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Abstract

We consider models for stock prices which relates to random pro-
cesses with independent homogeneous increments (Levy processes).
These models are arbitrage free but correspond to the incomplete fi-
nancial market. There are many different approaches for pricing of
financial derivatives. We consider here mainly the approach which
is based on minimal relative entropy. This method is related to an
utility function of exponential type and the Esscher transformation of
probabilistic measures.

1 Introduction

We suppose that the financial market consists of two assets : bond B; and
stock S; . We use the notation r for the spot interest rate assuming that it
is a constant. Then, under the assumption of continuous compounding, the
value of the bond at time ¢ is

B, = Byexp{rt}. (1)

The classical diffusion model (Merton (1973) [29], Black and Scholes (1973)
[6]) for the process S; is

dSt = MStdt + O'Stth (2)

where W; is a standard Wiener process, p is the expected return and o is the
stock price volatility. The solution of this equation is

St == SO exp{aWt + gt} (3)

o~.
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It is well-know that contrary to a Wiener process, returns of stocks (that is
log(S;)) are neither Gaussian, nor homogeneous and not having independent
increments, see e.g. Amaral et al 2000, [1]. In spite of these empirical
observations the classical diffusion model remains as a reference model due
to its simplicity. Trying to preserve this feature of simplicity one may keep
the property of having independent homogeneous increments i.e. assuming
that log(S;) is a Levy process which could be a non-Gaussian process. So,
we will assume that

Sy = Soexp{Z;} (4)

where 7, is a Levy process, Z, = 0.

In particular, it implies the distribution function of Z; belongs to the class
of infinite divisible distributions (see, e.g. Bertoin (1996) [7] or Sato (1999)
[36]). Under this assumption the process Z; has the following representation

ZtZO'Wt—FY; (5)

where W, is a standard Wiener process, Y; is a jump Levy process which is
independent of W, . The process Y; has the following representation in terms
of the counting Poisson measure N(dt,dz),t > 0, x € R\{0} generated by
the jumps of Z; :

t t
Y, =bt + / / $I{\x\21}N(d8, d$) + / / xl{‘xkl}[N(dS, dm) — V(dx)ds].
0 JR\{0} 0 J R\{0}
(6)

Here v(dx) is the so-called Levy measure which satisfies the following condi-
tion

/min(a:Q, Dv(dr) < oo (7)
(see, e.g. [7] or [36]).

The characteristic function of Y; is given by

Eexp(iuYy) = exp{t(iu)} (8)

where the cumulant function ¢ (iu) can be written in the form

o0

p(iu) = iub +/ lexp(iuz) — 1 — iuxI{|z| < 1}v(dx) (9)
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(it is a variant of the so-called Levy-Khintchine formula).

We will call the characteristic (o2, v(dz),b) in the above representation
the triplet of Z;. (Slightly different terminologies are used in monographs
[36] and [25].)

Remark 1. Chan (1999) [13] considered a stock price model in a different
form

dSt = MStdt + O'St_dXt (]_0)

where X is a Levy process (satisfying some conditions). This model is actu-
ally equivalent to the model (4) under the assumption that jumps AX; > —1
which is necessary for positiveness of prices S;. To our mind it is more con-
venient to work with characteristics of the process Z; from (4).

Some particular cases.

1) Compound Poisson models.

N
Yi=te+» & (11)
k=1

where NV; is a homogeneous Poisson process with intensity A, & are iid r.v.
with a distribution function p(dz). Then (as well-known)

o0

W(iv) = juc + )\/ lexp(iux) — 1]p(dz) (12)
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and so v(dz) = Ap(dx) . (Here and below the letter ¢ without or with index
denotes a constant). This type of model was firstly considered e.g. by Merton
(1976) [30] and then by many authors. We also mention only recent papers
Andersen and Andreasen (1999) [4], and Zhou (1999) [41]. Note that in the
last two papers it was supposed that &, are Gaussian r.v.’s with mean 6 and
variance o7. Under this assumption it is easy to see that the process Z; can
be written in a different form:

Y; = ct + 0N (N) + 01 By, (13)
where B, is a standard Wiener process independent of N;(A) and W,
ar = Ni(N). (14)

An another natural choice is with &, as a mixture of exponential distri-
butions, e.g. in the form

p(dz) = (e1I(x < 0) exp(—c3z) + ol (x> 0) exp(—cqx))dx (15)



Under this choice of p(dx) the distribution of jumps of the process S; is
a Pareto-type which has some empirical justifications ([1], [34]).

2) Logstable models. The important particular case of this class of
models can be given in the following form:

Y, = tc+ L™ (16)
where Lia) is a stable Levy process with only negative jumps , 1 < a < 2.
The moment-generating function of this process is given by the following
simple formula

Eexp(2L{%) = exp(tCz*), 2 >0 (17)

where the constant C' > 0. From here it is easy to derive that this process
has the self-similarity property that is we have the following equality by
distribution

Lga) _ L@ — (t _ S)l/o‘Lga),t > s (18)

Mandelbrot (1963) [28] was the first who suggested to model log(S;) as
a symmetric stable Levy process and he presented some statistical evidence
for his approach (exploring, actually, a small sample size of about 2000 data
points). But in his case the stock process S; does not have moments and
that contradicts other intensive empirical findings (see discussion in [1]). The
only case of stable Levy processes for which all moments of S; are finite is
given by (17).

Between other related papers we mention only recent ones. Hurst et al
(1999) [23] studied a very similar model but in terms of stable subordinators
to a Wiener process. Carr and Wu (2000) [12] considered examples of stock
prices for which the Logstable model (as in (17)) statistically better against
several alternatives.

The Levy measure of the stable process with moment generating function
(17) has a very simple form:

v(dz) = cl(z < 0)|z|" @ Vdz (19)

but there are no simple formulas for density of r.v. LE“’. Note this density
can be calculated in terms of Fast Fourier Transformation using an analytical
continuation of (17). See also Carr and Madan (1999) [11].

3) Variance Gamma model and CGMY model. The Variance
Gamma (VG) process introduced by Madan and Seneta (1990) [26] and then
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extended in Madan et al (1998) [27]. The main feature is obtained by evaluat-
ing Brownian motion with drift at random times given by a gamma process.
The gamma process 7, with mean rate p and variance rate v is the process
of independent gamma increments with the density

2
ey (Y
p(r) = Cur exp( Vx), x>0, C,= <V> JT( > ) (20)

where I'(x) is the gamma function. The VG process Y; is then defined in
terms of Brownian motion with drift and the gamma process with unit mean
rate u = 1 as follows:

Y, =0v, + o1 B,, (21)

where B, is a standard Wiener process independent of ;.
The characteristic function of value Y; is

Elexp(iuY}] = <a2 i;fi’u)?)% (22)

with the following relations between parameters when oy > 0:
B=0/o}, o’ =p+2/(vo}). (23)

It is easy to check that the VG process has also the another representation:

Y, =A% — A (24)

where 77?° and ~," are independent gamma processes ([27]).
The density of Y; can be expressed in terms of the modified Bessel function
of the second kind K (z) (see [27]) in the following way:

p(x) = Cy Kypyapp(alal) 2|12 exp(fz), ¢ > 0 (25)

where C; denotes a normalizing constant (here and below).
There are several different representations of function K,(z). The one of
most convenient is the following (see e.g. Abramowitz (1972) [2]):

K(2) = /0 " exp{—z cosh(z)} cosh(Az)da (26)



The VG model has several very atractive features. To simulate the trajec-
tories of VG processes one need only to simulate gamma and normal distri-
bution (or, two independent gamma distributions). Also, the Levy measure
has a simple form

v(dr) = (c1I(z < 0) exp(—c3x) + oI (z > 0) exp(—cy))|z| ' dx (27)

and it is of convenience for pricing models (see Albanese et al (2001) [3]).

Carr-Geman-Madan-Yor have introduced the CGMY process in [10], which
is an extended process of VG process. The Lévy measure of the CGMY pro-
cess 1S

v(dz) = ¢ (Igz<oy exp(Gr) + I1zoy exp(—Mz)) 2|~ d, (28)

where ¢ > 0,G > 0,M > 0,Y < 2. In the case that ¥ < 0, then G > 0
and M > 0 are assumed. We mention here that the case Y = 0 is the VG
process case, and the case G = M = 0 and 0 < Y < 2 is the symmetric
stable process case.

4) The Hyperbolic model.

The Hyperbolic model is discussed by Eberlain et al (1998) [17]. The
density of the terminal value of the return Zr (up to drift term) is supposed
to be the infinitely divisible distribution whose density depends on four pa-
rameters (0, 3, a) and, of course, maturity 7" and has a form

p(x):C’exp{—a\/52+x2+ﬁx},—oo<x<oo (29)

where

co NYZF 550 1 <a (30)
200K (5\/a2 — 52)

K, (z) is the modified Bessel function of the second kind (defined above).
The characteristic function of value Z; for all t > 0 is ([17])

Ki(6y/a? — (B +iu)?) T

Ki(6y/a? — (?)

Elexp(iuZy] = ( (31)

where K, (z) = Kx(z)z .

Note that the simple expression (29) is valid only for the terminal value
Zr. Alternatively, one could assume that increments Z;,5s — Z; with some
d > 0 has density (29) and then check that the characteristic function of
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value Z; is the same as in (31) but with ¢ instead of 7. To calculate the
density of Z; for arbitrary ¢ one may use the Fourier transformation of the
characteristic function of the process or some other integral representations.

5) Generalized Hyperbolic (GH) Model. The class of generalized
hyperbolic distributions was introduced in Barndorff-Nielsen and Halgreen
(1977) [5]. Eberlein at al (1998) [17] considered it as the natural general-
ization of Hyperbolic model. According to the GH model the density of the
random variable Zr (up to drift term) is

p(z) = (32)
:CTK)\fl/Q(O‘\/62 + xZ)(\/52 + xQ)Ail/Ze(ﬂx)ﬂ (33)

where

2 g2\A/2
Cr — @ = F) (34)
V2rar 1260 K (5\/a2 — 52>
and

d > 0,8l <a ifA>0 (35)
d > 0,0l <a ifA=0 (36)
§ > 0,18 <a ifA<O. (37)

Note that the distribution of the GH process, like that of the hyperbolic
process, is given in the explicit form only at maturity, that is for ¢ = T,
and not for arbitrary ¢ < 7.

The characteristic function of Z; for all ¢ > 0 is ([17])

R0/~ (T4 i) o
K)\((S\/Oé2 — B2)

6) Processes subordinated to the Wiener process. This type of
model have the following form

Elexp(iu Z;) = (

(38)

Zy = ct+ 0oy + oW, (39)

where oy is a non-negative Levy process (subordinator). The prove that the
process Z; is a Levy process can be easily done with help of conditioning of

the characteristic functions of Z; . The particular cases of this model are the
Gauss-Poisson model (13) and the VG model (21).
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The another interesting choice is when a7 has the Generalized Inverse
Gaussian distribution with p.d.f.

p(x) = Cpat " Yexp{—z/v —02/z}, >0 (40)

Then accordingly to [5] Z; has the generalized hyperbolic distribution
with the characteristic function

f{T/l/((S\/O‘2 - (B + iu)Q))t/T

Elexp(iuZ] = ( Kan(0y/a? = 9) (41)
where
B=0/0t, a® = * +2/(vo7) (42)

Comparing this formula with (38) one can easily see that under of this
choice of a; we have just the another representation for the GH model when
=T .

The case of VG model can be considered as the limiting case the GH model
when § — 0 . Indeed, using the asymptotics K, (2) ~ 2= as z — 0 (see [2])
we get from (38) formula (21).



2 Minimal Relative Entropy Martingale Mea-
sure (MEMM) and Pricing Models

The models described in Chapter 1 are incomplete market models in general.
Only the Brownian motion model and the simple Poisson process model are
the exceptional cases. In fact, other geometric Lévy process models have
many equivalent martingale measures if an equivalent martingale measure
exists.

The pricing models for the incomplete markets are, in general, consisting
of the following two parts. The first part is the part of defining the price
process of underlying assets, and the second part is the part of defining the
pricing rule of options.

For the second part we follows to the so-called martingale method, and
we adopt the minimal entropy martingale measure (MEMM) as the suitable
martingale measure among several candidate martingale measures (see [15],
[19], [20], [31], etc.). Then the price of an option is given as the expectation
of that option with respect to the MEMM.

2.1 Minimal Relative Entropy Martingale Measure of
Geometric Lévy Processes

We will first give the definition of MEMM, and then we will see the existence
problem of MEMM of the geometric Lévy processes.

1) MEMM
Let P(S) be the set of all equivalent martingale measures of S;.

Definition 1 (minimal entropy martingale measure (MEMM)) Ifan
equivalent martingale measure P* satisfies the following condition

H(P*|P) < H(Q|P)  VQ e P(S) (43)

where H(Q|P) is the relative entropy of Q with respect to P, which is given
by the following formula

nip) = { Joloslahi@ 1y Q<P (449)

0, otherwise,
then P* is called the minimal entropy martingale measure (MEMM) of S;.

The basic properties of MEMM are described in §2 of [31]. For example,
it is known that if the MEMM exists then it is unique.
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There are many reasons why we adopt the MEMM as the suitable equiva-
lent martingale measure. One of them is the fact that the MEMM is related
to the utility function of exponential type (see [20]). And another one is
the relations of the MEMM with the theory of large deviation (remember
Sanov’s Lemma). And the third one is the fact that this measure is strongly
related to the Esscher transformation.

2) Existence of MEMM
The existence problem of the MEMM of geometric Lévy processes has
been discussed in [13],[33] and [21]. The most general form is given in [21].
We use the same notations as in Chapter 1. For the simplicity we assume
that By = 1, namely the value of bond is given

B, = exp{rt}.
Let a Lévy process Z; be given in the the following general form

Zt = O'Wt"‘y;f

t
= oW, +0bt —l—/ / &1 {jz)>13 Np (dsdx)
0 JR\{0}

+/0 /R\{O} vlii<y [N (ds, dz) — v(dw)ds], (45)

and consider the following conditions.
Condition (C) There exists §* € R which satisfies the following condi-
tions :

(C)1 Jiosny e (¢ Ny (dr) < oo, (46)
(C)z b+ (5+090° + [ 1oy (€ = 1)e” VI pp0y v(da)
+ fR\{U} ((69” — 1)69*(em_1) — aj) [{|93|§1} v(dz) =r. (47)

Under the above assumptions the following theorem is obtained in [21].

Theorem 1 (Fujiwara-Miyahara [21, Theorem 3.1]) Suppose that the
condition (C) holds, and let P* be the probability measure defined by

dP*
dP

1 t
= exp[g*UWt — 5(9*0)% + 9*/0 /R\{O} (e“" — 1)[{‘$‘>1}Np(d8d$)

Fi

t
+9*/ / (" — D) Ijz<iy[N(ds, dx) — v(dx)ds]
0 JR\{0}
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—t/ (60*(896_1) —1—6*(e" — 1)Iu<1y) v(dz)]. (48)
R\{0}

Then the probability measure P* is well defined and it holds that
(a)(MEMM): P* is the MEMM of S;.
(b)(Minimal Relative Entropy):

]. 9* * x
_; )02) + 9*([) — 7”) + / (69 (e*—=1) _ 1— H*l'j{\x\gl}) I/(d:b‘)].

R\{0}
(49)

H(P*|P) = =T[0"(

(¢)(Lévy process): Z; is also a Lévy process w.r.t. P*, and the generating
triplet (A*,v*,b*) of Z; under P* is

4= A=), (50)

vi(dzr) = " Vy(dr), (51)

b = b+9*02+/ ey d(v” = v). (52)
Rr\{0}

Remark 1.
If the following condition

/ |x|I{|x|§1}l/(dx) < 00 (53)
R\{0}

is satisfied, then the generating triplet of Z; is (0%, v,70)o (see [36, p.39]) and
Z,; is expressed

t
Zy = oW, + vt + / / TN, (dsdz). (54)
0 JR\{0}
In this case, the condition (C), is replaced by
]. * xr
o+ (G0N0t [ e ) ) = (59)
2 R\{0)

and as the corollary of Theorem 1 we obtain

Theorem 2 Suppose that the Lévy process Zy is given by (54) . Assume that
there exists a constant 0* which satisfies the equation (55), and let P* be the
probability measure defined by

P* 1 t
d = exp[0* oW (t) — = (0%0)*t + / / 0" (e® — 1)Ny(dsdx) —
P |, 2 0 JR\(0)
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~ /0 t /R \{0}(69*@“”—” — 1)u(dz)]. (56)

Then the probability measure P* is well defined and it holds that
(a)(MEMM): P* is the MEMM of S,.
(b)(Minimal Relative Entropy):
L0 )o?) + 0% (v — 1) +/ (e =D — 1)y (dx)].
R\{0}
(57)

H(P*|P) = —T[0"(

(¢)(Lévy process): Z; is also a Lévy process w.r.t. P*, and the generating
triplet (A*,v*,78)o of Z; under P* is

A* = A(=0%), (58)
vi(de) = " Yy(de), (59)
v = Y +0” (60)

3) Comparison of the MEMM with the MMM

We see the relations of MEMM with the minimal martingale measure
(MMM). The MMM was introduced by Foéllmer-Schweizer in [19] and has
been investigated by M. Schweizer ([35]), etc.

Suppose that the price process is a semimartingale and represented as

t
St:SO+Mt+/ OZd(M>
0

then the MMM P is the (possibly signed) measure defined by

dp
i — M
8( /ad ),

where £(M) is the Doléans-Dade exponential of M.

In [21, §4] it is shown that when we apply the above result to the geometric
Lévy process, then we know that under the somewhat strong assumptions
(for example [p, (e —1)*v(dz) < o0) the MMM exists and is given by

dP -
— =&(M
op = ¢(M)

~

M,=0 <0Wt + /0 t /R \{0}(690 —1)[N(ds, dx) — I/(dx)ds]) ,
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where

~

r—>b

0 =
o? + fR\{O}(e‘” —1)%v(dx)

~ 1
b= —O'2+b+/ (ex— l—xl{‘le})V(dx).
2 R\{0) -

On the other hand, it is shown in [21] that the formula (6) of Theorem 1
is represented as
dpP*
dP |,

t
My = 6cW, +/ / (69*(636_1) — 1) [N(ds, dz) — v(dz)ds](62)
o Jr\o}

= (M), (61)

From the above results it follows that the MEMM is different from the
MMM except the very special cases (such cases that the equivalent martingale
measure is unique, namely the complete market cases).

We mentions here that the MMM has the following week points when
compared with the MEMM:
1)The MMM is possibly signed measure. (MEMM is a probability measure.)
2)The class of the processes to which the MMM theory is applicable is limited
compared with that of the MEMM.

4) Relations with the Esscher transformation
It is proved in [21] that

ea*izt

5 Eple ]

dP*
dP

where R, is the return process of the discounted price process S, = S;e~",
namely

t

~ 1 ~

Rt:/ g—dSu, (therefore S = E(R)).
0 uU—

This formula means that the MEMM P* is obtained as the Esscher transfor-
mation by the return process R;.
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2.2  Pricing Models

When we start from the geometric Lévy process and adopt the MEMM as
the special equivalent martingale measure, we call it the [Geometric Lévy
Process & MEMM] pricing model (see [33]). We can apply the results of the
previous section to the models noted in Chapter 1, and we obtain several
examples of the [Geometric Lévy Process & MEMM] pricing model.

Before we see examples we investigate the Condition (C). If the condi-
tion (C)y has the sense then the condition (C); follows. So we consider the
condition (C),. Set

1 @
f(@ = b+ (5 + 9)02 + / (e° — 1)60(6 71)[{‘x‘>1} v(dx)
R\{0}

+ (" = D)"Y — ) Lpy<ry v(da). (63)
R\{0}
Then the condition (C), is equivalent to the condition that the following
equation

fO0)=r (64)

has a solution.

It is easy to see that f(#) is an increasing function of §. Therefore, if f(6)
is continuous and limy_, o f(0) < r < limy_,o f(#) then the equation (64)
has a unique solution.

Note that

E(S;) = Syexp(tf(0)) (65)

If one assume that f(0) > r (it seems that in some cases it is really natural
to assume) then the solution #* of (64) is non-positive.

1) Brownian Motion Model
Suppose that the Lévy process Z; consists of continuous part only. Then
Z, is in the following form

Zt = bt + O'Wt.
This case is identical with Black-Scholes model, and equation (C), has a
solution 0* = —% — (’U;;", and P* is the unique risk neutral martingale measure.

2) Compound Poisson Model
Suppose that the Lévy process Z; is compound Poisson process and that
the Lévy measure v(dx) is given in the form of

14



v(dz) = Ap(dx), (66)

where p(dz) is a probability measure on R such that p({0}) = 0, and X is a
positive constant. Then the equation for 6* is

Yo+ A /R (D gl = (67)

It is easy to see that this equation has a solution #*, then by Theorem 2 (a)
the MEMM, P*, exists and by Theorem 2 (c) the process Z; = log[S;/Sy] is
also a compound Poisson process with Lévy measure v*(dx) = ¢/ "~y (dx).

3) (Brownian Motion + Compound Poisson) Model
Suppose that the Lévy process Z; consists of continuous part and com-
pound Poisson part. Then the equation (13) for 6* is

1 * x
Yo+ (5 +07)0" + A/ (" = 1)e” " Vp(dx) =r.  (68)
(~50.00)\ {0}

Suppose that this equation has a solution #*, then the process Z; is also a
Lévy process under the MEMM P* with the generating triplet (o2, ¢*p*(dz), yo+
0*c?)o, where

0*(e*—1)
0% (e* 1) e (da:)
A* —)\/ (dx), p*(dz) = T @ p(da)

In the above example, suppose that the Lévy measure v(dz) is discrete,
namely in the following form

(69)

v(dr) = Ap(dw) —Asz (dz), pi>0,i= sz—l

=1

Then the equation (13) is in the following form.

1 - (et
Yo + (5 +0%)o* + )\sz-(e‘“ — 1) = (71)

=1

4) LogStable Model

15



The Lévy measure v(dz) of a-stable (0 < o < 2) distribution is

v(dz) = el psoy|z| " dr + ol ooy |z~ da (72)

where ¢; and ¢y are non-negative constants. In the sequel we assume that
c1 > 0, co > 0. (73)

Suppose that Z; is a stable process and its generating triplet is (0, v(dx), b),
where v(dz) is of the form (72). By Theorem 1, if the equation f(#) = r has
a solution #*, then it holds that Z; is also a Lévy process w.r.t. P* and the
generating triplet (A* v* b*) of Z; under P* is

AT = 0, (74)
vi(dr) = " Vy(dx)
ef"(e"—1) 0*(e*—1)
= Cll{x>0}||(7+1dl' + CQ[{x<0}WdI, (75)
b* = b-|—/ xl{\x\gl}d(l/* - l/). (76)
R\{0}

We will examine the conditions such that the equation f(f) = r has a
solution. When the Lévy measure v(dz) is given by (72), the function f(f)
is

f(g) _ s ., /1 (ew _ 1) 0(e®—1) i

|1-| (a+1)
(e*—1) _ x)) 1 ((e:v o 1)69(61—1) o ZL‘))
/ |x| D) dr + ¢, /0 2@ dx

f(e*—1)
/ |x| a+1 dz, (77)

e — O (e —1—1)
f(O) = b+C2/_oo de—FCQ/; de

1 T 1 _ o0 T 1
+cl/ wdx + cl/ %dm (78)
0 1

and

It can be proved that f(#) is a continuous increasing function on (—oo, 0)
and that

lim f(f) = —o0, (79)

0——o0
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lei% f(0) = oo. (80)

Therefore the equation f(6) = r has a negative solution #*. Thus we have
obtained the following result.

Proposition 1 (1) Under the assumption c¢i,co > 0, the equation f(0) =r
has a unique solution 0%, and the solution 0* is negative.

(2) The MEMM P* is determined by 0*, and the generating triplet (A*, v*, b*)
of Zy under P* is given by (74), (75) and (76).

As the corollary of this proposition, we obtain

Corollary 1 Under the MEMM P*, any moments Ep-[|Si/¥],k = 1,2, ...
of Sy are finite.

Remark 2 Since S; has finite moments of any degree under theMEMM
P~, if the option O satisfies such conditions as |O| < (S7)*, etc., then the
price of O is computable as the expectation Ep«[O].

5) Variance Gamma Model
As we have seen in Chapter 1, the variance gamma (VG) distribution has
the following distribution density,

p(x,t) = Cy Kyjpo12(ala]) ||/~ exp(—Bx), t> 0. (81)
And the Lévy measure is of the following form.
v(dz) =C ([{:v<0} exp(—c1|z]) + I{z>o) eXP(_C2|$|)) ||~ d, (82)

where C| ¢, ¢y are positive constants. In this case, the condition (53) is
satisfied, and so we can use the expressions (54) and (55). Set the left hand
side of (55) as fy, namely we set

fol6) =70 + / (€ D ) (3)

So the equation fy(6) = r is

° 1 . > 1 :
fo0) = v+C </ —|e’cl‘$‘(e“" — 1) Dy +/ me"”'“"'(e“" —1)ef ”dx)
- 0

o [

= 7
It is clear that

fol0) =00 if 6>0. (85)
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It can be proved that fy(#) is a continuous increasing function on (—oo,0)
and that

Jim fo() = —oo, (86)
lai%lfo(g) = fo(0), (87)
and
fo(0) = oo, if <1, (88)
fo0) < oo, if e>1, (89)

Thus we have obtained

Proposition 2 (1) If o < 1, then the equation fo(6) = r has a unique
solution 0%, and the solution is negative.

(2) If c; > 1 and fo(0) > r, then the equation fo(0) = r has a unique solution
0*, and the solution is non-positive.

(3) If c2 > 1 and fo(0) < r, then the equation fo(0) = r has no solution.

(4) When the equation fo(6) = r has a solution 0*, then the MEMM P* exists
and is determined by 0*. The generating triplet (A*,v*,v§)o of Z; under the
MEMM P* is given by

A =0, (90)
—ci|z| 0% (e*—1) —calz| 0% (e®—1)
v (dr) = C’<[{I<0}6 |Z| d + Ijasoy - EC | dx) . (91)

Since #* is non-positive, the MEMM P* has good properties as we have
seen for the stable models in the above.

6) CGMY Model
The function f(€) = r in the equation (Cy) is

F0) = b+0< / (7 = 1)e Vel

|z Y

o0

[20+) [20)

1

(9) (em _ l)ee(emfl)efM\w\
+[ |1‘|(1+Y) dx )

18

0 T _ 1 0(e®*—1) __ —G|z| 1 T _ 1 0(e*—1) __ —M|z|
+/ ((e Je ) e i + / ((e Je ) e i
_ 0

(93)



and f(0) is

-1 T _ 1 —G|z|

—00

+/0 (e —1-— x)e*G‘I‘dx N /1 (e —1-— x)e*M“"'dx
0

1 |z FY) || FY)
> (¢ — 1)e~ Ml

We can carry out the same argument as we have done in the above for the
stable processes and the VG processes, and we obtain the following results.

Proposition 3 (1) If M < 1, then the equation f(8) = r has a unique
solution 0%, and the solution is negative.

(2) If M > 1 and f(0) > r, then the equation f(0) = r has a unique solution
0*, and the solution is non-positive.

(3) If M > 1 and f(0) < r, then the equation f(8) =r has no solution.

(4) When the equation f(0) = r has a solution 0%, then the MEMM P* ezists
and is determined by 0*. The generating triplet (A*,v*,b*) of Z, under the
MEMM P* is given by

A = 0, (95)
€7G|m|€9*(eg”fl) efM\x\ew(e””fl)

vidzx) = C (I{x<0}u|(1—+nd$+1{x>o}wd$> , (96)

b* = b+/ x[{|m|§1}d(l/*—l/). (97)
R\{0}

7) Hyperbolic Model and Generalized Hyperbolic Model

For the hyperbolic models and the generalized hyperbolic (GH) models,
we can do the same investigation as we have done for the stable models and
VG models in the above, and the results are similar to the above results.
However the formulas are complicated, so we omit the details.

3 Remarks for Applications and Discussions

In order to apply the [GLP & MEMM] Pricing Models obtained in the pre-
vious subsection, we have to do the following three procedures.

1) Estimation of the price process and Lévy measure.
2) Determination of the MEMM.
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3) Computation of the option prices.
We will give some comments on these problems briefly.

1) Estimation of the price process and Lévy measure. What we
need to know is the generating triplet. It is not easy to solve this problem
theoretically. But if we want to solve in the sense of numerical analysis, then
the FFT(Fast Fourier Transform) method seems to be very useful.

2) Determination of the MEMM P*. This part is just what we have
seen in §2.2.

3) Computation of the Option Prices. An option with a payoff fr is a
functional of the price process {S;,0 < t < T}, and the price of it is given as
e "I Ep[fr] under the [GLP & MEMM] Pricing Models. By S; = Sy exp(Z;),
an option is a functional of {Z;,0 <t < T}, and Z; is a Lévy process under
the MEMM P*. Therefore the computation problems of option prices are
reduced to the computation problems of the Lévy functionals. This is a
subject of stochastic calculus of Lévy processes, and it is not easy to solve in
general.

4) Discussions. As we have mentioned above (see Corollary 1), even if
the price process S; does not have the finite moments under the original
probability P, it may have the finite moments under the MEMM P*. This
property is very convenient for the computation of option prices. We think
that the MEMM has some relations with the idea of the exponential hedging
of [14] . In fact, in [14] the exponential hedging is discussed relating with
relative entropy.

References

[1] Amaral, L., Plerou, V., Gopikeishnan, P., Meyer, M., and Stanly, H.
(2000) The distribution of returns of stock prices. International Journal
of Theoretical and Applied Finance, Vol. 3, No. 3 (2000) 365-369.

[2] Abramowitz, M. (1972) "Handbook of mathematical functions with for-
mulas, graphs and mathematical tables”. Edited by Milton and Irene A.
Stegun, Wiley.

20



3]

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Albanese, C., Jaimungal, S. and Rubisov, D. (2001) Jumping in line.
Risk Magazine, February, pp 65-68.

Andersen, L. and Andreasen, J. (1999) Jump-Diffusion Processes:
Volatility Smile Fitting and Numerical Methods for Pricing. Working
paper, see WWWw.SSI'T.COI.

Barndoff-Nielson, O. and Halgreen, O. (1977) Infinite divisibility of the
hyperbolic and general inverse Gaussian distributions. Z. fur Wahr. und
ver. Gebiete, v.38, 309-312.

Black, F., and Scholes, M. (1973) The pricing of options and corporate
liabilities. Journal of Political Economy. Vol. 81, 637-654.

Bertoin, J. (1996) ” Lévy Processes”. Cambridge Univ. Press.

Borovkov, A. (1976) ” Stochastic processes in queuing theory”. Springer.

Biithlmann, H., Delbaen, F., Embrechts, P., and Shiryaev, A. N. (1996)
No-arbitrage, Change of Measure and Conditional Esscher Transforms.
CWI Quarterly, 9,No. 4, 291-317.

Carr, P., Geman, H., Madan, D.B., and Yor, M. (2000) The Fine Struc-
ture of Asset Returns: An Empirical Investigation. (Preprint).

Carr, P. and Madan, D. (1999) Option valuation using the fast fourier
transform. Journal of Computational Finance, 2, 61-73.

Carr, P. and Wu, E. (2000) The Finite Moment Logstable Process And
Option Pricing. Working paper.

Chan, T. (1999) Pricing Contingent Claims on Stocks Derived by Lévy
Processes. The Annals of Applied Probability, v. 9, No. 2, 504-528 .

Delbaen, F., Grandits, P., Rheinlander, T., Samperi, D., Schweizer, M.
and Stricker, C. (2000) Exponential Hedging and Entropic Penalties.
(Preprint).

Delbaen, F. and Schachermayer, W. (1996) The Variance-Optimal Mar-
tingale Measure for Continuous Processes. Bernoulli, v. 2, 81-106.

Eberlein, E. and Keller, U. (1995) Hyperbolic distributions in finance.
Bernoulli, 1, 281-299.

21



[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

Eberlein, E., Keller, U. and Prause, K. (1998) New insights into smile,
mispricing and Value-at-Risk: the hyperbolic model. Journal of Busi-
ness, v.71, 371-405.

Fama, E. F. (1963) Mandelbrot and the Stable Paretian Hypothesis. J.
of Business, 36, 420-429.

Follmer, H. and Schweizer, M. (1991) Hedging of Contingent Claims
under Incomplete Information. In M.H.A. Davis and R.J. Elliot (ed.) :
Applied Stochastic Analysis, Gordon and Breach, 389-414.

Frittelli, M. (2000) The Minimal Entropy Martingale Measures and the
Valuation Problem in Incomplete Markets. Mathematical Finance, v.10,
No. 1, 39-52.

Fujiwara, T. and Miyahara, Y. (2001) On the Minimal Entropy Mar-
tingale Measure for Geometric Lévy Processes. Discussion Papers in
Economics, Nagoya City University, No. 299, pp. 1-21.

Hurst, S. R., Platen, E. and Rachev, T. (1997) Subordinated Markov In-
dex Models: A Comparison. Financial Engineering and Japanese Mar-
kets, v.4, 97-124.

Hurst, S.R., Platen, E. and Rachev, S.T. (1999) Option pricing for a
logstable asset price model. Math. Comput. Modelling, 29 , no. 10-12,
105-119.

Ikeda, N. and Watanabe, S. (1989) " Stochastic Differential Equations
and Diffusion Processes, Second Edition.”, North-Holland.

Jacod, J. and Shiryaev, A.N. (1987) ” Limit Theorem for Stochastic Pro-
cesses”. Springer, Berlin.

Madan, D. and Seneta, E. (1990) The variance gamma (vg) model for
share market returns. Journal of Business, v.63(4), 511-524.

Madan, D., Carr, P. and Chang, E. (1998) The variance gamma process
and option pricing. Furopean Finance Review, v.2, 79-105.

Mandelbrot, B. (1963) The variation of certain speculative prices. J. of
Business, 36, 394-419.

Merton, R.C. (1973) Theory of Rational Option Pricing. Bell Journal
of Economics and Management Science, v.4, 141-183.

22



[30]

[31]

32]

33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Merton, R. C. (1976), Option Pricing when Underlying Stock Returns
are Discontinuous. J. of Financial Economics, v.3, 125-144.

Miyahara, Y. (1996a) Canonical Martingale Measures of Incomplete As-
sets Markets. In  Probability Theory and Mathematical Statistics: Pro-
ceedings of the Seventh Japan-Russia Symposium, Tokyo 1995 (eds. S.
Watanabe et al), pp.343-352.

Miyahara, Y. (1999a) Minimal Entropy Martingale Measures of Jump
Type Price Processes in Incomplete Assets Markets. Asian-Pacific Fi-
nancial Markets, Vol. 6, No. 2, pp. 97-113.

Miyahara, Y. (2001) Geometric Lévy Process & MEMM Pricing Model
and Related Estimation Problems. Asia-Pacific Financial Markets, Vol.
8, No. 1, pp. 45-60.

Rachev, S. and Mittnik, S. (2000), ” Stable Paretian Models in Finance”,
Wiley.

Schweizer, M. (1995) On the Minimal Martingale measure and the
Follmer-Schweizer Decomposition. Stochastic Analysis and Applica-
tions, 13(5), 573-599.

Sato, K. (1999) "Lévy Processes and Infinitely Divisible Distributions”.
Cambridge University Press.

Sato, K. (2000) Density Transformation in Lévy Processes. MaPhySto
Lecture Notes, no. 7.

Shiryaev, A. N.(1999) ” Essentials of Stochastic Finance: Facts, Models,
Theory”. World Scientific.

Xiao, K., Miyahara, Y., and Misawa, T. (1999) Computer Simulation of
[Geometric Lévy Process & MEMM] Pricing Model. (Preprint).

Zolotarev, V.M. (1986) ” One-dimensional Stable Distributions”. Amer-
ican Mathematical Society.

Zhou, C. (1999) Path-dependent Option Valuation when the underlying
path is discontinuous. The J. of Financial Engineering, v.8, N 1, pp
73-97.

23



