Arbitrage Pricing in electricity Markets

Adrien Nguyen Huu Université Dauphine, CEREMADE and FiME- EDF R&D Paris, France

GT FiME IHP, 05.11.10

Joint work with alumni.

 Non Storability of the underlying asset Arbitrage pricing theory is no longer valid :

$$F_t(T) \neq \mathbb{E}^{\mathbb{Q}}[S_T \mid \mathcal{F}_t] = S_t e^{r(T-t)}$$

 \Rightarrow no pure link between spot and future prices

- Non Storability of the underlying asset
- Price formation

Prices as *physical* supply demand equilibrium

- Non Storability of the underlying asset
- Price formation

Prices as *physical* supply demand equilibrium + inflexible demand \Rightarrow price as a production cost (Barlow)

- Non Storability of the underlying asset
- Price formation

Prices as *physical* supply demand equilibrium Non storability + market rules \Rightarrow possible specific prices (negative prices, bounded, spikes, seasonality).

- Non Storability of the underlying asset
- Price formation
- Granularity of term structure

Availability of assets on the French future market :

 \Rightarrow no hedging without a more subtile term structure (incomplete market)

- Non Storability of the underlying asset
- Price formation
- Granularity of term structure
- Illiquidity and transaction costs
 - Specific market (and minor against OTC)
 - Localized selling (national, regional)
 - Unflexibility of production (fuel, gaz, coal,...)

- Non Storability of the underlying asset
- Price formation
- Granularity of term structure
- Illiquidity and transaction costs

 \Rightarrow How can we link spot prices and future prices with classical financial paradigm ?

- Non Storability of the underlying asset
- Price formation
- Granularity of term structure
- Illiquidity and transaction costs

 \Rightarrow How can we link spot prices and future prices with classical financial paradigm ?

 \Rightarrow How do we price and hedge claims?

• Future contract pricing

- Options on non available granularity
- Spread options on electricity and combustible
- Production/Plant pricing

- Future contract pricing
- Options on non available granularity
- Spread options on electricity and combustible
- Production/Plant pricing

- Future contract pricing
- Options on non available granularity
- Spread options on electricity and combustible
- Production/Plant pricing

- Future contract pricing
- Options on non available granularity
- Spread options on electricity and combustible
- Production/Plant pricing

- Plethora of spot models (Barlow, Cartea, Benth, Hepperger,...) : levy processes, regime switching models, processes in Hilbert space.
- Plethora of Future models : two factor model, integrals of spot prices.
- Statistical models : link with commodities, weather, production capacities, demand.
- Calibration on future prices, option prices, spot prices, specific knowledge.

- Plethora of spot models (Barlow, Cartea, Benth, Hepperger,...) : levy processes, regime switching models, processes in Hilbert space.
- Plethora of Future models : two factor model, integrals of spot prices.
- Statistical models : link with commodities, weather, production capacities, demand.
- Calibration on future prices, option prices, spot prices, specific knowledge.

- Plethora of spot models (Barlow, Cartea, Benth, Hepperger,...) : levy processes, regime switching models, processes in Hilbert space.
- Plethora of Future models : two factor model, integrals of spot prices.
- Statistical models : link with commodities, weather, production capacities, demand.
- Calibration on future prices, option prices, spot prices, specific knowledge.

- Plethora of spot models (Barlow, Cartea, Benth, Hepperger,...) : levy processes, regime switching models, processes in Hilbert space.
- Plethora of Future models : two factor model, integrals of spot prices.
- Statistical models : link with commodities, weather, production capacities, demand.
- Calibration on future prices, option prices, spot prices, specific knowledge.

- Plethora of spot models (Barlow, Cartea, Benth, Hepperger,...) : levy processes, regime switching models, processes in Hilbert space.
- Plethora of Future models : two factor model, integrals of spot prices.
- Statistical models : link with commodities, weather, production capacities, demand.
- Calibration on future prices, option prices, spot prices, specific knowledge.

Still : $F(t, T) \neq \mathbb{E}^{\mathbb{Q}}[S_T \mid \mathcal{F}_t]$

A structural model of electricity prices

with R. Aid, L. Campi, N. Touzi

How prices are computed?

How prices are computed ? Consider

- N production means depending with respective costs (S^k_t), k ≤ N.
- their N capacities of production Δ_t^k , $k \leq N$.
- the permutation $\pi_t(k)$ s.t. $S_t^{\pi_t(1)} \leq \cdots \leq S_t^{\pi_t(N)}$
- an independent positive demand process D_t .

How prices are computed?

Consider

- N production means depending with respective costs (S^k_t), k ≤ N.
- their N capacities of production Δ_t^k , $k \leq N$.
- the permutation $\pi_t(k)$ s.t. $S_t^{\pi_t(1)} \leq \cdots \leq S_t^{\pi_t(N)}$
- an independent positive demand process D_t .

How prices are computed ? Consider

- N production means depending with respective costs (S^k_t), k ≤ N.
- their N capacities of production Δ_t^k , $k \leq N$.
- the permutation $\pi_t(k)$ s.t. $\mathcal{S}_t^{\pi_t(1)} \leq \cdots \leq \mathcal{S}_t^{\pi_t(N)}$
- an independent positive demand process D_t .

How prices are computed?

- Consider
 - N production means depending with respective costs (S^k_t), k ≤ N.
 - their N capacities of production Δ_t^k , $k \leq N$.
 - the permutation $\pi_t(k)$ s.t. $\mathcal{S}_t^{\pi_t(1)} \leq \cdots \leq \mathcal{S}_t^{\pi_t(N)}$
 - an independent positive demand process D_t .

How prices are computed ? Consider

- N production means depending with respective costs (S^k_t), k ≤ N.
- their N capacities of production Δ_t^k , $k \leq N$.
- the permutation $\pi_t(k)$ s.t. $S_t^{\pi_t(1)} \leq \cdots \leq S_t^{\pi_t(N)}$
- an independent positive demand process D_t .

Then the electricity spot price/cost is :

$$P_t = \sum_{k \le N} S_t^k \mathbf{1}_{D_t \in I_t^k} \quad \text{where} \quad I_t^k := \left[\sum_{i=1}^{k-1} \Delta^{\pi_t(i)}, \sum_{i=1}^k \Delta^{\pi_t(i)} \right]$$

Situation :

- Commodities are storable : classical (yet difficult) arbitrage pricing
- Parameters Δ_t^k are supposed to be known (by the producer).
- D is non-tradable asset (\Rightarrow incomplete market)

Situation :

- Commodities are storable : classical (yet difficult) arbitrage pricing
- Parameters Δ_t^k are supposed to be known (by the producer).
- D is non-tradable asset (\Rightarrow incomplete market)

Situation :

- Commodities are storable : classical (yet difficult) arbitrage pricing
- Parameters Δ_t^k are supposed to be known (by the producer).
- D is non-tradable asset (\Rightarrow incomplete market)

Situation :

- Commodities are storable : classical (yet difficult) arbitrage pricing
- Parameters Δ_t^k are supposed to be known (by the producer).
- D is non-tradable asset (\Rightarrow incomplete market)

How we choose the EMM?

Situation :

- Commodities are storable : classical (yet difficult) arbitrage pricing
- Parameters Δ_t^k are supposed to be known (by the producer).
- D is non-tradable asset (\Rightarrow incomplete market)

How we choose the EMM?

Minimal Martingale Measure Q (Follmer and Schweizer)

Situation :

- Commodities are storable : classical (yet difficult) arbitrage pricing
- Parameters Δ_t^k are supposed to be known (by the producer).
- D is non-tradable asset (\Rightarrow incomplete market)

How we choose the EMM?

Minimal Martingale Measure Q (Follmer and Schweizer)

 \Rightarrow S is a Q-martingale, D is the same under Q and under P.

Situation :

- Commodities are storable : classical (yet difficult) arbitrage pricing
- Parameters Δ_t^k are supposed to be known (by the producer).
- D is non-tradable asset (\Rightarrow incomplete market)

How we choose the EMM?

Minimal Martingale Measure Q (Follmer and Schweizer)

- \Rightarrow S is a \mathbb{Q} -martingale, D is the same under \mathbb{Q} and under \mathbb{P} .
- \Rightarrow "Some" risk neutral pricing in Electricity markets :

$$F_t(T) = \sum_{i=1}^n \sum_{\pi \in \Pi} F_t^{\pi(i)}(T) \mathbb{Q}[D_T \in I_T^i | \mathcal{F}_t] \mathbb{Q}^{\pi(i)}[\pi_T = \pi | \mathcal{F}_t]$$

• Reproduce price stylized facts.

• Allows pricing and hedging of claims (Aid, Campi, Langrenet)

but

- A structural approach to the optimal behaviour of the producer
- The production function is a (tractable) approximation
- Production issues and Financial issues are separated

- Reproduce price stylized facts.
- Allows pricing and hedging of claims (Aid, Campi, Langrenet)

but

- A structural approach to the optimal behaviour of the producer
- The production function is a (tractable) approximation
- Production issues and Financial issues are separated

- Reproduce price stylized facts.
- Allows pricing and hedging of claims (Aid, Campi, Langrenet) but
 - A structural approach to the optimal behaviour of the producer
 - The production function is a (tractable) approximation
 - Production issues and Financial issues are separated

- Reproduce price stylized facts.
- Allows pricing and hedging of claims (Aid, Campi, Langrenet)

but

- A structural approach to the optimal behaviour of the producer
- The production function is a (tractable) approximation
- Production issues and Financial issues are separated
Novelty and limits of the model

- Reproduce price stylized facts.
- Allows pricing and hedging of claims (Aid, Campi, Langrenet)

but

- A structural approach to the optimal behaviour of the producer
- The production function is a (tractable) approximation
- Production issues and Financial issues are separated

No Marginal Arbitrage for High Production Regime in discrete time investment-production models With proportional transaction costs.

with B. Bouchard

- how to optimize the production with a general production function ?
- how to consider both production and financial strategies?
- What is then a No Arbitrage Condition?
- What are the properties of such a model?

- how to optimize the production with a general production function ?
- how to consider both production and financial strategies?
- What is then a No Arbitrage Condition?
- What are the properties of such a model?

- how to optimize the production with a general production function ?
- how to consider both production and financial strategies?
- What is then a No Arbitrage Condition?
- What are the properties of such a model?

- how to optimize the production with a general production function ?
- how to consider both production and financial strategies?
- What is then a No Arbitrage Condition?
- What are the properties of such a model?

- how to optimize the production with a general production function ?
- how to consider both production and financial strategies?
- What is then a No Arbitrage Condition?
- What are the properties of such a model?

Probability space : (Ω, F, ℙ), 𝔅 := {F_t}_{t=0,...,T}.

- Probability space : $(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{F} := \{\mathcal{F}_t\}_{t=0, \cdots, T}$.
- Bid-ask matrix : $\pi := (\pi_t)_{t \leq 0} \subset L^0(\mathbb{M}^d, \mathbb{F})$

- Probability space : $(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{F} := \{\mathcal{F}_t\}_{t=0, \cdots, T}$.
- Bid-ask matrix : $\pi := (\pi_t)_{t < 0} \subset L^0(\mathbb{M}^d, \mathbb{F})$
 - $\pi_t^{ji} \in L^0(\mathcal{F}_t)$ = number of units of asset *i* needed to obtain 1 unit of asset *j*.

- Probability space : $(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{F} := \{\mathcal{F}_t\}_{t=0, \cdots, T}$.
- Bid-ask matrix : $\pi := (\pi_t)_{t < 0} \subset L^0(\mathbb{M}^d, \mathbb{F})$
 - $\pi_t^{ji} \in L^0(\mathcal{F}_t)$ = number of units of asset *i* needed to obtain 1 unit of asset *j*.

•
$$\pi_t^{ij} \pi_t^{jk} \ge \pi_t^{ik} > 0, \pi_t^{ii} = 1$$

- Probability space : $(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{F} := \{\mathcal{F}_t\}_{t=0, \cdots, T}$.
- Bid-ask matrix : $\pi := (\pi_t)_{t \leq 0} \subset L^0(\mathbb{M}^d, \mathbb{F})$
 - $\pi_t^{ji} \in L^0(\mathcal{F}_t)$ = number of units of asset *i* needed to obtain 1 unit of asset *i*.

•
$$\pi_t^{ij} \pi_t^{jk} \ge \pi_t^{ik} > 0, \pi_t^{ii} = 1$$

• Financial position : $V \in L^0(\mathbb{R}^d)$ with V^i = number of units of asset *i* held in portfolio.

- Probability space : $(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{F} := \{\mathcal{F}_t\}_{t=0, \cdots, \mathcal{T}}.$
- Bid-ask matrix : $\pi := (\pi_t)_{t \leq 0} \subset L^0(\mathbb{M}^d, \mathbb{F})$
 - π_t^{ji} ∈ L⁰(F_t) = number of units of asset i needed to obtain 1 unit of asset j.

•
$$\pi_t^{ij} \pi_t^{jk} \ge \pi_t^{ik} > 0, \pi_t^{ii} = 1$$

- Financial position : V ∈ L⁰(ℝ^d) with Vⁱ = number of units of asset i held in portfolio.
- Solvency cone process : $K := (K_t)_{t \leq T}$ with

$$\mathcal{K}_t(\omega) := \left\{ x \in \mathbb{R}^d : \exists a^{ij} \ge 0 \text{ s.t. } x^i + \sum_{j \neq i} a^{jj} - a^{ij} \pi_t^{ij}(\omega) \ge 0 \ \forall i \right\}$$

 a^{ij} = number of units of *i* obtained against units of *j*.

- Probability space : $(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{F} := \{\mathcal{F}_t\}_{t=0, \cdots, \mathcal{T}}.$
- Bid-ask matrix : $\pi := (\pi_t)_{t \leq 0} \subset L^0(\mathbb{M}^d, \mathbb{F})$
 - $\pi_t^{ji} \in L^0(\mathcal{F}_t)$ = number of units of asset *i* needed to obtain 1 unit of asset *j*.

•
$$\pi_t^{ij} \pi_t^{jk} \ge \pi_t^{ik} > 0, \pi_t^{ii} = 1$$

- Financial position : V ∈ L⁰(ℝ^d) with Vⁱ = number of units of asset i held in portfolio.
- Solvency cone process : $K := (K_t)_{t \leq T}$ with

$$\mathcal{K}_t(\omega) := \left\{ x \in \mathbb{R}^d : \exists a^{ij} \ge 0 \text{ s.t. } x^i + \sum_{j \neq i} a^{jj} - a^{ij} \pi_t^{ij}(\omega) \ge 0 \ \forall i \right\}$$

 a^{ij} = number of units of *i* obtained against units of *j*.

• Set of self-financed exchanges at time $t : -K_t(\omega)$.

A comprehensive geometrical interpretation

• Family of random maps $(R_t)_{t < T}$

- Family of random maps $(R_t)_{t < T}$
- $R_{t+1}: \beta \in L^0(\mathbb{R}^d_+, \mathcal{F}_t) \mapsto R_{t+1}(\beta) \in L^0(\mathbb{R}^d, \mathcal{F}_{t+1})$

- Family of random maps $(R_t)_{t < T}$
- R_{t+1} : $\beta \in L^0(\mathbb{R}^d_+, \mathcal{F}_t) \mapsto R_{t+1}(\beta) \in L^0(\mathbb{R}^d, \mathcal{F}_{t+1})$
 - β^i = number of asset *i* consumed and sent into the production system at time t.

- Family of random maps $(R_t)_{t < T}$
- $R_{t+1}: \beta \in L^0(\mathbb{R}^d_+, \mathcal{F}_t) \mapsto R_{t+1}(\beta) \in L^0(\mathbb{R}^d, \mathcal{F}_{t+1})$
 - β^i = number of asset *i* consumed and sent into the production system at time t.
 - $R^{j}_{t+1}(\beta) =$ number of asset j obtained at time t+1 from the production regime β .

- Family of random maps $(R_t)_{t \leq T}$
- $R_{t+1}: \beta \in L^0(\mathbb{R}^d_+, \mathcal{F}_t) \mapsto R_{t+1}(\beta) \in L^0(\mathbb{R}^d, \mathcal{F}_{t+1})$
 - βⁱ = number of asset i consumed and sent into the production system at time t.
 - $R_{t+1}^{j}(\beta) =$ number of asset j obtained at time t + 1 from the production regime β .

Example :

 Asset 1 = cash, Asset 2 = Future on Electricity (for a given maturity), Asset 3 = Fuel.

- Family of random maps $(R_t)_{t \leq T}$
- $R_{t+1}: \beta \in L^0(\mathbb{R}^d_+, \mathcal{F}_t) \mapsto R_{t+1}(\beta) \in L^0(\mathbb{R}^d, \mathcal{F}_{t+1})$
 - βⁱ = number of asset i consumed and sent into the production system at time t.
 - $R_{t+1}^{j}(\beta) =$ number of asset j obtained at time t + 1 from the production regime β .

Example :

- Asset 1 = cash, Asset 2 = Future on Electricity (for a given maturity), Asset 3 = Fuel.
- $R_{t+1}(\beta)$ depends only on β^3

- Family of random maps $(R_t)_{t \leq T}$
- $R_{t+1}: \beta \in L^0(\mathbb{R}^d_+, \mathcal{F}_t) \mapsto R_{t+1}(\beta) \in L^0(\mathbb{R}^d, \mathcal{F}_{t+1})$
 - βⁱ = number of asset i consumed and sent into the production system at time t.
 - $R_{t+1}^{j}(\beta) =$ number of asset j obtained at time t + 1 from the production regime β .

Example :

- Asset 1 = cash, Asset 2 = Future on Electricity (for a given maturity), Asset 3 = Fuel.
- $R_{t+1}(eta)$ depends only on eta^3

•
$$R_{t+1}^i(\beta) = 0$$
 for $i = 2, 3$.

Results

Model description - Wealth process

Strategies

$$(\xi, \beta) \in \mathcal{A}_0 := L^0((-\mathcal{K}) \times \mathbb{R}^d_+, \mathbb{F}),$$

i.e. s.t. $(\xi_t, \beta_t) \in L^0((-\mathcal{K}_t) \times \mathbb{R}^d_+, \mathcal{F}_t)$ for all $0 \le t \le T$.

Model description - Wealth process

• Strategies

$$(\xi,\beta)\in\mathcal{A}_0:=L^0((-K)\times\mathbb{R}^d_+,\mathbb{F}),$$

i.e. s.t. $(\xi_t, \beta_t) \in L^0((-K_t) \times \mathbb{R}^d_+, \mathcal{F}_t)$ for all $0 \le t \le T$.

 Set of portfolio holdings that are attainable at time T by trading and producing from time t with zero initial holding

$$A_t^R(T) := \left\{ \sum_{s=t}^T \xi_s - \beta_s + R_s(\beta_{s-1}) \mathbf{1}_{s \ge t+1}, \ (\xi, \beta) \in \mathcal{A}_0 \right\}$$

- Let π_t be the bid-ask prices of assets : 1 =cash,
 2... n =commodities.
- c_t^i the conversion factor from 1 unit of asset *i* to 1 MWh.
- π_t^e the spot price of electricity in cash.
- Δⁱ_t, i = 2...n the maximum capacity of production from the ith commodity.

- Let π_t be the bid-ask prices of assets : 1 =cash,
 2... n =commodities.
- c_t^i the conversion factor from 1 unit of asset *i* to 1 MWh.
- π_t^e the spot price of electricity in cash.
- Δⁱ_t, i = 2...n the maximum capacity of production from the ith commodity.

- Let π_t be the bid-ask prices of assets : 1 = cash, $2 \dots n =$ commodities.
- c_t^i the conversion factor from 1 unit of asset *i* to 1 MWh.
- π_t^e the spot price of electricity in cash.
- Δ_{t}^{i} , $i = 2 \dots n$ the maximum capacity of production from the

- Let π_t be the bid-ask prices of assets : 1 = cash, 2... n =commodities.
- c_t^i the conversion factor from 1 unit of asset *i* to 1 MWh.
- π_t^e the spot price of electricity in cash.
- Δ_{+}^{i} , $i = 2 \dots n$ the maximum capacity of production from the ith commodity.

- Let π_t be the bid-ask prices of assets : 1 = cash, $2 \dots n =$ commodities.
- c_t^i the conversion factor from 1 unit of asset *i* to 1 MWh.
- π_t^e the spot price of electricity in cash.
- Δ_t^i , $i = 2 \dots n$ the maximum capacity of production from the ith commodity.

Then we can write :

$$R^{1}_{t+1}(\beta) = \pi^{e}_{t+1}(\beta) \times \left(\sum_{i>2} c^{i}_{t+1} \min(\beta^{i}, \Delta^{i}_{t+1})\right)$$

with

$$\pi^{\mathsf{e}}_{t+1}(\beta) = \max_{i}(\pi^{1i}_{t+1}c^{i}_{t+1}\mathbf{1}_{\beta^{i}>0})$$

Beyond the structural model

Some advantages...

- Additional features on the production function (starting costs, various conversion factors for different plants).
- Possibility to chose another electricity spot price π^e .
- ... and difficulties :
 - an additional optimization problem (with possible no solution)
 - Possible no explicit solutions for pricing claims.

• NA2 (Rasonyi, 2009) : for $\zeta \in L^0(\mathbb{R}^d, \mathcal{F}_t)$ and t < T,

 $(\zeta + A_t^{K,0}(T)) \cap L^0(K_T, \mathcal{F}_T) \neq \{0\} \Rightarrow \zeta \in L^0(K_t, \mathcal{F}_t).$

• NA2

• **EF** : there is efficient friction if

$$\pi^{ij}\pi^{ji} > 1, \quad \forall i \neq j, \ t \leq T.$$

• NA2

• **EF** : there is efficient friction if

$$\pi^{ij}\pi^{ji} > 1, \quad \forall i \neq j, \ t \leq T.$$

Under **EF**.

NA2 :
$$\zeta \in L^0(\mathcal{K}_{t+1}, \mathcal{F}) \Rightarrow \zeta \in L^0(\mathcal{K}_t, \mathcal{F}), t < T$$
,

for all $\zeta \in L^0(\mathbb{R}^d, \mathcal{F}_t)$.

- NA2 : $\zeta \in K_{t+1} \Rightarrow \zeta \in K_t$, $\forall \zeta \in L^0(\mathbb{R}^d, \mathcal{F}_t)$
- EF
- *M*^T_t : set of martingale selectors Z on [t, T] of the random sets int K^{*}_s, for t ≤ s ≤ T, with

$$\mathcal{K}^*_s(\omega) = \left\{ z \in \mathbb{R}^d \ : \ 0 \le z^j \le z^i \pi^{ij}_s(\omega), \ i, j \le d
ight\}$$

the positive dual of $K_s(\omega)$.

- Strictly consistent price system : Z ∈ intK^{*}_s : Z^j_s/Zⁱ_s < π^{ij_s}.
- Z is a martingale fictitious price better than the market.

- NA2 : $\zeta \in K_{t+1} \Rightarrow \zeta \in K_t$, $\forall \zeta \in L^0(\mathbb{R}^d, \mathcal{F}_t)$
- **EF** : int $K_{\mathfrak{c}}^* \neq \emptyset$
- \mathcal{M}_{t}^{T} : set of Strictly consistent price systems
- PCE : Prices are consistently extendable if

$$\exists Z \in \mathcal{M}_t^T \text{ s.t. } Z_t = X, \ \forall t \leq T \ \text{ and } \ X \in L^1(\mathrm{int} \mathcal{K}_t^*, \mathcal{F}_t).$$

- NA2 : $\zeta \in K_{t+1} \Rightarrow \zeta \in K_t$, $\forall \zeta \in L^0(\mathbb{R}^d, \mathcal{F}_t)$
- **EF** : int $K_{\mathfrak{c}}^* \neq \emptyset$
- \mathcal{M}_{t}^{T} : set of Strictly consistent price systems
- **PCE** : $\exists Z \in \mathcal{M}_t^T$ s.t. $Z_t = X, \forall X \in L^1(\operatorname{int} \mathcal{K}_t^*, \mathcal{F}_t)$.
No-arbitrage of the second kind with $R \equiv 0$

- NA2 : $\zeta \in K_{t+1} \Rightarrow \zeta \in K_t$, $\forall \zeta \in L^0(\mathbb{R}^d, \mathcal{F}_t)$
- **EF** : int $K_{\epsilon}^* \neq \emptyset$
- \mathcal{M}_{t}^{T} : set of Strictly consistent price systems
- **PCE** : $\exists Z \in \mathcal{M}_t^T$ s.t. $Z_t = X, \forall X \in L^1(\operatorname{int} \mathcal{K}_t^*, \mathcal{F}_t)$.

Theorem (Rasonyi, 2009) : Under **EF**, **NA2** \Leftrightarrow **PCE**.

• Assume that $R_t(\beta) = L_t\beta$, $\forall \beta \in \mathbb{R}^d$, $t \leq T$, with $L \in L^0(\mathbb{M}^d, \mathbb{F}).$

- Assume that $R_t(\beta) = L_t\beta$, $\forall \beta \in \mathbb{R}^d$, t < T, with $L \in L^0(\mathbb{M}^d, \mathbb{F}).$
- There is no arbitrage of the second kind for L (NA2^L) : $\forall (\zeta, \beta) \in L^0(\mathbb{R}^d \times \mathbb{R}^d_+, \mathcal{F}_t)$ $\in L^0(K_{t+1}, \mathcal{F}_{t+1}) \Rightarrow \zeta \in K_t,$ (i) Č

- Assume that $R_t(\beta) = L_t\beta$, $\forall \beta \in \mathbb{R}^d$, $t \leq T$, with $L \in L^0(\mathbb{M}^d, \mathbb{F})$.
- There is no arbitrage of the second kind for L (NA2^L) : ∀(ζ, β) ∈ L⁰(ℝ^d × ℝ^d₊, F_t) (i) ζ-β + L_{t+1}(β)∈ L⁰(K_{t+1}, F_{t+1}) ⇒ ζ ∈ K_t, (ii) -β + L_{t+1}(β) ∈ L⁰(K_{t+1}, F_{t+1}) ⇒ β = 0.

- Assume that $R_t(\beta) = L_t\beta$, $\forall \beta \in \mathbb{R}^d$, $t \leq T$, with $L \in L^0(\mathbb{M}^d, \mathbb{F})$.
- NA2^L: $\forall (\zeta, \beta) \in L^0(\mathbb{R}^d \times \mathbb{R}^d_+, \mathcal{F}_t)$ (i) $\zeta - \beta + L_{t+1}(\beta) \in L^0(K_{t+1}, \mathcal{F}_{t+1}) \Rightarrow \zeta \in K_t$, (ii) $-\beta + L_{t+1}(\beta) \in L^0(K_{t+1}, \mathcal{F}_{t+1}) \Rightarrow \beta = 0$.
- What is the position $(L_{s+1} I)\beta$ in the price system Z?

- Assume that R_t(β) = L_tβ, ∀β ∈ ℝ^d, t ≤ T, with L ∈ L⁰(M^d, F).
 NA2^L : ∀(ζ, β) ∈ L⁰(ℝ^d × ℝ^d₊, F_t)
 - (i) $\zeta \beta + L_{t+1}(\beta) \in L^0(K_{t+1}, \mathcal{F}_{t+1}) \Rightarrow \zeta \in K_t,$ (ii) $-\beta + L_{t+1}(\beta) \in L^0(K_{t+1}, \mathcal{F}_{t+1}) \Rightarrow \beta = 0.$
- What is the position $(L_{s+1} I)\beta$ in the price system Z?

 - or production arbitrage.

- Assume that $R_t(\beta) = L_t\beta$, $\forall \beta \in \mathbb{R}^d$, $t \leq T$, with $L \in L^0(\mathbb{M}^d, \mathbb{F})$.
- NA2^L: $\forall (\zeta, \beta) \in L^0(\mathbb{R}^d \times \mathbb{R}^d_+, \mathcal{F}_t)$ (i) $\zeta - \beta + L_{t+1}(\beta) \in L^0(K_{t+1}, \mathcal{F}_{t+1}) \Rightarrow \zeta \in K_t,$ (ii) $-\beta + L_{t+1}(\beta) \in L^0(K_{t+1}, \mathcal{F}_{t+1}) \Rightarrow \beta = 0.$
- $\mathcal{L}_t^{\mathsf{T}}$: set of martingales Z s.t. for $t \leq s < \mathsf{T}$

$$\mathbb{E}\left[Z_{s+1}'(L_{s+1}-I)\mid \mathcal{F}_s\right]\in L^0(\mathrm{int}\mathbb{R}^d_-,\mathcal{F}_s)$$

- Assume that $R_t(\beta) = L_t\beta$, $\forall \beta \in \mathbb{R}^d$, $t \leq T$, with $L \in L^0(\mathbb{M}^d, \mathbb{F})$.
- NA2^L: $\forall (\zeta, \beta) \in L^0(\mathbb{R}^d \times \mathbb{R}^d_+, \mathcal{F}_t)$ (i) $\zeta - \beta + L_{t+1}(\beta) \in L^0(K_{t+1}, \mathcal{F}_{t+1}) \Rightarrow \zeta \in K_t,$ (ii) $-\beta + L_{t+1}(\beta) \in L^0(K_{t+1}, \mathcal{F}_{t+1}) \Rightarrow \beta = 0.$
- \mathcal{L}_t^T : set of martingales Z s.t. for $t \leq s < T$

$$\mathbb{E}\left[Z_{s+1}'(L_{s+1}-I)\mid \mathcal{F}_s\right] \in L^0(\mathrm{int}\mathbb{R}^d_-,\mathcal{F}_s)$$

• **PCE**^{*L*} :

 $\exists Z \in \mathcal{M}_t^T \cap \mathcal{L}_t^T \text{ s.t. } Z_t = X, \ \forall t \leq T, X \in L^1(\mathrm{int} \mathcal{K}_t^*, \mathcal{F}_t).$

- Assume that $R_t(\beta) = L_t\beta$, $\forall \beta \in \mathbb{R}^d$, $t \leq T$, with $L \in L^0(\mathbb{M}^d, \mathbb{F})$.
- NA2^L: $\forall (\zeta, \beta) \in L^0(\mathbb{R}^d \times \mathbb{R}^d_+, \mathcal{F}_t)$ (i) $\zeta - \beta + L_{t+1}(\beta) \in L^0(K_{t+1}, \mathcal{F}_{t+1}) \Rightarrow \zeta \in K_t,$ (ii) $-\beta + L_{t+1}(\beta) \in L^0(K_{t+1}, \mathcal{F}_{t+1}) \Rightarrow \beta = 0.$
- $\mathcal{L}_t^{\mathsf{T}}$: set of martingales Z s.t. for $t \leq s < \mathsf{T}$

$$\mathbb{E}\left[Z_{s+1}'(L_{s+1}-I) \mid \mathcal{F}_s\right] \in L^0(\mathrm{int}\mathbb{R}^d_-, \mathcal{F}_s)$$

• **PCE**^{*L*} :

 $\exists Z \in \mathcal{M}_t^T \cap \mathcal{L}_t^T \text{ s.t. } Z_t = X, \ \forall t \leq T, X \in L^1(\mathrm{int} \mathcal{K}_t^*, \mathcal{F}_t).$

Theorem : under **EF**, **NA2**^{*L*} \Leftrightarrow **PCE**^{*L*}.

• No need to prove the closedness of $A_t^L(T)$ first.

- No need to prove the closedness of $A_t^L(T)$ first.
- Imagine that there exists L ∈ L⁰(M^d, F) s.t. NA^L and ∀t < T, β ∈ L⁰(R^d₊, F_t),

$$\lim_{\eta\to\infty}R_{t+1}(\eta\beta)/\eta=L_{t+1}\beta.$$

- No need to prove the closedness of $A_t^L(T)$ first.
- Imagine that there exists L ∈ L⁰(M^d, F) s.t. NA^L and ∀t < T, β ∈ L⁰(R^d₊, F_t),

$$\lim_{\eta\to\infty}R_{t+1}(\eta\beta)/\eta=L_{t+1}\beta.$$

Then there is no marginal arbitrage asymptotically.

- No need to prove the closedness of $A_t^L(T)$ first.
- Imagine that there exists L ∈ L⁰(M^d, F) s.t. NA^L and ∀t < T, β ∈ L⁰(R^d₊, F_t),

$$\lim_{\eta\to\infty}R_{t+1}(\eta\beta)/\eta=L_{t+1}\beta.$$

Then there is no marginal arbitrage asymptotically. • NMA2 : $\exists (c, L) \in L^0(\mathbb{R}^d \times \mathbb{M}^d, \mathbb{F})$ s.t. NA2^L and

$$c_{t+1}+L_{t+1}\beta-R_{t+1}(\beta)\in L^0(K_{t+1},\mathcal{F}_{t+1}),$$

 $\forall \beta \in L^0(\mathbb{R}^d_+, \mathcal{F}_t), t < T.$

The Closedness Property

The Closedness Property

Theorem : $A_0^L(T)$ is closed in probability under **NA2**^{*L*}.

The Closedness Property

Theorem : $A_0^L(T)$ is closed in probability under **NA2**^L. The same holds for $A_0^R(T)$ under **NMA2** and **(USC)**, where

$$(\mathsf{USC}) \ : \ \limsup_{\beta \in \mathbb{R}^d_+, \beta \to \beta_0} R_t(\beta) - R_t(\beta_0) \in -K_t \text{ for all } \beta_0 \in \mathbb{R}^d_+.$$

and the lim sup is taken componentwise.

Under some additional assumptions

•
$$\lambda R_t(\beta_1) + (1-\lambda)R_t(\beta_2) - R_t(\lambda\beta_1 + (1-\alpha)\beta_2) \in -K_t$$

• $R_t(\beta)^- \in L^{\infty}(\mathbb{R}^d, \mathcal{F})$ for $\beta \in L^{\infty}(\mathbb{R}^d_+, \mathcal{F})$.

Under some additional assumptions

Proposition : Assume that **NMA2** holds. Let $V \in L^0(\mathbb{R}^d, \mathcal{F})$ be such that $V + \kappa \in L^0(K_T, \mathcal{F})$ for some $\kappa \in \mathbb{R}^d$. Then the following are equivalent :

(i)
$$V \in A_0^R(T)$$
,
(ii) $\mathbb{E}[Z'_T V] \le \alpha^R(Z)$ for all $Z \in \mathcal{M}_0^T$.

Under some additional assumptions

Proposition : Assume that **NMA2** holds. Let $V \in L^0(\mathbb{R}^d, \mathcal{F})$ be such that $V + \kappa \in L^0(\mathcal{K}_T, \mathcal{F})$ for some $\kappa \in \mathbb{R}^d$. Then the following are equivalent :

(i)
$$V \in A_0^R(T)$$
,
(ii) $\mathbb{E}[Z'_T V] \le \alpha^R(Z)$ for all $Z \in \mathcal{M}_0^T$.

If moreover $\lim_{\eta\to\infty}R_{t+1}(\eta\beta)/\eta=L_{t+1}\beta$ then the following are equivalent :

(i)
$$V \in A_0^R(T)$$
,
(ii) $\mathbb{E}[Z'_T V] \le \alpha^R(Z)$ for all $Z \in \mathcal{M}_0^T \cap \mathcal{L}_0^T$

Under some additional assumptions

Proposition : Assume that **NMA2** holds. Let $V \in L^0(\mathbb{R}^d, \mathcal{F})$ be such that $V + \kappa \in L^0(\mathcal{K}_T, \mathcal{F})$ for some $\kappa \in \mathbb{R}^d$. Then the following are equivalent :

(i)
$$V \in A_0^R(T)$$
,
(ii) $\mathbb{E}[Z'_T V] \le \alpha^R(Z)$ for all $Z \in \mathcal{M}_0^T$.

If moreover $\lim_{\eta\to\infty}R_{t+1}(\eta\beta)/\eta=L_{t+1}\beta$ then the following are equivalent :

(i)
$$V \in A_0^R(T)$$
,
(ii) $\mathbb{E}[Z'_T V] \le \alpha^R(Z)$ for all $Z \in \mathcal{M}_0^T \cap \mathcal{L}_0^T$
If $R = L$ then $\alpha^R = 0$.

Results

Application - Portfolio optimization

Setting

• U a $\mathbb{P}-\text{a.s.}$ upper continuous, concave, random map from \mathbb{R}^d to $]-\infty,1],$

•
$$U(V) = -\infty$$
 on $\{V \notin K_T\}$,

• $\mathcal{U}(x_0) := \left\{ V \in A_0^R(T) : \mathbb{E}\left[|U(x_0 + V)| \right] < \infty \right\} \neq \emptyset.$

Proposition : If **NMA2**, **(USC)** hold and $A_0^R(T)$ is convex, then $\exists V(x_0) \in A_0^R(T)$ such that

$$\mathbb{E}\left[U(x_0+V(x_0))\right] = \sup_{V\in\mathcal{U}(x_0)}\mathbb{E}\left[U(x_0+V)\right] \ .$$

Next steps

- Extension to continuous time;
- Specification of a realistic production function;
- Caracterization of $\mathcal{M}_0^T \cap \mathcal{L}_0^T$;
- Numerical implementation...