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Abstract

In this paper we propose a new methodology for selecting the window length in Singular

Spectral Analysis in which the window length is determined from the data prior to the com-

mencement of modeling. The selection procedure is based on statistical tests designed to

test the convergence of the autocovariance function. A classical time series portmanteau

type statistic and two test statistics derived using a conditional moment principle are consid-

ered. The first two are applicable to short–memory processes, and the third is applicable to

both short– and long–memory processes. We derive the asymptotic distribution of the statis-

tics under fairly general regularity conditions and show that the criteria will identify true

convergence with a finite window length with probability one as the sample size increases.

Results obtained using Monte–Carlo simulation indicate the relevance of the asymptotic the-

ory, even in relatively small samples, and that the conditional moment tests will choose a

window length consistent with the Whitney embedding theorem. Application to observa-

tions on the Southern Oscillation Index shows how observed experimental behaviour can be

reflected in features seen with real world data sets.

Keywords: Portmanteau type test, Conditional moment test, Asymptotic distribution, Lin-

ear regular process, Singular spectrum analysis, Embedding.

JEL Classification: C12, C22, C52

1 Introduction

Singular spectrum analysis (SSA) is a non-parametric technique that has gained popularity

in the analysis of meteorological (Ghil et al. 2002), bio-mechanical (Alonso et al. 2005) and

hydrological time series (Marques et al. 2006), and following its successful application in the

physical sciences, applications in economics and finance are now also finding favour (Hassani

& Zhigljavsky 2009). SSA is designed to look for both persistent and transitory behaviour

in an observed time series, and expositions of the basic ideas and methods can be found in

the monographs by Elsner & Tsonis (1996) and Golyandina et al. (2001).

∗Corresponding address: Don Poskitt, Department of Econometrics and Business Statistics, Monash Uni-
versity, Victoria 3800, Australia. Tel.:+61-3-9905-9378; fax:+61-3-9905-5474.
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In SSA the initial step consists of the construction of the, so called, trajectory matrix. Given

an observed time series {x1, x2, . . . , xN} of length N , xt ∈ R, and a user-specified window

length (or lag length) m where 2 ≤ m ≤ N/2, the trajectory matrix, X say, is obtained via

the embedding mapping H : {x1, x2, . . . , xN} 7→ X where

X = [x1 : . . . : xn] (1)

and xi = (xi, xi+1, . . . , xi+m−1)
′. The xi for i = 1, 2, . . . , n are known as the lagged vectors

of X, a Hankel matrix of order m by n = N − m + 1. Following the embedding three

further steps are used to determine a signal–plus–noise type model for the observed series;

(i) the singular value decomposition (SVD) of X, (ii) noise reduction and signal extraction

(component grouping), and finally, (iii) time series reconstruction. See Elsner & Tsonis (1996)

and Golyandina et al. (2001) for details.

If we let ℓ1 ≥ ℓ2 ≥ . . . ,≥ ℓm ≥ 0 denote the ordered eigenvalues of the GramianG = n−1XX′,

and denote by U1, . . . ,Um the associated orthonormal system of eigenvectors, then the row

space of the trajectory matrix has dimension d where d = max{i : ℓi > 0} and X can be

expressed exactly as the sum of d ≤ m rank one projections;

X = X1 + · · ·+Xd (2)

wherein Xi =
√
nℓiUiV

′
i where Ui and Vi = X′Ui/

√
nℓi are the ith left and right eigenvec-

tors of X, and
√
nℓi is the ith singular value. The SVD of X is the fundamental operation

underlying SSA and it is apparent from the decomposition in (2) that the window size m

will be an important factor in determining the outcome of any further analysis and, indeed,

that the choice of window length could be critical in assessing any eigenstructure inherent

in the properties of the original time series.

The standard approach to window length selection is to determine a value for m large enough

to ensure that the signal and noise components are easily (in the terminology of SSA) sepa-

rated. This is achieved by calculating a weighted correlation between the reconstructed signal

and noise components and the window length corresponding to the minimum weighted cor-

relation is selected for further analysis. This approach involves the use of an image plot of

the weighted correlation matrix for different window lengths and the selected window length

is supposed to provide a ’clear view’ of the orthogonality of the components. Given that the

components in the SVD are orthogonal by construction, the weighted correlation is likely

to be small for various different window lengths, and in the absence of clear cut statistical

decision rules and with few guidelines on how to set appropriate thresholds, the associated

modeling entails substantial subjective assessment.

Some recent studies have used window lengths proportional to the perceived periodicity

of the data, m = ℓω where ω is the frequency and ℓ is an integer such that ℓω ≤ N/2

(Hassani & Zhigljavsky 2009, for example). Assuming that ω is known, the value of ℓ,

and hence m, is chosen using the pattern recognition techniques as just outlined, but see

also Golyandina (2010). For some additional discussion of different aspects of the currently
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prevailing methods of window length selection see Elsner & Tsonis (1996, Chapter 5) and

Golyandina et al. (2001).

In this paper we propose a methodology in which m is determined from the data prior to the

construction of the trajectory matrix and commencement of the SSA modeling. In this we

are motivated by the fact that Khan & Poskitt (2010) have developed a description length

principle that enables the user to consistently extract signal components (both theoretically

and in practice) given a preassigned window length compatible with the Whitney embedding

theorem. The techniques that we develop are related to the work of Tzagkarakis et al. (2009),

who selected the window length as the point of first crossing of a confidence interval (CI)

for the sample autocorrelation function (SACF). Although this might be appropriate for the

type of data examined in Tzagkarakis et al. (2009), in general the point of first crossing of a

(”white noise” 95%) CI by the SACF does not represent a time interval beyond which there

is no memory left in the process. Rather it is the overall profile and convergence properties

of the autocovariance function that characterize the properties of the process and it is this

feature that the procedures developed in this paper attempt to exploit.

To obtain an appropriate statistical decision rule we need to specify the class of processes to

be analyzed, this we do in the following section. Given appropriate regularity, Section 3 shows

how some classical results in time series analysis can be used to construct a portmanteau

type statistic that can be employed to determine window length. Section 4 then outlines

a conditional moment procedure that leads to a test statistic that can also be employed to

select m in a similar manner, but which does not suffer from the drawbacks inherent in using

the portmanteau type statistic. Section 5 indicates how the conditional moment procedure

can be appropriately modified so as to yield a window selection method that can be applied

to both short range and long range dependent processes.

2 Regularity

Let xt denote a stochastic process of interest, and let X t
−∞ denote the linear manifold deter-

mined by xs, s ≤ t, and X∞
t the linear manifold determined by xs, s ≥ t.2

Definition 1 A stationary process xt is linearly regular (nonsingular) if and only if X−∞ =
⋂∞

s=0X t−s
−∞ = 0 and linearly singular (deterministic) if and only if X−∞ = X =

⋃∞
s=−∞X t−s

−∞.

From the argument presented in Ibragimov & Linnik (1971, Section 17.1) we can deduce the

following result.

Theorem 1 A necessary and sufficient condition for xt to be a linearly regular, stationary

process is that, for all ζ ∈ X with E[ζ2] <∞,

lim
t→−∞

supξ|E[ξζ]− E[ξ]E[ζ]| = 0 ,

2Following common practice our notation does not distinguish between a stochastic process and realized
values of that process. The required meaning should be readily apparent from the context.
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where the supremum is taken over all ξ ∈ X t
−∞ with E[ξ2] <∞.

Theorem 1 conveys the idea that for a linearly regular process events become uncorrelated

(orthogonal) with increasing separation, and if we suppose that xt for t ∈ Z is a linearly

regular, covariance-stationary process, with mean E[xt] = µ and autocovariance function

E[(xt − µ)(xt+h − µ)] = γ(h), an obvious implication of the theorem is that |γ(k)| → 0 as

k → ∞.

In order to illustrate the significance of linear regularity for SSA consider the structure of

the trajectory matrix. Theorem 1 indicates that values of the process separated by more

than m time periods will be (roughly) uncorrelated when m is sufficiently large. This means

that the first and mth row of X will be almost orthogonal,

X =




x1 x2 x3 . . . xn

x2 x3 x4 . . . xn+1

...
...

... . . .
...

xm xm+1 xm+2 . . . xN




⇐

⇐





Orthogonal ,

and we can think of these two rows (heuristically) as uncorrelated realizations of the process,

each of length n. Now, supposing for simplicity that E[xt] = 0, for any choice of window

length m ∈ [2, N/2] we have Γ = E[G] = n−1
∑n

i=1E[xix
′
i], which by ergodicity yields the

Toeplitz matrix

Γ =




γ(0) γ(1) · · · γ(m− 2) γ(m− 1)

γ(0) · · · · γ(m− 2)
. . .

...

− · ·− γ(0) γ(1)

γ(0)




as the almost sure limit of the Gramian from which the SVD of X is constructed. Again,

this suggests selecting the value of m such that |γ(k)| < δ for all k > m where δ small.

In practice γ(k) will not be known and must be estimated from the data, x1, x2, . . . , xN ,

which is now, of course, assumed to be a realization of the process xt of length N . Set

x̄ = N−1
∑N

t=1 xt and denote the SACF by ρ̂(k) = γ̂(k)
γ̂(0) , k = 0, 1, . . . , N − 1, where the kth

sample autocovariance

γ̂(k) =
1

N

N∑

t=k+1

(xt − x̄)(xt−k − x̄) , k = 0, 1, . . . , N − 1 . (3)

If we are to base the choice of lag window length on the SACF we must obviously allow for

sampling variability.
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More often than not, the starting point for deriving the sampling properties of γ̂(k) and

ρ̂(k) is Wold’s representation theorem, namely, that if xt is a linearly regular, covariance-

stationary process then xt can be expressed as

xt = µ+
∞∑

j=0

κ(j)εt−j (4)

where εt is a zero mean white noise (innovation) process with variance σ2. The coefficients of

the transfer function k(z) =
∑

j≥0 κ(j)z
j satisfy the conditions κ(0) = 1 and

∑
j≥0 κ(j)

2 <

∞. If 0 <
∑

j≥0 |κ(j)| < ∞ then xt is said to be a short memory processes, whereas if
∑

j≥0 |κ(j)| = ∞ then xt is said to exhibit long memory, see Beran (1994) or Palma (2007).

This division of linearly regular processes into short and long memory series according to

the speed of decay of their impulse response coefficients proves to be of crucial importance

in our subsequent analysis.

3 Short Memory Processes and a Portmanteau Type Test

To begin we state a classical theorem concerning the sampling properties of the sample

autocovariances.

Theorem 2 If xt is a linear regular process with short memory, driven by independent and

identically distributed innovations εt with zero mean, variance σ2 and finite fourth moment

E
[
ε4t ] = ησ4 <∞, then for any non–negative integer k

√
N(γ̂(0) − γ(0), . . . , γ̂(k)− γ(k))

D→ N (0,Ω)

where (Bartlett’s formula)

Ω = [

∞∑

s=−∞

{γ(s + p)γ(s+ q) + γ(s− q)γ(s+ p)}+ (η − 3)γ(p)γ(q)]p,q=0,...,k .

Theorems of this type can be traced back to the pioneering work of Bartlett (1946), for a proof

see Brockwell & Davis (1991, Proposition 7.3.4). In what follows we will continue to assume

that the innovations are independent and identically distributed with zero mean, variance σ2

and finite fourth moment ησ4 {henceforth abbreviated to i.i.d.(0, σ2, η)}. As pointed out in

Hannan & Heyde (1972), however, if independence is replaced by the imposition of a classical

martingale difference structure – E
[
εt | Et−1

]
= 0 and E

[
ε2t | Et−1

]
= σ2 where Et denotes the

σ-algebra of events determined by εs, s ≤ t – then subject to only mild additional conditions

the classical theory goes through (See also Fuller 1996, Chapter 6, Exercises 23 & 24).

The quintessential example of short memory is an M–dependent process, for which X∞
t+s

and X t
−∞ are uncorrelated (orthogonal) for all s > M , and the process can be expressed as

xt = µ +
∑M

j=0 κ(j)εt−j . This means that γ(k) = 0 for all k > M and the autocorrelation

function ρ(k) = γ(k)
γ(0) is null for |k| > M . Specializing Theorem 2 and Bartlett’s formula to
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the M–dependent case it is easy to show the following result. (c.f. Brockwell & Davis 1991,

Theorem 7.2.1, Remark 1.)

Theorem 3 If xt is an M -dependent process with i.i.d.(0, σ2, η) innovations then for all

k > M and any non–negative integer h

√
N(ρ̂(k), . . . , ρ̂(k + h))

D→ (ζ1, . . . , ζh)

where ζj =
∑M

r=−M ρ(r)Zj−r and the Zs are independent standard normal, i.i.d. N (0, 1).

To formulate a statistical decision rule suitable for window length selection in SSA, let us

now consider testing the null hypothesis H0: xt is an m-dependent process.

Proposition 1 Let ρ̂′ = (ρ̂(m + 1), . . . , ρ̂(m + h)) and set PTTm(h) = N ρ̂′Ω̂−1ρ̂ where

Ω̂ = [ω̂pq]p,q=1,...,h

ω̂pq =

m−|p−q|∑

s=−m

ρ̂(s)ρ̂(s+ |p− q|) , |p− q| ≤ 2m

= 0 , |p − q| > 2m.

Suppose that xt is a linear regular process with i.i.d.(0, σ2, η) innovations. Then under H0 the

statistic PTTm(h)
D→ χ2

h where χ2
h denotes the χ2-distribution with h degrees of freedom. The

critical region
{
PTTm(h) ≥ χ2

h(1− p)
}
, where χ2

h(1 − p) denotes the χ2
h quantile function,

has asymptotic size p and yields a consistent test of H0 against the alternative H1 that

ρ = (ρ(m+ 1), . . . , ρ(m+ h)) 6= 0.

PROOF: The null distribution of PTTm(h) follows as a direct consequence of Theorem

3. That
{
PTTm(h) ≥ χ2

h(1− p)
}

provides an asymptotic critical region of size p is then

obvious. Consistency follows by observing that plimρ̂ = ρ and Ω̂ converges to a positive

definite matrix, Ω say. If ρ 6= 0 then ρ′Ω−1ρ > 0 and for any δ > 0

lim
N→∞

Pr

[∣∣∣∣
PTTm(h)

N
− ρ′Ω−1ρ

∣∣∣∣ < δ

]
= 1 .

Setting 0 < δ < ρ′Ω−1ρ it follows that for all N > χ2
h(1− p)/(ρ′Ω−1ρ− δ) we have

Pr
[
PTTm(h) > χ2

h(1− p)
]

= Pr

[
PTTm(h)

N
>
χ2
h(1− p)

N

]

≥ Pr

[
PTTm(h)

N
> ρ′Ω−1ρ− δ

]

≥ Pr

[∣∣∣∣
PTTm(h)

N
− ρ′Ω−1ρ

∣∣∣∣ < δ

]
,

and, as we have just seen, the later converges to one as N increases. We can therefore

conclude that limN→∞ Pr
[
PTTm(h) > χ2

h(1− p)
]
= 1 under H1.

We can now contemplate calculating PTTm(h) for a sequence of values m ≤ N/2 and choos-

ing for m a value beyond which H0 is regularly deemed to be acceptable.
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REMARK 1: The hypothesis H0 may seem over-restrictive in its current guise, but by the

Weierstrass (trigonometric) approximation theorem we know that if xt is a linear regular

process, then for any ǫ > 0 there exists an M -dependent process with transfer function

kM (eıω) such that ||k(eıω)|2 − |kM (eıω)|2| < ǫ, ω ∈ [−π, π]. If γM (k) denotes the autocovari-

ance of such an M–dependent process then this implies that |γ(k) − γM (k)| < σ2ǫ. Hence

H0 is equivalent to the hypothesis that xt can be approximated arbitrarily closely by an

M -dependent process and that |γ(k)| < δ = σ2ǫ for all k > M = m.

REMARK 2: Note that when m = 0, implying that xt = εt, the covariance matrix Ω̂

collapses to the identity and PTT0(h) is equivalent to the Box & Pierce (1970) portmanteau

statistic N
∑h

r=1 ρ̂(r)
2.

To examine the performance of PTTm(h) we generated observations from an M–dependent

process using the coefficients from Spencer’s 15 point moving average smoothing filter. The

data generating mechanism was taken as the (two–sided) MA(q) process

xt = εt −
q∑

i=−q

θiεt−i

where θi = θ−i and εt is i.i.d. N (0, 1), the coefficients for Spencer’s 15 point moving average

smoothing filter being

{θ0, θ1, . . . , θ7} = {0.231, 0.209, 0.144, 0.066, 0.009,−0.016,−0.019,−0.009} .

Figure 1 plots two typical realizations of this process with sample size N = 500. The

0 100 300 500

−2
0

2
4

0 100 300 500

−3
−1

1
3

Figure 1: Typical realizations of Spencer’s 15 point moving average process

operation of Slutsky’s effect (Slutzky 1937) is apparent despite the fact that the coefficients

are small (the smallest root of
∑q

i=0 θiz
i has modulus |z| = 1.5707).

Figure 2 depicts the average value of ρ̂(m) and the average value of pm = Prob(χ2
h >

PTTm(h)), the average p–value evaluated from PTTm(h), with h =
√
N , computed from

10000 realizations of the process with N = 500. To provide points of reference the theoretical

value ρ(m), the white noise 95% CI ±1.96/
√
N , and p = 0.5, are also plotted in Figure 2.

The inappropriateness of the point of first crossing of the white noise CI as a choice for m

in this case is obvious. Under H0 the p–values should be uniformly distributed on the unit

interval and we therefore expect the values of pm to equal 0.5 for allm ≥ 15 and to be less than

0.5 otherwise. Examination of the p–values generated by PTTm(h) reveals that at this sample

size this criterion will most likely select a window lengthm = 10. Unfortunately, however, the
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Figure 2: Average p-value PTTm(h), 10000 replications of Spencer’s 15-point moving average pro-
cesses with N = 500.

average value of pm for m > 10 increases monotonically, indicating that Prob(pm ≤ p) < p

and PTTm(h) is undersized.3 The tendency for portmanteau type tests to exhibit low power

is well known and this has lead investigators to examine various modifications (Newbold

1981, Section 3). Rather than seeking to modify PTTm(h), in the following section we will

consider a different approach that enables us to consider further reaching adaptations that

facilitate application to long range dependent processes.

4 A Conditional Moment Test

Suppose that features of a process xt are characterized by a parameter θ1 = (θ11, . . . , θ1p)
′,

and we can specify p moment conditions µ1(θ1) with E[µ1(θ1)] = 0 that exactly identify θ1.

A set of q auxiliary moment conditions µ2(θ1,θ2) where θ2 = (θ21, . . . , θ1q)
′ that we wish to

use to test other features of the process are also available. The auxiliary moment conditions

are constructed so that E[µ2(θ1,θ2)] = 0 and the augmented set of moments

µa(θ) =

[
µ1(θ1)

µ2(θ1,θ2)

]
,

where θ = (θ′1,θ
′
2)

′, are such that ∂µa(θ)/∂θ′ is continuous in θ and E[∂µa(θ)/∂θ′] has full

column rank. We will also suppose that there exists a diagonal matrix

DN = diag(D1N ,D2N ) = diag(diN , . . . , dpN , d(p+1)N , . . . , d(p+q)N ) ,

where diN , i = 1, . . . , p+q are monotonically increasing sequences inN , such thatDNµ
a(θ) =

Σ
1

2ZN +op(1) where Σ is positive definite and ZN
D→ N (0, I). We will refer these conditions

collectively as Assumption MC.

3The use of Henderson’s 13 point moving average smoothing filter with coefficients {θ0, θ1, . . . , θ6} =
{0.240, 0.214, 0.147, 0.066, 0,−0.028,−0.019} produced qualitatively identical outcomes.
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Theorem 4 Suppose that there exists a set of sample moments

ma(θ) =

[
m1(θ1)

m2(θ1,θ2)

]

such that ‖ma(θ) − µa(θ)‖ → 0 and ‖∂(ma(θ) − µa(θ))/∂θ′‖ → 0 uniformly in θ as N →
∞ and ‖DN (ma(θ) − µa(θ))‖ = op(1) where µa(θ) obeys Assumption MC. Set Σ2|1 =

Σ22 − Σ21Σ
−1
11 Σ12 and let θ̂1 denote the method of moments estimator obtained by solving

m1(θ̂1) = 0. Then under the null hypothesis H0 : θ2 = θ20

QCM = m2(θ̂1,θ20)
′D2NΣ−1

2|1D2Nm2(θ̂1,θ20)
D→ χ2

q , (5)

whilst under the sequence of local alternative hypothesis H1N : θ2 = θ20 +D−1
2Nδ, 0 < ‖δ‖ <

∞, the distribution of QCM is contiguous to a noncentral Chi-squared distribution with

degrees of freedom q and noncentrality parameter λN , χ2
q{λN}, where

λN = δ′D−1
2N

∂m′
2(θ1,θ2)

∂θ2
D2NΣ−1

2|1D2N
∂m2(θ1,θ2)

∂θ′2
D−1

2Nδ .

PROOF: Let

µ2|1(θ) = µ2(θ1,θ2)−D−1
2NΣ21Σ

−1
11 D1Nµ1(θ1) . (6)

By the continuous mapping theorem D2Nµ2|1(θ)
D→ N (0,Σ2|1) and the corresponding

quadratic form µ2|1(θ)
′D2NΣ−1

2|1D2Nµ2|1(θ) converges to a Chi–squared random variable

with q degrees of freedom. Replacing µ1(θ1) by m1(θ1) and µ2(θ1,θ2) by m2(θ1,θ2) in (6)

gives us

m2|1(θ) = m2(θ1,θ2)−D−1
2NΣ21Σ

−1
11 D1Nm1(θ1) (7)

and we can infer via Slutsky’s theorem that

m2|1(θ)
′D2NΣ−1

2|1D2Nm2|1(θ)
D→ χ2

q (8)

since ‖D2N (m2|1(θ)− µ2|1(θ))‖ = op(1).

Now, the sample moments m1(θ1) exactly identify θ1 and solving m1(θ̂1) = 0 yields a

consistent estimate θ̂1 of θ1. Thus, under the null hypothesis H0 : θ2 = θ20 the vector

θ̂0 = (θ̂
′

1,θ
′
20)

′ provides a consistent estimate of θ. Substituting θ̂0 for θ in (7) and (8) we

are therefore lead to the conclusion that under H0 the quadratic form QCM
D→ χ2

q.

Applying the mean value theorem (Apostol 1960, Section 6.8) to m2(θ̂1, ·) gives

m2(θ̂1,θ20) = m2(θ̂1,θ2) +
∂m2(θ̂1,θ

∗
2)

∂θ′2
(θ20 − θ2)

where ‖θ∗2 − θ2‖ ≤ ‖θ20 − θ2‖. Substituting (θ̂
′

1,θ
′
2)

′ for θ in (7) and (8), and noting that

‖θ̂1 − θ1‖ = op(1) and ‖θ20 − θ2‖ = ‖D−1
2Nδ‖ → 0 as N → ∞ under H1N , we can now infer

that

∇m2(θ̂1,θ20)
′D2NΣ−1

2|1D2N∇m2(θ̂1,θ20)
D→ χ2

q ,
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where ∇m2(θ̂1,θ20) = m2(θ̂1,θ20) − (∂m2(θ1,θ2)/∂θ
′
2)D

−1
2Nδ. It follows that under H1N

the distribution of QCM is contiguous to

χ2
q

{
δ′D−1

2N

∂m′
2(θ1,θ2)

∂θ2
D2NΣ−1

2|1D2N
∂m2(θ1,θ2)

∂θ′2
D−1

2Nδ

}
.

REMARK 3: The null hypothesis H0 is here being implicitly tested against H1N subject

to the constraints embedded in the moment conditions m1(θ1) that define the estimator θ̂1

being maintained. It is for this reason that we employ the nomenclature conditional moment

test.

REMARK 4: As an example of the need to consider non–standard normalization suppose,

at the risk of getting slightly ahead of ourselves, that xt is a fractionally integrated long

memory process with mean µ and index d ∈ (0.0, 0.5). If θ11 = µ and the first component

of the augmented moments is µ11(θ1) = N−1
∑N

t=1(xt − µ) = x̄ − µ then in order for

Assumption MC to hold it will be necessary to set d1N = N
1

2
−d because the re–normalized

average N
1

2
−d(x̄ − µ)

D→ N (0, ω2) where ω = {σφ(1)}2Γ(1 − 2d)/(1 + 2d)Γ(1 + d)Γ(1 − d),

see Hosking (1996, Theorem 8).

To construct an explicit formula for the test statistic assume the auxiliary moments are

structured such that D2N = N
1

2 Iq and, for ease of notation, denote m2(θ̂1,θ20) by m2(θ̂0).

From Theorem 4 we can conclude that under H0 the statistic

CMS = Nm2(θ̂0)
′[Σ̂22 − Σ̂21Σ̂

−1
11 Σ̂12]

−1m2(θ̂0)
D→ χ2

q (9)

for any consistent estimate Σ̂ of Σ. To complete the specification of CMS let us rewrite the

moment conditions in the form

m1(θ1) =
1

N

N∑

t=1

z1t(θ1) and m2(θ1,θ2) =
1

N

N∑

t=1

z2t(θ1,θ2)

where z1t(θ1) and z2t(θ1,θ2) are suitably defined functions of the parameters and the data.

Set i = (1, 1, . . . , 1)′, the N × 1 sum vector, and let

Ẑ′
1 = [z11(θ̂1), . . . , z1N (θ̂1)] and Ẑ′

20 = [z21(θ̂1,θ20), . . . , z2N (θ̂1,θ20)] .

Then by construction

ma(θ̂0) =

[
m1(θ̂1)

m2(θ̂1,θ20)

]
=

1

N

[
Ẑ′
1i

Ẑ′
20i

]
=

[
0

m2(θ̂0)

]
.

If under H0 the zat (θ) = [z1t(θ1)
′, z2t(θ1,θ2)

′]′ form a serially uncorrelated (orthogonal)

sequence then

Σ̂ =

[
Σ̂11 Σ̂21

Σ̂21 Σ̂22

]
=

1

N

N∑

t=1

zat (θ̂0)z
a
t (θ̂0)

′ =
1

N

[
Ẑ′
1Ẑ1 Ẑ′

1Ẑ20

Ẑ′
20Ẑ1 Ẑ′

20Ẑ20

]

10



yields a consistent estimate of Σ and in terms of the zed matrices the test statistic in (9)

becomes

CMS = i′Ẑ20[Ẑ
′
20Ẑ20 − Ẑ′

20Ẑ1(
′Ẑ′

1Ẑ1)
−1Ẑ′

1Ẑ20]
−1Ẑ′

20i . (10)

In this form the statistic is ideally suited for numerical implementation because we can

re–write (10) as

CMS =
[
i′Ẑ1 , i

′Ẑ20

] [ Ẑ′
1Ẑ1 Ẑ′

1Ẑ20

Ẑ′
20Ẑ1 Ẑ′

20Ẑ20

]−1 [
Ẑ′
1i

Ẑ′
20i

]
,

which is N times the coefficient of determination from the regression of i on Ẑ1 and Ẑ20.

More generally, the elements of the vector zat (θ) will not be serially uncorrelated. In this

case the covariance matrix of
√
Nma(θ) is

Σ =
1

N

N∑

t=1

N∑

s=1

E[zat (θ)z
a
s(θ)

′]

=
1

N

(
N∑

t=1

E[zat (θ)z
a
t (θ)

′] +

N−1∑

r=1

N∑

t=r+1

E
[
zat (θ)z

a
t−r(θ)

′ + zat−r(θ)z
a
t (θ)

′
]
)
,

which we can estimate using the heteroskedasticity and autocorrelation consistent (HAC)

estimator

Σ̂HAC =

N−1∑

r=1−N

k

(
r

BN

)
Γ̂a
0(r) ,

where

Γ̂a
0(r) =

1

N

N∑

t=r+1

zat (θ̂0)z
a
t−r(θ̂0)

′ r = 0, 1, . . . , N − 1 ,

k(·) is a positive semidefinite kernel, such as the Parzen or quadratic spectral kernel, and the

bandwidth parameter BN increases with N such that BN/N → 0 as N → ∞. For a detailed

discussion of the properties of HAC estimators see Andrews (1991) and Hansen (1992).

By way of illustration, suppose that xt is a linear regular, short memory process. Let

θ1 = (µ, γ(0))′, p = 2, and θ2 = (ρ(m+ 1), . . . , ρ(m+ h))′, q = h. Set

µ1(θ1) =

[
N−1

∑N
t=1(xt − µ)

N−1
∑N

t=1(xt − µ)2 − γ(0)

]
(11)

and

µ2(θ1,θ2) =




∑
N

t=1
(xt−µ)(xt−m−1−µ)

Nγ(0) − ρ(m+ 1)
...

∑
N

t=1
(xt−µ)(xt−m−h−µ)

Nγ(0) − ρ(m+ h)


 .

Then µa(θ) satisfies Assumption MC, the required asymptotic normality following from

Theorem 2 with diN = N
1

2 , i = 1, . . . , p + q.
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Let m1(θ1) = µ1(θ1) where µ1(θ1) is defined as in (11), and set

m2(θ1,θ2) =

[∑N
t=m+s+1(xt − µ)(xt−m−s − µ)

Nγ(0)
− ρ(m+ s)

]

s=1,...,h

.

Then θ̂1 = (x̄, s2x) where x̄ = N−1
∑N

t=1 xt and s
2
x = N−1

∑N
t=1(xt − x̄)2, and under the null

hypothesis H0 : θ2 = 0, i.e. that ρ(m+ s) = 0 for s = 1, . . . , h,

m2(θ̂0) =

[∑N
t=m+s+1(xt − x̄)(xt−m−s − x̄)

Ns2x

]

s=1,...,h

.

For the zed variables we have m1(θ1) = N−1
∑N

t=1 z1t(θ1) where z1t(θ1)
′ = [(xt − µ), (xt −

µ)2 − γ(0)], and m2(θ1,θ2) = N−1
∑N

t=1 z2t(θ1,θ2) where

z2t(θ1,θ2)
′ =

[
(xt−µ)(xt−m−1−µ)

γ(0) − ρ(m+ 1), . . . ,
(xt−µ)(xt−m−h−µ)

γ(0) − ρ(m+ h)
]

and it is understood that any element of z2t(θ1,θ2) containing a time subscript that is not

positive is replaced by zero.

A simple manipulation indicates that with this choice of moments the statistic in (9) can

be re–written as N ρ̂′Ω̃−1ρ̂ and is equivalent to a portmanteau type statistic similar to

PTTm(h) that employs a different covariance estimate. When CMS is evaluated using

Σ̂ = Σ̂HAC calculated from z1t(θ̂1) and z2t(θ̂1,0) as specified immediately above the statistic

will therefore be designated PMHACTm(h).

To illustrate the differences in the performance of PMHACTm(h) and PTTm(h) Figure 3

depicts the average value of ρ̂(m) and the average p–value, pm = Prob(χ2
h > PMHACTm(h))

with h =
√
N , N = 500, computed from the same 10000 realizations of Spencer’s 15

point moving average smoothing filter process as used in the construction of Figure 2. For

PMHACTm(h) we used the Tukey–Hanning kernel with the optimal mean squared error

bandwidth BN = (2/3)N1/5. As in Figure 2 ρ(m), ±1.96/
√
N and p = 0.5 are also plotted

to provide points of reference. Comparison of the p–values in Figures 2 and 3 indicates

0 5 10 15 20 25
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p̂m
0.5
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Figure 3: Average p-value PMHACTm(h), 10000 replications of Spencer’s 15-point moving average
processes with N = 500.

that PMHACTm(h) behaves similarly to PTTm(h), but PMHACTm(h) seems more likely to
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choose a value of m = 11 rather than 10, and the average value of pm for m > 14 is very

stable around 0.5, indicating that PMHACTm(h), unlike PTTm(h), is correctly sized.

5 Long Range Dependence and Testing for Convergence

The class of fractionally integrated FI(d) processes can be characterized by the specification

xt = µ+
∑

j≥0 κ(j)εt−j wherein

k(z) =
φ(z)

(1− z)d

and φ(z) =
∑

j≥0ϕ(j)z
j . If

∑
j≥0 |ϕ(j)| <∞ then it can be shown that

κ(j) ∼ φ(1)

Γ(d)
jd−1 as j → ∞ . (12)

If |d| < 0.5 then
∑

j≥0 |κ(j)|2 < ∞ and xt is well-defined as the limit in mean square of a

linearly regular, covariance-stationary process. We note that;
∑

j≥0 |κ(j)| < ∞ when d ≤ 0

and xt is a short memory process with
∑∞

k=−∞ |γ(k)| <∞,
∑

j≥0 |κ(j)| = ∞ when d > 0 and

xt is a long range dependent process with |γ(k)| ∼ Ck2d−1 as k → ∞. For a more detailed

examination of the properties of FI(d) processes see Beran (1994) and Palma (2007).

Long range dependence presents us with a problem in the context of window selection in SSA

for two basic reasons: First, PTTm(h) and PMHACTm(h) both test the significance of the

sample autocorrelations ρ̂(k) for k > m. As pointed out in Hosking (1996), for long memory

processes the bias of the sample autocorrelations can be substantial – a feature that is clearly

illustrated in Figure 5 below. This bias decays very slowly as the sample size increases and

is likely to impact adversely on the performance of both test statistics even in moderate to

large samples; Second, and more critically, if xt is long range dependent then Theorem 2

does not hold, nor do the conditions for application of Theorem 4 when d > 0.25, and neither

theorem can be simply reinstated. In particular, the usual standardization of γ̂(k) − γ(k)

by N1/2 to achieve asymptotic normality does not work for every d ∈ (0.0, 0.25], and when

d ∈ (0.25, 0.5) the cumulants of N1−2d(γ̂(k) − γ(k)) convergence to those of a Rosenblatt

distribution (Hosking 1996, Theorem 4). So the asymptotic theory upon which the previous

tests are based breaks down irretrievably.

To overcome these problems we propose selecting a value of m by devising a stochastic

convergence criterion that does not test the significance of the sample autocorrelations. In-

terestingly enough, Hosking has shown that by considering differences in the autocovariances

asymptotic Normality can be accomplished with the conventional N1/2 standardization.

Theorem 5 (Hosking 1996, Theorem 5): Suppose that xt is a linear regular FI(d) process

where |d| < 0.5. Let υ(τ) = γ(τ)− γ(0) and set υ̂(τ) = γ̂(τ)− γ̂(0). Then
√
N{υ̂(τ)−υ(τ)},

for τ = 1, . . . , h, have a non-degenerate multivariate Normal limiting distribution with mean

13



zero and covariance matrix

Ω =

[
1

2

∞∑

s=−∞

(γ(s)− γ(s− k)− γ(s+ l) + γ(s − k + l))2 + (η − 3)υ(k)υ(l)

]

k,l=1,...,h

Theorem 5 indicates that in order to obtain statistics that are
√
N -consistent and asymp-

totically Normal for all d with |d| < 0.5 we must use appropriate functions of υ(τ) and

υ̂(τ).

Now consider testing that the autocovariance function γ(k) has converged. Cauchy’s conver-

gence criterion states that for every δ > 0 there exists an m such that |γ(k)−γ(l)| < δ for all

k, l > m. This implies that for all m such that |γ(k)| < 0.5γ(0), k > m, the ratio υ(k)/υ(l)

will be arbitrarily close to one, for

υ(k)

υ(l)
= 1 +

γ(k)− γ(l)

υ(l)

and ∣∣∣∣
γ(k)− γ(l)

υ(l)

∣∣∣∣ <
2δ

γ(0)

where δ can be taken arbitrarily small for m sufficiently large. This suggests that we can

test the hypothesis H0 : |γ(k)| < δ for all k > m by examining the deviations of υ̂(m +

k)/υ̂(m + h + 1), k = 1, . . . , h, from unity, because the ratios υ̂(m + k)/υ̂(m + h + 1) are

continuous functions of the υ̂(τ) of Theorem 5 and are therefore asymptotically Normal with

mean υ(m+k)/υ(m+h+1) and an asymptotic variance–covariance that can be evaluated by

the delta method, and as we have just shown under H0 we have υ(m+ k)/υ(m+ h+1) ≈ 1.

To apply the conditional moment principle set

µa(θ) =

[
µ1(θ1)

µ2(θ1,θ2)

]
=

1

N

N∑

t=1




xt − µ

(xt − µ)(xt−m−h−1 − xt)− υ(m+ h+ 1)
(xt−µ)(xt−m−1−xt)

υ(m+h+1) − υ(m+1)
υ(m+h+1)

...
(xt−µ)(xt−m−h−xt)

υ(m+h+1) − υ(m+h)
υ(m+h+1)




wherein θ1 = (µ, υ(m + h + 1))′, p = 2, and θ2 = υ(m + h + 1)−1(υ(m + 1), . . . , υ(m + h))

with q = h. Then µa(θ) satisfies Assumption MC with d1N = N
1

2
−d and diN = N

1

2 ,

i = 2, . . . , p+ q (Hosking 1996, Theorems 5 and 8). The corresponding sample moments are

ma(θ) =

[
m1(θ1)

m2(θ1,θ2)

]
=

1

N

N∑

t=1

[
z1t(θ1)

z2t(θ1,θ2)

]

where

z1t(θ1)
′ =

[
xt − µ , (xt − µ)(xt−m−h−1 − xt)− υ(m+ h+ 1)

]
(13)

and

z2t(θ1,θ2)
′ =

[
(xt−µ)(xt−m−1−xt)

υ(m+h+1) − υ(m+1)
υ(m+h+1) , . . . ,

(xt−µ)(xt−m−h−xt)
υ(m+h+1) − υ(m+h)

υ(m+h+1)

]
, (14)
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with xt−s − xt = µ − xt whenever t ≤ s. Let ∆̂ = Σ̂22 − Σ̂21Σ̂
−1
11 Σ̂12 where Σ̂ = Σ̂HAC is

calculated using zat (θ̂0) = [z1t(θ̂1)
′, z2t(θ̂1,θ20)

′]′ with z1t(θ1) and z2t(θ1,θ2) defined as in

(13) and (14), and θ̂1 = (x̄, υ̂(m + h + 1))′ and θ20 = i′ = (1, . . . , 1). Appeal to Theorem 4

now yields the following result.

Proposition 2 Let ψ̂
′
m = (ψ̂m(1), . . . , ψ̂m(h)) where ψ̂m(k) = υ̂(m + k)/υ̂(m + h + 1) − 1

and set CMHACTm(h) = Nψ̂
′
m∆̂

−1
ψ̂m. Suppose that xt is a linear regular FI(d) process

with |d| < 0.5 that is driven by i.i.d.(0, σ2, η) innovations. Then under the null hypothesis

H0 : θ2 = i the statistic CMHACTm(h)
D→ χ2

h, and under the Pitman sequence H1N : θ2 =

i′ +N− 1

2δ CMHACTm(h)
D→ χ2

h{δ′∆−1δ} where ∆ = plimN→∞∆̂.

As previously, we can now contemplate calculating CMHACTm(h) for a sequence of values

m < N/2 and choosing for our window length the first value of m for which H0 is not

rejected.

Since CMHACTm(h) is applicable to both short and long memory processes we present in

Figure 4 the counterpart to Figures 2 and 3, with CMHACTm(h) calculated using the Tukey–

Hanning kernel as previously. The behaviour of CMHACTm(h) seen here closely resembles
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Figure 4: Average p-value CMHACTm(h), 10000 replications of Spencer’s 15-point moving average
processes with N = 500.

that of PMHACTm(h) as seen in Figure 3. The interesting feature of this graph is that the

observed p-values are in close accord with Proposition 2, they indicate that pm = Prob(χ2
h >

CMHACTm(h)) is such that under H1N Prob(pm ≤ p) ≫ p when m ≤ 8, and as the value of

δ′∆−1δ falls as m increases Prob(pm ≤ p) decreases until Prob(pm ≤ p) = p for all m ≥ 15

under H0.

To further explore the behaviour of CMHACTm(h) data from an ARFIMA(1, d, 0) process

was also examined. The data generating mechanism was

xt − αxt−1 = νt =

∞∑

j=0

Γ(j + d)εt−j

Γ(j + 1)Γ(d)
(15)

where εt is i.i.d N (0, 1). Three specifications for the fractional noise νt are considered with

the differencing parameter set to d = 0, 0.2, 0.4, and for each specification α was set equal to

0.0, 0.2, 0.4, 0.6 and 0.8. Figure 5 depicts ρ(m), the average value of ρ̂(m) and the average
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p–value, pm = Prob(χ2
h > CMHACTm(h)), when h =

√
N , the averages being computed

from 10000 realizations of the process in (15) with N = 500.
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Figure 5: Average p-value of CMHACTm(h) from ARFIMA(1, d, 0) process with α =
0.0, 0.2, 0.4, 0.6, 0.8 (from top to bottom row) and d = 0.0, 0.2, 0.4 (from left to right).

A significant feature that emerges from the panels in this figure is that the finite sample

properties of the statistic are not uniform in either d or α. When d = α = 0 the average

p–value remains close to 0.5 for all m, as it should if Prob(pm ≤ p) = p. When d 6= 0 and/or

α 6= 0, however, the average p–value suggests that Prob(pm ≤ p) ≫ p when m is small and

Prob(pm ≤ p) ≪ p when m is large, the transition between the two through the point where

Prob(pm ≤ p) = p being dependent upon the values of d and α. Such behaviour parallels that

observed in conventional hypothesis testing and in general we can anticipate that; when m is

small and convergence has not yet taken place, i.e. H0 is false, the distribution of pm will be

positively skewed and p–values will more likely to be small and close to zero; whereas, when

m is sufficiently large and H0 approximately holds pm will be nearly uniformly distributed

in the unit interval; and values near one will become more likely than values near zero as

the distribution of pm becomes negatively skewed as m increases and moves deeper into the

set where H0 is true.

Evidence for the latter is given in Figure 6 which graphs the observed distribution of the p–

values computed from CMHACTm(h) when d = 0 and α = 0.8. The distribution is positively

skewed at m = 3, symmetrically folded around the uniform reference distribution when

m = 6, and negatively skewed at m = 12. That the distribution exhibits such extreme
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Figure 6: Distributions of pm = Prob(χ2

h
> CMHACTm(h)) obtained from AR(1) process xt =

αxt−1 + ǫt with α = 0.8, for h =
√
N , N = 500 and m = 3, 6 and 12.

negative skewness for such a large α is perhaps a somewhat counter intuitive feature given

that γ(k) → 0 as k → ∞ at a rate that decreases as α increases. An examination of the

properties of ψ̂m(k) presented in the Appendix indicates, however, that the expected value

is very close to zero for increasing m uniformly in α, but the variance is increasing in both m

and α, features that tend to deflate the value of ψ̂
′
m∆̂

−1
ψ̂m and thereby skew the distribution

of the statistic.

The Whitney embedding theorem states that any smooth k-dimensional manifold with k >

0 (that is also Hausdorff and second-countable) can be smoothly embedded in R
2k. For

a short–memory stationary AR(h) process this corresponds to the fact that knowledge of

µ and γ(0), . . . , γ(2h − 1) is sufficient, via the Yule–Walker equations, to determine the

autoregressive coefficients and the innovation variance and thus completely characterize the

structure of the process. Thus when d = 0 and α 6= 0 the p–values presented in Figure 5

suggest that CMHACTm(h) will select m ≥ 2, a window length consistent with the Whitney

embedding theorem.

When d 6= 0 the arguments of the previous two paragraphs do not apply directly, but

extension to the fractional case follows by analogy. In particular, if we consider AR(h)

approximations to xt then we find that the window length selected by CMHACTm(h) satisfies

the condition that m ≥ 2h where h is such that the mean squared error of the AR(h)

approximation exceeds the innovation variance by less than 3%. So once again CMHACTm(h)

is selecting a window length in line with the Whitney embedding theorem.1

6 Empirical Application

To illustrate how the convergence test might be applied in practice we examined monthly

observations on the Southern Oscillation Index (SOI) for the period January 1876 to Decem-

ber 2010 inclusive. The data, constructed by the Australian Meteorological Office, can be

downloaded from http://www.bom.gov.au/climate/current/soihtm1.shtml. No obvious

patterns emerge from simple visual inspection of the series, the values appear to fluctuate

more or less randomly around zero in a manner not too dissimilar from that seen in Figure

1. We would like to be able to determine if this apparently erratic behaviour disguises a
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more systematic signal and for the purposes of SSA a division into yearly observations on

annual cycles seems natural, because year–to–year variations in the level of SOI are thought

to be very influential in determining annual weather patterns – El Niño (drought) years and

La Niña (precipitate) years – and these changes in weather patterns may reflect fluctuations

in the level of the underlying signal. This implies a window length of 12 and an obvious

question to ask is if such a choice is supported by the data.

Figure 7 graphs the SACF, ρ̂(m), the empirical p–values computed from CMHACTm(h),

p̂m, and corresponding bootstrap p–values, p̂
(B)
m . The bootstrap p–values were calculated

as the average value of pm = Prob(χ2
h > CMHACTm(h)) computed from 10000 bootstrap

realizations of the process using the sieve bootstrap method as described in Poskitt (2008).

The bootstrap p–values p̂
(B)
m stand instead of simulated p–values since, of course, the true

data generating mechanism is now unknown.
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Figure 7: SACF and, observed and bootstrap p–values of CMHACTm(h) computed for SOI data.

From Figure 7 we can see that ρ̂(m) and p̂m mimic the SACF and p–values seen in Figures 4

and 5, the distinctive feature here being the obvious sampling variability apparent in p̂m for

m > 12 and the jump that occurs atm = 24. The bootstrap p–values p̂
(B)
m also seem to behave

like a blend of the simulated p–values seen in Figures 4 and 5. Such outcomes have ambiguous

implications about the underlying stochastic structure of the series. Nevertheless, both p̂m

and p̂
(B)
m clearly indicate that the choice of m = 12 for the window length is reasonable,

although the data also points to the possible use of m = 24, implying division into biennial

rather than annual observations.

Rewriting the decomposition in (2) as X = S+N where the signal component S = X1+ · · ·+
Xκ, and employing the description length principle of Khan & Poskitt (2010) to determine

κ, leads to the use of κ = 6 when the window length m = 12 and κ = 10 when the window

length m = 24. Denoting the associated signal by sκt , the “reconstructed series” in the

terminology of SSA (Golyandina et al. 2001), then the root mean squared reconstruction

errors,
√
T−1

∑T
t=1(xt − sκt )

2 , are 4.01 and 4.48 respectively.

The two signals, SSA(12,6) and SSA(24,10), are graphed in Figure 8a for the period 1980 to

1999.
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Figure 8: SSA reconstruction & Original Series and Forecasts of SOI data

Treating sustained positive values above +8 as indicative of La Niña events, values between

+8 and -8 as indicating generally neutral conditions, and sustained negative values below -8

as being indicative of El Niño periods, we see that historically both signals portend climatic

events experienced in Australia in the last century; the major droughts of 1982, 1987, 1991–

1994 and 1997, and the record rainfall years of 1988-89 and 1998-1999.

These outcomes are consistent with the idea that aberrant or extreme values of the SOI

in particular years are prescient of significant weather events, suggesting that predicting so

called ”g-phases” (Stone et al. 2000) will be a useful tool in forecasting future El Niño/La

Niña effects and their associated weather patterns. Figure 8b graphs the observed series,

SSA(12,6) and SSA(24,10) for the period 2000 to 2010, and the forecasts given by SSA(12,6)

and SSA(24,10) for 2011 and 2012, constructed using the SSA vector forecasting algorithm

of Golyandina et al. (2001, Chapter 2.).

The ability of both signals to track the major fluctuations in the actual series is clear: That

Australia recorded its second highest national average rainfall in 2000, the major drought

from the early 2000’s to around 2008-2009, and the subsequent wet period in 2010, are

all events clearly indicated by both SSA(12,6) and SSA(24,10). Both forecasts also give an
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indication of the record rainfall and unprecedented floods that actually occurred in Australia

at the beginning of 2011. But SSA(12,6) predicts a persistent return to extreme drought

conditions by the end of 2012, whereas SSA(24,10) suggests that a brief dry spell in the

spring of 2011 will be followed by a return to more neutral conditions in 2012. It is not our

purpose to construct a definitive SSA forecasting model at this point, suffice it to say that

the sensitivity of the SSA forecast profiles to the choice of m is readily apparent, indicating

the importance of employing objectively defined techniques of window length selection of the

type considered here.

7 Conclusion

In this paper we presented a new methodology for selecting the window length in SSA

based on the use of statistical tests designed to ascertain convergence of the autocovariance

function of the observed process. A classical time series portmanteau type statistic and two

test statistics derived using a conditional moment principle were considered. We derived

the asymptotic distribution of the statistics under fairly general regularity conditions and

showed that the criteria will identify true convergence with a finite window length with

probability one as the sample size increases. Results obtained using Monte–Carlo simulation

indicate that the asymptotic theory is reflected in observed behaviour, even in relatively

small samples, and that the conditional moment tests will choose a window length consistent

with the Whitney embedding theorem. Finally, the practical relevance of our results were

illustrated via a real world data set.

Note:

1. Overall our results suggest that the criteria will favour the selection of window lengths that are orders of

magnitude smaller than N . This appears to run counter to the findings of Golyandina (2010), who recom-

mends choosing m close to one half of the series length. These two results are not necessarily incompatible

however. Golyandina bases her recommendation upon an investigation of series composed of a determin-

istic (trigonometric) signal, whereas the results presented here are derived from an analysis of short– and

long–memory nonsingular stationary processes.
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