidder who evaluates her equilibrium strategy before the bidding price
arrives, that is with previous priors, may find the equilibrium strategy to be
suboptimal. That is the case at the beginning, where the bidder would rather
behave as in the first-price sealed-bid auction. Given that there is no a priori
way of setting the bid in a dynamic auction, the bidder can only choose to
bid immediately instead of bidding at the equilibrium strategy. So one should
compare the certain payoff at a higher bid b with the expected payoff of waiting
until the equilibrium, using for this the priors updated until then.

Given that closed form solutions are needed to make this comparison it
is impossible to establish a general result, but some examples indicate that
the bidders opt for playing the equilibrium strategy defined above. Take for
instance the set of equally probable (µ1 = µ2 = 1

2 ) priors P = {F1, F2} with

F1(x) = x
m
n−1 and F2(x) = (2xn−1 − xm)

1
n−1 , with m chosen appropriately

(guaranteeing that F1 and F2 are non-decreasing and with codomain [0, 1]), risk
neutrality and φ(h) = 1

αh
α. The reduced distribution will be GU (x) = xn−1 so

that the equilibrium strategy is βD(v) = n−1
n v. The updated priors conditional

on the maximum value of bidders having values lower than y, 0 ≤ y ≤ 1, will be

Fi,y(x) =
Fi(x)

Fi(y)
, µi(y) =

1
2F

n−1
i (y)

1
2

(
Fn−1

1 (y) + Fn−1
2 (y)

) =
Fn−1
i (y)

yn−1
, i = 1, 2.

At bid b the bidder with value v compares the payoff of stopping, 1
α (v− b)α

with that of waiting until the equilibrium bid βD(v),

∑
j=1,2

µj(y)

[
(Fj,y(v))

n−1

(
v − n− 1

n
v

)]α
,

where y = min{1, n
n−1b}. Notice that for b > n−1

n and assuming that all bidders
play the equilibrium strategy, there is still no value that can be discarded because
b is higher than any equilibrium bid. There is therefore no update of the priors.

Let m = 4, n = 3 and α = 1
2 . At the beginning of the auction, stopping

at a future b yields the expected utility displayed in Figure 2.1 for a bidder
with value v = 3

4 . This is the problem that the bidder faces in the first-price
sealed-bid auction, the maximum payoff occurs thus at a bid higher than the
equilibrium strategy in the open price descending auction, n−1

n v = 1
2 . There

is a slight kink at b = 2
3 , which is the equilibrium bid of the bidder with the

highest value. The probability of winning has therefore a kink because it goes
below 1 for b < 2

3 .
Figure 2.2 represents the expected utility of two possible strategies, equilib-

rium strategy βD and stopping at the current bid b, at different timings of the
descending auction, more precisely at bid b. Contrary to Figure 2.1, here only
the probability of winning is changing with b. For b ∈ [ 2

3 , 1] there is no type of
opponent that can be discarded, there is thus no update of the priors and the
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Figure 2.1: Expected utility as anticipated at the beginning of the auction, as
a function of the bid b, for a bidder with v = 3

4 .
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Figure 2.2: Expected utility as anticipated as bid b is reached, of playing the
equilibrium bid strategy βD (thick) and of accepting the momentary price b, for
a bidder with v = 3

4 .

probabilities are fixed. The important aspect of this graph is to show that the
equilibrium strategy βD (even if not being the optimal bid for any point in time
with b > βD) always outperforms the only possibility that the bidder at ongoing
bid b has, to stop at b. At each point the bidder that anticipates his changing
preferences, cannot do better than wait and play βD.

2.6 Conclusion

In Auction Theory one of the basic assumptions is that of common knowledge
of the distribution of the values of the bidders, that is each bidder knows the
distribution from which the values of her opponents are drawn. This chapter
relaxes this assumption in the spirit of the literature in Ambiguity Aversion with
multiple priors and derives the equilibrium bids in basic single-good auctions.

It is shown that ambiguity aversion increases the bid in the first-price sealed-
bid auction, but ambiguity has no impact in open price descending auctions.
While the first result is intuitive, the second result follows from the fact that
as the auction occurs and the price descends, the bidders learn about the dis-
tribution of the values of their opponents, eroding thus the ambiguity that was
present in the beginning.

This entails two important results. The first concerns Auction Theory, it
indicates that first-price sealed-bid auctions and open price descending need not
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to be theoretically equivalent. This implies that, in the presence of ambiguity,
there is no revenue equivalence between those auctions.

The second is a significant result in Ambiguity Aversion, because the chapter
provides a new example where ambiguity aversion and risk aversion do not have
the same qualitative effect on the outcomes of a model. For instance, Gollier
(2009) in a portfolio choice model, shows that ambiguity aversion may lead to an
increased demand of a risky or ambiguous asset. The present chapter sustains
that ambiguity aversion has the same qualitative consequence on static auctions
as risk aversion, but that it is not the case for dynamic auctions.
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2.7 Appendix

2.7.1 Ambiguous mean

Here it will be proven that for the example with ambiguous mean∑
θ φ
′ (Gθ(v))G′θ(v)∑

θ φ
′ (Gθ(v))Gθ(v)

weakly decreases with α. For any v with v ≤ 1− a, the fraction is∑
θ φ
′ (Gθ(v))G′θ(v)∑

θ φ
′ (Gθ(v))Gθ(v)

=

∑
θ F

(n−1)(α−1)
θ (v) · (n− 1)Fn−2

θ (v)F ′θ(v)∑
θ F

(n−1)(α−1)
θ (v) · Fn−1

θ (v)

= (n− 1)
1
a

(
v
a

)α(n−1)−1
+ 0(

v
a

)α(n−1)
+ 0

= (n− 1)
1

v
,

which is independent of α.
For any v with 1− a < v ≤ a, the fraction is∑

θ φ
′ (Gθ(v))G′θ(v)∑

θ φ
′ (Gθ(v))Gθ(v)

=

∑
θ F

(n−1)(α−1)
θ (v) · (n− 1)Fn−2

θ (v)F ′θ(v)∑
θ F

(n−1)(α−1)
θ (v) · Fn−1

θ (v)

= (n− 1)

1
a

(
v
a

)α(n−1)−1
+ 1

a

(
v−(1−a)

a
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(
v
a

)α(n−1)
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(
v−(1−a)

a

)α(n−1)

= (n− 1)
1 +

(
v−(1−a)

v

)α(n−1)−1
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v−(1−a)
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)α(n−1)

=
n− 1

v

1 +
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1− 1−a

v

)α(n−1)−1

1 +
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1− 1−a

v

)α(n−1)
. (2.8)

The following derivative

∂

∂q

1 + yq−1

1 + yq
=

(1− y)yq−1 ln y

(1 + yq)2
,

with y ∈ (0, 1) and q > 0 is negative. Substituting y = 1− 1−a
v and q = α(n−1),

it is concluded that (2.8) is decreasing in α for any v ∈ (1− a, a].
For any v with v > a,∑

θ φ
′ (Gθ(v))G′θ(v)∑

θ φ
′ (Gθ(v))Gθ(v)

= (n− 1)
0 + 1

a

(
v−(1−a)

a

)α(n−1)−1

1 +
(
v−(1−a)

a

)α(n−1)

= (n− 1)
1

a
(
v−(1−a)

a

)1−α(n−1)

+ (v − (1− a))

.

Given that a < v ≤ 1 it follows 0 < v−(1−a)
a ≤ 1, so the above fraction is

decreasing in α.
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Chapter 3

Staggered Time
Consistency and Impulses

3.1 Introduction

One of the aspects of the Expected Utility Model that has been largely criticized
has been the constant rate of time discounting for the additive utility levels.
Strotz (1956) already pointed out from introspection that closer time gaps are
more discounted than distant ones, that is the discount from today to tomorrow
is bigger than between two consecutive days in the far future. This obviously
raises the issue of time inconsistency, meaning that the optimal trade-off between
date t0 and date t1 depends strongly on the date when that consideration is
taken. An individual may prefer ’work’ to ‘beach’, but when the ‘work’ period
comes closer that preference may reverse.

Strotz (1956) proposes three ways to mathematically model the decision
making with inconsistent preferences. The individual may be unaware of the
inconsistency and continuously discard previous optimal plans engaging in new
ones, she may recognize it and follow a strategy of precommitment always fol-
lowing a previous plan, or recognize it and choose a consistent plan, which is
“the best plan among those that he will actually follow”. The first one, the so-
called naive behavior, is problematic because it implies that individuals simply
do not recognize that they are not following their own planned actions, in partic-
ular some of those involving immediate costs and delayed rewards. The second
one implies the existence of some point in time where all decisions were taken
(except for those dependent on unexpected events) and that those decisions are
followed even if considered far from optimal when reconsidered at some future
point.

The second possibility was only modeled by Pollak (1968). The sophisticated
individual’s behavior is the outcome of a game among its different selves, the
decision makers of each decision period. The self of period t knows how the next
self will respond to its current decisions, and both know how period t+ 2 acts,
and so forth. By taking all those future strategies into account, the present self
maximizes its own discounted utility. It is therefore “the best plan among those
that he will actually follow”. Notice that this subgame perfect equilibrium coin-
cides with the Expected Utility Model model if preferences are time consistent,
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given that all the selves agree. This concept yields interesting results in complex
frameworks (see Laibson (1997) where voluntary precommitment arises in equi-
librium). It comes however as a disappointment in simple ones. In O’Donoghue
and Rabin (1999) one individual is to choose one movie out of four that come
in an increasing quality sequence. The sophisticate happens to choose the first
and worst one because the first self anticipates that the second and the third
selves would not wait until the best movie3.1. Moreover the sophisticates end
up behaving as the time-consistent individuals in various settings, which clearly
reduces its added value.

O’Donoghue and Rabin (2001) present the first model where both concepts
(naivete and sophistication) are blended. They use the expression partial naivete
to refer to a behavior with self-control problems, where individuals only partially
recognize their inconsistency. Formally, individuals have preferences with (β, δ)
quasi-hyperbolic discounting (1, βδ, βδ2, βδ3, . . .) and recognize their time in-
consistency, but think their present-biased preferences are given by (β̄, δ) with
1 > β̄ > β. In other words they underestimate their present-bias.

DellaVigna and Malmendier (2006) show in their empirical analysis of con-
sumer decisions in the health club industry that people choose annual contracts,
rather than pay-per-visit fees, apparently as a commitment device. This is a
sophisticated behavior, for they recognize that in the future they will choose a
lower attendance due to present-biased preferences. But gym users also underes-
timate their actual attendance which is evidence for some naivete. As Frederick,
Loewenstein, and O’Donoghue (2002) put it ‘casual observation and introspec-
tion suggest that people are somewhere in between these two extremes’. McClure,
Laibson, Loewenstein, and Cohen (2004) present a neurological study showing
that immediate and delayed monetary rewards are processed by separate neural
systems. This means that the distinction is stronger than one might think in
the first place.

Ariely and Wertenbroch (2002) run three experiments on the willingness
to have costly commitments and on its success. Subjects (students) have to
complete several tasks (real coursework assignments). Some are given the possi-
bility of self-imposing earlier deadlines, which are costly because later deadlines
would give more flexibility. Still, students do choose earlier deadlines for the
first assignments, which shows preference for self-control mechanisms. More-
over, in these tasks there are penalties for delays. Surprisingly those subjects
with externally imposed deadlines have less delays than those with self-imposed
deadlines. This indicates that individuals are not able to choose the best com-
mitment device. Furthermore, the subjects with self-imposed deadlines have
less delays than those with a simple global end deadline. Given that there was
no external influence on both of these types, that is both could have chosen to
follow the same working schedule, the fact that those without a self-imposition
of deadlines had more delays indicates that the delays were not only caused by
unforeseen causes but by lack of self-control.

It is therefore clear that individuals have present-biased impulses, that they
do recognize them and are thus willing to have costly commitment devices, but
these commitment devices are not fully successful. That is, due to the lack of
self-control which shows up in the impulses, the outcome is not what a priori
would be considered optimal. In other words, individuals seem to both display

3.1As a comparison the naive watches the third movie with the same parameters.
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sophisticated and naive features at the same time.
In this chapter a new model of lack of self-control is proposed. It is inspired

by model of Calvo (1983) on sticky prices, the so-called staggered prices. In this
model firms cannot adjust their prices to the current optimum in every period.
They are rather able to do so with some probability in every period. When given
that opportunity they not only consider the current optimum but also future
optima. Intertemporal decision making with time inconsistent preferences seems
to follow a similar pattern: Individuals cannot tell in advance whether they will
act rationally or follow a present-biased impulse in a given period. Whenever
they are able to think it through, they take possible future deviations into
account. This model seems to be more in line with the neurological separation
reported by McClure, Laibson, Loewenstein, and Cohen (2004).

There are three main characteristics of the present model, it does not use in-
tricate internal decision models for each period (see Ainslie (2010) for a criticism
of that approach), it is able to capture both the desire for commitment devices
as well as random impulsive behavior, and it incorporates quasi-hyperbolic dis-
counting, a stylized fact from the experimental literature within a self-control
model.

Section 3.2 puts this chapter in the literature context, the model is formal-
ized in Section 3.3, Section 3.4 entails a discussion on simple applications and
compares the results with the other quasi-hyperbolic models, Section 3.5 pro-
poses a macroeconomic aggregate interpretation of the decision model, Section
3.6 discusses some possible extensions and concludes.

3.2 Literature

Strotz (1956) is the first paper in the literature focusing on the issue of dynamic
inconsistency of preferences, mainly driven by introspection. The author notes
that time gaps closer to the present are discounted more heavily (in terms of
the aggregation of additive utility) than those in the far future. He then dis-
cusses how the individuals might cope with contradictory preferences over time.
Pollak (1968) proposes a subgame perfect equilibrium played by the subsequent
selves of the individual. This elegant solution leads to a dynamically consis-
tent plan, meaning that no self will deviate from the equilibrium, created out
of dynamically inconsistent preferences. Ainslie (1991) provides an early sum-
mary of experimental and psychological evidence on intertemporal inconsistent
present-bias, proposing a generalized hyperbola as the best fit for the time dis-
counting implicit in the decisions in the experimental literature, hence the name
hyperbolic discounting.

O’Donoghue and Rabin (1999) discuss the recognition of the contradiction
by the individuals, indicating with simple examples that both naive and so-
phisticates have serious drawbacks. Moreover they show an instance where
“sophisticates have even worse self-control problems” than naives. O’Donoghue
and Rabin (2001) propose a model with partially naive individuals, where they
do realize their inconsistency playing sophisticate, but assume a smaller present-
bias than the actual one. O’Donoghue and Rabin (2003) further propose another
intermediate model, one where individuals act as sophisticates but only perform
the backward induction reasoning for a few future periods.

Gul and Pesendorfer (2001) and Gul and Pesendorfer (2004) are the semi-
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nal papers of a parallel literature which explains the demand for commitment
devices by individuals, without using time inconsistent preferences. The au-
thors postulate that individuals exert self-control to resist temptation. This
self-control has a cost, defined as the difference between the utility of the op-
timum and that of the temptation alternative. Closely related is the dual-self
literature, initiated by Thaler and Shefrin (1981), which has many extensions
such as Fudenberg and Levine (2006). Decisions of an individual are modeled
as an agency problem with a principal and an agent. The planner (principal)
and the doer (agent) have the same preferences, but the latter one only values
present utility. The planner in order to optimize intertemporally, will restrict
the set of options available to the doer, under some cost. In the spirit of the
current chapter, Chatterjee and Krishna (2009) have a dual-self model where
the doer may randomly have an alter-ego with a different utility function. Oc-
casionally the doer will therefore pick options which are seen as inferior by the
planner.

Ainslie (2010) provides a comprehensive and critical analysis of the literature.

3.3 Random lack of self-control

3.3.1 Motivation

It is clear that individuals have time inconsistent preferences (which does is not
the same as having people acting time inconsistently). It is not as clear, but
rather accepted, that individuals recognize this problem. There are innumerous
examples of people using costly precommitment devices (annual contract in
health clubs, keeping less money in the wallet3.2) which indicates that people are
willing to solve the problem. But it is also clear that once in a while individuals
take decisions whose implicit present-bias is at odds with the previous plans.
Take the “I am going on a diet” case: People are able to battle against their
present-bias by not eating chocolates, but sometimes they follow a quick impulse
and when doing so they seem to believe they will make up for it in the future.

3.3.2 Model

For the sake of simplicity, this chapter only focuses on the simplified version of
the hyperbolic discounting, the so-called quasi-hyperbolic discounting proposed
by Phelps and Pollak (1968) and Laibson (1996). It is assumed there is a random
process where with probability p, 0 < p < 1, the individual acts naively with
(β, δ) quasi-hyperbolic preferences, with β, δ ∈ (0, 1], and with probability 1− p
she acts consistently with time consistent preferences with δ and forecasting
possible deviations.

Formally in each period t with probability p the individual has a naive im-

3.2The author’s favorite is an official Google plugin for the Chrome internet browser called
Chrome Nanny. With it the user can lock the internet access to given webpages, for a given
period of time.
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pulsive behavior maximizing

max
{xt,...,xT }

E[u(xt, At) + β

T∑
s=t+1

δs−tu(xs, As(xs−1))] (3.1)

subject to constraints on At and xs, s = t, . . . , T,

where u(·) is the instantaneous Bernoulli utility function, T the time horizon,
and As represents the state variable(s) at the beginning of period s and is
therefore a function of xs−1, As(xs−1). This is the custom non-recursive in-
tertemporal maximization with the addition of the present-bias parameter β.
Given that only the present plan xt of a naive self will be performed, the future
plans xs, s > t, are of no significance and it will be sufficient to denote the first
term of the above solution by xNt (At), t = 0, . . . , T .

With probability 1−p, in period t the individual acts consistently, maximiz-
ing

max
xt

E[u(xt, At) + δVt+1(At+1(xt))] (3.2)

subject to constraints on At and xt,

where

Vs(As) = p
[
u(xNs (As), As) + δVs+1(As+1(xNs (As)))

]
+

max
xs

(1− p) [u(xs, As) + δVs+1(As+1(xs))]

subject to constraints on As and xs, s = 0, . . . , T,

and VT+1 = 0. Notice that Vt+1 depends on xt through At+1. This is a recursive
maximization where the consistent self takes into account that in the next period
there is the possibility of either having a naive impulse or acting consistently.
Each one of them has different consequences for the following periods as denoted
in the definition of Vs(As). Let the choice of the consistent self in period t be
denoted by xCt (At), t = 0, . . . , T .

To understand what the previous definitions mean consider a case with three
periods, where the constraints are omitted for simplicity. The reasoning must
be done recursively as following. In the last period there is no intertemporal
decision to make so naive and consistent selves have a common choice xN3 (A3) =
xC3 (A3) = x3(A3). In period 2 the naive self maximizes u(x2)+βδu(x3) and the
consistent self maximizes

u(x2) + δV3(A3(x2)) = u(x2) + δ
[
p u(xN3 (A3(x2))) + (1− p)u(xC3 (A3(x2)))

]
= u(x2) + δu(x3(A3(x2))).

For now only the discount factor changes, but in the first period the consistent
self takes into account that the individual may act naively in period 2. So she
maximizes

u(x1) + δp
[
u(xN2 (x1)) + δu(xN3 (x1))

]
+ δ(1− p)

[
u(xC2 (x1)) + δu(xC3 (x1))

]
,

where x2(·) is a function of x1 through A2(x1), and x3(·) is a function of x1

through A2(x1) and A3(x2). The naive simply solves for the maximum of u(x1)+
β[δu(x2) + δ2u(x3)].
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3.4 Applications

3.4.1 When to go to the movies

O’Donoghue and Rabin (1999) consider a problem of an individual that has to
choose which movie to go to. She can only choose one out of the four movies that
will come up in consecutive weekends, and that come in an increasing sequence
of quality. The utility levels she assigns to them is 3, 5, 8 and 13, where the
first is the worst and the last the best. The authors take β = 1

2 and δ = 1.
The naive individual initially chooses the last movie (13β > 8β, 5β, 3), in

the second period sticks with the same decision but in the third period her
present-bias pushes her to the theater (8 > 13β).

But the result of the sophisticate is the striking one. The sophisticate rec-
ognizes that her present-bias impulse in the third period would lead her to the
movie, so that there is no hope in waiting for the last movie. But then she also
recognizes that she would recognize it in the second period so that she would
go to the movies immediately in the second period (5 > 8β). So going to the
third is also impossible. Now the choice of the sophisticate in the first period
is between the first and the second movie, and due to her present-bias she will
actually go to the first (and worst) one.

Following the proposed model of staggered consistency, in the third period
the consistent self will wait (13 > 8) but the naive one will not (8 > 13β). So if
the individual gets to the third weekend there is probability p of watching the
third one, and 1−p of watching the last one. In the second period the naive self
does not recognize the possible inconsistency in the following period so among
5, 8β and 13β she prefers 13β, that is she prefers to wait for the last movie.
The consistent compares 5 and 8p+(1−p)13, so she also chooses to wait. Same
thing for both selves in the first period. Concluding this individual watches the
third movie with probability p and the last one with probability 1− p.

3.4.2 When to do a report

Another example from O’Donoghue and Rabin (1999) is as follows. Imagine
that the individual from the previous example may go to all the movies, except
for one because she has to write a report in one of the weekends. The utility of
the report is constant over time and is only perceived in the far future, so that
its value is irrelevant. Its cost is the disutility from not watching the movie.
Put simple the choice now is: What movie not to go to?

The naive postpones the report in the first weekend (−3 < −5β), in the
second (−5 < −8β), and in the third (−8 < −13β). She ends up doing it in the
last possible weekend loosing the best movie.

The sophisticate recognizes that she will not do the report on the third
weekend (as above), so the self of the second period chooses to do it already
because−5 > −13β. The first self recognizes this and goes to the movies because
−3 < −5β. Conclusion, the sophisticate recognizes the postponing problem and
does the report in the second weekend.

The staggered consistent individual knows that as a naive she will always
postpone. If the report is not ready in the third period the consistent self will
do it immediately. So the individual will work on it with probability 1− p and
postpone it with p. In the second period the consistent compares −5 (doing it
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now) and−13p−8(1−p) (leaving it for later), so she chooses to do it immediately.
Same reasoning for period 1. Conclusion: The probability of doing it in the first
period is 1 − p, in the second period it is p(1 − p), in the third period it is
p2(1 − p) and in the last period it is p3. For small p it is most likely to have
the report done in the first week, then in the second. For large p, the highest
likelihood for last period and then the third.

3.4.3 Consuming and saving

Consider now the usual problem of an individual receiving a deterministic in-
come flow who is to decide how much to consume and how much to save. To
solve for the individual with staggered consistency one needs once again to solve
the problem with backward induction. Notice that the naive and the consistent
(constant discount) cases are just particular cases of the general framework by
setting p = 1 and p = 0. Moreover when one uses logarithmic utility, the sophis-
ticate acts as a consistent individual, due to unitary elasticity of substitution.

Formally, the individual receives an income flow yt, where t is the period,
which is known in advance. The individual decides how much to consume, ct,
consumption c yielding utility u(c), and how much to save. Savings are applied
in an asset A that yields interest r in the following period. It is further assumed
that the individual is liquidity-constrained in the sense that she cannot borrow,
that is At ≥ 0 in all periods. The individual has a (β, δ) quasi-hyperbolic
discount with probability p and an exponential discount with δ with probability
(1− p).

Consider a three period problem. In the last period, both selves consume
all the available wealth cN3 (A2) = cC3 (A2) = y3 + (1 + r)A2, where cN3 and cC3
are the consumption choices in period 3 of the naive and the consistent selves,
respectively. Both yield utility V3(A2) = u(cN3 (A2)) = u(cC3 (A2)).

In the period before the selves maximize u(c2) + βδV3(A2), with β = 1 for
the consistent, subject to c2 ≤ y2 + (1 + r)A1. Denote the solutions by cN2 (A1)
and cC2 (A1).

In the first period the naive self maximizes

u(c1) + βδu(c2(A1)) + βδ2u(c1(A2)),

with the corresponding constraints. The consistent self however takes the two
different possible paths into account, maximizing therefore

u(c1) + δV2(y1 − c1),

with

V2(A1) = p
[
u(cN2 (A1)) + δV3(A2(cN2 (A1)))

]
+

(1− p)
[
u(cC2 (A1)) + δV3(A2(cC2 ))

]
,

subject to the budget constraints ci+1 ≤ yi+1 + (1 + r)Ai.
Take the income flow to be (y1, y2, y3) = (15, 10, 10), utility to be logarithmic,

u(c) = ln(c), and the following parameters are used, β = 0.8, δ = 0.98, r = 0.05
and p = 0.5.

Figure 3.1 shows the eight possible consumptions paths (the selves have the
same behavior in the last period so there are four coincidences in the paths).
Notice that the consistent self always chooses to consume more in the next
period, and the opposite for the naive.
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Figure 3.1: Path of consumption for {cC1 , cC2 } (thick line), {cC1 , cN2 } (dashed
line), {cN1 , cC2 } (dotted line) and {cN1 , cN2 } (thin line).

3.5 Macroeconomic interpretation

While the staggered consistent model, when one applies it to a single individual,
delivers a distribution of outcomes instead of just one outcome, it has quite
interesting applications to behavioral macroeconomics. Interpreting the model
from a macroeconomic point of view, one can consider the existence of many
agents confronted with the same problem. It is then possible to aggregate all
the agents by taking a weighted average of all possible outcomes of the random
process. The result is then unique and can be thought as the behavior of a
representative agent, as well as the (a priori) expected utility for each individual.

3.5.1 Consuming and saving

Consider again the example in Section 3.4.3. The macroeconomic representative
agent follows the average of the paths, weighted according to their probability.
For instance the path with (naive, consistent, naive) occurs with probability
p(1− p)p. The result of the aggregate behavior is depicted in Figure 3.2.

3.5.2 Long-run asset

Long-run assets are particularly interesting when investigating preference dy-
namics, because it is a device that individuals may use in a given period to
influence the sets of possible actions in future periods, possibly distant ones.
Here an extension from the previous example is worked out.

The individual receives a given same income flow, yt. She has now two
possibilities to save, a short-run asset A that yields interest r in the following
period and a long-run one AL whose interest rL is paid after two periods. It
is assumed that the individual cannot trade its holdings of the long-run asset.
To make things interesting it is further assumed that (1 + r)2 > (1 + rL)2 > 1,
implying that holding a positive amount of AL is a costly action because holding
twice the same amount of short-run asset would yield a higher interest payment.
Moreover, it is assumed that the individual is liquidity-constrained in the sense
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Figure 3.2: Averaged consumption choices.
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Figure 3.3: Path of consumption (thick line) and asset holdings, long-run
(straight) and short-run (dashed).

that she cannot borrow, that is A,AL ≥ 0. The first period income is taken to
be bigger than the following ones so that the first period decision (the only one
where it may be optimal for the individual to hold some amount of the long-run
asset) has a particular role.

The algebra is simple but lengthy and of no relevance, thus only the solution
with the above parameter choices is shown. The long-run interest rate is chosen
to be rL = 0.04. Recall that r = 0.05.

Given these values, in the first period the consistent self chooses to consume
cC = 11.48, and keep A = 1.68 and AL = 1.84, the naive self chooses cN = 13.16,
and keep A = 1.84 and AL = 0. The consistent self recognizes the possibility
of overconsuming in the following period, choosing therefore to costly hold the
long-run asset. The naive on the other hand, thinks she will not undersave in
the next period, choosing therefore AL = 0. Figure 3.3 shows the path of the
three variables over the periods aggregated over all possible paths according to
their probability as described above.

The long-run asset is a costly commitment device and it may be optimal or
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Figure 3.4: Long-run asset demand AL in the first period by the consistent self,
as a function of probability of occurring a present-bias impulse p.

not to hold it, depending on how important it is to make the commitment. If the
probability of deviation is low, the commitment device is of lower interest. This
is depicted in Figure 3.4 which shows the optimal level of AL, for the consistent
self in the first period, depending on the probability p of acting naively. As
expected AL grows monotonically with p, but there is a jump at p = 0.15 below
which the individual simply picks AL = 0.

The cost of the commitment device is also an important variable in this
choice. Figure 3.5 depicts the demand for the long-run asset AL (as well for
the short-run asset in the first period) as a function of rL. As rL approaches
r, i.e. as the cost of commitment decreases, the consistent self chooses to hold
more of it. There is a discontinuity at rL = 0.018 below which another type
of commitment device yields higher pay-offs. The liquidity constraint of second
period naive self becomes active, which forces its consumptions choice to be
closer to that of the consistent self. Note how costly it is to hold assets at this
rL that yield (1 + rL)2 = 1.0816 when holding twice the short-run asset would
yield (1 + r)2 = 1.1025.

3.6 Discussion

The empirical literature on intertemporal decision has mainly focused on con-
sistency and discount rates. How an individual with inconsistent preferences
actually behaves is still unclear. The theoretical models until now have intu-
itive assumptions, even if some fit the data in a broad class of problems. It is
also clear that models with partial naivete are the ones closer to reality, but
the possibilities are innumerous. The chapter proposes a quite intuitive and
flexible model of partial naivete. Individuals are assumed to recognize their
inconsistency and acting according to that knowledge, but once in a while skip
the optimal plan by following a present-biased impulse. Some clear examples
where this model seem to be realistic is the attitude towards shopping, starting
a diet, doing an assignment, etc. People try to prevent present-bias and they
are indeed successful most of the time, but not always.
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Figure 3.5: Long-run asset demand AL (normal line) and short-run asset de-
mand A (dashed line) in the first period by the consistent self, as a function of
its interest rate rL.

The model may also give an explanation for apparent inconsistencies in em-
pirical evidence. Depending on the perception of the probability of the impulses
the same individual with fixed time preferences may exhibit totally different
intertemporal trade-offs.

This leads to a possible extension of the model. In line with the partial
naivete model from O’Donoghue and Rabin (2001), the perception of the proba-
bility of the present-bias may be an underestimation, or even an overestimation,
of the actual probability. Other extension would be considering naive and so-
phisticated selves instead of naive and consistent selves. However this would be
a rather complex model and, as mentioned above, sophisticated behavior has
some theoretical and intuitive problems.

Comparing to the other existing model of partial naivete in O’Donoghue and
Rabin (2001), this one seems more intuitive and more powerful in explaining why
individuals choose to incur great costs to precommit. In O’Donoghue and Rabin
(2001) people are not totally aware of their inconsistency, so they do not see
much of a point in registering for swimming classes instead of a paying a cheaper
pay-per-visit fee in the swimming pool. But if people do realize it but lack total
control in all periods, they are willing to incur that cost.
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Chapter 4

Vague Price Recall and
Price Competition

4.1 Introduction

There is hardly someone that knows the precise price of a given consumption
good in the closest stores. Take a retail store, one may have a reasonable
idea on the average price level at different stores but one does not recall the
precise price of golden apples. The textbook model of price competition for
homogeneous goods assumes however that consumers are fully informed about
the prices posted by the firms. Everything else equal this means that not all
consumers head to the store actually having the lowest prices, as commonly
assumed.

While the issue is absent from the Industrial Organization literature, the
Marketing literature has handled it for decades. Monroe and Lee (1999) present
a summary on price-awareness research, stating that previous studies have found
that the average absolute recall error ranges from 6% to 19.45% of the correct
price4.1. Neglecting this bounded rationality of consumers cannot be seen as a
merely theoretical simplification, for it implies that in the basic price competi-
tion model with a homogeneous good firms charge a markup over the cost and
that profits are therefore non-zero. Furthermore equilibrium prices will depend
on the number of firms and do not equal marginal costs.

In this chapter a model for the pricing behavior of firms in a Bertrand set-
ting facing consumers with imperfect recall is proposed, abstracting from other
(classical) deviations as heterogeneous goods, search costs, spatial competition,
product differentiation, price discrimination, etc. The imperfect recall on prices
is modeled as a random shock (with mean zero) that is added to the real price.
Consumers decide where to shop following their wrongly recalled prices, but at
the store the demanded quantity is a function of the real price. It should be
understood as a price competition model between retail stores that sell goods
with low prices, such as supermarkets or alike.

Both exogenous and endogenous shocks are considered. In the latter con-
sumers are aware of their limitations and can choose to make a higher costly

4.1The authors argue in the mentioned paper that consumers do recall more than what they
explicitly acknowledge, but there is no doubt that price recall is not perfect.
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effort in order to improve the accuracy of their price recall. The firms are
however fully rational and maximize their profits anticipating the errors of the
consumers.

While the proposed model is a static game, it can be interpreted as the
(constant) outcome of a repeated game where there is no learning process by
the consumers.

It is shown that firms charge a markup, following a pricing strategy equiva-
lent to that of a monopolist facing a demand with higher price elasticity. The
markup increases with the incorrect recall of prices by consumers. Once the full
awareness of the price is dropped, price dispersion becomes a possibility because
consumers do not fully react to the price differences. In the present model it
arises due to cost differentials, which also means that firms with higher costs
are not driven out of the market. Hence, instead of mixed strategies or random
strategy pricing equilibria, this model proposes the inability of consumers to
screen between high and low cost firms as an explanation for the existence of
price dispersion on a homogeneous good. The monopoly analogy is still robust
for different costs. Intuitively one might foresee that larger recall errors would
imply lower equilibrium price gaps because of diminishing incentives to price
differentiation among firms. In reality the low cost firm will choose to make its
price advantage more salient, increasing price dispersion.

Introducing more firms has a weak competition pressure on prices, which
does not lead to marginal cost pricing even with infinitely many firms. In fact
increasing the number of firms can at most have the same effect as reducing the
standard deviation of the price recall errors of consumers to half. It is shown
that the equilibrium price dispersion has a sensitive dependence on the cost
structure of the firms in the market.

The chapter is structured as follows. Section 4.2 reviews the literature in the
field, Section 4.3 introduces the basic model and discusses the main implications,
Section 4.4 examines the introduction of more firms and the importance of the
price structure, Section 4.5 endogenizes the price recall error committed by the
consumers, Section 4.6 compares the results of the present chapter with closely
related models in the literature, and Section 4.7 concludes.

4.2 Related literature

There is a closely related literature to this chapter on pricing with boundedly
rational consumers. Hehenkamp (2002) proposes an evolutionary game where
consumers only receive information about the prices of the firms with some given
probability. Sellers on the other hand have a probability of learning about the
other sellers’ prices and profits, mimicking the one with higher profit. Depending
on the level of sluggishness, i.e. frequency with which they receive new infor-
mation, the equilibrium price will fall between the marginal cost and monopoly
pricing regimes. Chen, Iyer, and Pazgal (2005) use the limited memory model
of Dow (1991), where consumers do not recall the exact price but only a price
range to which it belongs, the price ranges being optimally chosen. These con-
sumers constitute a fraction of all consumers in a price competition setting, the
remaining being either fully informed or fully uninformed. In equilibrium they
choose to have finer partitions in the low prices range, and firms choose to have
a degenerate random price strategy, where the number of possible prices equals
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the number of memory partitions. In Gabaix and Laibson (2004) and Gabaix,
Laibson, and Li (2005) consumers make errors when evaluating their inherent
value of a product. Having firms competing on an homogeneous good leads in
this case to a markup. The authors show that increasing competition, i.e. more
firms in the market, has almost no consequence in terms of a markup decrease.
If allowed to increase noise of the product evaluation, e.g. through confusing
characteristics of the good, they choose to do so in an inefficient way.

Another branch of pricing models where boundedly rational consumers are
exploited is add-on pricing. In Gabaix and Laibson (2006) consumers are unable
to fully take into account the add-on charge, so that firms have positive profits.
Ellison (2005) again shows that competition does not always eliminate positive
profits which arise in equilibrium in a hidden add-on price model, with vertical
and horizontal differentiation.

Search costs are a further source of imperfect competition leading to similar
outcomes. The seminal paper by Diamond (1971) assumes that consumers do
not know the prices of firms, having to visit different stores, only purchasing
when a price below a given cutoff price is found. Prices will be adjusted to
a unique equilibrium price in finite time, namely the monopoly price. Stahl
(1989) shows that assuming two types of consumers (zero and positive search
costs) leads to intermediate results, i.e. equilibrium prices between the marginal
cost and the monopoly pricing.

Starting with Varian (1980) there is a literature mainly interested in price
dispersion, where it is assumed that firms choose a random pricing strategy, in
opposition to a fixed price. That is, the strategy space is a set of probability
distributions, not the the positive real numbers. In Varian (1980) a fraction of
the consumers is persistently uniformed about the prices, but having a reser-
vation price. If stores are allowed to choose a random price distribution, they
choose to do so in equilibrium balancing the probability of having the lowest
price (and therefore getting the informed consumers) and maximizing profits
with the uninformed consumers. Spiegler (2006) comes to a similar conclusion
when all consumers are unable to take the random pricing strategy into account,
and thus sample the prices in the stores taking thereafter that sample as the
final price and picking the lowest price. In this context bounded rationality can
also be attributed to firms as in Baye and Morgan (2004). Consumers are fully
informed and rational whereas the firms choose random pricing strategies play-
ing either Nash equilibrium, quantal-response equilibrium or ε-equilibrium. It is
shown that the last two are closer to the results obtained in experiments (where
subjects choose prices and rational consumers are played by the computer). In
Alos-Ferrer, Ania, and Schenk-Hoppe (2000) firms play a pricing oligopoly evo-
lutionary game, following a simple behavior of imitation and experimentation.

While formally close to the present chapter, the product differentiation pa-
per by Perloff and Salop (1985) has a different motivation. Their paper suggests
a model with differentiated goods where consumers have heterogeneous prefer-
ences over the available products. Firms exploit that by charging a markup,
which is increasing in the variance of the preferences. In the limit case of fixed
demand that model is formally equivalent to the models where consumers make
mistakes about the value of the good (as in Gabaix and Laibson (2004) and
Gabaix, Laibson, and Li (2005)) and to the present model, where consumers
have imperfect recall of prices. This is discussed in Section 4.6.1.

On the empirical side Monroe and Lee (1999) show that consumers do not

37



perfectly recall the prices when explicitly asked to do so. Baye and Morgan
(2004) and Pan, Ratchford, and Shankar (2004) indicate that price dispersion
exists in settings which are very close to the textbook Bertrand competition.
In the experiment of Kalayci and Potters (2009) individuals playing the firms
choose to make product comparisons more complex to the individuals acting
as consumers, so that they do not choose optimally allowing firms to charge a
markup. This markup is increasing in the confusion caused in consumers.

While having a different motivation, the present model can be thought of one
of horizontal differentiation with fixed positions as a first intuition. The value
of the good is the same across consumers, but each one is biased towards one of
them. Therefore having a higher price does not imply zero demand. Firms com-
pete for the indifferent consumer (here the one recalling prices as being equal)
at the margin, etc. But as it shall be seen the results differ, because the ’gap’
between one consumer and one firm, in the horizontal differentiation models,
decreases the value of the good to the consumer either due to transportation
costs or preferences in the product space. That is not the case for imperfect
price recall. This is discussed thoroughly in Section 4.6.2.

4.3 Model

4.3.1 Basic setup

Consider two risk neutral firms, A and B, selling one homogeneous good whose
cost of production is zero. Firms announce their price simultaneously, pA by
firm A and pB by firm B.

Consumer α ∈ [0, 1] recalls prices p′αi = pi + εαi , for i = A,B, where εαA
and εαB are independently and identically distributed shocks for each α with
non-degenerate probability density function f(·) and cumulative distribution
function F (·) with an expected value of zero4.2. The consumers then do their
shopping at the firm with the lowest recalled price4.3 (it can be assumed that
they randomize in case of a tie, which happens with probability zero). At the
store they learn the real price so the demand curve is therefore given by the
real and not the recalled price. The intuition is that the consumer adapts its
demand when confronted with the real price, in the same that consumers react
to price promotions that they see in a store.

It is assumed that transportation costs between the two firms are high
enough, in the sense that the consumer does not visit the second store if she
learns that the real price of that firm is higher than the recalled price of the
other firm. This may be pictured as having the consumer at home wondering
where to buy a product without accurately remembering the prices. When the
consumer gets to the chosen store and learns the real price, her cost of going

4.2For a more detailed model of memory related bounded rationality see Mullainathan (2002).
4.3An equivalent interpretation of the same setting is to consider that the consumer visits

the firms sequentially. On the arrival at the second firm, she does not correctly recall the first
price p1 but recalls it plus a shock given by p1 + ε1 − ε2. If she considers the second price as
lower, she buys there instantly, otherwise she goes back to the first firm. This interpretation
is very close to the model in Chen, Iyer, and Pazgal (2005), but it relies on the following
assumption. It must be assumed that in those cases where the consumer decides to return
to the first firm, she never returns to the second if she learns that she made a mistake. In
other words the transportation costs of the two first trips are negligible, but the third trip is
infinitely costly.
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to the other store and checking its price as well is higher than the (possible)
expected gain. Again, the model pretends to capture the price competition on
small goods with low prices4.4.

Firms anticipate this behavior and play best response to their competitor’s
strategy, resulting in a Nash Equilibrium in pure strategies. Notice that for
a degenerate distribution shock with zero variance and zero mean this model
reduces to the basic Bertrand model.

Let D(p) be the demand curve of each consumer, where p is the real price
of the firm at which the consumer is buying the good. Firms are assumed to be
aware of this demand function. The probability that at prices pi of firm i and
pj of firm j, i, j = A,B, i 6= j, consumer α recalls that firm i has a lower price
than firm j is given by

P
(
p′αi < p′αj

)
= P

(
pi + εαi < pj + εαj

)
= P

(
εαi < εαj + pj − pi

)
=

∫ ∞
−∞

f(y)F (y + pj − pi)dy

= g(pj − pi),

where g(x) is the market share of a firm whose price is lower than its com-
petitor’s price by x. It is given by g(x) =

∫∞
−∞ f(y)F (y + x)dy. Notice that

g′(x) =
∫∞
−∞ f(y)f(y + x)dy. Moreover g(x) is independent of α because all

consumers have the same price recall shock distribution. Now given the be-
havior of consumers, firm i, i = A,B, maximizes expected profits Πi(pi, pj) =
µpig(pj − pi)D(pi) over pi ≥ 0, where µ is the number of consumers. Without
loss of generality, in terms of price setting, it is assumed that µ = 1. The first
order condition for a maximum is

∂Πi

∂pi
= g(pj − pi)D(pi)− piD(pi)g

′(pj − pi) + pig(pj − pi)D′(pi) = 0

⇔ −pi
D′(pi)

D(pi)
+ pi

g′(pj − pi)
g(pj − pi)

= 1

⇔ ε(pi)− pi
d

dx
ln g(pj − pi) = −1, (4.1)

where ε(p) ≡ d lnD(p)
d ln p is the price elasticity of demand. Notice that this equation

can be rewritten as
ε(pi) + εgi (pi, pj) = −1 (4.1’)

with εgi (pi, pj) ≡ pi
∂
∂pi

ln g(pj − pi) = −pi ddx ln g(pj − pi) being the own price
elasticity of the market share of firm i. This is just the usual result of profit
maximization but it will help giving some insight to the model later on in this
section. Now further assumptions on functional forms are stated.

Assumption 4.1 The random shocks εA and εB are iid with mean 0, variance
σ2 and full support on the real line with probability density function f(·) and
cumulative distribution function F (·). Moreover the distribution of εA and εB
is such that g(·) is logconcave, i.e. d

dx ln g(x) is non-increasing in x.

4.4Dropping this assumption would create an upper bound on the price gap that firms might
consider. While this does not affect the symmetric equilibria, it would affect asymmetric
equilibria that arise in the next section.

39



Assumption 4.2 The price elasticity ε(p) of demand is non-increasing, con-
tinuous and −1 ≤ ε(0) ≤ 0.

Notice that Assumption 4.2 is rather weak, linear demand is an example that
satisfies it. Also compare it with the necessary conditions for the classic mo-
nopolistic price setting model to be well-defined, i.e. having a unique profit
maximizing price, namely that ε(p) takes the value −1 for one and only one p̂
and that it is bigger (smaller) than −1 before (after) p̂4.5. Assuming ε(0) ≥ −1
guarantees that the equilibrium will not be a corner solution, having firms out-
side the market. The following results will be used.

Lemma 4.1 For each pj ≥ 0, j 6= i, i = A,B, equation (4.1) has a unique
positive solution.

Proof
First it is shown that the left-hand side (LHS) of (4.1) is decreasing in pi. The
first term, ε(pi), is non-increasing according to Assumption 4.2. In the second
term the part d

dx ln g(pj − pi) is positive, because

d

dx
ln g(pj − pi) =

g′(pj − pi)
g(pj − pi)

> 0.

From Assumption 4.1 it is non-decreasing in pi since

∂

∂pi

[
d

dx
ln g(pj − pi)

]
= − d2

dx2
ln g(pj − pi) ≥ 0,

where ∂x
∂pi

= −1 was used. Because firm i only considers pi ≥ 0, pi is obviously
positive and increasing in pi. Therefore minus their product, i.e. the second
term on the LHS is negative and decreasing in pi. Hence, the LHS is decreasing
in pi.
Now, for pi = 0 the LHS equals ε(0) ≥ −1 because ∂

∂pi
ln g(pj − pi)|pi=0 is

finite due to the random variables’ full support. For pi > 0 the first term
of the LHS, ε(pi), is negative and non-increasing in pi. In the second term
limpi→∞

d
dx ln g(pj − pi) is strictly positive because d

dx ln g(pj − pi) is strictly
positive and non-decreasing in pi. This part of the second term is multiplied
by pi, therefore the second term goes to −∞ as pi →∞. This implies that the
limit of the LHS is −∞ as pi →∞. Hence the LHS must equal −1 for a unique
pi, for any given pj ≥ 0.

The sufficiency of the condition for a maximum is implied by the above
mentioned uniqueness.

Lemma 4.2 The first order conditions are sufficient for the profit maximization
problem.

Proof
It follows from the proof of Lemma 4.1 that the solution for ∂Πi

∂pi
= 0 for pi ≥ 0

is unique and that ∂Πi
∂pi

switches its sign, from positive to negative, at that point.

4.5These conditions guarantee that the derivative of the profit function equals zero for one
unique price, and that the profit function is quasi-concave.
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These properties imply that Πi(pi, pj) is quasi-concave on pi for any pj , so that
the FOC are sufficient.

The next step is to see that this game has a unique Nash equilibrium. It was
shown in the proof of Lemma 4.2 that the reaction curves are properly defined,
the next step is to prove that they cross. The symmetry of the problem indicates
the possible existence of a symmetric equilibrium. It is known that for each pj
there is a unique pi(pj) solving (4.1), so it can be checked in (4.1) whether some
pi = pj = p is a possible solution. For firm i, i = A,B, (4.1) becomes

ε(p)− pg
′(0)

g(0)
= −1.

Since g(0) = 1
2 ,

2pg′(0) = 1 + ε(p). (4.2)

From Assumption 4.2 which implies that ε(0) ≥ −1 and ε(p) is non-increasing,
and the fact that g′(0) is positive it is concluded that equation (4.2) has just
one solution p∗ ≥ 0.

Lemma 4.3 The reaction curves implied by the first order conditions yield a
unique (subgame perfect) equilibrium price p∗ for both prices.

Proof
From (4.1) it is possible to prove that the slope of the reaction curve pi(pj) lies
between 0 and 1. To see this consider an increase ∆ in pj ≥ 0, which increases
the LHS of (4.1). An increase in pi (to be precise in pi(pj)) of ∆ would offset
the decrease of g(·) (because g contains the term pj − pi) but would increase
the factor by which ∂

∂pi
ln g(pj − pi) is multiplied, that is pi, and decrease ε(pi),

yielding a total decrease in the LHS. Because the LHS is strictly monotonous
in pi, the price pi implicitly defined by (4.1) (that is the best reaction of firm i)
must increase less than ∆. In other words the slope of the reaction curve satisfies
∂pi(pj)
∂pj

< 1 for all pj ≥ 0, and by symmetry
∂pj(pi)
∂pi

< 1 for all pi ≥ 0. This means

that in the (pj , pi)-plane, pi(pj) is always flatter than pj(pi), implying that they
only cross once. Notice that they must cross at least once given that pi(0) ≥ 0
and pj(0) > 0.There is therefore no other equilibrium besides pA = pB = p∗.

Proposition 4.1 In the basic model where consumers suffer a price recall shock
and firms face zero costs, the firms are able to charge a nonnegative price in
equilibrium p∗ satisfying

2p∗g′(0) = 1 + ε(p∗). (4.3)

Moreover they charge p∗ = 0 if and only if a monopolist also would do it.

Proof
The last statement follows from setting p = 0 in (4.2) and noticing that it is
only a solution if ε(0) = −1, which is the case where a monopolist is indifferent
between selling and exiting the market.

Thus in this model firms are able to exploit the bounded rationality of con-
sumers. The intuition of the result, in opposition to the zero profit solution,
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is that announcing a price lower than that of the opponent is not enough to
attract all consumers, because some of them will still recall the price as higher.
This means that charging a price marginally below, equal to or marginally above
the opponent is irrelevant. The pressure of price competition is eroded by the
inability of consumers to reward firms with lower prices, that is failing to give
the right incentives for firms competing on the same good.

Here there are two trade-offs playing a role in the price-setting decision. One
is a Hotelling type of trade-off, higher revenue per consumer vs higher market
share (which is a function of the other firm’s price), the other one is that of
a monopolist, higher revenue per unit sold vs more goods sold per consumer
(which has no strategic consequence). The equilibrium price depends on the
strength of both.

Recall mistake and Hotelling trade-off

Each firm opts between the increase of market share achieved through lower
price, and the revenue per consumer achieved through higher price. This trade-
off shows up in equation (4.3) in the term g′(0), which stands for the marginal
decrease in the market share due to a price increase. In other words, it is the
marginal change of the indifferent consumer as in Hotelling models.

The term g′(0) is lower for higher variance. The intuition is straightforward,
the more difficulties the consumers have in remembering and therefore com-
paring the prices, the smaller the marginal change in the market share due to
a price variation. Suppose the change of the variance is achieved through the
“spreading” of the possible random values, that is changing x to σx with σ > 0.
The new density function f satisfies σf(σx) = f0(x), with f0(x) standing for
f(x) with σ = 1, so that

∫
f(y)dy =

∫
σ−1f0(σ−1y)dy =

∫
f0(x)dx = 1, where

x = σ−1y and dy/dx = σ was used.
The new variance is given by var(y) = σ2var(x). The term g′(0) appearing

in equation (4.3) changes according to∫ ∞
−∞

f2(y)dy =

∫ ∞
−∞

σ−2f2
0 (σ−1y)dy =

1

σ

∫ ∞
−∞

f2
0 (x)dx, (4.4)

or simply g′(0) = σ−1g′0(0), where g′0(0) is the g′(0) for σ = 1. The variation in
the new equilibrium price is seen in the new version of equation (4.3)

2p∗g′(0) = 1 + ε(p∗)

⇔ 2p∗g′0(0) = σ (1 + ε(p∗)) . (4.5)

Implicit differentiation of (4.5) yields

dp∗

dσ
=

1 + ε(p∗)

2g′0(0) + σε′(p∗)
> 0.

As expected, higher price uncertainty σ means higher price markup. Com-
pared to the fixed demand case (take ε(p) = ε′(p) = 0) this influence is however
smaller, because the denominator is now bigger and the numerator smaller (re-
member that 0 ≤ 1 + ε(p∗) < 1). The intuition is that firms must also take the
diminishing demand into account. It is not true that the marginal increase of
the price due to σ is always diminishing, for it depends on the value of ε′(p∗).
Two extreme results can however be established.
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Corollary 4.1 For a decreasing price recall error variance the equilibrium price
goes to the Bertrand price.

Corollary 4.2 If the demand allows for a monopoly price, i.e. there is a p̂ such
that ε(p̂) = −1, then for an increasing price recall error variance the equilibrium
price goes to the monopoly price.

The first result follows easily from (4.5) with σ → 0 which forces the first term
to be zero, and because the derivative of g0(·) is a strictly positive constant, p∗

must be zero. The second result follows from the fact that the first term in (4.5)
is bounded (because p∗ is bounded), so as σ →∞ it must be that 1+ε(p∗)→ 0.

Monopolist trade-off

Because each consumer’s demanded quantity also depends on the stated (in
opposition to recalled) price, firms face a monopolist-type of price setting trade-
off. High price means higher per unit revenue but also less units being sold.
Because of non-increasing elasticity of demand this monopolist type of decision
also decreases the equilibrium price (compared to the fixed demand case). This
can be seen in (4.1’), where both non-increasing elasticities are added up and
set equal to −1. Notice that the left-hand side of (4.3) is positive at p∗, so in
equilibrium it must be that ε(p∗) > −1, that is the equilibrium price has the
monopoly price (if it exists) as an upper bound.

Explicit equilibrium solutions

To gain some more insight several specific functional forms are considered. Sup-
pose demand D(p) = e−a(ln p+bp) so that it has a linear elasticity over all p ≥ 0,
with ε(p) = −(a+ bp) for some a ∈ [0, 1] and b ≥ 0. Equation (4.3) simplifies to

2pg′(0) = 1− (a+ bp),

so that in equilibrium

p∗ =
1− a

b+ 2g′(0)
. (4.6)

As a comparison, for the same price elasticity a monopolist would charge price
pM = 1−a

b . If the recall errors εA and εB follow a normal distribution with mean
0 and variance σ2, which satisfies Assumption 4.14.6, then g′(0) = (2

√
πσ)−1.

If they follow a Gumbel distribution4.7 with cumulative distribution function

4.6The sum of two independent random variables following N(0, σ2) is a normal random

variable with N(0, 2σ2). So g(pj −pi) = Φ
(

1√
2σ

(pj − pi)
)

where Φ(·) is the standard normal

cumulative distribution function. Therefore d
dx

ln g(x) = 1√
2σ

(
Φ′( x√

2σ
)
)(

Φ( x√
2σ

)
)−1

. The

ratio
Φ′(x)
Φ(x)

is similar to the so-called hazard function
Φ′(x)
Φ(−x)

, which is strictly positive and

strictly increasing for the normal distribution. Because Φ′(x) = Φ′(−x),
Φ′(−x)
Φ(−x)

must be

strictly increasing, therefore
Φ′(x)
Φ(x)

is strictly positive and strictly decreasing. Hence Assump-

tion 4.1 applies to the normal distribution.
4.7Also known as Fisher-Tippet or log-Weibull, this distribution is important in Order and

Extreme-value Statistics. It is also widely used in the literature on random utility models and
on quantal response equilibria because of its mathematical tractability.
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F (x) = e−e
−τ(x−µ)

for some µ ∈ R, τ > 0 and variance π2

6τ2 , then g(x) =
1

1+e−τx
4.8. Now it holds g′(0) = τ

4 .

Some comments can be made for this closed form solutions. When firms
face consumers with a wrong price recall, they charge a price which is related
to the monopolist price. Formally it is equivalent to an increase in the slope of
the demand elasticity, the worse the price recall is the flatter the slope. While
this slope is not an intuitive concept, it may help to recall that the monopolist
price does not depend on some point elasticity but on the price at which this
elasticity crosses some threshold, namely −1. The higher (in absolute terms)
the slope, the smaller the price the monopolist firm, as well as the competitive
firms here, will choose.

The term related to the price recall, g′(0), depends on the standard deviation
of the shock. For σ → 0, the price goes to the usual Bertrand price equilibrium,
that is p∗ = 0.

Taking the linear term of the Taylor series expansion in respect to σ, at
σ = 0, gives the first order impact of introducing a price shock compared to
usual Bertrand, namely 1−a

2g′(0) .

For small b the monopolist is able to charge a high price, because demand
is very inelastic in the low prices range. Here competition among the firms
compensates for the inelasticity of demand and sets a lower price.

Other comments

Equation (4.6) summarizes the main prediction of the model, i.e. the equilibrium
price dependence on the demand and the recall parameters, it provides therefore
a testable prediction of the model, provided that the price recall variance and
the slope of the elasticity of demand is known. If valid, it can be used to estimate
one from the other.

While having different motivations and intuitions the present model is for-
mally equivalent for the basic case to one of horizontal differentiation with uni-
tary demand and bounded support of the recall errors. It is easy to see that
for each choice of parameters in this model, there is a distribution of consumers
on the horizontal line and a distance (transportation or preference) cost that
yield the same problem and therefore the same result. The position on the line
represents the price recall bias4.9 towards one of the firms, the distance cost rep-
resents the dispersion of recall biases, the firms being located at the extremes
of the line4.10. The intuition is straightforward, in both cases there are con-
sumers that are inherently inclined to one of the firms, and this hinders perfect
competition.

4.8Again it is easy to check that Assumption 4.1 is satisfied, for d
dx

ln g(x) = τ
1+eτx

, which

is decreasing in x.
4.9It is not strictly speaking a bias, because it is drawn from the difference of two random

variables, but visualizing it as a bias may help the intuition here.
4.10In the bounded support case firms must be placed in the extremes, otherwise the con-
sumers that would be placed outside the section between the two firms, would have exactly
the same price recall bias. One of the firms could then have a discontinuous market share
increase if its (negative) price difference in comparison to the other firm would be bigger than
the distance cost between the two firms. In the case of full support the firms should also be
located at the “extremes”, otherwise there would not be consumers with all possible values of
recall biases.
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This similarity while giving helpful insights to the intuition in the present
model, only holds for the basic setup. See Section 4.6.2 for further discussion.

4.3.2 Firms with symmetric costs

In this section firms face a positive constant cost c for the production of the
good. It is assumed that the firms only bare the costs for the goods that are
purchased, that is there are no costs prior to the purchase.Because of the non-
linearity of the model, the results will be more complex but still with simple
and intuitive limit cases. The objective function of firm i can be written as

Πi(pi, pj) = (pi − c)g(pj − pi)D(pi),

for i = A,B. To maximize profit firm i solves the first order condition

1

pi − c
+
D′(pi)

D(pi)
− g′(pj − pi)
g(pj − pi)

= 0.

Given the assumptions the earlier lemmas will also be applicable here and these
conditions will be sufficient.

Proposition 4.2 If the firms face the same strictly positive unitary cost c, then
there is a unique symmetric equilibrium, where equilibrium price p∗ is implicitly
defined by

2p∗g′(0) =
p∗

p∗ − c
+ ε(p∗).

Proof
Rewriting the maximization condition as

pi
pi − c

= −pi
D′(pi)

D(pi)
+ pi

g′(pj − pi)
g(pj − pi)

⇔ pi
pi − c

= −ε(pi)− pi
∂

∂pi
ln g(pj − pi), (4.7)

enables a similar proof to the one of Proposition 4.1. The LHS in (4.7) decreases
monotonically from ∞ at pi = c to 1 when pi → ∞, and the RHS in (4.7)
increases monotonically from −ε(c) + c ddx ln g(pj − c) at pi = c to∞ as pi →∞,
so the equation is satisfied for only one pi ≥ c for every pj . This single crossing
implies quasi-concavity of Πi in pi for any given pj ≥ c, and therefore sufficiency
of the first order conditions above. The focus is again on symmetric equilibria,
so that pA = pB = p and therefore g(0) = 1

2 , the equilibrium condition being

p

p− c
= −ε(p) + 2g′(0)p. (4.8)

Again it is easy to see that there is such a p and it is unique. The reasoning
in the proof of Lemma 4.3 can also be applied here, noting that a hypothetical
increase in pi of the same amount as a hypothetical increase in pj would not only
increase the RHS but also decrease the LHS. This implies that pi(pj) increases
less than pj , in other words, the reaction curve slope is below 1. The equilibrium
price p∗ is therefore unique.
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The unique symmetric equilibrium p∗ can also be defined by

p∗ − c
p∗

=
1

−ε(p∗) + 2g′(0)p∗

⇔ p∗ − c
p∗

= − 1

ε̄(p∗)
, (4.9)

where ε̄(p) ≡ ε(p)−2g′(0)p. Equation (4.9) is comparable to the usual first order
condition p−c

p = − 1
ε(p) for the monopolist. The introduction of the consumer

errors leads to the situation where firms have a monopolist like behavior but
their Lerner index is reduced by a term that depends on the variance of the
consumers’ errors. The intuition is that once the consumer is at the firm, that
is when the demanded quantity is set, the firm can act as a monopolist. But
because of the a priori price competition, prices cannot be set too high.

To see that the equilibrium price and Lerner index are indeed smaller than
those of the monopoly, notice that introducing 2g′(0)p on the right side of (4.8)
yields a lower right hand side. Because the left (right) hand side of (4.8) de-
creases (increases) with p, the equilibrium price must be strictly smaller. Notice
also that the additional term 2g′(0)p∗ depends on the price, indicating that
there is a variance-price level interaction in the equilibrium Lerner index4.11.

The variation of the equilibrium price, the Lerner index, or the markup, as
a function of the cost c depends on the two terms in the denominator. For low
c and consequently low p, the first term may prevail so that the Lerner index is
close to constant and the markup is increasing in c. However for high costs the
second term becomes predominant if −ε(p) does not increase indefinitely (or at
least it increases less than proportional to p), meaning that the Lerner index
will be proportional to p−1 and the markup will be constant. In the first case
the recall errors are so high compared to the costs that consumers are shopping
randomly. While for high c the −ε(p) can be neglected so that the markup will
be proportional to the standard deviation of the errors, namely given by

p∗ − c ≈ 1

2g′(0)
. (4.10)

Considering higher prices in the denominator is equivalent to lower variances
(recall that g′(0) is inversely proportional to the standard deviation), the in-
tuition being that the price recall error is relatively smaller when compared to
the absolute value of the price. Once again the price and therefore the markup
increases with the price recall errors magnitude by consumers. This can be seen

4.11The same analysis concerning the equilibrium price is not straightforward, because it is
not possible to distinguish the changes due to the cost from those due to the diminishing
demand. If the demand function is normalized, that is if the new demand function D̃(·) is
chosen such that D̃(p + c) = D(p) for p ≥ c ≥ 0, there will be no change in the equilibrium
markup. The FOC is formally the same:

1

pi − c
+
D̃′(pi)

D̃(pi)
−
∫∞
−∞ f(u)f(u+ pj − pi)du∫∞
−∞ f(u)F (u+ pj − pi)du

= 0

⇔
1

ri
+
D′(ri)

D(ri)
−
∫∞
−∞ f(u)f(u+ rj − ri)du∫∞
−∞ f(u)F (u+ rj − ri)du

= 0,

so that the optimal markup r∗ equals the no-cost equilibrium price and p∗ = r∗ + c. The
markup is therefore the same.
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from equation (4.8) (by implicit differentiation) that shows that p∗ decreases
with g′(0) and therefore increases with the error variance,

dp∗

dg′(0)
= − 2p∗

c
(p∗−c)2 + 2g′(0)

< 0.

4.3.3 Firms with different costs and price dispersion

Introducing asymmetric costs for the firms leads to two interesting results. Firms
with higher costs for the same homogeneous good do participate in the market,
with higher equilibrium prices, for there will be always consumers recalling its
price as smaller. The second feature is already implicit in the previous state-
ment: the model predicts a price dispersion situation in a homogeneous good
market.

Assumptions 4.1 and 4.2 are once again taken. Firm A faces unitary cost
cA > 0 and firm B faces cB > 0. The profit of firm i = A,B is given by
Πi(pi, pj) = (pi − ci)g(pj − pi)D(pi). In order to maximize it, firm i solves
∂Πi
∂pi

= 0, that is

pi
pi − ci

= −ε(pi)− pi
∂

∂pi
ln g(pj − pi), (4.11)

with i, j = A,B and i 6= j. Proposition 4.2 can be applied here with two
changes. First the issue of existence of one equilibrium, i.e. an intersection of
the reaction curves implicitly defined by (4.11), must be put differently because
the system of equations is now asymmetric. Take cB > cA without loss of
generality. The best response pB(cA) of firm B to the minimum price that firm
A may offer, cA, satisfies pB(cA) ≥ cB > cA. So (cA, pB(cA)) lies ’above’ (taking
pB as the vertical axis) or on the line (pA, pB) = (cA + t, cB + t), t ∈ R. On
the other hand, pA(cB) satisfies pA(cB) ≥ cA, so (pA(cB), cB) lies below or on
that diagonal. From Proposition 4.2 it is known that the best response curves
always cross the main diagonal pA = pB

4.12, and they do that only once because
∂pi(pj)
∂pj

< 1 for all pj ≥ 0 with i, j = A,B, i 6= j. Either pA(cB) lies on the same

side of the main diagonal as pB(cA) (the crosspoint with the main diagonal lies
then below cB , representing a price combination that is never considered by the
firms) so that pB(pA) must cross pA(pB) only once to get to the main diagonal,
or pA(cB) lies on the other side which means that pA(pB) will also cross the
main diagonal, crossing therefore pB(pA) as well.

The second difference is that the equilibrium will not be symmetric, being
thus implicitly defined by a system of equations with equation (4.11) and its
counterpart, instead of being simply defined by (4.8). The FOC do not have
here a closed solution because p∗A = p∗B does not hold. It is however possible
to determine how the equilibrium prices change depending on the costs through
implicit differentiation of the FOC, when costs depart from the symmetric case
c = cA = cB . In Section 4.8.1 in the Appendix it is derived how both firms
“react to changes” in one of the costs, which is shown in formulas (4.24) and
(4.25). Some comments on those formulas are as follows.

4.12Take p∗j to be the equilibrium price in the symmetric cost scenario with costs being c = cj .

By definition the best reply of firm i in this case is to set p∗i = p∗j , that is pi(p
∗
j ) = p∗j .
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Cost price relation

In the symmetric case it was clear that a higher cost implies a higher equilibrium
price. While the trade-off here is quite more intricate it is the case that a cost
increase of one firm leads to a price increase by both firms.

Proposition 4.3 An increase in cost ci of firm i leads in equilibrium to an
increase of p∗i and p∗j ,

∂p∗i
∂ci

>
∂p∗j
∂ci

> 0.

Proof
Inspecting equation (4.11), which defines the best strategy pi given pj and ci, it
can be seen that the left-hand side of the equation (strictly) increases in ci and
the right-hand-side (strictly) decreases with pj . Now for a given pj an increase
in ci leads to an increase in the response pi defined by (4.11). The proof of
Lemma 4.3 shows that the choices of the two players are strategic complements.
So the best-response pj of firm j shall also (strictly) increase. This decreases
the right-hand side of equation (4.11), which further increases the implied best
response pi. Both changes point in the same direction and that implies the

result
∂p∗i
∂ci

> 0. From strategic complementarity it is obtained that
∂p∗j
∂ci

> 0. At

last, from
∂pi(pj)
∂pj

< 1, which is shown in the proof of Lemma 4.3 (notice that the

FOC of firm j are not altered with the change in ci), it follows that
∂p∗i
∂ci

>
∂p∗j
∂ci

.

One might have foreseen that a smaller cost gap would mean a more com-
petitive market, meaning lower prices of both. Consider the case where the low
cost firm suffers a cost increase. The high cost firm could choose to take bene-
fit of the competitor handicap by trying to attract more consumers, that is by
lowering the price. But it appears that the revenue increase that is attainable
by a higher price of the high cost firm, dominates the benefits from trying to
attract more consumers.

Aggregate behavior

On the aggregate level, the firms act (locally) as a monopolist. It is easy to see
that the monopolist reaction to a cost change at cost c equals

∂pM
∂c

=
1

1−
(
pM−c
pM

)2

(pMε′(pM )− ε(pM ))
. (4.12)

Recall that the monopolist price pM and the symmetric cost equilibrium price
p∗ are defined in the same way given ε(·) and ε̄(·), respectively. It was already
shown in equation (4.9) that the competitive price follows the cost in the same
way as the monopolist price, when the cost of both firms change. To see that
this is also the case for a change in just one of the firms’ costs, say firm i, the

following term must be examined 2 × 1
2

(
∂p∗i
∂ci

+
∂p∗j
∂ci

)
, the factor 2 appearing

because an increase in ci yields just a half increase in the average cost and the
factor 1

2 is needed to have the average price change (and not their sum). From
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formulas (4.24) and (4.25) it must be that at c = cA = cB ,

∂p∗i
∂ci

+
∂p∗j
∂ci

=
1

1−
(
p∗−c
p∗

)2

(p∗ε′(p∗)− ε(p∗))

=
1

1−
(
p∗−c
p∗

)2

[p∗(ε′(p∗) + 2g′(0))− (ε(p∗) + 2p∗g′(0))]

=
1

1−
(
p∗−c
p∗

)2

(p∗ε̄′(p∗)− ε̄(p∗))
. (4.13)

Notice that
∂p∗i
∂ci

+
∂p∗j
∂ci

stands for the change in the average price of the two firms
due to a unitary increase in the average cost (locally around cA = cB). Equation
(4.13) tells us that the average price of the firms follows the corresponding
average cost as a monopolist price follows its cost, just performing the custom
substitution from ε(·) to ε̄(·). In other words, the costs of the individual firms
are irrelevant for the average market price determination once the average cost
is known.

Recall error amplitude and price dispersion

Price dispersion, defined here as the price difference, is driven in this model by
cost dispersion. Thus to analyze it, it should be checked how the price difference
depends on one of the costs. This is given by

∂p∗i
∂ci
−
∂p∗j
∂ci

=
1

1−
(
p∗−c
p∗

)2

(p∗ε′(p∗)− ε(p∗)) + 8(p∗ − c)2g′2(0)

as shown in Section 4.8.2.
The demand and the recall error effects must now be disentangled. If demand

falls sharply at some given price, firms will not choose to price their goods above
(or largely above) that level, no matter what the cost structure and recall error
level are. The best way to study the recall error effect is to fix elasticity of
demand at p∗, and this is so for a strong reason. The equilibrium price in
the symmetric case is a function of elasticity (not of demand or the derivative
of demand alone). Therefore fixing elasticity does not change the symmetric
equilibrium outcome as it would happen if D(p) or D′(p) were fixed, even if just
locally.

Proposition 4.4 Price dispersion, defined here as the price difference, is ce-
teris paribus an increasing function of the recall error standard deviation.

Proof
Price dispersion with ε(p) = ε(p∗) ≡ ε∗ for any p is

∂p∗i
∂ci
−
∂p∗j
∂ci

=
1

1 +
(
p∗−c
p∗

)2

ε∗ + 8g′2(0)(p∗ − c)2

. (4.14)

In Section 4.8.3 it is shown that the whole denominator is decreasing in σ mean-

ing that
∂p∗i
∂ci
− ∂p∗j

∂ci
at c = cA = cB (and therefore the price dispersion when the

firms’ costs are similar) is locally an increasing function of the recall error.
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Note that as consumers become more inattentive, it could be thought that
the diminishing competitive pressure on the firms would lead to lower price
dispersion, as it leads to higher markups, because consumers are less responsive
to price gaps. It turns out that it is optimal for the low cost firm to increase
this gap.

Welfare analysis

Price recall errors can be regarded as a weakening of competition, given that
the incentives of a fierce price competition are smaller. There are however some
counterintuitive results with important welfare and policy implications. To have
some insights a comparison between the extreme cases, perfect price recall and
random shopping, is made. In the first case the basic textbook equilibrium
arises. The low cost firm will charge the lowest of the following two, the price
it would charge as a monopolist and the cost of the other firm. The high cost
firm simply takes price equal to cost. At the other extreme, the two firms are
monopolists on half of the market, so they simply both charge their monopolist
prices.

Profits of the high cost firm go up (not necessarily monotonically) from zero
to half of the monopolist profits, from one extreme to the other. If the low cost
firm charges his monopolist price in the competitive situation, i.e. with perfect
price recall, then its profits decrease (not necessarily monotonically).

On the aggregate level a surprising result occurs when the cost gap is big
enough.

Lemma 4.4 Firms are worse off, on the aggregate level, when facing higher
variances of the recall errors for sufficiently large cost gaps and low initial error
variances.

Proof
First it is shown that a degenerate distribution can be taken without loss of
generality for the recall errors εi, i = A,B, so that the setting is the basic
Bertrand model. From equation (4.11) it is concluded that the full support case
can be arbitrarily close to this solution, because the last term goes to zero as
the recall error standard deviation goes to zero, given that g′(·) → 0, while
the other terms are bounded. Furthermore, if demand is bounded then profits
also converge to the degenerate case. Considering the degenerate case is thus a
simplification.

Take any cA, D(p) and corresponding ε(p) such that the monopolist problem
of firm A has a solution, call it pMA , yielding strictly positive profits. Assume
that cB > pMA . In equilibrium the market will be completely covered by firm A
setting pMA , getting profits ΠM

A = pMA D(pMA ) and ΠM
B = 0.

Now consider a new recall error distribution with full support. It follows
directly from the definition of monopolist price that the new equilibrium price
of firm A, p∗A, satisfies p∗AD(p∗A) ≤ pMA D(pMA ). Moreover, because cB > cA it
must also hold for firm B that p∗BD(p∗B) < pMA D(pMA ). The aggregate profits are
now given by Πagg ≡ p∗AD(p∗A)g(p∗B−p∗A)+p∗BD(p∗B) (1− g(p∗B − p∗A)) satisfying

Πagg < pMA D(pMA ) [g(p∗B − p∗A) + 1− g(p∗B − p∗A)] = ΠM
A .

This example is sufficient to prove the lemma.
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While the proof mentions an extreme case, it is clear that worse price recall
can decrease the total profits in a broad set of parameters. Larger recall errors
push more consumers to the firm with higher price, that is the one with higher
cost, whose profits are typically lower.

Lemma 4.5 Worse price recall decreases the welfare of both the firms and the
consumers, for sufficiently large cost gaps and low initial error variances..

Proof
Notice that the welfare decrease for the consumers alone, follows directly from
the symmetric cost case. To prove the lemma it must be shown that it hap-
pens in cases where the aggregate profits also decrease, which is not the case
for symmetric costs. Recall the cases from the previous proof. As the standard
deviation increases, the share of consumers buying at firm B can be arbitrarily
close to one half, given that an increasing number of consumers will recall the
price of the high cost firm as lower. This implies further that p∗A can be arbi-
trarily close to pMA . Taking a linear demand function for instance, it becomes
clear that the extra consumer surplus that the consumers still at firm A get
due to existence of two firms in the market, i.e. firm A is not a monopolist, is
smaller than the welfare cost of the other half, that switched from monopolist
A to duopolist B.

This result is striking given the previous qualification of price recall errors as
a cause of weaker competition. In fact, if consumers shop (close to) randomly
then goods are being bought at high price which does not imply higher profits
since consumption is being shifted from a low to a high cost firm. Whilst this
observation is obvious, the counterintuitive nature of the above result is simply
a consequence of it. In further extensions of this model, where the standard
deviation of the price recall is somehow manipulated by the firms, it may happen
that firms choose strategies that make them worse off. Figure

Furthermore, for fixed price recall error amplitude, one may wonder if com-
petition is itself welfare decreasing. In other words, may a duopoly be something
that should be avoided in comparison to a monopoly? This is indeed the case,
again because consumers do not make optimal choices. If the possibility of buy-
ing at higher prices is somehow not there, in some cases the welfare is higher
with a monopoly in comparison to the duopoly.

Proposition 4.5 In a market where consumers do not perfectly recall the prices,
protecting a monopoly from entrant firms is optimal from the consumer welfare
point of view, as well as from the social welfare point of view, for sufficiently
large cost gaps and low initial error variances.

Proof
Straightforward conclusion from the proof of Lemma 4.5, just considering the
degenerate distribution in the proof simply as the monopoly, which is then
compared with duopoly.

Notice that the proofs of the above two lemmas use the extreme case of recall
errors with degenerate distribution, for simplicity. Given the continuity of the
equilibrium prices (therefore profits and surpluses) as a function of the error
standard deviation, the results apply for other non-extreme parameter choices.
The statement in Proposition 4.5 is not related to parameter choices but to dif-
ferent market structure under the same conditions, and should not be confused
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with the lemmas. The proposition compares monopoly with duopoly, where the
monopolist case happens to be equivalent to the duopoly with degenerate errors.

Some examples

Take again a linear elasticity, ε(p) = −(a + bp), and the Gumbel distribution
for the recall error. In the end of Section 4.8.1 in the Appendix, the following
formulas are worked out (again locally at cA = cB):

∂p∗i
∂ci

=
1

1− a(p−cp )2

1− a(p−cp )2 +
[
τ
2 (p− c)

]2
1− a(p−cp )2 + 2

[
τ
2 (p− c)

]2
and

∂p∗j
∂ci

=
1[

1− a(p−cp )2
]2

( τ2 (p− c))−2 + 2
[
1− a(p−cp )2

] .
Only the two limiting cases, cA = cB = 0 and cA = cB → ∞ will be discussed
because other cases yield intermediate results.

For cA = cB = 0 the price is driven by the recall error of consumers, and is
therefore of the same magnitude. Departing from cA = cB = 0 the equilibrium
prices react in the following way:

∂p∗i
∂ci

=
1

1− a
− 1

[2b/τ + 1]
2

+ 2 [1− a]

and

∂p∗i
∂cj

=
1

[2b/τ + 1]
2

+ 2 [1− a]
,

which are positive because 0 < 1− a. For cA = cB →∞ the other extreme case
occurs:

∂p∗i
∂ci

= 1− 1

[2b/τ + 1]
2

+ 2

and

∂p∗j
∂ci

=
1

[2b/τ + 1]
2

+ 2
,

which are also positive. Notice that as in Section 4.3.1, as costs (and therefore
equilibrium prices) increase, the level of the demand elasticity, which is defined
by the parameter a, becomes irrelevant (it enters the first order conditions as
a/pi). Only the slope of the elasticity b is maintained. It is thus easy to see
that the derivatives at c→∞ are smaller than at c = 0.

In equilibrium the prices will rise with an increase of any of the two costs.
Firm’s pricing behavior lies between the perfect competition lower bound and
the monopolist upper bound, depending on the size of the recall error (which

52



2 4 6 8 10
ci

2

4

6

8

10

12

price

2 4 6 8 10
ci

2

4

6

8

10

12

price

2 4 6 8 10
ci

2

4

6

8

10

12

price

2 4 6 8 10
ci

0.2

0.4

0.6

0.8

1.0

share

2 4 6 8 10
ci

0.2

0.4

0.6

0.8

1.0

share

2 4 6 8 10
ci

0.2

0.4

0.6

0.8

1.0

share

2 4 6 8 10
ci

0.5

1.0

1.5

2.0

profits

2 4 6 8 10
ci

0.5

1.0

1.5

2.0

profits

2 4 6 8 10
ci

0.5

1.0

1.5

2.0

profits

Figure 4.1: Equilibrium prices, market share of firm i and profits depending on
the cost of firm i, ci. The straight lines denote firm i, the dashed lines firm j and
the dotted the monopolist with ci. Chosen parameters cj = 5, D(p) = e−

1
2 ln p− p5

so that ε(p) = − 1
2−

p
5 , Gumbel distribution. Left column: τ = 20, var(ε) = π2

2400 ,

center column: τ = 2, var(ε) = π2

24 , right column: τ = 0.2, var(ε) = 25π2

6 .

fosters towards the upper bound) and the relative cost advantage (also towards
the upper bound).

Figure 4.1 shows some examples how incorrect price recall affects the market,
in the case of different costs of firms. The variance of the price error increases
from left to right. In the first panel consumers are able to recall the price with
very good precision, so that the outcome is close to the classic setting. A firm
sets the monopolist price for low production cost, switches to a price slightly
below the other firm’s price for low intermediate cost, and follows his own cost
for high costs. Its market share is almost 100% for low own cost and almost 0%
for costs higher than the other firm’s cost. In the last column the consumers
are almost completely unaware of the chosen prices so that they almost shop
randomly, as can be seen in the slowly decreasing market share of firm i on the
second row. Because consumers almost shop randomly, firms set a price close
to the monopolist price given their cost.

Figure 4.2 illustrates Lemma 4.4, where total profits decrease as the recall
errors increase.

4.4 Three or more firms

In the Bertrand pricing model with no product differentiation, the number of
firms is irrelevant as long as it is more than one. In this extension with more than
two firms the equilibrium will present however an intuitive outcome: the price
will decrease as the number of firms increases, though only slightly. Moreover
this result does not depend on the number of consumers in the market, so it is
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Figure 4.2: Aggregate profit decrease as a function of the standard deviation
(SD) of the recall error, with D(p) = e−

1
2 ln p− p

10 so that ε(p) = − 1
2 −

p
10 , and

Gumbel distribution. Firm i with ci = 0 and straight line, firm j with cj = 5
and dashed line. Total profits represented by the thick line.

entirely driven by the competition among the firms. To see this notice that the
number of consumers µ just appears as a multiplicative constant in the profit
function. Thus its maximization is independent of the value of µ.

Let there be n firms, n ≥ 3. Firm i has unitary production cost ci and
charges price pi. D(p) is the demand from each consumer at price p, where the
mass of consumers is taken to be 1. The number of consumers heading to firm
i = 1, · · · , n is given by

P (p′i < p′j ,∀j 6= i) = P (pi + εi < pj + εj ,∀j 6= i)

=

∫ ∞
−∞

f(y)
∏
j 6=i

F (y + pj − pi)dy

= G(p1 − pi, . . . , pi−1 − pi, pi+1 − pi . . . , pn − pi),

where for x ∈ Rn−1

G(x) ≡
∫ ∞
−∞

f(y)
∏
k

F (y + xk)dy.

The profit of firm i = 1, . . . , n is

Πi(p1, · · · , pn) = (pi − ci)G(x−i)D(pi), (4.15)

where x−i = (x1, . . . , xi−1, xi+1, . . . , xn) = p−i − en−1pi with en−1 being the
(n− 1)-vector of ones, and the first order condition for its maximization is

∂Πi(p1, · · · , pn)

∂pi
= 0

⇔ 1

pi − ci
+
D′(pi)

D(pi)
+

∂

∂pi
lnG(x−i) = 0. (4.16)

Assumption 4.1 is now generalized as follows.

Assumption 4.3 The random shocks ε1, . . . , εn are iid with mean 0 and full
support on the real line with probability density function f(·) and cumulative
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distribution function F (·). Moreover the distribution of ε1, . . . , εn is such that,
for each i = 1, . . . , n and p, ∂

∂pi
lnG(p−i − en−1pi) is non-decreasing in pi, i.e.∑n

j 6=i
∂2

∂x2
j

lnG(x−i) ≤ 0 .

Assumption 4.3 assures the existence of the equilibrium, whose proof is easily
obtained from the n = 2 case. For uniqueness it must be assured that the best

response hyper-surfaces only cross once. Again this is guaranteed if
∂p∗i (p−i)
∂pj

< 1

for any p−i ≥ c−i, i and j 6= i.
Consider a ∆pj increase in pj . Notice that an equal increase in pi offsets an

increase in xj , and furthermore it decreases all other xk with k 6= i, j, meaning

that ∂
∂pi

lnG(x−i) is increased since
∑n
j 6=i

∂2

∂x2
j

lnG(x−i) ≤ 0. Following the

same reasoning steps as in the n = 2 case, it is concluded that the change in
the best response to ∆pj is some ∆pi satisfying ∆pi < ∆pj which proves the
uniqueness of equilibrium.

Lemma 4.6 The imperfect price recall model for multiple firms, has a unique
equilibrium if Assumptions 4.2 and 4.3 are satisfied. This equilibrium is implic-
itly defined by equation (4.16).

4.4.1 Symmetric costs

For ci = c for all i = 1, · · · , n the equilibrium is straightforward.

Lemma 4.7 The symmetric price competition model with n firms has an equi-
librium with the price p∗ defined by

p∗ − c
p∗

=
1

−ε(p∗) + p∗
∑
j 6=i

∂
∂xj

lnG(0)
.

The above result follows directly from Lemma 4.6 and equation (4.16), where
∂
∂pi

G(x−i) = −
∑
j 6=i

∂
∂xj

G(x−i) was used, with xj = pj − pi, j 6= i.

For the Gumbel distribution it is known that

G(x−i) =
1

1 +
∑
j 6=i e

−τxj
,

so that

∂

∂pi
lnG(x−i) = −

∑
j 6=i

∂

∂xj
lnG(x−i)

=
∑
j 6=i

∂

∂xj
ln

1 +
∑
k 6=i

e−τxk


=

∑
j 6=i

−τe−τxj
1 +

∑
k 6=i e

−τxk

= −τ

[
1− 1

1 +
∑
j 6=i e

−τxj

]
,
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Figure 4.3: Equilibrium prices and two measures of price dispersion for
(c1, c2, c3) = (1, 2, 3) depending on the standard deviation of the Gumbel dis-
tributed recall error. Firm 1, 2 and 3 are represented by the dashed, the thick
and the thin line. Demand is D(p) = 10p−

1
2 so that its price elasticity is

ε(p) = − 1
2 .

which is increasing in pi. In the symmetric equilibrium∑
j 6=i

∂

∂xj
lnG(x−i)|x−i=0 = τ

n− 1

n

and the equilibrium price is defined by

p∗ − c
p∗

=
1

−ε(p∗) + τ n−1
n p∗

.

The competition pressure due to an increase in the number of firms has a small
impact. Observe that an increase in n from 2 to ∞ is equivalent, in terms of
markup setting, to just halving the standard deviation of the recall error (which
is proportional to 1

τ ). As a corollary, note that the Lerner index does not go to
zero as n → ∞. Gabaix and Laibson (2004) also conclude that the number of
firms has a low impact in decreasing the charged markup, while in Stahl (1989)
it even brings the equilibrium price closer to the monopoly price.

4.4.2 Asymmetric costs

Due to analytical complexity, the results in the n = 2 case cannot be extended. It
is however possible to obtain numerically the equilibrium prices for a given cost
structure. The figures in the Appendix show the equilibrium prices and different
price dispersion measures for cases with n = 3, Gumbel distributed shocks and
ε(p) = − 1

2 for any p ≥ 0. Two price dispersion measures are presented, namely
the difference between maximum and minimum price as well as its ratio. The
standard deviation of prices seems to follow very closely the pattern of Max-
Min in all cases that were checked, whereas the standard deviation/mean ratio
follows Max/Min.

In the first case, depicted in Figure 4.3, the firms’ costs are given by the cost
vector (c1, c2, c3) = (1, 2, 3). Except for a minor exception (see discussion below
in the (c1, c2, c3) = (1, 2, 2) case), all prices grow with the price recall error. The
behavior of price dispersion depends on the chosen measure.

More interesting is the comparison between (c1, c2, c3) = (1, 1, 2) and (1, 2, 2)
presented in Figures 4.4 and 4.5. They differ significantly, while one might have
thought the opposite given that both cases have the same cost values, the only
difference being the number of firms having the different costs. If there are
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Figure 4.4: Equilibrium prices and two measures of price dispersion for
(c1, c2, c3) = (1, 1, 2) depending on the standard deviation of the Gumbel dis-
tributed recall error. Firm 1 and 2 represented by the straight line, firm 3 by
the thick line. Demand is D(p) = 10p−

1
2 so that its price elasticity is ε(p) = − 1
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Figure 4.5: Equilibrium prices and two measures of price dispersion for
(c1, c2, c3) = (1, 2, 2) depending on the standard deviation of the Gumbel dis-
tributed recall error. Firm 1 represented by the dashed line, firms 2 and 3 by
the thick line. Demand is D(p) = 10p−

1
2 so that its price elasticity is ε(p) = − 1
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two low-cost firms they compete among them setting the competitive price, i.e.
price marginally above cost, for small recall errors. As errors grow larger, their
market share becomes less dependent on the price and they opt for a price close
to that of the high-cost firm. The price dispersion is therefore decreasing in the
errors standard deviation.

If there is only one low-cost firm, it is sufficient for it to charge a price slightly
below the high cost. As higher errors are considered there are two effects that
become clear. Initially the need to differentiate its price from that of the high-
cost firms is predominant, so that it actually chooses a lower price. But then
the effect of having a market share which is less dependent on the price starts to
act and the low-cost firm raises the price again. This explains the steepest price
dispersion increase among the three considered cases. While a deeper analytical
investigation is beyond the scope of this chapter, it becomes clear from the
above examples that the cost structure of the firms in the market have a strong
influence on the equilibrium prices and price dispersion.

4.5 Price dependent error variance

A shortcoming of the previous sections is the arbitrariness of the shock variance.
In this section it is assumed that the recall error is in some way related to the
value of the good. As a simple example one may think of the uncertain price of a
cup of coffee in a bar compared to the uncertain price of an expensive computer.
While in the first case the consumers may have a ±20 cents ‘confidence interval’,
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in the second case this might be around ±100 euro4.13.

4.5.1 Exogenous variance

Setting the shock proportional to the equilibrium price would lead to an implicit
definition problem. The cost of the good is however a good proxy for it. In this
section it is assumed that firms face cost c to produce the good and the price
observation of the consumers suffers a shock whose standard deviation is an
increasing function of c.

Derivation is very similar to above and Lemmas 4.1, 4.2 and 4.3 can be
applied here. Profits are still given by Πi(pi, pj) = pig(pj − pi)D(pi) for firm
i, but the standard deviation is now multiplied by c. In other words g′(0)

becomes
g′0(0)
c where g0 is just the benchmark g(·) function for c = 1. Equation

(4.8) becomes now
p

p− c
= −ε(p) +

2

c
g′0(0)p.

Introducing this cost dependence modifies the competition pressure term in the
equilibrium Lerner index. Higher costs mean lower attention (in absolute terms)
paid by consumers. If constant elasticity is assumed, to abstract from demand
driven changes, the above formula can be written as

1

1− c/p
= −ε+

2p

c
g′0(0),

which can be regarded as an equation on p
c . This means that in equilibrium the

ratio p
c is the same for any c, meaning that the markup is proportional to cost.

4.5.2 Endogenous shock variance

While the previous section has an intuitive outcome regarding the dependence
of markup on the cost of a good, it would be more realistic to allow consumers
to choose an effort according to the amount of money involved. For instance
Sorensen (2001), while related to search costs, states that consumers put a higher
search effort for pharmaceutical products that they buy more often. Here the
standard deviation of the recall error will be associated to the effort they will be
putting in remembering the exact prices, which is denoted by Σ. It is assumed
that for a given effort level Σ the recall error will be proportional to c, in other
words the effort is not related to recalling the last digits of the price but the
first digits. Thus the standard deviation of a given distribution g0(·) is here
multiplied by Σc (in the above section Σ = 1). The consumer faces here a
trade-off between mental effort and overspending.

As proxy for the costs of overspending the following is used, βΣc, that is
the standard deviation of the recall error chosen by the consumer, Σc, times a
constant, β, related to the error distribution.4.14 The idea is that higher recall

4.13See Drèze, Vanhuele, and Laurent (2006) for empirical evidence on the harder memora-
bility of lengthier prices.
4.14This choice can be motivated by a more complex modeling as follows.

Let the consumer be concerned about the worst expected loss that may happen for a given
standard deviation. In other words, for a given price dispersion x ≡ max pi −min pi there is
an associated expected loss (when the consumer mistakenly chooses the firm with the highest
price) and the consumer will take into account the highest value of the expected losses across
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errors imply higher expected losses from choosing the firm with the highest
price.

As stated before consumers will face a mental effort cost of reducing Σ,
h(Σ). It is assumed that decreasing the recall error - lower Σ - is increasingly

costly, h′(·) < 0, h′′(·) > 0, so that ∂h(Σ)
∂(−Σ) > 0 and ∂2h(Σ)

∂(−Σ)2 > 0. Consumers will

thus compare the benefit βΣc and the cost h(Σ) of making a memory effort Σ.
Equalizing marginal benefit βc and marginal cost h′(Σ) yields the optimal recall
error of consumers.

Take for instance h(Σ) = 1
Σ as the effort cost. Then consumers minimize the

losses from the recall errors given by βΣc+ h(Σ). The minimum is attained at

Σ =

√
1

βc

or Σc =
√

c
β . Recall that while the consumers choose Σ the shock standard

deviation will be Σc. The idea behind this result is that consumers do make
bigger mistakes when recalling a price of a more expensive good, but this mistake
is only proportional to the root of it. In other words, when buying the outfit
consumers exert a bigger effort in price comparison because the stakes are higher.

Once again Lemmas 4.1, 4.2 and 4.3 regarding the equilibrium in the firms’
price game are applicable here, because firms take the consumers’ effort as given.
The equilibrium price will be characterized by

1

p∗ − c
= −ε(p

∗)

p∗
+ 2

√
c

β
g′0(0).

For costs and thus prices close to zero the first term on the right hand side
overweights the second, so that the equilibrium price is close to the monopoly
price. But for higher costs (and assuming that −ε(p) increases less than pro-

portionally to p for high prices) the markup will be close to
√

β
c

1
2g′0(0) . This

case lies between the basic case where markup is constant as c → ∞ and the
exogenous recall variance case where it is proportional to c.

all x. While this choice is not very intuitive, it must be noticed that a priori the consumer is
not aware of the price dispersion distribution x, so she cannot calculate the expected loss.

Consider the case with pA < pB . The probability of shopping at B by mistake is 1− g(x).
Hence the expected loss due to false recall is x(1 − g(x)). The consumer is not aware of the
real prices and therefore not aware of x, so that she can only evaluate what the maximum
expected loss is for a given Σ. Call it ∆(Σ):

∆(Σ) ≡ max
x≥0

x (1− gΣ(x))) ,

where gΣ(x) is the probability of choosing the lowest price given effort Σ. While Assumption
4.1 does not guarantee the uniqueness of this maximum, it exists and is unique for many
distributions (like Normal and Gumbel). Now, as seen in the discussion of equation (4.4)
the standard deviation enters g(·) as a number by which x is divided. So for a given recall
error distribution, the above maximization has the same solution if solved for x

Σc
, a solution

which is independent of Σ. In other words the maximum expected loss ∆(Σ) is just (linearly)
proportional to Σc, which motivates the choice for the overspending proxy. The proportionality
constant is denoted by β.
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4.6 Related models

In this section the price recall model is compared with the price competition
model with utility uncertainty and the classic horizontal differentiation model.

4.6.1 Comparison to utility uncertainty

The literature related to this chapter takes an approach close to the quantal
response equilibrium concept, as in Gabaix and Laibson (2004) and Gabaix,
Laibson, and Li (2005). That is, consumers4.15 are not able to compare two
utility levels, corresponding to two alternatives, perfectly. Mathematically, in-
stead of comparing U1 and U2, they compare the utility plus a shock, U1 + ε1
and U2 + ε2.

For the simple case of fixed demand, where consumers are willing to buy one
and only one unit of the good, this is equivalent to the present model where the
random component is added to the price. In a utility shock setting, consumers
compare (u − p1) + ε1 with (u − p2) + ε2, where u is the monetary utility of
having the good. This is equivalent to the comparison of u − (p1 + ε′1) with
u− (p2 + ε′2) where ε′i = −εi, i = 1, 2.

But once the assumption of fixed demand is relaxed, the models yield differ-
ent predictions.

Let V (p) be the total indirect utility function of a consumer from buying the
good at price p, that is the indirect utility minus the cost in utility units. The
consumers when facing pA and pB compare V (pA) + εA with V (pB) + εB , where
εA and εB are i.i.d. random errors. Define the probability of a given consumer
to consider firm i as having the best option as q(V (pj) − V (pi)) with j 6= i,
where q(·) = 1 − g(·) as now consumers opt for the highest V (·) instead of the
lowest p. Now the procedure to find the equilibrium price follows closely that
of previous sections4.16. Equation (4.8) becomes now

p

p− c
= −ε(p) + 2q′(0)V ′(p)p,

where g′(0) became q′(0)V ′(p) since this term follows from − ∂
∂pi

q(V (pj)−V (pi))
at pi = pj = p.

Consider the simple case of constant elasticity of demand −1 < ε(p) < 0
for a comparison of the implications of the two approaches. Suppose demand
is given by D(p) = D0p

−a so that ε(p) = −a for any p ≥ 0, where D0 > 0
is some constant. Assuming that the expenditure on the product on focus is
small compared to the total income of the consumer, one can take the marginal
utility of income λ as fixed when setting the consumer utility function for this
purchasing behavior. Thus the (separable) utility of the good that yields the

desired demand function is simply U(x) = −U0x
− 1−a

a with U0 > 0 and x being
the amount of the consumed good. This leads to the above mentioned demand

4.15This bounded rationality argument can also be applied to the firms, as Baye and Morgan
(2004) do. The rationale for this option is however not so clear. The possible gains and
losses at stake for the firms are clearly higher, as is their availability to compute the problem
lengthily through.
4.16The assumption needed to guarantee existence and uniqueness of equilibrium differs. Here
it is sufficient that ∂

∂pi
ln q(V (pj)− V (pi)) is non-increasing in pi for any pj ≥ 0.
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function with D0 =
(

1−a
a

U0

λ

)a
. The total indirect utility function as a function

of price is

V (p) = −U0D(p)−
1−a
a − λD(p)p

= −
(
U0

a

)a(
λ

1− a

)1−a

p1−a.

If εi are Gumbel i.i.d. then a given consumer chooses firm A with probability
q(V (pB)− V (pA)) defined by

q(V (pB)− V (pA)) =
1

1 + eτ(V (pB)−V (pA))
=

1

1 + e−τ(
U0
a )

a
( λ

1−a )
1−a

(p1−aB −p1−aA )
.

The symmetric equilibrium price p∗ is given by

p∗ − c
p∗

=
1

a+ τ
2

(
1−a
a U0

)a
λ1−ap∗1−a

,

where q′(0) = − τ4 and V ′(p) =
(

1−a
a U0

)a
λ1−ap∗−a are used. It is hard to

compare the two models, because the utility uncertainty has more degrees of
freedom. But two observations can be made that distinguish them, both related
to the change from g′(0) to q′(0)V ′(p). First, the equilibrium price equation now
contains U0 (or D0) meaning that products with the same elasticity of demand
may have different equilibrium prices. In the price recall model, both demand
and market share depend solely on price so the firm incentives only depend on
price. Now the market share, related to the probability of correctly choosing
the good according to its utility, depends on U0 (or D0). Consumers make less
mistakes for products with higher U0 (that is with a higher demand parameter
D0) so the competition pressure will be stronger and the prices lower.

Second, the term contains now p∗1−a instead of p∗ implying a non-linear
response to price. Recall that the g′(0) or q′(0)V ′(p) term can be interpreted as
an increase in the (absolute value) of the elasticity of demand when compared
to the monopolistic price setting. If a is close to 1, this increase is almost
independent of p.

Therefore the bounded rationality concept not only offers a more intuitive
and tractable model, but its predictions depart from the common model in the
literature. Assuming a shock in the utility, instead of in the price, changes the
new term showing up in the equilibrium Lerner index of the firms. The price in
the utility shock model depends on many parameters, namely on the demand
level D0, the functional form of the indirect utility function, the price elasticity
of demand and the error distribution, whereas only the last two parameters are
to be found on the price shock model.

4.6.2 Price recall as a horizontal differentiation model

As argued in Subsection 4.3.1 the price recall model also resembles the hori-
zontal differentiation model in the basic cases with fixed unitary demand. This
equivalence is however not true for distributions with full support. If the firms
are placed in the “extremes” of the infinite horizontal line, then for any strictly
positive distance cost, both total prices (good plus distance cost) will be infi-
nite for all consumers. The full support cases can however be approximated by
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distributions with bounded support, assuring that the latter yields an interior
solution. The problem with the approximation is that in the latter case a firm
can have the whole market if it chooses a sufficiently low price. Again this
can be avoided by assuming high distance costs and equivalently high utility of
the good to guarantee that all the market is covered. Assigning a high utility
may however distort further applications of the model, for instance in welfare
analysis.

In the price recall model it is natural to assume that the difference between
the price recall errors follows some symmetric probability distribution, but it
is intuitively not so clear why the consumers in the horizontal differentiation
framework should be densely concentrated in the center of the horizontal line,
a feature which is necessary for the formal equivalence. But the models diverge
more once one moves away from the basic case and considers elastic demand.
The reason is that in the horizontal model, the distance decreases the willingness
to buy the goods, either because the total price is higher (transportation costs
interpretation) or the value of the good is lower (preferred variety interpreta-
tion). Put simply, in the horizontal differentiation model the distance represents
a worse alternative. In the price recall model the distance only reflects a lower
probability of buying the good. In the former the consumers choose to buy
less, in the latter demand remains constant. Mathematically, the demand in
the horizontal differentiation model is given by the integral of different demands
along the line, here it is simply demand as a function of price times the market
share. In equation (4.1’) the market share term remains unchanged in horizontal
differentiation models, but the demand term becomes an analytically complex
term4.17. This also makes the bounded support approximation problem more
salient. Assuming a value of the good which is sufficiently high to guarantee a
covered market and an interior solution, is not compatible with a low demand.
Put differently, in the limit case where recall error variance goes to infinity, the
market in the price recall model is split between the firms irrespective of their
prices, acting both as a monopolist in their half. The demand they get is not
affected. That is not so for horizontal differentiation. A robust market split
only occurs for distance costs increasing towards infinite, but that would have
an impact on actual demand.

The distinctness is also more evident when extensions are considered. In
Section 4.5 the recall error variance is endogenized, being it a choice of the
individual consumers (could be a choice of firms as well). In the horizontal dif-
ferentiation model this would be equivalent to having the individual consumer
choosing the distribution (or the distance cost) of the whole market. Risk aver-
sion of firms’ managers would also damage the analogy, because the focus here
has been expected (therefore random) market share. Moreover, in horizontal
differentiation the positioning of firms can conceptually be a decision of the
agents, but here that cannot be the case.

4.7 Conclusions

In this chapter a model of bounded rationality of the demand side in price
competition settings is presented. Assuming imprecise recall of the price by

4.17The Hotelling model with elastic demand is only mathematically tractable for very specific
parameter functions. See for instance Puu (2002).
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the consumers for the classic Bertrand model, some of its paradoxes are solved.
Competitive firms do charge above the competitive equilibrium price, having
therefore a positive profit. There is no benefit (in equilibrium) in lowering the
price, for some consumers will still recall the other firm’s price as lower. This
has obvious welfare damaging effects, which can be obtained given the proposed
characterization of the equilibrium which is equivalent to that of a monopoly
price model. Moreover it was shown that in some cases with asymmetric costs
both the firms and the consumers incur welfare costs compared to the classic
case.

Firms with different costs do coexist in the market. Price dispersion does
persist in competitive frameworks. In the simple setting, price dispersion in-
creases with the recall errors. If the effort choice is endogenized, consumers put
more effort when purchasing a valuable product.

Even though the presented model is static, it can be interpreted as a stage
game of an infinitely repeated game where a Nash Equilibrium is played in
every stage. The intuition is that consumers do not actually seek information
before every purchase, but have a vague idea of the price they faced in previous
purchases.

While these results are quite interesting by itself, this extension may turn
many models more realistic on the demand side. For instance in multi-product
retail pricing, the capacity of consumers of comparing price vectors of baskets
of goods seems to be a central issue. It also leads to continuous demands and
continuous best response functions, which are more realistic and sometimes an-
alytically more tractable.

Here it was assumed that all consumers had the same type and degree of
bounded rationality. That is actually a weak assumption because all consumers
act rationally once at the store. If one were to consider consumers with hetero-
geneous recall errors, the trade-off of the firms would still be consisted of the
two trade-offs, the same monopoly-like trade-off and a similar marginal market
share dispute. The former is independent of the type of consumers and the
later can be mimicked with homogeneous consumers with a different recall error
distribution.

4.8 Appendix

4.8.1 Price cost partial derivatives

Equation (4.11) and its counterpart can be rewritten as

Hi(pi, pj , ci) ≡ (pi − ci)(−ε(pi)− pi
∂

∂pi
ln g(pj − pi))− pi = 0, (4.17)

for i, j = A,B and i 6= j.

The partial derivatives of the equilibrium prices with respect to both costs
are obtained by implicit differentiation of the first order conditions of the two
firms, (

∂p∗A
∂cA

∂p∗A
∂cB

∂p∗B
∂cA

∂p∗B
∂cB

)
= −

(
∂HA
∂pA

∂HA
∂pB

∂HB
∂pA

∂HB
∂pB

)−1(
∂HA
∂cA

∂HA
∂cB

∂HB
∂cA

∂HB
∂cB

)
. (4.18)
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From (4.17) it follows that

∂Hi

∂pi
= (pi − ci)

(
−ε′(pi)−

∂

∂pi
ln g(pj − pi)− pi

∂2

∂p2
i

ln g(pj − pi)
)

−ε(pi)− pi
∂

∂pi
ln g(pj − pi)− 1,

∂Hi

∂pj
= −(pi − ci)pi

∂2

∂pi∂pj
ln g(pj − pi),

∂Hi

∂ci
= pi

∂

∂pi
ln g(pj − pi) + ε(pi),

∂Hi

∂cj
= 0

for i, j = A,B, i 6= j. Because the partial derivatives will be taken at cA = cB =
c, and therefore at pA = pB = p, one can perform the change ∂

∂pj
ln g(pj − pi) =

− ∂
∂pi

ln g(pj − pi) so that ∂Hi
∂pj

can be rewritten as

∂Hi

∂pj
= (pi − ci)pi

∂2

∂p2
i

ln g(pj − pi).

Pricing behavior depending on own cost at cA = cB

From equation (4.18),

∂p∗i
∂ci

= −
∂Hj
∂pj

∂Hi
∂ci
− ∂Hi

∂pj

∂Hj
∂ci

∂Hi
∂pi

∂Hj
∂pj
− ∂Hi

∂pj

∂Hj
∂pi

.

Noting that ∂Hi
∂pj

=
∂Hj
∂pi

and ∂Hi
∂pi

=
∂Hj
∂pj

, this can be written as

∂p∗i
∂ci

= −
∂Hi
∂ci

∂Hi
∂pi(

∂Hi
∂pi

)2

−
(
∂Hi
∂pj

)2 = −
∂Hi
∂ci

∂Hi
∂pi

+ ∂Hi
∂pj

∂Hi
∂pi

∂Hi
∂pi
− ∂Hi

∂pj

.

Simplifying the first fraction leads to

−
∂Hi
∂ci

∂Hi
∂pi

+ ∂Hi
∂pj

= − −2pg′(0) + ε(p)

(p− c)(−ε′(p) + 2g′(0))− ε(p) + 2pg′(0)− 1
(4.19)

= −
−p
(

1
p−c + ε(p)

p

)
+ ε(p)

−(p− c)ε′(p) + 2(2p− c)g′(0)− ε(p)− 1
(4.20)

=

p
p−c

−(p− c)ε′(p) + (2p− c)( 1
p−c + ε(p)

p )− ε(p)− 1
(4.21)

=
1

1 +
(
p−c
p

)2

(ε(p)− pε′(p))
, (4.22)
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where 2g′(0) = 1
p−c + ε(p)

p from (4.9) was used. To see that the denominator is

positive, substitute p−c
p ε(p) to 2(p− c)g′(0)−1 following (4.9). It then becomes

1−
(
p− c
p

)2

pε′(p)− p− c
p

+ 2
p− c
p

(p− c)g′(0) =

=

[
1− p− c

p

]
+

[
−
(
p− c
p

)2

pε′(p)

]
+

[
2
p− c
p

(p− c)g′(0)

]
,

where all square brackets are strictly positive given that the markup p − c is
strictly positive, due to the distribution full support. For the simplification of
the other fraction the following will be needed

− d2

dx2
ln g(0) = −g(0)g′′(0)− g′2(0)

g2(0)

= −
1
2g
′′(0)− g′2(0)(

1
2

)2
= 4g′2(0). (4.23)

The second derivative of g(·) at 0 equals zero because εA and εB have the same
distribution, so that g(x) = 1 − g(−x), therefore g′′(x) = −g′′(−x), which
implies g′′(0) = 0. Following similar steps, the second fraction of the partial
derivative becomes

∂Hi
∂pi

∂Hi
∂pi
− ∂Hi

∂pj

=

=

p
p−c + ε(p)p−cp − ε

′(p)(p− c) + 4(p− c)pg′2(0)
p
p−c + ε(p)p−cp − ε′(p)(p− c) + 4(p− c)pg′2(0) + 4(p− c)pg′2(0)

=
1 +

(
p−c
p

)2

(ε(p)− pε′(p)) + 4(p− c)2g′2(0)

1 +
(
p−c
p

)2

(ε(p)− pε′(p)) + 8(p− c)2g′2(0)
.

Notice that both the denominator and the numerator are strictly positive, so
that this fraction belongs to the interval

(
1
2 , 1
)
. Concluding,

∂p∗i
∂ci

=
1

1−
(
p−c
p

)2

(pε′(p)− ε(p))
×

×
1 +

(
p−c
p

)2

(ε(p)− pε′(p)) + 4(p− c)2g′2(0)

1 +
(
p−c
p

)2

(ε(p)− pε′(p)) + 8(p− c)2g′2(0)
. (4.24)

Example

Using the Gumbel distribution, so that g′(0) = τ
4 , and linear elasticity the above

implicit derivative turns to

∂p∗i
∂ci

=
1

1− a(p−cp )2

1− a(p−cp )2 +
[
τ
2 (p− c)

]2
1− a(p−cp )2 + 2

[
τ
2 (p− c)

]2 .
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At c = 0 the equilibrium prices will be p∗ = 1−a
b+τ/2 and so

∂p∗i
∂ci

=
1

1− a

1− 1

(1− a)
(

2
τ
b+τ/2
1−a

)2

+ 2


=

1

1− a
− 1[

2b
τ + 1

]2
+ 2 [1− a]

.

At cA = cB = c → ∞ the equilibrium prices will be p∗ − c = 1
b+τ/2 , the term

p∗−c
p∗ goes thus to zero, so that

∂p∗i
∂ci

= 1− 1[
τ

2(b+τ/2)

]−2

+ 2

= 1− 1[
2b
τ + 1

]2
+ 2

.

Pricing behavior depending on other firm’s cost at cA = cB

The other firm responds in the following manner according to equation (4.18),

∂p∗j
∂ci

= −
−∂Hj∂pi

∂Hi
∂ci

+ ∂Hi
∂pi

∂Hj
∂ci

∂Hj
∂pj

∂Hi
∂pi
− ∂Hj

∂pi
∂Hi
∂pj

=
∂Hi
∂ci

∂Hi
∂pi

+ ∂Hi
∂pj

∂Hj
∂pi

∂Hi
∂pi
− ∂Hi

∂pj

=
1

1 +
(
p−c
p

)2

(ε(p)− pε′(p))
×

4(p− c)2g′2(0)

1 +
(
p−c
p

)2

(ε(p)− pε′(p)) + 8(p− c)2g′2(0)
. (4.25)

While the first fraction is the same as above (therefore positive), the second
one is different. It is however easy to see that it is also positive, because the
denominator is the same as in equation (4.24) and the numerator is positive.

Moreover this partial derivative is smaller than
∂p∗i
∂ci

, for the disappearing terms
in the numerator are positive.
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Example

With linear ε and Gumbel distributed recall error it turns to

∂p∗j
∂ci

=

τ2

4
1

(p−c)2(
a
p2 −

1
(p−c)2 −

τ2

4

)2

−
(
τ2

4

)2
=

τ2

4 (p− c)2(
1− a(p−cp )2 + ( τ2 (p− c))2

)2

−
(
τ
2 (p− c)

)4
=

τ2

4 (p− c)2[
1− a(p−cp )2

]2
+
[
1− a(p−cp )2

]
τ2

2 (p− c)2

=
1[

1− a(p−cp )2
]2

( τ2 (p− c))−2 + 2
[
1− a(p−cp )2

] .
For prices and price errors of comparable magnitude, that is c = 0 and p∗ =

1−a
b+τ/2 , this response simplifies to

∂p∗j
∂ci

=
1

[1− a]
2

( τ2
1−a
b+τ/2 )−2 + 2 [1− a]

=
1

[1− a]
2

( τ2
1−a
b+τ/2 )−2 + 2 [1− a]

=
1

[2b/τ + 1]
2

+ 2 [1− a]
.

The limit for cA = cB = c → ∞, which implies p∗−c
p∗ → 0 and p∗ − c = 1

b+τ/2 ,

will be

∂p∗j
∂ci

=
1

[2b/τ + 1]
2

+ 2
.

4.8.2 Price dispersion with asymmetric costs

As it follows from Section 4.8.1 the price difference as a function of one of the
costs can be approximated by

∂p∗i
∂ci
−
∂p∗j
∂ci

=
−∂Hj∂pj

∂Hi
∂ci
− ∂Hj

∂pi
∂Hi
∂ci

∂Hj
∂pj

∂Hi
∂pi
− ∂Hj

∂pi
∂Hi
∂pj

. (4.26)

Taken at cA = cB = c, so that pi = pj = p∗, ∂Hi∂pi
=

∂Hj
∂pj

, ∂Hi∂pj
=

∂Hj
∂pi

, ∂Hi∂ci
=

∂Hj
∂cj

and ∂Hi
∂cj

=
∂Hj
∂ci

, equation (4.26) becomes
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∂p∗i
∂ci
−
∂p∗j
∂ci

=

= −
∂Hi
∂ci

(
∂Hj
∂pj

+
∂Hj
∂pi

)
(
∂Hi
∂pi

)2

−
(
∂Hi
∂pj

)2

=
∂Hi
∂ci

∂Hi
∂pj
− ∂Hi

∂pi

=
−2p∗g′(0) + ε(p∗)

1 + ε(p∗) + (p∗ − c)ε′(p∗)− 2g′(0)(2p∗ − c)− 8(p∗ − c)p∗g′2(0)

=
1

1 +
(
p∗−c
p∗

)2

(ε(p∗)− p∗ε′(p∗)) + 8(p∗ − c)2g′2(0)
,

where 2g′(0) = ε(p∗)
p∗ + 1

p∗−c and equation (4.23) were used in the simplification.

4.8.3 Proof of proposition 4.4

Since p∗ increases with the standard deviation σ of the recall error,
(
p∗−c
p∗

)2

ε∗

in equation (4.14) is decreasing in σ. Write now g′0(0)σ−1 for g′(0), following
equation (4.4). The last term in the denominator of equation (4.14) depends on
σ according to

d

dσ
(p∗ − c)2g′20 (0)σ−2 = 2(p∗ − c)g′20 (0)σ−3

[
σ
dp∗

dσ
− (p∗ − c)

]
. (4.27)

The sign of the derivative equals the sign of the term between brackets, be-
cause all other terms are strictly positive. Because a constant elasticity is being
considered, equation (4.8) is a quadratic equation with a closed form solution,
namely

p∗ =
c

2
+

σ

4g′0(0)

1 + ε∗ +

√(
1 + ε∗ +

2

σ
cg′0(0)

)2

− 8

σ
cg′0(0)ε∗

 .
The term σ dp

∗

dσ − (p∗ − c) in (4.27) is therefore equal to

σ
dp∗

dσ
− (p∗ − c) =

c

2

1−
2
σ cg
′
0(0) + 1− ε∗√(

1 + ε∗ + 2
σ cg
′
0(0)

)2 − 8
σ cg
′
0(0)ε∗

 .
Now notice that(

1 + ε∗ +
2

σ
cg′0(0)

)2

− 8

σ
cg′0(0)ε∗ =

(
2

σ
cg′0(0) + 1− ε∗

)2

+ 4ε∗

≤
(

2

σ
cg′0(0) + 1− ε∗

)2

,
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implying that the square root term is smaller than the numerator which shows
that the above expression is negative. Therefore the term σ dp

∗

dσ − (p∗ − c) is
negative and the last term in the denominator of equation (4.14) is decreasing
in σ. Hence the whole denominator is decreasing in σ.

69



70



Bibliography

Ainslie, G. (1991): “Derivation of ”rational” economic behaviour from hyper-
bolic discount curves,” American Economic Review, 81(2), 334–340.

(2010): “Pure hyperbolic discount curves predict ”eyes-open” self con-
trol,” Mimeo.

Al-Najjar, N. I., and J. Weinstein (2009): “The ambiguity aversion liter-
ature: A critical assessment,” Economics and Philosophy, 25, 249–284.

Alos-Ferrer, C., A. B. Ania, and K. R. Schenk-Hoppe (2000): “An
evolutionary model of bertrand oligopoly,” Games and Economic Behavior,
33(1), 1–19.

Ariely, D., and K. Wertenbroch (2002): “Procrastination, deadlines, and
performance: Self-control by precommitment,” Psychological Science, 13(3),
219–224.

Armantier, O., and N. Treich (2009): “Subjective probabilities in games:
an application to the overbidding puzzle,” International Economic Review,
50(4), 1079–1102.

Baye, M. R., and J. Morgan (2004): “Price dispersion in the lab and on
the internet: Theory and evidence,” RAND Journal of Economics, 35(3),
449–466.

Bewley, T. F. (2002): “Knightian decision theory: part 1,” Decisions in
Economics and Finance, 25(2), 79–110.

Bose, S., and A. Daripa (2009): “A dynamic mechanism and surplus extrac-
tion under ambiguity,” Journal of Economic Theory, 144(5), 2084–2114.

Bose, S., E. Ozdenoren, and A. Pape (2006): “Optimal auctions with
ambiguity,” Theoretical Economics, 1(4), 411–438.

Calvo, G. A. (1983): “Staggered prices in a utility-maximizing framework,”
Journal of Monetary Economics, 12(3), 383–398.

Camerer, C., and M. Weber (1992): “Recent developments in modeling
preferences: Uncertainty and ambiguity,” Journal of Risk and Uncertainty,
5, 325–370.

Carvalho, M. (2009): “Price Recall, Bertrand Paradox and Price Dispersion
With Elastic Demand,” Discussion Paper 2009-69, Tilburg University, Center
for Economic Research.

71



Chatterjee, K., and R. V. Krishna (2009): “A dual-self representation for
stochastic temptation,” American Economic Journal: Microeconomics, 1(2),
148–67.

Chen, Y., G. Iyer, and A. Pazgal (2005): “Limited memory and market
competition,” available at http://groups.haas.berkeley.edu/marketing/
PAPERS/IYER/Memory_july05_final.pdf.

Chen, Y., P. Katuscak, and E. Ozdenoren (2007): “Sealed bid auctions
with ambiguity: Theory and experiments,” Journal of Economic Theory,
136(1), 513–535.

DellaVigna, S., and U. Malmendier (2006): “Paying Not to Go to the
Gym,” American Economic Review, 96(3), 694–719.

Diamond, P. A. (1971): “A model of price adjustment,” Journal of Economic
Theory, 3(2), 156–168.
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