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Extending the L1-IV approach proposed by Sakata (1997, 2007), we develop a new method, named the

ρτ -IV estimation, to estimate structural equations based on the conditional quantile restriction imposed

on the error terms. We study the asymptotic behavior of the proposed estimator and show how to make

statistical inferences on the regression parameters. Given practical importance of weak identification, a

highlight of the paper is a proposal of a test robust to the weak identification. The statistics used in

our method can be viewed as a natural counterpart of the Anderson and Rubin’s (1949) statistic in the

ρτ -IV estimation.
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1 Introduction

In this paper, we develop a new method, named the ρτ -IV estimation, to estimate structural equations based

on the conditional quantile restriction imposed on the error terms, extending the L1-IV approach proposed

by Sakata (1997, 2007). We study the large sample behavior of the new estimator and show how to make

statistical inferences on the regression parameters. In particular, we pay attention to the statistical inference

under weak identification, as the weak identification is as important a possibility in the regression based

on a conditional quantile restriction as in that based on the conditional mean restriction. We propose a

weak-identification-robust test that can be viewed as a natural counterpart of the Anderson and Rubin’s

(1949) statistic in ρτ -IV estimation.

The conventional instrumental variables (IV) estimator is based on the identification of the structural

parameters through the conditional mean restriction that the mean of the structural error term conditional

on a set of instrumental variables is zero. The conditional mean restriction may look appealing, because,

unlike the independence between the error term and the instruments, it does not impose restrictions on other

features of the conditional distribution of the error term such as the variance of it.

Nevertheless, the conditional mean restriction is considered unsuitable in some applications. The condi-

tional mean of a random variable critically depends on the tails of the conditional distribution of the variable.

A small change in the tails can cause a large change in the conditional mean. In many applications, on the

other hand, we know little about the part of the population distribution that correspond to the tails of the

error distribution. This often makes it difficult to justify the conditional mean restriction.

The conditional mean restriction is not the only natural way to identify the parameters of structural

equations. In many applications, the conditional mean restriction comes from an informal intuition that the

“location” of the conditional distribution of the error term given a suitably chosen set of instruments should

be constant. When we are faced by the above-mentioned concern about the conditional mean restriction, one

would desire to capture the location of the conditional distribution of the error term by a measure that does

not depend on tails. The conditional quantiles of the error term are examples of such location measures.

Sakata (1997, 2007) proposes identifying and estimating the regression parameters based on the con-

ditional median restrictions. Chernozhukov and Hansen (2001, 2006) also consider identification of the

regression parameters based on the conditional quantile restrictions and propose an estimation method, tak-
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ing an approach related to but different from Sakata’s. In the current paper, we extend the estimator of

Sakata (1997, 2007) to propose an method called the ρτ -IV method to estimate regression models with the

conditional τ -quantile restriction.

Being based on the same identification condition, our estimator is closely related to Chernozhukov and

Hansen’s estimator. The computation burden of the two estimators are also comparable, as should be clear

from the discussion in Section 3 of the current paper. A benefit of our approach is that the objective function

to be maximized in the ρτ -IV estimation takes a form similar to the “variance ratio” in the (normal) limited

information maximum likelihood (LIML) estimation. This allows us to formulate a statistic analogous to

the Anderson-Rubin (AR) statistic, with which we can make weak-identification-robust inference on the

regression parameters of interest.

In the IV regression literature, many researchers have been paying attention to possible identification

issues. Sargan (1983) points out that “near violation” of identifiability is problematic. The analysis of

Phillips (1984, 1985) on the exact finite sample distribution of LIML clearly shows that lack of identifiability

in structural equation estimation keeps the LIML estimator from consistently estimating the coefficient of

the structural equation. Hillier (1990) also shows analogous results in considering the directional estimation

of the coefficients of structural equations. Choi and Phillips (1992) further explores the behavior of the IV

estimator under lack of identifiability.

When instrumental variables are poorly correlated with endogenous explanatory variables in linear re-

gression, the asymptotic distribution of the IV estimator is quite different from what the standard large

sample theory suggests, as demonstrated by Nelson and Startz (1990b, 1990a) and Bound, Jaeger, and

Baker (1995). Staiger and Stock (1997) propose an alternative way to approximate the distribution of the

IV estimator with weak instruments. Stock and Wright (2000) then establish a way to approximate the

distribution of generalized-method-moments (GMM) estimators under weak identification. The proposed

approximation methods are useful in theoretically studying the nature of the IV and GMM estimators under

weak identification. Nevertheless, they do not offer a way to approximate the distribution of the estimators

based on data, involving some unidentifiable nuisance parameters.

Given the absence of a convenient and reliable approximation to the distribution of the IV estimator

with weak instruments, it is difficult to perform tests of hypotheses on regression parameters in the usual

style (i.e., the t-test, the Wald test, etc.). On the other hand, the AR test originally proposed in Anderson
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and Rubin (1949) is not affected by weakness of instruments. For this reason, Staiger and Stock (1997)

and Dufour (1997) recommend the use of the AR test. The AR test even has nice power properties if the

number of instruments is equal to the number of endogenous explanatory variables (Moreira 2001, Andrews,

Moreira, and Stock 2004).

The weak identification is also an important possibility in regression based on a conditional quantile

restriction. To this end, we propose a test that has asymptotically correct size regardless of whether the

identification is strong or not. The hypothesis we consider is that some regression parameters are equal

to prespecified values. If we apply the ρτ -IV method imposing the constraints of the null hypothesis,

the objective function in the ρτ -IV estimation maximized subject to the parameter constraints of the null

hypothesis tends to be close to one under the null. The constraint maximum of the objective function is

similar to the Anderson and Rubin (1949) statistic in the sense that it captures how much of the fitted

structural error can be explained by the instruments. It, ranging between zero and one, is closed to one

if the fitted structural residuals cannot be fitted by the instruments in the sample. Its value far from one

is thus taken as an evidence against the null in our test. If the conditions in the null hypothesis include

the coefficients of all regressors potentially weakly related to the instruments excluded from the regression

function, then the proposed test involves no weak identification problem, so that our test is robust to weak-

identification.

Our test is closely related to Chernozhukov and Hansen (2008). They formulate a test in a way convenient

in the estimation framework of Chernozhukov and Hansen (2001, 2006), while we propose a test convenient

in the ρτ -IV estimation. Another paper related to our test is Jun (2008). Jun formulates a test adapting

the approach of Kleibergen (2005).

The rest of the paper is organized as follows. We first describe the basic setup and define the ρτ -IV

estimator in Section 2. Then, after briefly discussing the computation of the ρτ -IV estimator in Section 3,

we establish the consistency and asymptotic normality of the ρτ -IV estimator and explains how to consistently

estimate the asymptotic covariance matrix of ρτ -IV estimator in Section 4. In Section 5, we develop a weak-

identification-robust method to test hypotheses on the regression parameters. Throughout the paper, | · |

denotes the Euclidean norm for vectors and the Frobenius norm for matrices, and limits are taken along the

sequence of sample sizes growing to infinity, unless otherwise indicated.
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2 ρτ -IV Estimator

Assumption 1: Let (Ω,F , P ) be a probability space. The data are a realization of an independently and

identically distributed stochastic process {Xt ≡ (yt, Y
′
t , Z

′
t)
′ : Ω → R × Rg × Rk}t∈N such that E[|X1|] < ∞,

and for each c ∈ R1+g+k\{0}, P [c′Xt = 0] < 1.

Partition Zt as Zt = (Z ′t,1, Z
′
t,2)′. where Zt,1 is k1×1, and Zt,1 is k2×1 (so that k1 +k2 = k). The parameter

of interest is the coefficients in regression of yt on Yt and Zt,1 described in the next assumption.

Assumption 2: The subset B of Rg is nonempty and compact. There exists a unique θ0 ∈ (β′0, α
′
0)′ ∈

B× Rk1 such that the conditional τ -quantile of

U1 ≡ y1 − Y ′1β0 − Z ′1,1α0

given Z1 is zero, where τ is a known real constant in (0, 1).

If instead the conditional τ -quantile of U1 given Y1 and Z1,1 is known to be zero, β0 and α0 could be

consistently estimated by the estimator of Koenker and Bassett (1978). In our current setup, Koenker and

Bassett’s estimator is inconsistent in general.

We here propose an estimator of the structural regression coefficients, following the approach described

in Section 11 of Sakata (2007). Define ρτ : R→ R by

ρτ (v) ≡ (τ − 1(v < 0)) v, v ∈ R,

where 1(A) is the indicator function that becomes one if and only if the condition A is true. Also define

functions R : B× Rk1 × Rk → R and Q : B× Rk1 → R by

R(β, α, γ) ≡ E[ρτ (y1 − Y ′1β − Z ′1,1α− Z ′1γ)], (β, α, γ) ∈ B× Rk1 × Rk

and

Q(β, α) ≡
infγ∈Rk R(β, α, γ)

R(β, α, 0)
, (β, α) ∈ B× Rk1 ,

where R(β, α, 0) > 0 by the linear independence of the elements of Xt = (yt, Y
′
t , Z

′
t)
′ required by Assump-

tion 1. Because of the conditional τ -quantile restriction imposed on U1 in Assumption 2, we have that

Q(β0, α0) = 1, so that for each (β, α) ∈ B× Rk1

0 ≤ Q(β, α) ≤ Q(β0, α0) = 1. (1)
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It follows that θ0 ∈ (β′0, α
′
0)′ is the maximizer of Q over Θ ≡ B× Rk1 .

Our estimator is the maximizer of the sample counterpart of Q, which is given by a sequence of random

functions {Q̂n : B× Rk1 × Ω→ R}n∈N defined by

Q̂n(β, α, ω) ≡


inf

γ∈Rk2 R̂n(β,α,γ,ω)

R̂n(β,α,0,ω)
, if inf(b,a)∈B×Rk1 R̂n(b, a, 0, ω) > 0,

1, otherwise,

(β, α) ∈ B× Rk1 , ω ∈ Ω, n ∈ N,

where

R̂n(β, α, γ, ω) ≡ n−1
n∑
t=1

ρτ (yt(ω)− Yt(ω)′β − Zt,1(ω)′α− Zt(ω)′γ),

(β, α, γ) ∈ B× Rk1 × Rk, ω × Ω, n ∈ N.

We now define our estimator.

Definition 1 (The ρτ -IV estimator): Given Assumption 1, a sequence of random vectors {θ̂ ≡ (β̂′n, α̂
′
n)′ :

Ω→ B× Rk1}n∈N is called the ρτ -IV estimator if for each n ∈ N, Q̂n(β̂n, α̂, ·) = sup(β,α)∈B×Rk1 Q̂n(β, α, ·).

For each (β, α) ∈ B× Rk1 , we have that

inf
γ∈Rk

R̂n(β, α, γ, ·) = inf
(γ1,γ2)∈Rk1×Rk2

n−1
n∑
t=1

ρτ (yt − Y ′t β − Z ′t,1(α+ γ1)− Z ′t,2γ2)

= inf
(γ1,γ2)∈Rk1×Rk2

n−1
n∑
t=1

ρτ (yt − Y ′t β − Z ′t,1γ1 − Z ′t,2γ2) = inf
γ∈Rk

R̂n(β, 0, γ, ·).

Given this fact, it holds that whenever R̂n(β, α, 0, ·) > 0 for every (β, α) ∈ B× Rk1 ,

sup
α∈Rk1

Q̂n(β, α, ·) = sup
α∈Rk1

infγ∈Rk R̂n(β, 0, γ, ·)
R̂n(β, α, 0, ·)

=
infγ∈Rk R̂n(β, 0, γ, ·)
infα∈Rk1 R̂n(β, α, 0, ·)

, β ∈ B. (2)

Because the numerator and denominator of the ratio on the right-hand side of (2) are continuous in β,

supα∈Rk1 Q̂n(β, α, ·) is continuous in β in all realizations, whenever R̂n(β, α, 0, ·) > 0 for every (β, α) ∈

B × Rk1 . The continuity of supα∈Rk1 Q̂n(β, α, ·) in β is also satisfied when R̂n(β, α, 0, ·) can touches zero,

because Q̂n(β, α, ·) = 1 in such case. Thus, given the compactness of B, ρτ -IV estimator β̂n of β0 exists by

the standard result on the existence of extremum estimators such as Gallant and White (1988, Theorem 2.2).
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Further, α̂n is the solution of

inf
α∈Rk1

R̂n(β̂n, α, 0, ·) = inf
α∈Rk1

n−1
n∑
t=1

ρτ ((yt − Y ′t β̂n)− Z ′t,1α).

That is, it is the Koenker and Bassett’s (1978) quantile regression estimator taking (yt − Y ′t β̂n) for the

dependent variable and Zt,1 for the regressors, which surely exists.

Theorem 2.1: Given Assumption 1, the ρτ -IV estimator exists.

Remark. We could avoid the compactness requirement of B by first defining the ρτ -IV directional

estimator, as Sakata (2007) does, and then deriving the slope estimator in Definition 1 from it. We, however,

directly define the slope estimator by imposing compactness on B for saving space in this paper.

3 Computation of the ρτ -IV Estimator

We could calculate the ρτ -IV estimator, adapting the algorithm described in Sakata (2007) for the case

τ = 0.5 in the straightforward manner. Sakata’s algorithm is, however, slow if k1 is large, because it uses a

global search algorithm to minimizes Q̂n over B× Rk1 .

Given a β, however, the ratio on the right-hand side of (2) can be quickly calculated, because the

minimization problems appearing in both the numerator and denominator of the ratio can be rewritten as

linear programming problems, as Koenker and Bassett (1978) explains. Thus, the ρτ -IV estimator can be

calculated by maximizing the ratio in terms of β over B. Because the ratio may have local maximum, it is

advisable to use a global search algorithm such as the simulated annealing algorithm in calculating β̂n, while

α̂n is the solution of the minimization problem in the denominator calculated with β̂n.

4 Large Sample Properties of the ρτ -IV Estimator

In investigating the consistency of the ρτ -IV estimator, it is convenient to consider the population coun-

terpart of (2), i.e.,

sup
α∈Rk1

Q(β, α) = sup
α∈Rk1

infγ∈Rk R(β, 0, γ)

R(β, α, 0)
=

infγ∈Rk R(β, 0, γ)

infα∈Rk1 R(β, α, 0)
, β ∈ B. (3)
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By Assumption 2, β 7→ supα∈Rk1 Q(β, α) : B → R is a continuous function uniquely maximized at β0.

We can also show that {infα∈Rk1 Q̂n(β, α, ·)}n∈N converges to infα∈Rk1 Q(β, α) uniformly in β ∈ B a.s.-P

(Lemma A.3). By a standard result on consistency of extremum estimators (e.g., Pötscher and Prucha 1991,

Lemma 4.2), we can establish the consistency of {β̂n}n∈N for β0.

The estimator α̂n, on the other hand, minimizes R̂n(β̂n, α, 0, ·) with respect to α over Rk1 . Given the

strong consistency {β̂n} for β0, we can verify the a.s.-P convergence of R̂n(β̂n, α, 0, ·) to R(β0, α, 0) for each

α ∈ Rki and utilize the convexity of R̂n(β̂n, α, 0, ·) in α to establish the strong consistency of α̂n for α0.

Theorem 4.1: Under Assumptions 1 and 2, {θ̂n = (β̂′n, α̂
′
n)′}n∈N converges to θ0 = (β′0, α

′
0)′.

In establishing the asymptotic normality of the ρτ -IV estimator, we impose the additional conditions

stated in the next theorem.

Assumption 3: (a) The minimizer of R(β0, α0, ·) : Rk → R over R is unique (hence, it is uniquely

minimized at the origin).

(b) The vector β0 is interior to B. Also, a neighborhood B0 ⊂ B of β0, a neighborhood A0 ⊂ Rk1 of α0,

and a neighborhood Γ2,0 ⊂ Rk2 of the origin satisfy the following conditions:

(i) The conditional distribution y1 given Y1 and Z1 has a continuous probability density function (pdf)

f(· |Y1, Z1) at Y ′1β + Z ′1,1α+ Z ′1,2γ2 for each (β, α, γ2) ∈ B0 ×A0 × Γ2,0 a.s.-P .

(ii) There exists a random variable D : Ω → R with a finite absolute moment such that for each

β ∈ B0, each α ∈ A0, and each γ2 ∈ Γ2,0,

f(Y ′1β + Z ′1,1α+ Z ′1,2γ2 |Y1, Z1) (|Y1|2 + |Z1|2) < D. (4)

(c) Let J be the Hessian of R at (β′0, α
′
0, 0
′
k×1)′ and partition it as

J ≡


Jββ Jβα Jβγ

Jαβ Jαα Jαγ

Jγβ Jγα Jγγ

 ,

where Jββ is g × g, Jαα is k1 × k1, and Jγγ is k × k. Then the matrix

Jθθ ≡

Jββ Jβα

Jαβ Jαα
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is positive definite, and Jγθ ≡ (Jγβ , Jγα) is of full column rank.

(d) E[|Y1|2 + |Z1|2] <∞.

Assumption 3(b) ensures the twice continuous differentiability of R in a neighborhood of (β0, α0, 0) in Rg ×

Rk1 ×Rk, which then implies the twice continuous differentiability of Q in a neighborhood of θ0 = (β′0, α
′
0)′.

The first condition in Assumption 3(c) ensures that the Hessian of R(β0, α0, ·) : Rk → R at its minimum is

negative definite. Under these conditions, the Hessian of (β, α) 7→ logQ(β, α) : B × Rk1 → R at (β′0, α
′
0)′

is guaranteed to be positive definite, being equal to −K, where K ≡ R(β0, α0, 0)−1JθγJ
−1
γγ Jγθ. The full

column rankness of Jγβ means that within a neighborhood of (β′0, α
′
0)′, moving (β′, α′)′ away from (β′0, α

′
0)′

causes the gradient of R(β, α, ·) : Rk → R to be bounded away from zero uniformly in all directions, so

that we can choose γ to make R(β, α, γ) smaller than R(β, α, 0), once (β′, α′)′ deviates from (β′0, α
′
0)′.

Assumption 3(d) ensures that the Lindeberg-Levy Central Limit Theorem (Rao 1973, p. 127) applies to

the generalized score of the ρτ -IV estimator. The moment requirements in Assumptions 3(b,d) are mild.

If f(y1 − Y ′1β − Z ′1,1α − Z ′1γ |Y1, Z1) is bounded, they merely require that each element of Y1 and Z1

has a finite second moment, while the asymptotic normality of the conventional IV estimator is typically

established under the assumption that the fourth moments of the dependent variable, the regressors, and

the instruments are finite.

Lemma 4.2: Suppose that Assumptions 1–3 hold. Let {bn}n∈N and {an}n∈N be sequences of B- and Rk1-

valued random vectors, respectively. Then there exists a sequence of k × 1 random vectors cn such that for

each n ∈ N, R̂n(bn, an, cn, ·) = infγ∈Rk R̂n(bn, an, γ, ·). If, in addition, Assumptions 3 hold, and bn → β0

and an → α0 in probability-P , then

n1/2cn = Cn1/2

bn − β0

an − α0

+ J−1
γγ n

−1/2
n∑
t=1

(τ − 1(Ut < 0))Zt + oP
(
n1/2|bn − β0|+ n1/2|an − α0|+ 1

)
,

and C ≡ −J−1
γγ Jγθ.

Using this lemma, we can now approximate log Q̂n.

Lemma 4.3: Suppose that Assumptions 1–3 hold and let {bn}n∈N and {an}n∈N be sequences of B- and
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Rk1-valued random vectors, respectively, that converge to β0 and α0. Write θ̃n ≡ (b′n, a
′
n)′. Then

n log Q̂n(bn, an, ·) = − 1

2R(β0, α0, 0)

(
n−1/2

n∑
t=1

(τ − 1(Ut < 0))Zt

)′
J−1
γγ

(
n−1/2

n∑
t=1

(τ − 1(Ut < 0))Zt

)

− 1

R(β0, α0, 0)
n−1/2

n∑
t=1

(τ − 1(Ut < 0))Z ′tCn
1/2(θ̃n − θ0)− 1

2
n1/2(θ̃n − θ0)′Kn1/2(θ̃n − θ0)

+ oP
(
n1/2|bn − β0|+ n|bn − β0|2 + 1

)
. (5)

Given this lemma, it is natural to expect that the minimizer of the the second and third terms on the right-

hand side of (5) approximates θ̂ = (β̂′n, α̂
′
n)′. The next theorem confirms that such approximation bears an

oP (1) approximation error, and derives the asymptotic distribution of {θ̂n}n∈N based on the approximation.

Theorem 4.4: Suppose that Assumptions 1–3 hold. Then

n1/2(θ̂n − θ0) = − 1

R(β0, α0, 0)
K−1C ′n−1/2

n∑
t=1

(1(Ut < 0)− τ)Zt + oP (1),

and

D−1/2n1/2(θ̂n − θ0)
A∼ N(0, Il),

where D ≡ K−1C ′V CK−1, K = R(β0, α0, 0)−1JθγJ
−1
γγ Jγθ (as introduced earlier), and

V ≡ τ(1− τ)R(β0, α0, 0)−2E[Z1Z
′
1].

To estimate the asymptotic covariance matrix D consistently, we need to estimate V , K, and C consis-

tently. For consistent estimation of V , we can use its sample analogue,

V̂n ≡ τ(1− τ)R̂n(β̂n, α̂n, 0, ·)−2n−1
n∑
t=1

ZtZ
′
t.

On the other hand, K and C are more complicated, depending on J , the Hessian of R. The Hessian of R̂n

is zero at each point in B × Rk1 × Rk, at which it is differentiable. This rules out estimation of J by using

of the Hessian of R̂n.

A way to overcome the difficulty in estimation of K and C is to employ the numerical differentiation

approach described in Newey and McFadden (1994, Section 7.3). Because −K is the Hessian of (β, α) 7→

logQ(β, α) : B × Rk1 → R at (β′0, α
′
0)′, −1 times a second-order numerical derivative of log Q̂(β, α, ·) at

(β̂′n, α̂
′
n)′ is our estimator of K. Let emi denote the unit vector along the ith axis of the Cartesian coordinate

system in Rm. Assume:
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Assumption 4: The sequence {hn}n∈N consists of positive (possibly random) numbers such that hn → 0

and n1/2hn →∞ in probability-P .

Then our estimator of K is K̂n, whose (i, j)-element is given by

K̂nij ≡ −
1

4h2
n

(log Q̂n(θ̂n + hnei + hnej , ·)− log Q̂n(θ̂n − hnei + hnej , ·)

− log Q̂n(θ̂n + hnei − hnej , ·) + log Q̂n(θ̂n − hnei − hnej , ·)), (i, j) ∈ {1, . . . , (g + k1)}2, n ∈ N.

For C, we utilize the result of Lemma 4.2, which suggests that perturbation in θ̂n = (β̂′n, α̂
′
n)′ would

change γ̂n approximately by C times the change in θ̂n. Let γ̂ni(θ) denote the ith element in the usual

quantile regression estimator in regression of yt− (Y ′t , Z
′
t,1)θ on Zt (i ∈ {1, 2, . . . , k}). Then our estimator of

C is Ĉn whose (i, j)-element is given by

Ĉnij ≡
1

2hn
(γ̂ni(θ̂n + hnej)− γ̂ni(θ̂n − hnej)), i ∈ {1, . . . , k}, j ∈ {1, . . . , (g + k1)}.

Given the estimators of K and C, we estimate D by D̂n ≡ K̂+
n Ĉ
′
nV̂nĈnK̂

+
n , n ∈ N, where K̂+

n is the

Moore-Penrose (MP) inverse of K̂n (we use the MP inverse instead of the regular inverse to ensure that this

estimator is well defined for every realization).

Theorem 4.5: Suppose that Assumptions 1–4 hold. Then:

(a) {K̂n}n∈N is weakly consistent for K.

(b) {Ĉn}n∈N is weakly consistent for C.

(c) {V̂n}n∈N is weakly consistent for V .

(d) {D̂n}n∈N is weakly consistent for D.

Remark. The same step size hn is used in each element of K̂n and Ĉn just for simplicity. One could use

a different step size for each element in K̂n and Ĉn without affecting the consistency results in Theorem 4.5,

as long as the step size satisfies the requirements in Assumption 4.
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5 Testing on the Regression Coefficients under Possible Weak

Identification

When (β, α) 7→ logQ(β, α) is flat in some directions from (β0, α0), compared with the size of the error in

approximating logQ by log Q̂n, the large sample distribution of the ρτ -IV estimator established in Section 4

can be unreliable, because the estimator can easily go astray. In other words, we may experience the so-called

weak identification problem in the ρτ -IV estimation.

The flatness of (β, α) 7→ logQ(β, α) described above implies near singularity of K, which is −1 times the

Hessian of logQ(β, α). Because the large sample analysis in Section 4 involves the inverse of K, the near

singularity of K makes the results in Section 4 unreliable unless the sample size is extremely large. To verify

that the nearly singular K can arise in practice, suppose that Yt is related to Zt through

Yt = Π0Zt + Vt, t ∈ N,

where Π0 is a g × k constant matrix, and Vt is a g × 1 zero-mean random vector independent from Zt. Let

fU (· |Z1) denote the conditional pdf of U1 given Z1. Then, under our current assumption, we have that

Jθγ = 2E

[
fU (0|Z)

 Y1

Z1,1

Z ′1

]
= 2E

[
fU (0|Z1)

Π0Z1

Z1,1

Z ′1

]

If the last k2 columns of Π0 is close to zero, each of the first g rows of Jθγ can be well approximated by

a linear combination of the last k1 rows of Jθγ ; i.e., the columns of Jθγ becomes nearly dependent. This

causes K = R(β0, α0, 0)−1JθγJ
−1
γγ Jγθ to be nearly singular and raises concerns about inference on β0 and

α0, relying on the asymptotics in Section 4.

Suppose that we are interested in the hypothesis that H0: β0 = β̄, where β̄ is a known g × 1 constant

vector. In the usual IV regression based on the zero-conditional mean restriction imposed on the error term,

the AR test is known to be robust to weakness of instruments. Given the structural equation estimated

under the constraint of the null hypothesis, the AR test regresses the null-restricted fitted structural error

term on all instruments and checks if R2 is close to zero. If R2 is high enough, it rejects the null hypothesis.

Because the AR test rejects the null when 1−R2 is close to zero, we can view the AR test as rejecting the

null hypothesis when the null-restricted fitted structural error term can be well explained by the instruments.

Note that 1 − R2 is equal to the ratio of the two sample second moments. The denominator in the ratio
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is the sample second moment of the fitted structural error term, while the numerator is the sample second

moment of the residuals in regression of the structural error term on the instruments. This view gives

us a way to adapt Anderson and Rubin’s (1949) approach in our problem setup. Namely, we replace the

sample second moment in 1−R2 with the corresponding average check functions. The resulting statistic is

Q̂n(β̄, α̂0
n, ·), where α̂0

n is the ρτ -IV estimator obtained imposing the constraint of H0, which is exactly equal

to the Koenker and Bassett’s (1978) estimator in regression of yt − Y ′t β̄ on Z1,t. For convenience, we take

the logarithm of it and multiply it by −2n to define a test statistic Jn.

Jn ≡ −2n log Q̂n(β̄, α̂0
n, ·) = −2n log

infγ∈Rk R̂n(β̄, 0, γ, ·)
infα∈Rk1 R̂n(β̄, α, 0, ·)

, n ∈ N. (6)

Let ᾱ be a k1 × 1 vector such that Z ′1,1ᾱ be the ρτ -metric projection of y1 − Y ′1 β̄ on the linear space

spanned by the elements of Z1,1. Then the standard large sample analysis on extremum estimation shows

that

n−1Jn → −2 sup
α∈Rk1

logQ(β̄, α) = −2 logQ(β̄, ᾱ) in probability-P .

Under H0, the right-hand side of this equality is zero, because

sup
α∈Rk1

Q(β̄, α) = sup
α∈Rk1

Q(β0, α) = Q(β0, α0) = 1.

Under the alternative, on the other hand, the limit of {n−1Jn}n∈N is strictly positive, because

Q(β̄, ᾱ) < Q(β0, α0) = 1.

Thus, a test based on Jn should reject H0 if Jn exceeds a suitably chosen critical value. We will discuss

how to find the critical value below.

Define C0 ≡ −J−1
γγ Jγα and L ≡ R(β0, α0, 0)−1Jαα.

Lemma 5.1: Suppose that Assumptions 1–3 hold. If in addition H0 is true, then

Jn
A∼ η′

(
L−1 − C0(C0′ LC0)−1C0′)η,

where η is a k × 1 random vector distributed with N(0, V ),

Thus, {Jn}n∈N has a non-degenerate limiting distribution, though it is not asymptotically pivotal. Among

the unknown parameters in the formula for the asymptotic distribution of {Jn}n∈N, C0 can be consistently

13



estimated by applying {Ĉn}n∈N “under the null” (Theorem 4.5). Write θ̂0
n ≡ (β̄′, α̂0

n
′)′. Then our estimator

of C0 is Ĉ0
n whose (i, j)-element is equal to

Ĉ0
nij ≡

1

2hn
(γ̂ni(θ̂

0
n + hneg+j)− γ̂ni(θ̂0

n − hneg+j)), i ∈ {1, . . . , k}, j ∈ {1, . . . , k1}.

Analogously, V can be estimated by V̂ 0
n ≡ R̂n(β̂0

n, α̂
0
n, 0, ·)−2n−1

∑n
t=1 ZtZ

′
t.

The matrix L is the Hessian of γ 7→ logR(β0, α0, γ) : Rk → R at the origin. We take a second-order

numerical derivative of the sample counterpart of this function to estimate L. The resulting estimator L̂n

of L is the k × k matrix with (i, j)-element equal to

L̂nij ≡
1

4h2
n

(log R̂n(β̄, α̂0
n, γ̂

0
n + hnei + hnej , ·)− log R̂n(β̄, α̂0

n, γ̂
0
n − hnei + hnej , ·)

− log R̂n(β̄, α̂0
n, γ̂

0
n + hnei − hnej , ·) + log R̂n(β̄, α̂0

n, γ̂
0
n − hnei − hnej , ·)), i, j = 1, 2, . . . , k,

where γ̂0
n is the τ -quantile regression estimator in regressing yt − Y ′t β̄ − Z ′1,tα̂0

n on Zt.

Lemma 5.2: Suppose that Assumptions 1–3 and 4 hold. If in addition H0 holds, {L̂0
n}n∈N is consistent

for L.

The limiting distribution of {Jn}n∈N is that of a positive random variable whose distribution function is

positively sloped at each positive point. Let c(p, C̃, L̃, Ṽ ) denote the (1−α)-quantile of η̃′(L̃+−C̃(C̃ ′L̃C̃)+C̃ ′)η̃

for each k × l matrix C̃, each k × k symmetric matrix L̃, and each k × k symmetric matrix Ṽ , where η̃ is a

k× 1 random vector distributed with N(0, Ṽ ), and p ∈ (0, 1), where (a, b) denotes the open interval between

real numbers a and b. We here propose a test that rejects H0 if and only if Jn exceeds c(p, Ĉn, L̂n, V̂n),

where p is the desired size of the test. This test has the correct asymptotic size and it is consistent, as stated

in the next theorem.

Theorem 5.3: Suppose that Assumptions 1–4 hold. Then:

(a) If in addition H0 holds, for each p ∈ (0, 1), P [Jn > c(p, Ĉ0
n, L̂

0
n, V̂

0
n )]→ p.

(b) Suppose instead that H0 is violated, that R(β̄, ·, 0) : Rk1 → R has a unique maximizer on Rk1 ,

and that R(β̄, 0, ·) : Rk → R has a unique minimizer on Rk. Then for each p ∈ (0, 1), P [Jn >

c(p, Ĉ0
n, L̂

0
n, V̂

0
n )]→ 1.
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Because each quadratic form of normal random variables can be easily rewritten as a linear combination

of χ2 random variables using the eigenvalue decomposition, c(p, Ĉn, L̂n, V̂n) is the (1−α)-quantile of a linear

combination of χ2 random variables. To compute c(p, Ĉn, L̂n, V̂n), we can numerically find the (1−α)-quantile

of the distribution of the linear combination, evaluating the distribution function by using Farebrother’s

(1984) algorithm.

6 Power under weak instruments

According to Theorem 5.3(b), our test proposed in the previous section is consistent in the regular

asymptotic framework with strong instruments. In this section, we discuss the power properties of the test

when the instruments are weak. For this purpose, we need a model describing how weak instruments arise

in our problem. Before formalizing the notion of weak instruments in our problem setup, we first review the

concept of weak instruments in the conventional IV regression. Staiger and Stock (1997) introduces weak

instruments in a thought experiment in which the correlation between the endogenous regressors and the

instruments becomes weaker as the sample size grows. More concretely, they relate the k × 1 instrument

vector Zt to the g × 1 endogenous regressor vector Y
(n)
t through

Y (n) = n−1/2ΛZt + Vt, t ∈ {1, 2, . . . , n}, n ∈ N

where Λ is a g× k constant matrix, and Vt is a unobservable g× 1 random vector such that Zt is exogenous

to Vt. The superscript “(n)” in Y
(n)
t indicates dependence of Y

(n)
t on n. The structural equation in the

thought experiment is then

y
(n)
t = Y

(n)
t
′β0 + Z ′t,1α0 + Ut, t ∈ {1, 2, . . . , n}, n ∈ N,

where Zt,1 is a k1 × 1 subvector of Zt, and the regression error Ut is orthogonal to Zt. In this setup, Staiger

and Stock investigates the asymptotic behavior of tests of the hypothesis that H0: β0 = β̄, where β̄ is a

known constant in Rg.

Define Wt ≡ Ut − V ′t (β̄ − β0) (t ∈ N). Then it is straightforward to verify that the “null-restricted

residual”, i.e., the residual evaluated with coefficients (β̄′, α′0)′ is equal to

y
(n)
t − Y (n)

t
′β̄ − Z ′t,1α0 = Wt − Z ′tn−1/2Λ′(β̄ − β0). (7)
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Because

E[ZtWt] = 0, (8)

it follows that

E[Zt(yt − Y ′t β̄ − Z ′t,1α0)] = −E[ZtZ
′
t]n
−1/2Λ′(β̄ − β0).

Thus, the null restricted residual violates the moment condition underlying the conventional IV estimator,

but only in the order of n−1/2. This is the essential feature of the setup that Staiger and Stock used

to demonstrate that the behavior of the conventional tests of H0 may be very different from what the

conventional asymptotic analysis indicates, and why the AR test can be a better choice.

Note that, while the fact that the null-restricted residual violates the moment condition in the order of

n−1/2 hinges on (7) and (8), it does not matter for it what Wt is or where Λ comes from. Also, note that

there is no natural universally agreeable reduced-form equation in our setup, unlike the conventional IV

regression setup. In analyzing our test of H0 with weak instruments, we therefore take as basis (7) and (8)

suitably modified for constructing an environment with weak instruments in our setup, as found in the next

assumption.

Assumption 5: The triangle array {X(n)
t ≡ (y

(n)
t , Y

(n)
t , Zt,1, Zt,2) : t ∈ {1, 2, . . . , n}, n ∈ N} consists of

random vectors on a probability space (Ω,F , P ), where y
(n)
t , Y

(n)
t Zt,1, and Zt,2 are 1 × 1, g × 1, k1 × 1,

and k2 × 1, respectively; β̄ is a constant vector in B that is a nonempty and compact subset of Rg; and τ

is a known constant in (0, 1). There exists β0 ∈ B, a g × k matrix Λ, ᾱ ∈ Rk1 , and a sequence of random

variables {Wt}t∈N that satisfy that

y
(n)
t − Y (n)

t
′β̄ − Z ′t,1ᾱ = Wt − Z ′tn−1/2Λ′(β̄ − β0), t ∈ {1, 2, . . . , n}, n ∈ N, (9)

and that for each t ∈ N, τ -quantile of Wt given Zt is zero.

In Assumption 5, β0 appears as some vector satisfying the required condition, rather than the true

coefficient of Y
(n)
t , because our mathematical results do not depend on what β0 is. Of course, our results

are most useful when Assumption 5 holds with β0 set equal to the true true coefficient of Y
(n)
t . If β0 = β̄,

the conditional quantile restriction imposed upon {Wt}t∈N is essentially the same as Assumption 2. The

16



equivalence of the two conditions can be achieved by setting ᾱ = α0 and W1 = U1, in particular when we

require that {(Z ′t,W ′t )}t∈N is i.i.d., as we will do below. When β0 6= β̄, the assumption implies that the

conditional τ -quantile of the null-restricted residual given Z1 is local-to-zero. In general, the distribution of

Wt depends on β̄ − β0. Assumption 5 is clearly satisfied, if (Ut, V
′
t ) is independent from Z1 in the setup

of Staiger and Stock (1997) discussed above. The matrix Λ captures the strength of the instruments. For

example, the instruments are irrelevant when Λ = 0.

In addition to Assumption 5, we impose the following conditions similar to Assumption 3:

Assumption 6: (a) Eρτ (W1 − Z ′1γ) is uniquely minimized at γ = 0k×1.

(b) A neighborhood Γ0 ⊂ Rk of the origin satisfies the following conditions:

(i) The conditional distribution W1 given Z1 denoted by F (· |Z1) has a pdf f(· |Z1) at Z ′1γ for each

γ ∈ Γ0 a.s.-P .

(ii) There exists a random variable D : Ω→ R with a finite second moment such that for each γ ∈ Γ0,

f(Z ′1γ |Z1)|Z1|2 < D a.s.-P .

(c) Jγγ = ∂2R(β̄, ᾱ, 0k×1)/∂γ∂γ′ is positive definite, and Jγα = ∂2R(β̄, ᾱ, 0k×1)/∂γ∂α′ is of full column

rank.

(d) E[|Z1|2] <∞.

(e) {(Wt, Z
′
t)
′ : t = 1, . . . , n} are independent and identically distributed.

The following theorem describes the asymptotic distribution of Jn in the case of fixed alternatives (β̄−β0

is a fixed vector) and the weak IVs design assumed in Assumption 5.

Theorem 6.1: Suppose that Assumptions 5 and 6 hold. Then

Jn
A∼ (Eρτ (W1))−1

(
η + JγγΛ′(β̄ − β0)

)′(
J−1
γγ − C0(C0′ Jγγ C

0)−1C0′)(η + JγγΛ′(β̄ − β0)
)
,

where η is a k × 1 random vector distributed with N
(
0, τ(1− τ)E[Z1Z

′
1]
)
.

In the case of weak instruments and under fixed alternatives, the asymptotic distribution of Jn is a non-

central mixed-χ2 random variable. The power of the test that rejects H0 : β̄ = β0 when Jn > c(α, Ĉ0
n, L̂

0
n, V̂

0
n )
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depends on the magnitude of the the non-centrality parameter given by(
β̄ − β0

)′
Λ
(
Jγγ − JγγC0(C0′ Jγγ C

0)−1C0′Jγγ
)
Λ′
(
β̄ − β0

)
,

where Jγγ−JγγC0(C0′ Jγγ C
0)−1C0′Jγγ is a positive definite matrix by Assumption 6(c). Under H0, β̄−β0 =

0 and the test rejects asymptotically with probability α. Thus, the test has correct size regardless of the

strength of the instruments. Under the fixed alternatives, the asymptotic rejection probability depends on

the distance between β̄ and β0 and the strength of the instruments Λ. For example, the test has no power

when the instruments are irrelevant and Λ = 0. The test also lacks power in certain directions if Λ 6= 0

however its rank is less than g.

Appendix A Mathematical Proofs

Given Assumption 1, write ‖ξ‖ρτ ≡ E[ρτ (ξ)] for each ξ ∈ L1(Ω,F , P ). Then ‖ · ‖ρτ is a pseudo norm on

L1(Ω,F , P ). Using ‖ · ‖ρτ , R can be written as

R(β, α, γ) = ‖y1 − Y ′1β − Z ′1,1α− Z ′1γ‖ρτ , (β, α, γ) ∈ B× Rk1 × Rk.

It follows that the minimization in the numerator of the ratio on the right-hand side of (3) is the ‖·‖ρτ -metric

projection of y1 − Y ′1β on Z1, while the minimization in the denominator is the ‖ · ‖ρτ -metric projection of

y1 − Y ′1β on Z1,1. The norm ‖ · ‖ρτ is closely related to the L1 norm ‖ · ‖1. They actually generate the

equivalent topologies, because

‖ξ‖ρτ ≤ ‖ξ‖1 ≤
1

min{τ, 1− τ}
‖ξ‖ρτ

An important implication of the equivalence is that ‖ξ‖ρτ = 0 if and only if ‖ξ‖1 = 0. Our analysis uses the

equivalence of the two norms, mostly without mentioning it explicitly.

We show below that {supα∈Rk1 Q̂n(β, α, ·)}n∈N converges to supα∈Rk1 Q(β, α) uniformly in β on the

compact set B. We can then conclude that {β̂n}n∈N is consistent for β0, because β0 is the unique maximizer

of β 7→ supα∈Rk1 Q(β, α) on B. Once the consistency of β̂n is established, we can also prove that {α̂n}n∈N

converges a.s.-P to α0, at which R(β0, ·, 0) : Rk1 → R is minimized, by utilizing the convexity of R̂n(β̂n, α, 0, ·)

in α and the pointwise convergence of {R̂n(β̂n, α, 0, ·)}n∈N to R(β0, α, 0) for each α.

We first establish a few lemmas. For later conveniences, some lemmas have more generality than we need

for proving Theorem 4.1. The generality will be useful in our proof of 4.4.
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Lemma A.1: Suppose that Assumptions 1 holds. Then for each β ∈ B,

inf
γ∈Rk

R̂n(β, 0, γ, ·)− inf
γ∈Rk

R(β, 0, γ)→ 0 a.s.-P ,

and

inf
α∈Rk1

R̂n(β, α, 0, ·)− inf
α∈Rk1

R(β, α, 0)→ 0 a.s.-P .

Proof of Lemma A.1: The two convergence results can be proved in similar manners. We only prove

the first one. Let β be an arbitrary point in B. Then the ‖ · ‖ρτ -metric projection of y1 − Y ′1β on the

linear subspace spanned by Z1 exists and is in general a compact set. By the linear independence of Z1

(Assumption 1), this further means that Γ1 ≡ arg minγ∈Rk R(β, 0, γ) is compact. It follows that there exists

a closed ball Γ2 containing Γ1 in its interior. Now fix a point γ1 in Γ1. By the Kolmogorov law of large

numbers (Rao 1973, p. 115), {R̂n(β, 0, γ1, ·)}n∈N converges to R(β, 0, γ1) a.s.-P . Also, by Jennrich’s uniform

law of large numbers (Jennrich 1969, Theorem 2), {R̂n(β, 0, γ, ·)−R(β, 0, γ)}n∈N converges to zero uniformly

in γ on the boundary ∂Γ2 of Γ2 a.s.-P . Because R̂n(β, 0, γ, ·) is convex as a function of γ, and

R(β, 0, γ1) < inf
γ∈∂Γ2

R(β, 0, γ),

it follows from the above-mentioned facts that

R̂n(β, 0, γ1, ·) < inf
γ∈Rk\Γ2

R̂n(β, 0, γ, ·)

for almost all n ∈ N a.s.-P . On the other hand, by Jennrich’s uniform law of large numbers, {R̂n(β, 0, γ, ·)−

R(β, 0, γ)}n∈N converges to zero uniformly in γ ∈ Γ2 a.s.-P , so that

inf
γ∈Γ2

R̂n(β, 0, γ, ·)→ R(β, 0, γ1) a.s.-P .

The desired result therefore follows. �

Lemma A.2: Suppose that Assumptions 1 holds. Then

sup
β∈B

∣∣∣∣ inf
γ∈Rk

R̂n(β, 0, γ, ·)− inf
γ∈Rk

R(β, 0, γ)

∣∣∣∣→ 0 a.s.-P ,

and

sup
β∈B

∣∣∣∣ inf
α∈Rk1

R̂n(β, α, 0, ·)− inf
α∈Rk1

R(β, α, 0)

∣∣∣∣→ 0 a.s.-P .
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Proof of Lemma A.2: We only prove the first convergence result, as the second one can be shown in an

analogous manner. Because Lemma A.1 has shown the corresponding pointwise a.s. convergence, and B is

compact, it suffices to show that the series in question is strongly stochastically equicontinuous (Andrews

1992, Theorem 2).

Let β1 and β2 be arbitrary points in B. Also, let gnj be Koenker and Bassett’s (1978) estimator in

τ -quantile regression of yt − Y ′t βj on Zt, i.e.,

R̂n(βj , 0, gnj , ·) = inf
γ∈Rk

R̂n(βj , 0, γ, ·),

for j = 1, 2. Then we have that for each n ∈ N,

R̂n(β1, 0, gn1, ·)− R̂n(β2, 0, gn2, ·)

= (R̂n(β1, 0, gn1, ·)− R̂n(β1, 0, gn2, ·)) + (R̂n(β1, 0, gn2, ·)− R̂n(β2, 0, gn2, ·))

≤ R̂n(β1, 0, gn2, ·)− R̂n(β2, 0, gn2, ·),

where the inequality holds, because R̂n(β1, 0, gn1, ·) ≤ R̂n(β1, 0, gn2, ·) for each n ∈ N. We further have that

R̂n(β1, 0, gn2, ·)− R̂n(β2, 0, gn2, ·) =n−1
n∑
t=1

(
ρτ (yt − Y ′t β1 − Z ′tgn2)− ρτ (yt − Y ′t β2 − Z ′tgn2)

)
≤n−1

n∑
t=1

|Y ′t β1 − Y ′t β2| ≤ |β1 − β2|n−1
n∑
t=1

|Yt|.

It follows that for for each n ∈ N

R̂n(β1, 0, gn1, ·)− R̂n(β2, 0, gn2, ·) ≤ |β1 − β2|n−1
n∑
t=1

|Yt|.

Analogously, we can also show that for each n ∈ N

R̂n(β2, 0, gn2, ·)− R̂n(β1, 0, gn1, ·) ≤ |β1 − β2|n−1
n∑
t=1

|Yt|.

Thus, it holds that for each n ∈ N∣∣∣∣ inf
γ∈Rk

R̂n(β2, 0, γ, ·)− inf
γ∈Rk

R̂n(β1, 0, γ, ·)
∣∣∣∣ = |R̂n(β2, 0, gn2, ·)− R̂n(β1, 0, gn1, ·)| ≤ |β1 − β2|n−1

n∑
t=1

|Yt|.

Because {n−1
∑n
t=1 |Yt|}n∈N converges to E[|Y1|] a.s.-P by the Kolmogorov strong law of large numbers, the

desired result follows by Andrews (1992, Lemma 2). �
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Lemma A.3: Suppose that Assumptions 1 and 2 hold. For each β ∈ B, {infα∈Rk Q̂n(β, α, ·)} converges

to infα∈Rk Q(β, α) uniformly in β ∈ B a.s.-P

Proof of Lemma A.3: Because the linear independence of the elements of X1 = (y1, Y
′
1 , Z

′
1) in Assumption 1

implies that for each β ∈ B, the distance between y1−Y ′1β and the ‖·‖ρτ -metric projection of y1−Y ′1β on the

subspace spanned by Z1 is positive, i.e., infα∈Rk1 R(β, α, 0) > 0. Because β 7→ infα∈Rk1 R(β, α, 0) : B→ R is

continuous, it is bounded away from zero on B. The desired results from this fact and Lemma A.2, because

(r1, r2) 7→ r1/r2 : R× (a,∞)→ R is a Lipschitz function if a > 0. �

Lemma A.4: Suppose that Assumptions 1 and 2 hold. Let {bn}n∈N be a sequence of B-valued random

vectors on (Ω,F , P ) converging to β0 a.s.-P (in probability-P ). Let {an}n∈N be sequences of k1 × 1 vectors

on (Ω,F , P ) satisfying that for each n ∈ N, R̂n(bn, an, 0, ·) = infα∈Rk1 R̂n(bn, α, 0, ·). Then:

(a) Then an → α0 a.s.-P (in probability-P ).

(b) Let {cn}n∈N be a sequence of k × 1 random vectors on (Ω,F , P ) satisfying that for each n ∈ N

R̂n(bn, an, cn, ·) = infγ∈Rk R̂n(bn, an, γ, ·). Then cn → 0 a.s.-P (in probability-P ), provided that the

minimizer of R(β0, α0, ·) : Rk → R over Rk is unique.

Proof of Lemma A.4: We only prove the result for {an}n∈N. The result for {cn}n∈N can be established in

an analogous way.

Suppose that bn → β0 a.s.-P . Then for each α ∈ Rk1 , {R̂n(bn, α, 0, ·)}n∈N converges to R(β0, α, 0) a.s.-P ,

because for each α ∈ Rk1 , {R̂n(β, α, 0, ·)}n∈N converges to R(β, α, 0) uniformly in β ∈ B by Jennrich’s uniform

law of large numbers (Jennrich 1969, Theorem 2). Further, we can apply Rockafellar (1970, Theorem 10.8)

to show that the convergence is uniform in α over any compact subset of Rk1 , because for each n ∈ N,

R̂n(bn, α, 0, ·) is convex in α over Rk1 .

Take an arbitrary compact subset A1 of Rk1 that contain α0 in its interior. Then {R̂n(bn, α0, 0, ·)}

converges to R(β0, α0, 0) a.s.-P ; {R̂n(bn, α, 0, ·)} converges to R(β0, α, 0) uniformly on α ∈ ∂A1 a.s.-P ; and

R(β0, α0, 0) < infα∈∂A1
R(β0, α, 0), because α0 is the unique minimizer of R(β0, ·, 0) on Rk1 by Assumption 2.

Because R̂n(bn, α, 0, ·) is convex in α, it follows that

R̂n(bn, α0, 0, ·) < inf
α∈Rk1\A1

R̂n(bn, α, 0, ·)
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for almost all n ∈ N a.s.-P . That is, an ∈ A1 for almost all n ∈ N a.s.-P . Because A1 is an arbitrary

compact subset containing α0 in its interior, this establishes the a.s.-P convergence of {an}n∈N to α0. The

convergence of {an}n∈N in probability in the current lemma immediately follows from the result of the a.s.

convergence of {an}n∈N by using the subsequence theorem. �

Proof of Theorem 4.1: By Assumption 2, β 7→ supα∈Rk Q(β, α) : B → R is uniquely maximized

at β0. Because β̂n maximizes supα∈Rk Q̂n(β, α, ·) with respect to β over the compact subset B, and

{supα∈Rk Q̂n(β, α, ·)}n∈N converges to supα∈Rk Q(β, α) uniformly in β ∈ B a.s.-P , it follows by Pötscher

and Prucha (1991, Lemma 4.2) that {β̂n}n∈N converges to β0 a.s.-P . Further, applying Lemma A.4(a) by

setting bn = β̂n and an = α̂n establishes that the strong consistency of α̂n for α0. The result therefore

follows. �

In proving Lemmas 4.2, 4.3 and Theorem 4.4, we use the following lemma.

Lemma A.5: Suppose that Assumptions 1–3 hold, and let {d̃nj ≡ (b′nj , anj , g
′
nj)
′ : Ω→ B×Rk1×Rk}n∈N

be a sequence of random vectors that converges in probability-P to d0 ≡ (β′0, α
′
0, 01×k)′, j = 1, 2. Then

R̂n(bn2, an2, gn2, ·)− R̂n(bn1, an1, gn1, ·)

= −n−1
n∑
t=1

(τ − 1(Ut < 0)) X̃ ′t(d̃n2 − d̃n1) +
1

2
(d̃n2 − d0)′J(d̃n2 − d0)− 1

2
(d̃n1 − d0)′J(d̃n1 − d0)

+ oP (n−1/2|dn2 − dn1|+ |dn1 − d0|2 + |dn2 − d0|2)), (10)

where X̃t ≡ (Yt, Z
′
t,1, Z

′
t)
′, t ∈ N.

Proof of Lemma A.5: Define r : R× Rg+k1+k × Rg+k1+k × Rg+k1+k → R by

r(y, x̃, d1, d2) ≡ 1

|d2 − d1|

(
ρτ (y − x̃′d2)− ρτ (y − x̃′d1) + (τ − 1(y − x̃′d0 < 0)) x̃′(d2 − d1)

)
,

(y, x̃, d1, d2) ∈ R× Rg+k1+k × Rg+k1+k × Rg+k1+k,

with the rule that devision by zero is zero. Also, following Pollard (1985), let νn denote the standardized

sample average operator such that for each function f : R× Rl+k → R with E[|f(Y1, X̃1)|] <∞

νnf(·, ·) = n−1/2
n∑
t=1

(
f(Yt, X̃t)− E[f(Y1, X̃1)]

)
, n ∈ N.
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By the definition of r, we obtain that

R̂n(d2, ·)− R̂n(d1, ·) =R(d2)−R(d1)−
(
`+ n−1

n∑
t=1

(τ − 1(Ut < 0)) X̃t

)′
(d2 − d1)

+ n−1/2|d2 − d1| νnr(·, ·, d1, d2)

for each (d1, d2) ∈ Rl+k×Rl+k, where ` is the gradient of R at (β0, α0, 01×k), which is equal to −E[(τ−1(U1 <

0)) X̃1]. Taking the second-order Taylor expansion of R(d1) and R(d2) about d0 on the right-hand side of

this equality and replacing d1 with d̃n1 and d2 with d̃n2 in the resulting equality yields the desired result,

if {νnr(·, ·, d̃n1, d̃n2)}n∈N converges to zero in probability-P . It thus suffices to show the convergence of

{νnr(·, ·, d̃n1, d̃n2)} to zero in probability-P .

It is straightforward to verify that r(y1, X̃1, θ1, θ2) ≤ 2|X̃1|, from which it follows that

E

[
sup

(d1,d2)∈Rg+k1+k×Rg+k1+k

r(y1, X̃1, d1, d2)2

]
≤ 4E[|X̃1|2] <∞.

Also, {r(·, ·, d1, d2) : (d1, d2) ∈ Rg+k1+k×Rg+k1+k} can be expressed as a sum of a fixed member of functions

from a polynomial class. These facts imply that {νnr(·, ·, d1, d2)}n∈N is stochastically equicontinuous at

(d0, d0) (Pollard 1985, pp. 311–312). Further, r(y1, X̃1, d1, d2)2 converges to zero as (d1, d2) → (d0, d0)

a.s.-P , and r(y1, X̃1, d1, d2)2 is dominated by 4|X̃1|2 with a finite moment. It follows by the dominated

convergence theorem that E[r(y1, X̃1, d1, d2)2]→ 0 as (d1, d2)→ (d0, d0).

Now let {Un ⊂ Rg+k1+k × Rg+k1+k}n∈N be an arbitrary sequence of balls centered at (d′0, d
′
0)′ that

shrinks down to (d′0, d
′
0)′. Then, as Pollard (1985, page. 309) explains, it follows from the above-mentioned

facts that sup(d1,d2)∈Un |νnr(·, ·, d1, d2)| → 0 in probability-P . Thus, {νnr(·, ·, d̃n1, d̃n2)} converges to zero in

probability-P , given that {d̃nj}n∈N converges to d0 in probability-P , j = 1, 2. �

Lemma A.6: Let (Ω,F , P ) be a probability space. Suppose that a sequence of random vectors {ηn : Ω→

Rm}n∈N and a sequence of random variables {ξn : Ω→ R}n∈N satisfy that −η′nAηn + ξn ≥ 0 for each n ∈ N,

where A is a positive definite m×m symmetric matrix. Also, let {ζn : Ω→ R}n∈N be a sequence of random

variables. Suppose that ξn = oP (|ηn|+ |ηn|2 + |ζn|) as n→∞. Then |ηn| = oP (|ζn|1/2 + 1) as n→∞.

We now prove Lemma 4.2.

Proof of Lemma 4.2: The existence of {cn} follows immediately from the fact that the minimization of
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R̂n(bn, an, γ, ·) in terms of γ is the ‖·‖ρτ -metric projection of (y1−Y ′1bn−Z ′1,1an, y2−Y ′2bn−Z ′1,2an, . . . , yn−

Y ′nbn − Z ′1,nan) on the space spanned by the rows of (Z1, Z2, . . . , Zn).

To prove the second result, we first show that {cn} converges to 0 in probability-P , and then apply

Lemmas A.5 and A.6. For each fixed γ ∈ Rk, R̂n(β, α, γ, ·) is convex in β and α. By the Kolmogorov strong

law of large numbers and Hjort and Pollard (1993, Lemma 1), {R̂n(β, α, γ, ·)}n∈N converges to R(β, α, γ)

uniformly in (β′, α′)′ in each neighborhood of (β′0, α
′
0)′ in probability-P . Because {(b′n, a′n)′}n∈N converges to

(β′0, α
′
0)′ in probability-P by the assumption, it follows that {R̂n(bn, an, γ, ·)}n∈N converges to R(β0, α0, γ)

for each γ ∈ Rk. Under Assumptions 1–3(c), this fact implies by Hjort and Pollard (1993, Lemma 2) that

{cn} converges to 0 in probability-P .

We now set bn to both bn1 and bn2, cn to gn1,

g†n ≡ C

bn − β0

an − α0

+ J−1
γγ n

−1
n∑
t=1

(τ − 1(Ut < 0))Zt.

to gn2 in (10) and multiply the resulting equality by n to obtain that

0 ≤n(R̂n(bn, an, g
†
n, ·)− R̂n(bn, an, cn, ·))

=− 1

2
n1/2(cn − g†n)′Jγγn

1/2(cn − g†n)

+ oP
(
n1/2|cn − g†n|+ n|bn − β0|2 + n|an − α0|2 + n|cn|2 + n|g†n|2

)
=− 1

2
n1/2(cn − g†n)′Jγγn

1/2(cn − g†n)

+ oP
(
n1/2|cn − g†n|) + n|cn − g†n|2 + n|bn − β0|2 + n|an − α0|2 + 1

)
,

where the second equality holds because |g†n| = OP (|bn − β0|+ |an − α0|+ 1) and cn = OP (|cn − g†n|+ |g†n|).

The result follows from this inequality by Lemma A.6. �

Proof of Lemma 4.3: Let {cn}n∈N be as in Lemma 4.2. Note that the difference between {R̂n(bn, an, cn, ·)}n∈N

and {R̂n(bn, an, 0, ·)}n∈N converges to zero in probability-P . Applying the delta method with this fact, we
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obtain that

n log Q̂n(bn, an, ·) = n(log R̂n(bn, an, cn, ·)− log R̂n(bn, an, 0, ·))

=
1

R(β0, α0, 0)
n(R̂n(bn, an, cn, ·)− R̂n(bn, an, 0, ·)) (11)

− 1

2R(β0, α0, 0)2
n(R̂n(bn, an, cn, ·)−R(β0, α0, 0))2

+
1

2R(β0, α0, 0)2
n(R̂n(bn, an, 0, ·)−R(β0, α0, 0))2

+ oP
(
n(R̂n(bn, an, cn, ·)−R(β0, α0, 0))2 + n(R̂n(bn, an, 0, ·)−R(β0, α0, 0))2

)
.

We apply Lemma A.5 to each of the non-remainder terms on the right-hand side of this equality:

n(R̂n(bn, an, cn, ·)− R̂n(bn, an, 0, ·))

= −1

2
n1/2c′nJγγn

1/2cn + oP
(
n1/2|cn|+ n|bn − β0|2 + n|an − α0|2 + |cn|2

)
= −1

2
n1/2c′nJγγn

1/2cn + oP
(
n1/2|bn − β0|+ n1/2|an − α0|+ n|bn − β0|2 + n|an − α0|2 + 1

)
,

n1/2(R̂n(bn, an, cn, ·)−R(β0, α0, 0))

= n1/2(R̂n(bn, an, cn, ·)− R̂n(β0, α0, 0, ·)) + n1/2(R̂n(β0, α0, 0, ·)−R(β0, α0, 0))

= −
(
n−1

n∑
t=1

(τ − 1(Ut < 0)) (Y ′t , Z
′
t,1)′

)′
n1/2(θ̃n − θ0) + n1/2(R̂n(β0, α0, 0, ·)−R(β0, α0, 0))

+ oP
(
n1/2|bn − β0|+ n1/2|an − α0|+ n|bn − β0|2 + n|an − α0|2 + 1

)
,

and

n1/2(R̂n(bn, an, 0, ·)−R(β0, α0, 0))

= n1/2(R̂n(bn, an, 0, ·)− R̂n(β0, α0, 0, ·)) + n1/2(R̂n(β0, α0, 0, ·)−R(β0, α0, 0))

= −
(
n−1

n∑
t=1

(τ − 1(Ut < 0)) (Y ′t , Z
′
t,1)′

)′
n1/2(bn − β0) + n1/2(R̂n(β0, α0, 0, ·)−R(β0, α0, 0))

+ oP
(
n1/2|bn − β0|+ n1/2|an − α0|+ n|bn − β0|2 + n|an − α0|2 + 1

)
.

Substituting these into (11) and applying Lemma 4.2 yields the desired result. �

Proof of Theorem 4.4: Let

θ̃†n ≡ θ0 −
1

R(β0, α0, 0)
K−1C ′n−1

n∑
t=1

(τ − 1(Ut < 0))Zt, n ∈ N,
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and let b†n and a†n denote the vectors containing the first g elements and the remaining elements of θ̃n,

respectively. Then, by Lemma 4.3, we have that

0 ≤n log Q̂n(β̂n, α̂n, ·)− n log Q̂n(b†n, a
†
n, ·)

=
1

2
n1/2(θ̂n − θ̃†n)′Kn1/2(θ̂n − θ̃†n)

+ oP
(
n1/2|β̂n − β0|+ n1/2|α̂n − α0|+ n|β̂n − β0|2 + n|α̂n − α0|2 + 1

)
.

The first result follows from this equality by Lemma A.6. For the second result, apply the central limit

theorem (CLT) for i.i.d. random vectors (Rao 1973, p. 128) to show that {n−1/2
∑n
t=1(τ −1(Ut < 0))Zt}n∈N

is asymptotically distributed with N(0, R(β0, α0, 0)2V ), and then apply the continuous mapping theorem.

�

Proof of Theorem 4.5: To prove (a), let {θ̃†n}n∈N be as in the proof of Theorem 4.4 and {δn}n∈N an

arbitrary sequence of (g + k1)× 1 random vectors that converges to the origin in probability-P . Recall that

the expression consisting of the second and third terms on the right-hand side of (5) is minimized when

(b′n, a
′
n)′ = θ̃†n, and that {n1/2(θ̂n− θ̃†n)}n∈N converges to zero in probability-P by Theorem 4.4. Using these

facts with Lemma 4.3, we can show that n log Q̂n(θ̂n, ·)− n log Q̂n(θ̃†n, ·) = oP (1) and

n log Q̂n(θ̂n + δn, ·)− n log Q̂n(θ̃†n, ·)

= −1

2
n1/2(θ̂n − θ̃†n + δn)′Kn1/2(θ̂n − θ̃†n + δn) + oP

(
n1/2|δn|+ |δn|2 + 1

)
= −1

2
n1/2δ′nKn

1/2δn + oP
(
n1/2|δn|+ |δn|2 + 1

)
(12)

By taking each of τnei + τnej , −τnei + τnej , τnei − τnej , and −τnei − τnej for δn in this equality and using

the resulting equalities in the definition of K̂nij (i, j = 1, 2, . . . , l), we obtain that

4nτ2
nK̂nij = 4τ2

nKij + oP
(
n−1/2τn + τ2

n + 1
)
.

Dividing both sides of this equality by 4nτ2
n and applying Assumption 4 yields the desired result.

To prove (b), let δ be an arbitrary (g+k1)×1 vector. By Lemma 4.2, we have that for each i = 1, 2, . . . , k

and each j = 1, 2, . . . , l, γ̂ni(θ̂n + τnδ)− γ̂ni(θ̂n − τnδ) = 2τnCδn + oP (τn). It follows that

1

2τn
(γ̂n(β̂n + τnδ)− γ̂n(β̂n − τnδ)) = Cδ + oP (1).

Taking ej for δ for each j = 1, 2, . . . , k in this equality completes the proof.
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To show (c), notice that {R̂n(β, α, 0, ·)}n∈N converges to R(β, α, 0) uniformly in (β′, α′)′ in each closed ball

centered at (β′0, α
′
0)′ in probability-P , because {R̂n(β, α, 0, ·)} converges toR(β, α, 0) in probability-P for each

(β, α) ∈ B×Rk1 , and R̂n(β, α, 0, ·) is convex in β and α for each n ∈ N (Hjort and Pollard 1993, Lemma 1). It

follows by Theorem 4.4 that {R̂n(β̂n, α̂n, 0, ·)}n∈N converges to R(β0, α0, 0). Also, n−1
∑n
t=1 ZtZ

′
t converges

to E[Z1Z
′
1] a.s.-P by the Kolmogorov strong law of large numbers and Hjort and Pollard (1993, Lemma 1).

The desired result follows from these by the Slutsky theorem. Finally, the claim (d) immediately follows

from a–c by the Slutsky theorem. �

Proof of Lemma 5.1: Using Lemma 4.3 and Theorem 4.4, the ρτ -IV regression of Vt ≡ yt − Y ′t β̄ on Zt,1,

taking Zt for instruments, we obtain that

Jn =
1

R(β0, α0, 0)

(
n−1/2

n∑
t=1

(τ − 1(Ut < 0))Zt

)′(
L−1 − C0K0−1C0′)

× 1

R(β0, α0, 0)

(
n−1/2

n∑
t=1

(τ − 1(Ut < 0))Zt

)
+ oP (1),

where K0 ≡ R(β0, α0, 0)−1JαγJ
−1
γγ Jγα. Because R(β0, α0, 0)−1n−1/2

∑n
t=1(τ − 1(Ut < 0))Zt

A∼ η by the

central limit theorem (CLT) for i.i.d. random vectors (Rao 1973, p. 128), it follows by the continuous

mapping theorem and the asymptotic equivalence lemma that

Jn
A∼ η′

(
L−1 − C0K0−1C0′)η.

Applying the fact that K0 = C0′LC0 to this result completes the proof. �

Proof of Lemma 5.2: Let {δn}n∈N be an arbitrary sequence of k × 1 random vectors that converges to the

origin in probability-P . By Lemma A.5 with Theorem 4.4 and Lemma 4.2, we have that

R̂n(β̄, α̂0
n, γ̂

0
n + δn, ·)− R̂n(β̄, α̂0

n, γ̂
0
n, ·) =

1

2
δ′nJγγδn + oP

(
n−1/2|δn|+ |δn|2 + n−1

)
.

By the delta method, it follows that

log R̂n(β̄, α̂0
n, γ̂

0
n + δn, ·)− log R̂n(β̄, α̂0

n, γ̂
0
n, ·)

=
1

R(β0, α0, 0)

(
R̂n(β̄, α̂0

n, γ̂
0
n + δn, ·)− R̂n(β̄, α̂0

n, γ̂
0
n, ·)

)
=

1

2
δ′nLδn + oP (1).

The desired result follows from this equality in essentially the same way as Theorem 4.5(a) is proved using

(12). �
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Proof of Theorem 5.3: To prove (a), it suffices to show that for each p ∈ (0, 1), {c(p, Ĉn, L̂n, V̂n)}n∈N is

weakly consistent for c(p, C, L, V ). For each k× l matrix C̃, each k× k symmetric matrix L̃, and each k× k

symmetric matrix Ṽ , let F (·, C̃, L̃, Ṽ ) : R → R denote the distribution function of η̃′(L̃+ − C̃(C̃ ′L̃C̃)+C̃ ′)η̃

with η̃ distributed with N(0, Ṽ ). Also, define {Fn : R × Ω → R}n∈N and F ∗ : R → R by F̂n(x, ·) ≡

F (x, Ĉn, V̂n, L̂n), x ∈ R, n ∈ N, and F ∗(x) ≡ F (x,C, L, V ), x ∈ R. Because F ∗ is positively sloped at

c(p, C, L, V ) for each p ∈ (0, 1), the convergence of {c(p, Ĉn, L̂n, V̂n)}n∈N in probability-P to c(p, C, L, V ) for

each p ∈ (0, 1) is implied by the convergence of {F̂n(x, ·)}n∈N in probability-P to F ∗(x) for each x ∈ R. We

below prove this sufficient condition.

Notice that the characteristic function φ(·, C̃, L̃, Ṽ ) of F (·, C̃, L̃, Ṽ ) is given by

φ(s, C̃, L̃, Ṽ ) ≡ det
(
I − 2isṼ 1/2(L̃+ − C̃(C̃ ′L̃C̃)+C̃ ′)Ṽ 1/2

)
,

where i denotes the imaginary unit. Because Ĉn → C, L̂n → L, and V̂n → V in probability-P , it follows

from the subsequent theorem (Lukacs 1975, Theorem 2.4.4) that for each subsequence {ni}i∈N of {n}n∈N,

there exists a further subsequence {nij}j∈N of it, along which Ĉnij → C, L̂nij → L, and V̂nij → V as j →∞

a.s.-P . Because V is positive definite, we have that

φ(s, Ĉnij , L̂nij , V̂nij ) = det V̂nij det
(
V̂ +
nij
− 2is(L̂+

nij
− Ĉnij (Ĉ ′nij

L̂nij Ĉnij )+Ĉ ′nij
)
)
, s ∈ R

for each s ∈ R and a.a. n ∈ N a.s.-P . By the continuity theorem (Billingsley 1968, Theorem 7.6), this implies

that for each x ∈ R, {Fnij (x, ·)}i∈N converges to F ∗(x) a.s.-P . By the subsequence theorem, it follows from

this fact that for each x ∈ R, {Fn(x, ·)}n∈N converges to F ∗(x) in probability-P . The desired result therefore

follows.

For (b), it suffices to show that c(p, Ĉn, L̂n, V̂n) = OP (1), because for each c̄ ∈ R, P [Jn > c̄] → 1 if

the function Q(β̄, ·) : Rk1 → R attains one nowhere on Rk1 . We only give a sketch of the proof here. It

is possible to derive results similar to those of Lemmas 4.2, 4.3, and Theorem 4.4 without imposing H0

in the ρτ -IV regression of yt − Y ′t β̄ on Zt,1, taking Zt for instruments, by employing essentially the same

techniques. Although the constants in the resulting formulas are different from those found in Lemmas 4.2,

4.3, and Theorem 4.4, essentially the same logic delivers the convergence of {Ĉ0
n}n∈N, {L̂0

n}n∈N, and {V̂ 0
n }n∈N

in probability-P . The stochastic limit of {L̂0
n}n∈N is the Hessian of R(β̄, α∗, ·) : Rk → R at γ∗, which

is nonsingular by Assumption 3(c). Using the same argument as in the proof of (a), we can show that

{c(p, Ĉn, L̂n, V̂n)}n∈N converges in probability-P , so that it is OP (1). �
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Proof of Theorem 6.1: First, we show that α̂0
n ≡ arg minα∈Rk1 R̂n(β̄, α, 0, ·) converges to ᾱ a.s.-P , where

ᾱ is defined in Assumption 5. It suffices to show that supα∈Rk1
∣∣R̂n(β̄, α, 0, ·)−Eρτ

(
W1−Z ′1,1(α− ᾱ)

)∣∣→ 0

a.s.-P . We have
∣∣R̂n(β̄, α, 0, ·)−Eρτ

(
W1−Z ′1,1(α− ᾱ)

)∣∣ ≤ ∣∣R̂n(β̄, α, 0, ·)−R(β̄, α, 0)
∣∣+ ∣∣Eρτ(W1−Z ′1Λ′(β̄−

β0)n−1/2 − Z ′1,1(α − ᾱ)
)
− Eρτ

(
W1 − Z ′1,1(α − ᾱ)

)∣∣, where the first summand converges to zero a.s.-P and

uniformly in α, as we argued in the proof of Lemma A.4, while the second summand can be bounded using

Knight’s identity by n−1/2E|Z1||Λ′(β̄ − β0)| (Koenker 2005, equation (4.3), page 121).

Note that Jn in (6) can also be written as

Jn = −2n log
R̂n(β̄, α̂0

n, γ̂
0
n, ·)

R̂n(β̄, α̂0
n, 0, ·)

, where γ̂0
n ≡ arg inf

γ∈Rk
R̂n(β̄, α̂0

n, γ, ·).

In a similar manner as before, one can show that γ̂0
n → 0 a.s.-P .

Next, the result of Lemma A.5 can be also stated as follows. Let {(a′nj , c′nj)′ : Ω → Rk1 × Rk}n∈N,

j = 1, 2, be sequences of random vectors that converge to zero a.s.-P . Then,

n−1
n∑
t=1

ρτ (Wt − Z ′t,1an2 − Z ′tcn2)− n−1
n∑
t=1

ρτ (Wt − Z ′t,1an1 − Z ′tcn1)

= −n−1
n∑
t=1

(
τ − 1(Wt < 0)

)(
Z ′t,1(an2 − an1) + Z ′t(cn2 − cn1)

)

+
1

2

an2

cn2


′Jαα Jαγ

Jγα Jγγ


an2

cn2

− 1

2

an1

cn1


′Jαα Jαγ

Jγα Jγγ


an1

cn1


+ oP (n−1/2|an2 − an1|+ n−1/2|cn2 − cn1|+ |an1|2 + |cn1|2 + |an2|2 + |cn2|2).

(13)

Define

g‡n ≡ −n−1/2Λ′(β̄ − β0)− J−1
γγ Jγα(α̂0

n − ᾱ) + J−1
γγ n

−1
n∑
t=1

(τ − 1(Wt < 0))Zt.

By (13) and as in the proof of Lemma 4.2,

0 ≤ n(R̂n(β̄, α̂0
n, g
‡
n, ·)− R̂n(β̄, α̂0

n, γ̂
0
n, ·))

= −1

2
n1/2(γ̂0

n − g‡n)′Jγγn
1/2(γ̂0

n − g‡n) + oP (n1/2|γ̂0
n − g‡n|+ n|γ̂0

n − g‡n|2 + n|α̂0
n − ᾱ|2 + 1),

and, therefore, by Lemma A.6,

n1/2γ̂0
n = −Λ′(β̄ − β0) + C0n1/2(α̂0

n − ᾱ) + J−1
γγ n

−1/2
n∑
t=1

(τ − 1(Wt < 0))Zt (14)

+ oP (n1/2|α̂0
n − ᾱ|+ 1).
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Now, as in the proof of Lemma 4.3,

n log Q̂n(β̄, α̂0
n, ·) = n(log R̂n(β̄, α̂0

n, γ̂
0
n, ·)− log R̂n(β̄, α̂0

n, 0, ·))

=
1

Eρτ (W1)
n(R̂n(β̄, α̂0

n, γ̂
0
n, ·)− R̂n(β̄, α̂0

n, 0, ·)) (15)

− 1

2(Eρτ (W1))2
n(R̂n(β̄, α̂0

n, γ̂
0
n, ·)− Eρτ (W1))2

+
1

2(Eρτ (W1))2
n(R̂n(β̄, α̂0

n, 0, ·)− Eρτ (W1))2

+ oP
(
n(R̂n(β̄, α̂0

n, γ̂
0
n, ·)− Eρτ (W1))2 + n(R̂n(β̄, α̂0

n, 0, ·)− Eρτ (W1))2
)
.

For the difference term in (15) we have by (13),

n(R̂n(β̄, α̂0
n, γ̂

0
n, ·)− R̂n(β̄, α̂0

n, 0, ·))

=

n∑
t=1

ρτ
(
Wt − Z ′t,1(α̂0

n − ᾱ)− Z ′t(γ̂0
n + Λ′(β̄ − β0))

)
−

n∑
t=1

ρτ
(
Wt − Z ′t,1(α̂0

n − ᾱ)− Z ′tΛ′(β̄ − β0)
)

= −n−1/2
n∑
t=1

(τ − 1(Wt < 0))Z ′tn
1/2γ̂0

n

+
1

2
n1/2γ̂0

n
′Jγγn

1/2γ̂0
n + n1/2(β̄ − β0)′ΛJγγn

1/2γ̂0
n + n1/2(α̂0

n − ᾱ)′Jαγn
1/2γ̂0

n

+ oP (n1/2|γ̂0
n|+ n|α̂0

n − ᾱ|2 + n|γ̂0
n|2 + 1)

= −n1/2γ̂0
n
′Jγγn

1/2γ̂0
n + oP (n1/2|α̂0

n − ᾱ|+ n|α̂0
n − ᾱ|2 + 1). (16)

Define

Ψn ≡ n−1/2
n∑
t=1

(τ − 1(Wt < 0))Zt − JγγΛ′(β̄ − β0).

Using (14)–(16), the result analogous to that of Lemma 4.3 can be stated as

− 2n log Q̂n(β̄, α̂0
n, ·)Eρτ (W1) (17)

= Ψ′nJ
−1
γγ Ψn − 2Ψ′nJ

−1
γγ Jγαn

1/2(α̂0
n − ᾱ) + n1/2(α̂0

n − ᾱ)′JαγJ
−1
γγ Jγαn

1/2(α̂0
n − ᾱ)

+ oP (n1/2|α̂0
n − ᾱ|+ n|α̂0

n − ᾱ|2 + 1)

=
∣∣J−1/2
γγ

(
Ψn − Jγαn1/2(α̂0

n − ᾱ)
)∣∣2 (18)

+ oP (n1/2|α̂0
n − ᾱ|+ n|α̂0

n − ᾱ|2 + 1).
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Similarly to the result of Theorem 4.4, we have now:

n1/2(α̂0
n − ᾱ) = (JαγJ

−1
γγ Jγα)−1JαγJ

−1
γγ Ψn + oP (1), (19)

and after substituting this into (18), we obtain:

− 2n log Q̂n(β̄, α̂0
n, ·)Eρτ (W1)

=
∣∣(J−1/2

γγ − J−1/2
γγ Jγα(JαγJ

−1
γγ Jγα)−1JαγJ

−1
γγ )Ψn

∣∣2 + oP (1).

Next, note that Ψn →d N(JγγΛ′(β̄ − β0), τ(1 − τ)E[Z1Z
′
1]), |J−1/2

γγ − J−1/2
γγ Jγα(JαγJ

−1
γγ Jγα)−1JαγJ

−1
γγ |2 =

J−1
γγ − C0(C0′JγγC

0)−1C0′, and the result follows.

To show (19), define n1/2(α‡n − ᾱ) ≡ (JαγJ
−1
γγ Jγα)−1JαγJ

−1
γγ Ψn. Now,

0 ≤ −2n log Q̂n(β̄, α̂0
n, ·)Eρτ (W1) + 2n log Q̂n(β̄, α‡n, ·)Eρτ (W1)

= −2Ψ′nJ
−1
γγ Jγαn

1/2((α̂0
n − ᾱ)− (α‡n − ᾱ)) + n1/2(α̂0

n − ᾱ)′JαγJ
−1
γγ Jγαn

1/2(α̂0
n − ᾱ)

− n1/2(α‡n − ᾱ)′JαγJ
−1
γγ Jγαn

1/2(α‡n − ᾱ)

+ oP (n1/2|α̂0
n − ᾱ|+ n|α̂0

n − ᾱ|2 + 1)

= −2Ψ′nJ
−1
γγ Jγα(JαγJ

−1
γγ Jγα)−1JαγJ

−1
γγ Jγαn

1/2((α̂0
n − ᾱ)− (α‡n − ᾱ))

+ n1/2(α̂0
n − ᾱ)′JαγJ

−1
γγ Jγαn

1/2(α̂0
n − ᾱ)

− n1/2(α‡n − ᾱ)′JαγJ
−1
γγ Jγαn

1/2(α‡n − ᾱ)

+ oP (n1/2|α̂0
n − ᾱ|+ n|α̂0

n − ᾱ|2 + 1)

= −2(α‡n − ᾱ)JαγJ
−1
γγ Jγαn

1/2((α̂0
n − ᾱ)− (α‡n − ᾱ))

+ n1/2(α̂0
n − ᾱ)′JαγJ

−1
γγ Jγαn

1/2(α̂0
n − ᾱ)

− n1/2(α‡n − ᾱ)′JαγJ
−1
γγ Jγαn

1/2(α‡n − ᾱ)

+ oP (n1/2|α̂0
n − ᾱ|+ n|α̂0

n − ᾱ|2 + 1)

= n1/2(α̂0
n − α‡n)′JαγJ

−1
γγ Jγαn

1/2(α̂0
n − α‡n) + oP (n1/2|α̂0

n − ᾱ|+ n|α̂0
n − ᾱ|2 + 1),

and (19) follows by Lemma A.6. �
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