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Abstract

In this paper we develop and implement a method for maximum simulated likelihood estimation of the
continuous time stochastic volatility model with the constant elasticity of volatility. The approach do not
require observations on option prices nor volatility. To integrate out latent volatility from the joint density of
return and volatility, a modified efficient importance sampling technique is used after the continuous time model
is approximated using the Euler-Maruyama scheme. The Monte Carlo studies show that the method works well
and the empirical applications illustrate usefulness of the method. Empirical results provide strong evidence
against the Heston model. JEL classification: C11, C15, G12

Keywords: Efficient importance sampler; Constant elasticity of volatility

1 Introduction

Continuous time stochastic volatility (SV) models have been proven to be very useful for pricing options (See
for example the seminal contributions by Hull and White (1987) and Heston (1993)). Unfortunately, maximum
likelihood estimation (MLE) of continuous time stochastic volatility models poses substantial challenges. The first
challenge lie in the fact that the joint transition density of price (or return) and volatility is typically unknown in
closed form. This is the well known problem in the continuous time literature (see Aı̈t-Sahalia (2002) and Phillips
and Yu (2009)). The second challenge is that when only the time-series of spot prices is observed, volatility has
to be integrated out from the joint transition density. Such an integration is analytically unknown and has to be
done numerically. The dimension of integration is the same as the number of observations. When the number of
observations is large, a typical case in practical application, unfortunately, the numerical integration is difficult.

In recent years, solutions have been provided to navigate such challenges. To deal with the second challenge, for
example, Jones (2003) and Aı̈t-Sahalia and Kimmel (2007) proposed to estimate the model using using data from
both underlying spot and options markets. Option price data are used to extract volatility, making the integration
of volatility out of the joint transition density unnecessary. To deal with the first challenge, Jones (2003) suggested
using infilled Euler-Maruyama approximations which enables a Gaussian approximation to the joint transition
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under Grant No. T206B4301-RS.
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density while Aı̈t-Sahalia and Kimmel (2007) advocated using a closed form polynomial approximation that can
approximate the true the joint transition density arbitrarily well. With the two problems circumvented, the full
likelihood based inference is possible. For example, the method of Aı̈t-Sahalia and Kimmel (2007) is MLE while
the method of Jones (2003) is Bayesian.

It is well known that option prices are derived from the risk-neutral measure. Consequently, a benefit of using
data from both spot and options markets jointly is that one can learn about the physical as well as risk-neutral
measures. However, this benefit comes at expense. To connect the physical and risk-neutral measures, the functional
form of the market price of risk has to be specified.

In this paper, we develop and implement a method for maximum simulated likelihood estimation of the contin-
uous time SV model with the constant elasticity of volatility (CEV-SV). The approach do not require observations
of option prices or volatility and hence it there no need to specify the functional form of the market price of risk.
As a result, we only learn about the physical measure. The CEV-SV model was first proposed by Jones (2003), as a
simple way to nest some standard continuous time SV models, such as the square-root SV model of Heston (1993)
and the GARCH diffusion model of Nelson (1990). To the best of our knowledge, this is the first time ML is used
to estimate the CEV-SV model using the spot price only.

To deal with the second challenge, we propose to use a modified Efficient Importance Sampler (EIS) algorithm,
originally developed in Richard and Zhang (2007), to integrate out a latent volatility process. To deal with the
first challenge, we consider the Euler-Maruyama approximation. We examine the performance of the proposed
maximum simulated likelihood using both simulated data and real data. Based on simulated results, we find that
the algorithm performs well. Empirical illustration suggests that Heston’s square-root SV model is misspecified.
This empirical finding reinforces those of Jones (2003) and Aı̈t-Sahalia and Kimmel (2007).

The paper is organized as follows. Section 2 discusses the model and introduces the estimation method. Section
3 tests the accuracy of the method by performing Monte Carlo simulations for the square root SV model of Heston
(1993), the GARCH diffusion model of Nelson (1990) and the CEV-SV model. In Section 4, we apply this estimation
method to real data for the three stochastic volatility models, and analyze and compare the empirical results. Section
5 concludes.

2 Model and Methodology

This section first presents the constant elasticity of volatility (CEV)-SV model under consideration, and then
outlines the Monte Carlo (MC) procedure used to do likelihood analysis when only the price process is observed.

2.1 SV model with constant elasticity of volatility

The continuous time CEV model was recently proposed to model stochastic volatility (see e.g. Jones (2003); Aı̈t-
Sahalia and Kimmel (2007)). It nests several typical existing specifications, including the square root model of
Heston (1993) and a GARCH stochastic volatility model as in Nelson (1990). While we only focus on the CEV-SV
model in this paper, the proposed approach is applicable more generally. Let s̄t and v̄t denote the log-price of some
asset and the volatility respectively at some time t. Then the CEV model is specified in terms of the Ito stochastic
differential equation

d

[
s̄t
v̄t

]
=
[
a+ bv̄t
α+ βv̄t

]
dt+

[ √
(1− ρ2)v̄t ρ

√
v̄t

0 σv̄γt

] [
dBt,1
dBt,2

]
. (1)

Here Bt,1 and Bt,2 denotes a pair of independent canonical Brownian motions. The parameters θ = [α, β, σ, ρ, γ, a, b]
have the restrictions α > 0, ρ ∈ (−1, 1), γ ≥ 1/2 and β < 0 whenever γ ≤ 1 (see Jones (2003) for a treatment of the
volatility process for γ > 1). In addition, for γ = 1/2 we have the restriction 2α > σ2 to ensure that v̄t stays strictly
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positive (Cox et al. (1985)). α and β characterizes the linear drift structure of the volatility, and in particular will
we denote β the mean reversion rate. σ is the volatility-of-volatility and ρ represents the leverage effect. γ is the
CEV elasticity. a and b represents respectively the long run drift and risk premium of the price process.

The CEV model nests the affine SV model of Heston (1993) (γ = 1/2) and the GARCH diffusion model of
Nelson (1990) (γ = 1), and we will treat these special cases separately in addition to the full CEV model.

2.2 A change of variable and time discreteization

Under the appropriate conditions on the parameters described above, the volatility process v̄t is strictly positive with
probability one. The importance sampling procedure proposed here uses locally Gaussian importance densities for v̄t,
and thus are the supports of v̄t and the importance density inherently conflicting. To remove this boundary, we shall
work with the logarithm of the volatility process. As the latent process gets integrated out, the actual representation
of the volatility (or the log-volatility) is irrelevant theoretically, but is very important for the construction of efficient
importance sampling procedures as will be clear below. In addition, this change of variable will influence the
properties of the time-discreteization used, and we shall discuss this shortly.

Define z̄t = log(v̄t). Then, by Ito’s lemma, we have that

d

[
s̄t
z̄t

]
=
[
a+ b exp(z̄t)

M(z̄t)

]
dt+

[ √
(1− ρ2) exp(z̄t/2) ρ exp(z̄t/2)

0 σ exp(z̄t(γ − 1))

] [
dBt,1
dBt,2

]
(2)

where M(z̄t) = β + α exp(−z̄t) − σ2 exp(2z̄t(γ − 1))/2. Clearly, the law of s̄t is unaltered, but the latent process
z̄t has support over real line. As the transition probability density (TPD) in the general case is not known under
either representation (1) or (2), an approximation is needed. We do that by defining a discrete time model that acts
as an approximation to (2) based on the Euler-Maruyama (EM) scheme using a time-step equal to ∆ time-units.
This discrete time process is given as the non-linear and hetroscedastic auto-regression[

si+1

zi+1

]
=
[
si + ∆(a+ b exp(zi))

zi + ∆M(zi)

]
+
√

∆
[ √

(1− ρ2) exp(zi/2) ρ exp(zi/2)
0 σ exp(zi(γ − 1))

] [
εi,1
εi,2

]
,

where [εi,1 εi,2] are temporarily independent bi-variate standard normal shocks. It is convenient to work with the
log-returns of the price, so we define xi = si − si−1 as this process is stationary. Hence the discrete time dynamics
for xi are given as[

xi+1

zi+1

]
=
[

∆(a+ b exp(zi))
zi + ∆M(zi)

]
+
√

∆
[ √

(1− ρ2) exp(zi/2) ρ exp(zi/2)
0 σ exp(zi(γ − 1))

] [
εi,1
εi,2

]
. (3)

Throughout the rest of this paper, (3) will be the model we shall work with.
Several authors (see e.g. Aı̈t-Sahalia (2002), Durham and Gallant (2002), Durham (2006)) have argued that one

should transform the latent process (instead of the log-transform applied here) in such a manner that it becomes a
(non-linear) Ornstein-Uhlenbeck process – i.e. with a homoscedastic error term in the latent process. This variance
stabilization transform is given (see e.g. Rao (1999) p. 210), up to an affine transformation, on the form

Z(v) =

{
log(v) if γ = 1
v1−γ−1

1−γ otherwise.

However, excluding γ = 1, does the variance stabilizing not remove the hard boundaries on the domain of the
transformed volatility Z(v̄t). Thus will the Gaussian approximation obtained from the EM scheme have a support
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that conflicts with the continuous time model. In Section 3, some MC experiments are conducted to verify that
an approximate likelihood function based on the EM-scheme (3) with observed log-volatility does not lead to
unacceptable biases for sample sizes and time stpes that are empirically relevant in practice.

Another reason for using the variance stabilization procedure would be to bring the posterior density (i.e. the
density of the latent given the observed price returns and parameters) closer to being a multivariate Gaussian, as
assumed in Durham (2006) when he considers an EM discreteization of Heston’s model. This should in theory pave
the way for using a Laplace approximation-based importance density (see e.g. Shepard and Pitt (1997)), i.e. a
multivariate Gaussian, to calculate the marginal likelihood of the data. By using the EIS procedure outlined below,
there is no need here to bring the posterior density closer to Gaussian globally, as the our importance density is
only locally Gaussian. Thus does this argument against using the logarithm for all γ not apply here. We therefore
conclude this discussion and use the logarithm throughout the rest of the paper.

2.3 TPDs and joint densities

Assume that we have n observations of xi, i.e x = [x1, . . . , xn]1, sampled discretely over a regular time grid with ∆
time units between the time-points. More general deterministic time grids are possible with obvious alterations to
the theory, but we do not discuss this further here. Further, denote the unobserved vector of zis at the corresponding
times as z = [z1, . . . , zn]. For simplicity, we assume for now that z0 is a known constant. The marginal distribution
of z0 is in the general case not known in closed form, hence in practice we augment the parameter vector with z0

and estimate it using maximum likelihood along with the other parameters.
Let fi = fi(zi, xi|zi−1, θ,∆) denote the Gaussian TPD of the discrete time process (3). From the specification,

it is evident that fi is a bi-variate Gaussian density with mean vector and covariance matrix[
∆(a+ b exp(zi−1))
zi−1 + ∆M(zi−1)

]
and ∆

[
exp(zi−1) σρ exp

( zi−1
2 (2γ − 1)

)
σρ exp

( zi−1
2 (2γ − 1)

)
σ2 exp(2zi−1(γ − 1))

]
respectively. Exploiting the Markov structure of the discretized model, the joint density of (z,x) is given as

p(z,x|θ, z0,∆) =
n∏
i=1

fi(zi, xi|zi−1, θ,∆). (4)

Clearly, also this expression should be regarded as an approximation to the continuous time joint density obtained
when the fis are exchanged with the (unknown) exact transition densities.

2.4 Monte Carlo evaluation of the marginal likelihood

Since the log-volatility z is unobserved, approximate evaluation (based on the EM-discreteization) of the likelihood
function for given values of θ and z0 involves an integral over z, say

l(θ, z0|x) =
∫
p(z,x|θ, z0)dz.

Due to the non-linear structure of the discrete time model (3), no closed form expression for this integral is at hand,
hence numerical methods generally needs to be resorted to. Since n is typically of the order 1000-10000, quadrature
rules are of no use here. Instead, we apply importance sampling where the importance density is constructed using
the Efficient Importance Sampling (EIS) algorithm of Richard and Zhang (2007).

The EIS algorithm (approximately) minimizes the MC variance within the class of auxiliary importance densities,
say m(z|a,x, z0), that is indexed by the n× 2-dimensional parameter a. We denote this optimal parameter â.2 In

1This is a slight abuse of notation, as the data are from the continuous time process (1) and not the discrete time approximation.
2In general, both m and â also depend on θ and ∆, but we suppress this in our notation.
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particular, we denote the density m(z|0,x, z0) the base-line importance density where a = 0 denotes a with all
elements equal to zero.

In this work, we restrict the importance densities to have the form

m(z|a,x, z0) =
n∏
i=1

mi(zi|zi−1, xi,ai).

Notice that we allow the importance density to depend explicitly on the observed vector x. The weak law of large
numbers for S →∞ suggests that l(θ, z0|x) may be approximated by

l̃(θ, z0|x,a) =
1
S

S∑
j=1

p(z̃(j),x|θ, z0)
m(z̃(j)|a,x, z0)

(5)

where z̃(j), j = 1, . . . , S are drawn from m(z|a,x, z0) for all feasible values of a. In particular does this law of large
numbers apply for the â obtained using the EIS algorithm so the variance of l̃ is approximately minimized. Thus
will the approximate MLE estimator have the form

ˆ(θ, z0) = arg max
(θ,z0)

log l̃(θ, z0|x, â),

where the logarithm is taken for numerical convenience.

2.4.1 The Base-line importance density

Typically m(z|a,x, z0) is taken to be a parametric extension to the so-called natural sampler (i.e. p(z|θ, z0)) (see,
for example, Liesenfeld and Richard (2003), Liesenfeld and Richard (2006), Richard and Zhang (2007) and Bauwens
and Galli (2009)). In this work, we depart from this practice by introducing information from the data into the
base-line importance density. More precisely, this is done by defining

fi(zi|zi−1, xi, θ,∆) =
fi(zi, xi|zi−1, θ,∆)∫
fi(zi, xi|zi−1, θ,∆)dzi

,

i.e. the conditional transition densities given xi, and setting mi(zi|zi−1, xi,0i) = fi(zi|zi−1, xi, θ,∆). Since (con-
ditionally on zi−1) fi(zi, xi|zi−1, θ,∆) is a bi-variate Gaussian density, fi(zi|xi, zi−1, θ,∆) is given as the Gaussian
density with mean and standard deviation

µ0i(zi−1, xi) = zi−1 + ∆M(zi−1) + σρ(xi −∆(a+ b exp(zi−1))) exp
(
zi−1

(
γ − 3

2

))
,

Σ0i(zi−1) = σ
√

∆(1− ρ2) exp(zi−1(γ − 1)),

respectively.

2.4.2 The parametrically extended importance density

Following Richard and Zhang (2007), each factor of the base-line importance density are (conditionally on zi−1)
extended within the univariate Gaussian family of distributions. Numerically, this is a large advantage as sampling
from m based on a canonical ensemble of standard Gaussian random numbers becomes fast and conceptually simple.
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In practice, the extension is done by multiplying mi(zi|zi−1, xi,0i) by exp(ai,1zi + ai,2z2
i ) and compensating with

the appropriate normalization factor. More precisely, we write mi as

mi(zi|zi−1, xi,ai) =
Bi(zi|zi−1, xi)ψi(zi,ai)

χi(zi−1, xi,ai)
,

where

logBi(zi|zi−1, xi) = − (zi − µ0i(zi−1, xi))2

2Σ0i(zi−1)2
,

logψi(zi,ai) = ai,1zi + ai,2z2
i ,

χi(zi−1, xi,ai) =
∫
Bi(zi|zi−1, xi)ψi(zi,ai)dzi.

The explicit expression for χi is given in appendix A. The mean and standard deviation of mi(zi|zi−1, xi,ai) which
are used for sampling from m(z|a,x, z0) have the form

µai(zi−1, xi) =
µ0i(zi−1, xi) + ai,1Σ0i(zi−1)2

1− 2ai,2Σ0i(zi−1)2
, (6)

Σai(zi−1) =
Σ0i(zi−1)√

1− 2ai,2Σ0i(zi−1)2
. (7)

For each mi to have finite variance, it is clear from (7) that ai,2 must have the restriction ai,2 < 1/(2Σ2
0i).

2.4.3 Collecting factors and EIS regressions

The final piece of notation introduced is the fraction

ξi(zi−1, xi) =
fi(zi, xi|zi−1, θ,∆)
Bi(zi|zi−1, xi)

.

As Bi is the shape of the conditional density fi(zi|zi−1, xi, θ,∆), ξ(zi−1, xi) is constant as a function zi. The
expression for ξi is also given in appendix A.

Using the above introduced notation, we have that

p(z,x|θ, z0)
m(z|a,x, z0)

=
n∏
i=1

fi(zi, xi|zi−1, θ)
mi(zi|zi−1, xi,ai)

=
n∏
i=1

ξi(zi−1, xi)χi(zi−1, xi,ai)
ψi(zi,ai)

= ξ1(z0, x1)χ1(z0, x1,a1)

[
n−1∏
i=1

ξi+1(zi, xi+1)χi+1(zi, xi+1,ai+1)
ψi(zi,ai)

]
1

ψn(zn,an)
. (8)

This last representation aids us to work out how the parameter a should be chosen to minimize MC variance using
EIS type regressions. Firstly, we set an = [0, 0] so that the last fraction becomes equal to 1 for all zn. In fact,
setting an to zero effectively integrates out zn analytically, and thus for n = 1 the procedure is exact. Secondly,
under the assumption that z0 is non-stochastic, ξ1χ1 is also constant for fixed values of z0 and does not add to the
variance of the importance sampling procedure.
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Finally, we notice that the variation (as a function of z) for each of the factors in the bracketed product of (8)
depends only on a single zi and gives rise to an EIS ordinary least squares regression on the form

log ξi+1(z̃(j)
i , xi+1) + logχi+1(z̃(j)

i , xi+1,ai+1) = ci + ψi(z̃
(j)
i ,ai) + η

(j)
i

= ci + ai,1z̃
(j)
i + ai,2(z̃(j)

i )2 + η
(j)
i , i = 1, . . . , n− 1, j = 1, . . . , S, (9)

where η(j)
i are the regression residuals. The constant term ci is estimated jointly with ai. In particular, we notice

that the regressions are linear in ai, suggesting that computationally very cheap linear least squares algorithms may
be applied. The MC variance of the complete estimate stems from the fact that the left hand side of (9) is non-
quadratic (in zi) and thus deviates from the quadratic model represented by logψi. Still, since z̃(j)

i , j = 1, . . . , S,
are typically strongly located by the information provided from the base-line density, the quadratic approximation
works reasonably well.

A fortunate by-product of the EIS regressions are that the log-weights in the likelihood estimate (5) are directly
expressible in therms of the regression residuals. More precisely does (8) provide us with the following expression:

log
p(z̃(j),x|θ, z0)
m(z̃(j)|a,x, z0)

= log ξ1χ1 +
n−1∑
i=1

[
ci + η

(j)
i

]
, j = 1, . . . , S, (10)

provided that we have set an to zero. Thus can the estimate of the likelihood function be calculated with very small
effort once the relevant quantities in the regression models are calculated.

2.4.4 Iterative EIS and implementation

Since the z̃(j)s depend themselves on a, and ai+1 needs to be known to calculate ai, we regard the regressions (9)
as a fixed point condition for â, towards which we generate a convergent sequence of iterates a(k) for integers k.
This is done using the following steps:

1. Set a(0) = 0, k = 0 and let w ∈ Rn×S denote a matrix filled with independent standard normal variates.

2. Simulate the paths z̃(j) = z̃(j)(a(k)), j = 1, . . . , S forward in time (i.e. for i = 1→ n− 1) using

z̃
(j)
i = µ

a
(k)
i

(z̃(j)
i−1, xi) + Σ

a
(k)
i

(z̃(j)
i−1)wi,j for j = 1, . . . , S, i = 1, . . . , n− 1,

where we for simplicity define z̃(j)
0 = z0.

3. Calculate a(k+1)
i backwards in time (i.e. for i = n− 1→ 1) by estimating the regression models (9) based on

a(k+1)
i+1 in χi+1 and the paths z̃(j)(a(k)).

4. Calculate the logarithm of the likelihood estimate (8) using the quantities calculated for the regressions in
step 3, and stop the iteration if this estimate has converged to the desired precision.

5. Set k ← k + 1 and return to step 2.

Following Richard and Zhang (2007), we apply the same set of canonical standard normal variates w to generate the
paths in step 2 for each iteration. Moreover, this same set of canonical variates are used for each evaluation of the
simulated log-likelihood function when doing the likelihood maximization. This usage of common random numbers
makes the simulated log-likelihood function smooth and allows us to apply a BFGS quasi-Newton optimizer (Nocedal
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and Wright (1999)) based on finite difference gradients. Another measure to keep the simulated log-likelihood
function smooth is to terminate the EIS iteration when the change (from iteration k to k+1) in log-likelihood value
is a small number. We have used a change of log-likelihood value of < 1.0e− 9 as our stopping criteria.

The choice to apply a gradient based optimization algorithm stems from that the model has up to eight param-
eters, and a simplex-type optimization algorithm will generally require too many function evaluations to converge
for such problems. The computational cost of the extra EIS iterations needed to obtain this high precision are thus
typically won back when using a faster optimization algorithm. The typical number of EIS iterations required are
from 20-40 to obtain precision on the order of 1.0e− 9. However, once one such evaluation is complete, computing
the log-likelihood values needed for finite difference gradients can be quite a lot faster since we may start the EIS
iteration using the previous â and apply it for a slightly perturbed parameter vector. Typically, this approach
requires roughly 5-10 iterations to converge.

One final detail to improve numerical stability is to add a simple line search, similar to those applied in line-
searching optimization algorithms, to the EIS iteration. This is done by regarding the difference in iterates d(k) =
a(k) − a(k−1) as a “search direction”, along we may take shorter steps, i.e. a(k∗) = a(k−1) + ωd(k), ω ∈ (0, 1), if the
“raw” iterate a(k) leads to infinite variance in the importance density or some other pathology.

Typical computing times for our FORTRAN90 implementation ranges from 30-1000 seconds for locating a
maximum likelihood estimator for data sets with around 2000 observations using a standard PC.

3 Monte Carlo experiments

To assess the statistical properties of the EIS-MC procedure outlined in Section 2, we have conducted some Monte
Carlo experiments. The main objectives of these experiments are check that the errors that are committed by
applying the EM discreteization and using EIS to integrate out the latent process are controlled.

The main sources (with no particular ordering) of statistical bias for the EIS-MC procedure discussed here are:

� Discreteization of the continuous time model using a EM-discreteization. A heuristic way to diagnose this
source of bias is to look for unacceptable errors using EM-based maximum likelihood when the latent process
is observed.

� Small sample biases from using the integrated likelihood function. Diagnostics for this is provided by com-
paring the EM-based MLEs when the log-volatility is observed and un-observed.

� MC errors from using the MC estimate (5) in stead of using exact integration. These errors will be discussed
in the next section by using many different random number seeds in the program.

All of the computations are done using a yearly time scale and with daily observations, corresponding to ∆ = 1/252.
We use S = 32 paths in the importance sampler throughout both the MC simulations and the application to real
data. All the MC experiments are done with both z observed and unobserved, i.e. by maximizing (4) and (5),
respectively, with respective to θ. Under observed z, the simulated z0 is applied, whereas under unobserved z, we
estimate z0 along with the other parameters.

The “true” parameters applied when simulating the data sets are the parameter estimates obtained from the
Standard & Poor 500 data set which we consider in Section 4. First we consider Heston’s model and the GARCH
diffusion model separately, and then consider to the complete CEV model under two different simulation regimes.

The synthetic data sets are simulated using the EM scheme using a time step equal to ∆/2048, so that the sim-
ulated data on the ∆-time-grid should have statistical properties almost identical to discretely sampled continuous
paths. The first 3000 data points for each simulation are discarded so that the simulated distribution of z0 is close
to the marginal distribution of z0 dictated by the model. For all the experiments, we simulate and estimate 500
synthetic data sets.
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3.1 Heston’s model

The results for the simulations under Heston’s model are given in Table 1. We use sample size n = 2022, equal
to the number of observations in real data set considered in Section 4. Under this simulation regime, 8% of the
simulation replications for the unobserved log-volatility failed to converge and were subsequently ignored.

It is well known that MLEs of the mean reversion parameter tend to biased toward faster mean reversion for
finite samples in diffusion processes (see for example, Phillips and Yu (2005)). For the CEV model specified in
(1), a faster mean reversion rate corresponds to higher negative values of β. This is also seen under this model
both for observed and unobserved log-volatility, however, the effect is stronger for observed log-volatility. Still,
consistently for both observed and unobserved log-volatility, there are no biases that in absolute value are larger
than corresponding statistical standard errors. Thus it seems that all three sources of bias discussed above are
controlled for this model and amount of data.

The loss of precision when using the integrated likelihood procedure ranges from factors 2-10 in increased
statistical standard errors. In particular, the estimation precision of the volatility-of-volatility parameter σ and the
leverage parameter ρ are increased with a factor close to 10.

3.2 The GARCH diffusion model

Simulation results for the GARCH diffusion model are summarized in Table 2. Again we use n = 2022 to reflect
the real data discussed below. For this model, 2.8% of the simulation replications under unobserved log-volatility
failed to converge. For both observed and unobserved log-volatility, there is a negative bias in the mean reversion
parameter β as one would expect. Also for this model, we see that no biases are larger in magnitude than the
corresponding standard errors when the log-volatility is unobserved. A downward bias in σ is seen for the observed
log-volatility to be larger in magnitude that the corresponding standard error, but the bias is still small comparing
with the “true” parameter. Again is the loss of precision from using integrated MLE largest for the parameters σ
and ρ, where again about a 10-fold increase in standard error is seen.

3.3 The CEV model

For the CEV model, we have performed two simulation studies which are summarized in Tables 3 and 4. We shall
denote these parameter settings as P1 and P2 respectively, corresponding to columns 3 and 4 in Table 5. For P1,
4.2% of the replications failed to converge, while for P2, 6.2 % of the replications failed to converge.

Under P1 as “true parameters” are the estimates obtained using the full set of S&P 500 returns, which include
the October 1987 crash. The experiment is done using both n = 2022 and n = 5000 data points. From Table 3
we see that the estimation EIS-MLE procedure produces downward biased estimates of γ when the log-volatility
is unobserved. When the log-volatility is observed, this effect is close to in-detectable. The bias in γ also leads to
substantial bias in the other parameters governing the volatility, as their MLE estimates have a quite complex and
strong correlation structure. Increasing the sample size from 2022 to 5000 decreases the biases slightly, but it seems
that very long time series will be needed to identify γ with a decent precision for when the true parameter is in this
range.

To further diagnose this bias, we use a simple proxy for whether a “large” crash has occurred in the simulated
data. In Figure 1, a scatter plot of the estimated γ against logarithm of the maximal absolute log-return is shown
for simulation under P1 with n = 2022. A strong positive relationship is seen (correlation 0.52), suggesting that
when the log-volatility is unobserved, to identify high values of γ, the data needs to include large crashes. As a
reference, the maximal absolute log-return of the October 1987 crash is roughly exp(−1.64). In the simulated data
sets, such extreme events occur in roughly 0.4% of the data sets.
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For the P2 “true parameters” obtained using the data excluding the October 1987 crash, we see much smaller
biases, and the downward bias in γ decrease substantially when the sample size is increased from 1800 to 5000.
Still, the biases are all smaller in magnitude than the corresponding statistical standard error.

4 Application to real data

For our application to real data, we use Standard & Poor 500 log-return data previously used in Yu (2005).3

The data covers the period January 1980 to December 1987 and the sample has a total of n = 2022 log-return
observations.

Parameter estimates along with statistical- and MC standard errors for the Heston model, GARCH diffusion-
and CEV models are given in columns 1-3 in Table 5. In addition, we have included parameter estimates for the
CEV model when only the first 1800 observations (and thus excluding the Oct-87 crash) are used in column 4. The
statistical standard errors are taken from the MC experiments reported in Tables 1-4.

As both the Heston model and the GARCH diffusion model are special cases of the CEV model, it is sensible
to compare the maximum likelihood values reported in the last row of the Table. The likelihood ratio test suggests
that there is strong empirical evidence against the Heston’s model. This empirical result reinforces what have been
found when both the spot prices and option prices are joint used to estimate the CEV-SV model (Jones (2003);
Aı̈t-Sahalia and Kimmel (2007)). Moreover, for the GARCH diffusion model, when the complete data set is used,
the likelihood ratio test gives rejection for any practical p-value comparing with the complete CEV model. For
the shorter data set, we see that the estimate for γ is less than one half standard error from that of the GARCH
diffusion model.

The estimates for the leverage effect parameter ρ are very much in accordance with the estimates of Yu (2005)
(posterior mean = =0.3179) under the log-normal stochastic volatility model. In all cases we obtained a positive
estimate of b, suggesting a positive risk-return relation, but the parameter estimates are statistically insignificant.

The parameter estimates of the CEV model with and without the October 1987 crash differ quite significantly,
and thus again points towards a spurious identification of the CEV parameter γ when the log-volatility is unobserved.
This is very much in accordance with the findings in Jones (2003), even though he uses data from 1986-2000 and
1988-2000 along with implied volatility data. For his data set including the October 87 crash, Jones (2003) obtains
a posterior mean of 1.33 for the CEV parameter γ. The corresponding value for data excluding the October 87
crash is 1.17. Our simulated maximum likelihood estimates for γ are 1.56 and 1.08 respectively. Jones (2003) argues
that to accommodate the large spike in volatility represented by the October 87 crash, higher values of γ and σ
are needed. Still, since Jones (2003) applies both log-return and implied volatility data, it is reasonable that his
parameter estimates differ less then ours with and without the October 1987 crash in the sample.

To estimate the errors induced by integrating out the log-volatility using the above described EIS-MC method
(comparing with the exact unknown integral), we repeat the estimation process 100 times using different random
number seeds. These MC standard errors for the parameters and maximum log-likelihood values are included in
square-parenthesizes in Table 5. It is seen that the MC errors are generally small comparing with the statistical
standard errors. Judging from the MC standard errors in maximum log-likelihood estimates, the EIS-MC method
performs best for γ close to 1.

As references for the standard errors of the maximum log-likelihoods, we may mention that Liesenfeld and
Richard (2006) obtains a MC standard error of 0.11 (log-likelihood: 918) under a three parameter log-normal SV
model with 945 latent variables using 30 paths in the importance sampler. For a 5 parameter time-discretized
Heston’s model, Durham (2006) obtains a MC standard error of 2.49 (log-likelihood: 18473) using 1024 draws in a
Laplace importance sampler. As the latent process under consideration here is both non-linear and hetroscedastic

3The log-return data are multiplied by 0.01.
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(except for the GARCH diffusion model), the standard errors reported in Table 5 must be regarded at very decent.
Comparing with the findings of Kleppe and Skaug (2009), much of this may be written back to constructing the
importance sampler around the product of conditional transition densities, rather than around the natural sampler
as is commonly done in other applications of the EIS algorithm to non-linear state space models.

5 Concluding Remarks

This paper outlines how the EIS algorithm may be applied to integrate out a latent process in an EM-discretized
stochastic differential equation model. In terms of numerical precision, we find that the algorithm performs very
well when considering the non-linear and heteroscedastic structure of the latent process. In terms of the application
to the CEV model, we find that the integrated MLEs obtained performs well for moderate values of γ, but its
identification is more spurious for higher values of γ.

One direction for further research will be to use the improved (relative to the EM) approximate continuous time
TPDs proposed in Aı̈t-Sahalia (2008) and for jump-diffusions in Yu (2007). Using a simple Taylor expansion of
these approximations (in zi) one can obtain estimates of the conditional transition densities (i.e. conditional on
xi) that stays within the locally Gaussian importance samplers. The inclusion of jumps in the model will probably
also improve the identifiably of the complete CEV model, as large returns may be regarded as jumps rather than
be caused by large spikes in the volatility process.

Moreover, it should be noticed that this procedure is by no means restricted to the CEV family of models. The
EM scheme suggests that any stochastic differential equation has an approximate Gaussian TPD for sufficiently
short time-steps ∆. Thus can the technique of using the conditional-on-data EM-TPD be applied provided that data
are given over a fine enough time-grid. In particular, due to the explicit nature of Gaussian conditional densities,
multivariate extensions (towards both multiple observed and unobserved processes) should also straight forward.

It is also worth noticing that the above outlined procedure is closely related to the Laplace accelerated sequential
importance sampling (LASIS) procedure of Kleppe and Skaug (2009). In the setting of the EM-discretized CEV
model, their procedure would be equivalent to applying a Laplace importance sampler in w (which are standard
normal) in stead of z. This procedure would then bypass the much problems of heteroscedasticity and non-linearity
in much the same manner as outlined here, but we do not make further comparisons here.
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A Appendix: Explicit expressions

The explicit expression for logχi is given as

logχi(zi−1, xi,ai) =
1
2

log(π)− 1
2

log
(

1
2Σ0i(zi−1)2

− ai,2

)
− µ0i(zi−1, xi)2

2Σ0i(zi−1)2
−

(
µ0i

(zi−1,xi)

Σ0i
(zi−1)2 + ai,1

)2

4
(
ai,2 − 1

Σ0i
(zi−1)2

) .
Moreover, log ξi is given as

log ξi(zi−1, xi) = − log(2π∆) +
zi−1(1− 2γ)

2
− 1

2
log (σ²(1− ρ²))− (xi −∆ (a+ b exp(zi−1)))2

2∆ exp (zi−1)
.

B Tables and figures

parameter true value bias std MSE
Observed volatility, n = 2022

α 0.2109 0.0081 0.0320 0.0011
β -7.7721 -0.4366 1.4286 2.2272
σ 0.3774 -0.0042 0.0059 0.0001
ρ -0.3162 0.0044 0.0190 0.0004
a 0.0591 -0.0072 0.0854 0.0073
b 1.6435 0.4320 4.0063 16.2035

Unobserved volatility, n = 2022
α 0.2109 -0.0040 0.0601 0.0036
β -7.7721 -0.1068 2.4411 5.9577
σ 0.3774 -0.0342 0.0493 0.0036
ρ -0.3162 0.0194 0.1209 0.0150
a 0.0591 0.0344 0.1277 0.0175
b 1.6435 -1.0805 5.5070 31.4291

Table 1: Heston’s model MC study results. The bias is reported as E[θ̂ − θtrue]. “std” denotes the statistical
standard errors and MSE denotes the mean square error around the “true parameter”.
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parameter true value bias std MSE
Observed volatility, n = 2022

α 0.2411 0.0015 0.0323 0.0010
β -9.3220 -0.3056 2.0270 4.1937
σ 2.8202 -0.0715 0.0430 0.0070
ρ -0.2920 0.0020 0.0195 0.0004
a 0.1019 -0.0039 0.0881 0.0078
b 0.1139 0.3217 4.4037 19.4570

Unobserved volatility, n = 2022
α 0.2411 0.0117 0.0756 0.0058
β -9.3220 -0.8100 3.6413 13.8878
σ 2.8202 -0.0760 0.4254 0.1864
ρ -0.2920 0.0371 0.1156 0.0147
a 0.1019 0.0407 0.1320 0.0190
b 0.1139 -1.4421 6.1166 39.4159

Table 2: GARCH diffusion model MC study results. See the caption of Table 1 for details.
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parameter true value bias std MSE
Observed volatility, n = 2022

α 0.0434 0.0102 0.0232 0.0006
β -0.4281 -0.5903 1.5432 2.7252
σ 13.6298 -0.3713 1.3716 2.0153
ρ -0.3317 0.0013 0.0188 0.0004
γ 1.5551 -0.0070 0.0266 0.0008
a 0.0820 -0.0095 0.0923 0.0086
b 0.8716 0.5788 4.4829 20.3912

Unobserved volatility, n = 2022
α 0.0434 0.0634 0.0530 0.0068
β -0.4281 -3.4599 2.6160 18.7998
σ 13.6298 -8.6680 3.7726 89.3375
ρ -0.3317 0.0227 0.1355 0.0188
γ 1.5551 -0.3539 0.2202 0.1736
a 0.0820 0.0030 0.1191 0.0142
b 0.8716 0.1687 5.4970 30.1819

Observed volatility, n = 5000
α 0.0434 0.0036 0.0138 0.0002
β -0.4281 -0.2046 0.9445 0.9322
σ 13.6298 -0.4053 0.8616 0.9051
ρ -0.3317 0.0014 0.0128 0.0002
γ 1.5551 -0.0066 0.0169 0.0003
a 0.0820 -0.0053 0.0557 0.0031
b 0.8716 0.2240 2.5162 6.3687

Unobserved volatility, n = 5000
α 0.0434 0.0480 0.0320 0.0033
β -0.4281 -2.6796 1.5569 9.5995
σ 13.6298 -8.5886 2.5369 80.1870
ρ -0.3317 0.0309 0.0787 0.0071
γ 1.5551 -0.3082 0.1444 0.1158
a 0.0820 0.0154 0.0720 0.0054
b 0.8716 -0.5007 3.1073 9.8867

Table 3: CEV model (P1) MC study results. See the caption of Table 1 for details.
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parameter true value bias std MSE
Observed volatility, n = 1800

α 0.0754 0.0097 0.0216 0.0006
β -3.4022 -0.5524 1.3048 2.0042
σ 1.7587 0.0538 0.2565 0.0686
ρ -0.3912 0.0037 0.0191 0.0004
γ 1.0804 0.0072 0.0359 0.0013
a -0.1811 -0.0204 0.1160 0.0138
b 13.8246 1.2152 6.2209 40.0973

Unobserved volatility, n = 1800
α 0.0754 0.0231 0.0499 0.0030
β -3.4022 -1.3109 2.7270 9.1392
σ 1.7587 -0.1653 1.6373 2.7025
ρ -0.3912 0.0030 0.1618 0.0261
γ 1.0804 -0.1273 0.2449 0.0761
a -0.1811 -0.0220 0.1755 0.0312
b 13.8246 1.5312 9.2881 88.4301

Observed volatility, n = 5000
α 0.0754 0.0025 0.0122 0.0002
β -3.4022 -0.1435 0.7612 0.5989
σ 1.7587 0.0370 0.1511 0.0242
ρ -0.3912 0.0044 0.0120 0.0002
γ 1.0804 0.0067 0.0213 0.0005
a -0.1811 -0.0078 0.0693 0.0049
b 13.8246 0.4200 3.6322 13.3426

Unobserved volatility, n = 5000
α 0.0754 0.0044 0.0217 0.0005
β -3.4022 -0.2826 1.1640 1.4320
σ 1.7587 -0.2897 0.8019 0.7257
ρ -0.3912 0.0201 0.0876 0.0081
γ 1.0804 -0.0770 0.1500 0.0284
a -0.1811 0.0101 0.0936 0.0089
b 13.8246 -0.3163 4.7425 22.5458

Table 4: CEV model (P2) simulation study results. See the caption of Table 1 for details.
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parameter Heston GARCH CEV CEV1800
α 0.2109 0.2411 0.0434 0.0754

[0.0035] [0.0020] [0.0028] [0.0027]
(0.0601) (0.0756) (0.0530) (0.0499 )

β -7.7721 -9.3220 -0.4281 -3.4022
[0.1395] [0.0860] [0.1495] [0.1489]
(2.4411) ( 3.6413) (2.6160) (2.7270)

σ 0.3774 2.8202 13.6298 1.7587
[0.0036] [0.0115] [0.3321] [0.3088]
(0.0493) (0.4254) (3.7726) (1.6373)

ρ -0.3162 -0.2920 -0.3317 -0.3912
[0.0017] [0.0006] [0.0023] [0.0010]
(0.1209) (0.1156) (0.1355) (0.1618)

γ 0.5 1.0 1.5551 1.0804
- - [0.0075] [0.0432]
- - (0.2202) (0.2449)

a 0.0591 0.1019 0.0820 -0.1811
[0.0013] [0.0005] [0.0011] [0.0044]
(0.1277) (0.1320) (0.1191) (0.1755)

b 1.6435 0.1139 0.8716 13.8246
[0.0459] [0.0209] [0.0419] [0.2251]
(5.5070) (6.1166) (5.4970) (9.2881)

log-likelihood 6514.90 6541.42 6552.09 5916.20
[0.2457] [0.0823] [0.3494] [0.0457]

Table 5: Parameter estimation results for the Standard and Poor 500 data. Monte Carlo standard errors are given
squared brackets and statistical standard errors, taken from the MC experiments, are given in parenthesizes. For
Heston’s model, 1 of the 100 estimation replications failed to converge. The corresponding numbers for are 0,1,0
for columns 2-4.
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Figure 1: Scatter plot of log(maxi |xi|) versus the estimates of γ from the MC experiment with parameter setting
1 and n = 2022. The sample correlation equals 0.52.
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