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Abstract

We consider models for stock prices which relates to random pro�

cesses with independent homogeneous increments �Levy processes��

These models are arbitrage free but correspond to the incomplete ��

nancial market� There are many di�erent approaches for pricing of

�nancial derivatives� We consider here mainly the approach which

is based on minimal relative entropy� This method is related to an
utility function of exponential type and the Esscher transformation of

probabilistic measures�

� Introduction

We suppose that the �nancial market consists of two assets � bond Bt and
stock St � We use the notation r for the spot interest rate assuming that it
is a constant� Then� under the assumption of continuous compounding� the
value of the bond at time t is

Bt � B� expfrtg� ���

The classical di	usion model �Merton ��
��� �
�� Black and Scholes ��
���
��� for the process St is

dSt � �Stdt� �StdWt ���

where Wt is a standard Wiener process� � is the expected return and � is the
stock price volatility� The solution of this equation is

St � S� expf�Wt � gtg ���

with g � �� �
�
���

�
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It is well�know that contrary to aWiener process� returns of stocks �that is
log�St�� are neither Gaussian� nor homogeneous and not having independent
increments� see e�g� Amaral et al ����� ��� In spite of these empirical
observations the classical di	usion model remains as a reference model due
to its simplicity� Trying to preserve this feature of simplicity one may keep
the property of having independent homogeneous increments i�e� assuming
that log�St� is a Levy process which could be a non�Gaussian process� So�
we will assume that

St � S� expfZtg ���

where Zt is a Levy process� Z� � ��
In particular� it implies the distribution function of Zt belongs to the class

of in�nite divisible distributions �see� e�g� Bertoin ��

�� �� or Sato ��


�
����� Under this assumption the process Zt has the following representation

Zt � �Wt � Yt ���

where Wt is a standard Wiener process� Yt is a jump Levy process which is
independent of Wt � The process Yt has the following representation in terms
of the counting Poisson measure N�dt� dx�� t � �� x � Rnf�g generated by
the jumps of Zt �

Yt � bt �

Z t

�

Z
Rnf�g

xIfjxj��gN�ds� dx� �

Z t

�

Z
Rnf�g

xIfjxj��gN�ds� dx�� ��dx�ds��

���

Here ��dx� is the so�called Levy measure which satis�es the following condi�
tion Z

min�x�� ����dx� �� ���

�see� e�g� �� or �����
The characteristic function of Yt is given by

E exp�iuYt� � expft��iu�g ���

where the cumulant function ��iu� can be written in the form

��iu� � iub �

Z �

��

exp�iux�� �� iuxIfjxj � �g���dx� �
�

�



�it is a variant of the so�called Levy�Khintchine formula��
We will call the characteristic ���� v�dx�� b� in the above representation

the triplet of Zt� �Slightly di	erent terminologies are used in monographs
��� and �����

Remark �� Chan ��


� ��� considered a stock price model in a di	erent
form

dSt � �Stdt� �St�dXt ����

where Xt is a Levy process �satisfying some conditions�� This model is actu�
ally equivalent to the model ��� under the assumption that jumps �Xt � ��
which is necessary for positiveness of prices St� To our mind it is more con�
venient to work with characteristics of the process Zt from ����

Some particular cases�
�� Compound Poisson models�

Yt � tc �
NtX
k��

	k ����

where Nt is a homogeneous Poisson process with intensity 
� 	k are iid r�v�
with a distribution function ��dx�� Then �as well�known�

��iu� � iuc� 


Z �

��

exp�iux�� ����dx� ����

and so ��dx� � 
��dx� � �Here and below the letter c without or with index
denotes a constant�� This type of model was �rstly considered e�g� by Merton
��
��� ��� and then by many authors� We also mention only recent papers
Andersen and Andreasen ��


� ��� and Zhou ��


� ���� Note that in the
last two papers it was supposed that 	k are Gaussian r�v��s with mean � and
variance ���� Under this assumption it is easy to see that the process Zt can
be written in a di	erent form�

Yt � ct� �Nt�
� � ��B�t ����

where Bt is a standard Wiener process independent of Nt�
� and Wt�

t � Nt�
�� ����

An another natural choice is with 	k as a mixture of exponential distri�
butions� e�g� in the form

��dx� � �c�I�x � �� exp��c�x� � c�I�x � �� exp��c�x��dx ����

�



Under this choice of ��dx� the distribution of jumps of the process St is
a Pareto�type which has some empirical justi�cations ���� �����

�� Logstable models� The important particular case of this class of
models can be given in the following form�

Yt � tc� L
���
t ����

where L
���
t is a stable Levy process with only negative jumps � � �  � ��

The moment�generating function of this process is given by the following
simple formula

E exp�zL���
t � � exp�tCz��� z � � ����

where the constant C � �� From here it is easy to derive that this process
has the self�similarity property that is we have the following equality by
distribution

L
���
t � L���

s � �t� s����L
���
� � t � s ����

Mandelbrot ��
��� ��� was the �rst who suggested to model log�St� as
a symmetric stable Levy process and he presented some statistical evidence
for his approach �exploring� actually� a small sample size of about ���� data
points�� But in his case the stock process St does not have moments and
that contradicts other intensive empirical �ndings �see discussion in ���� The
only case of stable Levy processes for which all moments of St are �nite is
given by �����

Between other related papers we mention only recent ones� Hurst et al
��


� ��� studied a very similar model but in terms of stable subordinators
to a Wiener process� Carr and Wu ������ ��� considered examples of stock
prices for which the Logstable model �as in ����� statistically better against
several alternatives�

The Levy measure of the stable process with moment generating function
���� has a very simple form�

��dx� � cI�x � ��jxj���	��dx ��
�

but there are no simple formulas for density of r�v� L
���
t � Note this density

can be calculated in terms of Fast Fourier Transformation using an analytical
continuation of ����� See also Carr and Madan ��


� ����

�� Variance Gamma model and CGMY model� The Variance
Gamma �VG� process introduced by Madan and Seneta ��

�� ��� and then

�



extended in Madan et al ��

�� ���� The main feature is obtained by evaluat�
ing Brownian motion with drift at random times given by a gamma process�
The gamma process �t with mean rate � and variance rate � is the process
of independent gamma increments with the density

p�x� � Ctx
��t

�
�� exp���

�
x�� x � �� Ct �

��
�

���t

�

���
��t

�
� ����

where ��x� is the gamma function� The VG process Yt is then de�ned in
terms of Brownian motion with drift and the gamma process with unit mean
rate � � � as follows�

Yt � ��t � ��B�t ����

where Bt is a standard Wiener process independent of �t�
The characteristic function of value Yt is

Eexp�iuYt� �

�
� � ��

� � �� � iu��

�t�v

����

with the following relations between parameters when �� � ��

� � ����� � � � �� � ��
�
����

�
� ����

It is easy to check that the VG process has also the another representation�

Yt � �post � �negt ����

where �post and �negt are independent gamma processes ������
The density of Yt can be expressed in terms of the modi�ed Bessel function

of the second kind K��z� �see ���� in the following way�

p�x� � CtKt�������jxj� jxjt������ exp��x�� t � � ����

where Ct denotes a normalizing constant �here and below��
There are several di	erent representations of function K��z�� The one of

most convenient is the following �see e�g� Abramowitz ��
��� ����

K��z� �

Z �

�

expf�z cosh�x�g cosh�
x�dx ����

�



The VG model has several very atractive features� To simulate the trajec�
tories of VG processes one need only to simulate gamma and normal distri�
bution �or� two independent gamma distributions�� Also� the Levy measure
has a simple form

��dx� � �c�I�x � �� exp��c�x� � c�I�x � �� exp��c�x��jxj��dx ����

and it is of convenience for pricing models �see Albanese et al ������ ����
Carr�Geman�Madan�Yor have introduced the CGMY process in ���� which

is an extended process of VG process� The L�evy measure of the CGMY pro�
cess is

��dx� � c
�
Ifx��g exp�Gx� � Ifx��g exp��Mx�

� jxj���	Y �dx� ����

where c � �� G � ��M � �� Y � �� In the case that Y � �� then G � �
and M � � are assumed� We mention here that the case Y � � is the VG
process case� and the case G � M � � and � � Y � � is the symmetric
stable process case�

�� The Hyperbolic model�
The Hyperbolic model is discussed by Eberlain et al ��

�� ���� The

density of the terminal value of the return ZT �up to drift term� is supposed
to be the in�nitely divisible distribution whose density depends on four pa�
rameters ��� �� � and� of course� maturity T and has a form

p�x� � C exp
n
�

p
�� � x� � �x

o
��� � x �� ��
�

where

C �

p
� � ��

��K�

�
�
p
� � ��

� � � � �� j�j � � ����

K��z� is the modi�ed Bessel function of the second kind �de�ned above��
The characteristic function of value Zt for all t � � is �����

Eexp�iuZt� � �
�K���

p
� � �� � iu���

�K���
p
� � ���

�t�T ����

where �K��z� � K��z�z
���

Note that the simple expression ��
� is valid only for the terminal value
ZT � Alternatively� one could assume that increments Zt	� � Zt with some
� � � has density ��
� and then check that the characteristic function of

�



value Zt is the same as in ���� but with � instead of T� To calculate the
density of Zt for arbitrary t one may use the Fourier transformation of the
characteristic function of the process or some other integral representations�

�� Generalized Hyperbolic �GH�Model� The class of generalized
hyperbolic distributions was introduced in Barndor	�Nielsen and Halgreen
��
��� ��� Eberlein at al ��

�� ��� considered it as the natural general�
ization of Hyperbolic model� According to the GH model the density of the
random variable ZT �up to drift term� is

p�x� � ����

�CTK������
p
�� � x���

p
�� � x�������e�	x�� ����

where

CT �
�� � ���

���

p
���������K�

�
�
p
� � ��

� ����

and

� � �� j�j �  if 
 � � ����

� � �� j�j �  if 
 � � ����

� � �� j�j �  if 
 � �� ����

Note that the distribution of the GH process� like that of the hyperbolic
process� is given in the explicit form only at maturity� that is for t � T �
and not for arbitrary t � T�

The characteristic function of Zt for all t � � is �����

Eexp�iu Zt� � �
�K���

p
� � �� � iu���

�K���
p
� � ���

�t�T ����

	� Processes subordinated to the Wiener process� This type of
model have the following form

Zt � ct � �t � ��W�t ��
�

where t is a non�negative Levy process �subordinator�� The prove that the
process Zt is a Levy process can be easily done with help of conditioning of
the characteristic functions of Zt � The particular cases of this model are the
Gauss�Poisson model ���� and the VG model �����

�



The another interesting choice is when T has the Generalized Inverse
Gaussian distribution with p�d�f�

p�x� � CT x
T���� expf�x�� � ���xg� x � � ����

Then accordingly to �� Zt has the generalized hyperbolic distribution
with the characteristic function

Eexp�iuZt� � �
�KT����

p
� � �� � iu���

�KT����
p
� � ���

�t�T ����

where

� � ����� � 
� � �� � �������� ����

Comparing this formula with ���� one can easily see that under of this
choice of T we have just the another representation for the GH model when

� � T �

The case of VGmodel can be considered as the limiting case the GHmodel
when � � � � Indeed� using the asymptotics �K��z� s z��� as z � � �see ���
we get from ���� formula �����

�



� Minimal Relative EntropyMartingale Mea�

sure �MEMM� and Pricing Models

The models described in Chapter � are incomplete market models in general�
Only the Brownian motion model and the simple Poisson process model are
the exceptional cases� In fact� other geometric L�evy process models have
many equivalent martingale measures if an equivalent martingale measure
exists�

The pricing models for the incomplete markets are� in general� consisting
of the following two parts� The �rst part is the part of de�ning the price
process of underlying assets� and the second part is the part of de�ning the
pricing rule of options�

For the second part we follows to the so�called martingale method� and
we adopt the minimal entropy martingale measure �MEMM� as the suitable
martingale measure among several candidate martingale measures �see ����
�
�� ���� ���� etc��� Then the price of an option is given as the expectation
of that option with respect to the MEMM�

��� Minimal Relative Entropy Martingale Measure of

Geometric L�evy Processes

We will �rst give the de�nition of MEMM� and then we will see the existence
problem of MEMM of the geometric L�evy processes�

�� MEMM
Let P�S� be the set of all equivalent martingale measures of St�

De
nition � �minimal entropy martingale measure �MEMM�� If an
equivalent martingale measure P � satis�es the following condition

H�P �jP � � H�QjP � �Q � P�S� ����

where H�QjP � is the relative entropy of Q with respect to P � which is given
by the following formula

H�QjP � �
� R



logdQ

dP
�dQ� if Q� P�

�� otherwise�
����

then P � is called the minimal entropy martingale measure �MEMM� of St�

The basic properties of MEMM are described in x� of ���� For example�
it is known that if the MEMM exists then it is unique�






There are many reasons why we adopt the MEMM as the suitable equiva�
lent martingale measure� One of them is the fact that the MEMM is related
to the utility function of exponential type �see ����� And another one is
the relations of the MEMM with the theory of large deviation �remember
Sanov�s Lemma�� And the third one is the fact that this measure is strongly
related to the Esscher transformation�

�� Existence of MEMM
The existence problem of the MEMM of geometric L�evy processes has

been discussed in ������� and ���� The most general form is given in ����
We use the same notations as in Chapter �� For the simplicity we assume

that B� � �� namely the value of bond is given

Bt � expfrtg�
Let a L�evy process Zt be given in the the following general form

Zt � �Wt � Yt

� �Wt � bt �

Z t

�

Z
Rnf�g

xIfjxj��gNp�dsdx�

�

Z t

�

Z
Rnf�g

xIfjxj��gN�ds� dx�� ��dx�ds�� ����

and consider the following conditions�
Condition �C� There exists �� � R which satis�es the following condi�
tions �

�C��
R
fx��g

exe

��ex�����dx� ��� ����

�C�� b � ��
�
� ����� �

R
Rnf�g

�ex � ��e

��ex���Ifjxj��g ��dx�

�
R
Rnf�g

�
�ex � ��e


��ex��� � x
�
Ifjxj��g ��dx� � r� ����

Under the above assumptions the following theorem is obtained in ����

Theorem � �Fujiwara�Miyahara ��� Theorem ����� Suppose that the
condition �C� holds� and let P � be the probability measure de�ned by

dP �

dP

����
Ft

� exp���Wt � �

�
������t � ��

Z t

�

Z
Rnf�g

�ex � ��Ifjxj��gNp�dsdx�

���
Z t

�

Z
Rnf�g

�ex � ��Ifjxj��gN�ds� dx�� ��dx�ds�

��



�t
Z
Rnf�g

�
e


��ex��� � �� ���ex � ��Ifjxj��g
�
��dx��� ����

Then the probability measure P � is well de�ned and it holds that
�a��MEMM�� P � is the MEMM of St�
�b��Minimal Relative Entropy��

H�P �jP � � �T ���� � ��

�
���� � ���b� r� �

Z
Rnf�g

�
e


��ex��� � �� ��xIfjxj��g
�
��dx���

��
�

�c��L�evy process�� Zt is also a L�evy process w�r�t� P �� and the generating
triplet �A�� ��� b�� of Zt under P

� is

A� � A�� ���� ����

���dx� � e

��ex�����dx�� ����

b� � b� ���� �

Z
Rnf�g

xIfjxj��gd��
� � ��� ����

Remark ��
If the following conditionZ

Rnf�g

jxjIfjxj��g��dx� �� ����

is satis�ed� then the generating triplet of Zt is ��
�� �� ���� �see ��� p��
�� and

Zt is expressed

Zt � �Wt � ��t�

Z t

�

Z
Rnf�g

xNp�dsdx�� ����

In this case� the condition �C�� is replaced by

�� � �
�

�
� ����� �

Z
Rnf�g

�ex � ��e

��ex�����dx� � r� ����

and as the corollary of Theorem � we obtain

Theorem � Suppose that the L�evy process Zt is given by ��	� � Assume that
there exists a constant �� which satis�es the equation ����� and let P � be the
probability measure de�ned by

dP �

dP

����
Ft

� exp���W �t�� �

�
������t�

Z t

�

Z
Rnf�g

���ex � ��Np�dsdx��

��



�
Z t

�

Z
Rnf�g

�e

��ex��� � ����dx��� ����

Then the probability measure P � is well de�ned and it holds that
�a��MEMM�� P � is the MEMM of St�
�b��Minimal Relative Entropy��

H�P �jP � � �T ���� � ��

�
���� � ����� � r� �

Z
Rnf�g

�e

��ex��� � ����dx���

����

�c��L�evy process�� Zt is also a L�evy process w�r�t� P �� and the generating
triplet �A�� ��� ����� of Zt under P

� is

A� � A�� ���� ����

���dx� � e

��ex�����dx�� ��
�

��� � �� � ����� ����

�� Comparison of the MEMM with the MMM
We see the relations of MEMM with the minimal martingale measure

�MMM�� The MMM was introduced by F�ollmer�Schweizer in �
� and has
been investigated by M� Schweizer ������ etc�

Suppose that the price process is a semimartingale and represented as

St � S� �Mt �

Z t

�

dhMi

then the MMM �P is the �possibly signed� measure de�ned by

d �P

dP
� E

�
�
Z

dM

�
�

where E�M� is the Dol�eans�Dade exponential of M �
In ��� x�� it is shown that when we apply the above result to the geometric

L�evy process� then we know that under the somewhat strong assumptions
�for example

R
Rnf�g

�ex � �����dx� ��� the MMM exists and is given by

d �P

dP
� E� �M�

�Mt � ��

�
�Wt �

Z t

�

Z
Rnf�g

�ex � ��N�ds� dx�� ��dx�ds�

�
�

��



where

�� �
r � �b

�� �
R
Rnf�g

�ex � �����dx�

�b �
�

�
�� � b�

Z
Rnf�g

�ex � �� xIfjxj��g���dx��

On the other hand� it is shown in ��� that the formula ��� of Theorem �
is represented as

dP �

dP

����
Ft

� E�M��t� ����

M�
t � ���Wt �

Z t

�

Z
Rnf�g

�
e


��ex��� � �
�
N�ds� dx�� ��dx�ds������

From the above results it follows that the MEMM is di	erent from the
MMM except the very special cases �such cases that the equivalent martingale
measure is unique� namely the complete market cases��

We mentions here that the MMM has the following week points when
compared with the MEMM�
��The MMM is possibly signed measure� �MEMM is a probability measure��
��The class of the processes to which the MMM theory is applicable is limited
compared with that of the MEMM�

�� Relations with the Esscher transformation
It is proved in ��� that

dP �

dP

����
Ft

�
e


� �Rt

EP e

� �Rt�

�

where �Rt is the return process of the discounted price process �St � Ste
�rt�

namely

�Rt �

Z t

�

�
�Su�

d �Su� �therefore �S � E� �R���

This formula means that the MEMM P � is obtained as the Esscher transfor�
mation by the return process �Rt�

��



��� Pricing Models

When we start from the geometric L�evy process and adopt the MEMM as
the special equivalent martingale measure� we call it the Geometric L�evy
Process � MEMM� pricing model �see ����� We can apply the results of the
previous section to the models noted in Chapter �� and we obtain several
examples of the Geometric L�evy Process � MEMM� pricing model�

Before we see examples we investigate the Condition �C�� If the condi�
tion �C�� has the sense then the condition �C�� follows� So we consider the
condition �C��� Set

f��� � b� �
�

�
� ���� �

Z
Rnf�g

�ex � ��e
�e
x���Ifjxj��g ��dx�

�

Z
Rnf�g

�
�ex � ��e
�e

x��� � x
�
Ifjxj��g ��dx�� ����

Then the condition �C�� is equivalent to the condition that the following
equation

f��� � r ����

has a solution�
It is easy to see that f��� is an increasing function of �� Therefore� if f���

is continuous and lim
��� f��� � r � lim
�� f��� then the equation ����
has a unique solution�

Note that

E�St� � S� exp�tf���� ����

If one assume that f��� � r �it seems that in some cases it is really natural
to assume� then the solution �� of ���� is non�positive�

�� Brownian Motion Model
Suppose that the L�evy process Zt consists of continuous part only� Then

Zt is in the following form

Zt � bt � �Wt�

This case is identical with Black�Scholes model� and equation �C�� has a
solution �� � ��

�
� b�r

��
� and P � is the unique risk neutral martingale measure�

�� Compound Poisson Model
Suppose that the L�evy process Zt is compound Poisson process and that

the L�evy measure ��dx� is given in the form of

��



��dx� � 
��dx�� ����

where ��dx� is a probability measure on R such that ��f�g� � �� and 
 is a
positive constant� Then the equation for �� is

�� � 


Z
Rnf�g

�ex � ��e

��ex�����dx� � r� ����

It is easy to see that this equation has a solution ��� then by Theorem � �a�
the MEMM� P �� exists and by Theorem � �c� the process Zt � logSt�S�� is
also a compound Poisson process with L�evy measure ���dx� � e


��ex�����dx��

�� �Brownian Motion � Compound Poisson� Model
Suppose that the L�evy process Zt consists of continuous part and com�

pound Poisson part� Then the equation ���� for �� is

�� � �
�

�
� ����� � 


Z
������nf�g

�ex � ��e

��ex�����dx� � r� ����

Suppose that this equation has a solution ��� then the process Zt is also a
L�evy process under the MEMM P � with the generating triplet ���� c����dx�� ���
������� where


� � 


Z
e


��ex�����dx�� ���dx� �
e


��ex�����dx�R
e
��ex�����dx�

� ��
�

In the above example� suppose that the L�evy measure ��dx� is discrete�
namely in the following form

��dx� � 
��dx� � 

�X
i��

pi�ai�dx�� pi � �� i � �� �� � � � �
�X
i��

pi � �� ����

Then the equation ���� is in the following form�

�� � �
�

�
� ����� � 


�X
i��

pi�e
ai � ��e


��eai��� � r� ����

�� LogStable Model

��



The L�evy measure ��dx� of �stable �� �  � �� distribution is

��dx� � c�Ifx��gjxj���	��dx� c�Ifx��gjxj���	��dx ����

where c� and c� are non�negative constants� In the sequel we assume that

c� � �� c� � �� ����

Suppose that Zt is a stable process and its generating triplet is ��� ��dx�� b��
where ��dx� is of the form ����� By Theorem �� if the equation f��� � r has
a solution ��� then it holds that Zt is also a L�evy process w�r�t� P �� and the
generating triplet �A�� ��� b�� of Zt under P

� is

A� � �� ����

���dx� � e

��ex�����dx�

� c�Ifx��g
e


��ex���

jxj��	�� dx� c�Ifx��g
e


��ex���

jxj��	�� dx� ����

b� � b �

Z
Rnf�g

xIfjxj��gd��
� � ��� ����

We will examine the conditions such that the equation f��� � r has a
solution� When the L�evy measure ��dx� is given by ����� the function f���
is

f��� � b � c�

Z ��

��

�ex � ��e
�e
x���

jxj��	�� dx

�c�

Z �

��

�
�ex � ��e
�e

x��� � x�
�

jxj��	�� dx� c�

Z �

�

�
�ex � ��e
�e

x��� � x�
�

jxj��	�� dx

�c�

Z �

�

�ex � ��e
�e
x���

jxj��	�� dx� ����

and

f��� � b � c�

Z ��

��

�ex � ��

jxj��	�� dx� c�

Z �

��

�ex � �� x�

jxj��	�� dx

�c�

Z �

�

�ex � �� x�

jxj��	�� dx� c�

Z �

�

�ex � ��

jxj��	�� dx ����

� ��

It can be proved that f��� is a continuous increasing function on ���� ��
and that

lim

���

f��� � ��� ��
�

��



lim

��

f��� ��� ����

Therefore the equation f��� � r has a negative solution ��� Thus we have
obtained the following result�

Proposition � �
� Under the assumption c�� c� � �� the equation f��� � r
has a unique solution ��� and the solution �� is negative�
��� The MEMM P � is determined by ��� and the generating triplet �A�� ��� b��
of Zt under P

� is given by ��	�� ���� and ����

As the corollary of this proposition� we obtain

Corollary � Under the MEMM P �� any moments EP �jStjk�� k � �� �� � � � �
of St are �nite�

Remark � Since St has �nite moments of any degree under theMEMM
P �� if the option O satis�es such conditions as jOj � �ST �

k� etc�� then the
price of O is computable as the expectation EP �O��

�� Variance Gamma Model
As we have seen in Chapter �� the variance gamma �VG� distribution has

the following distribution density�

p�x� t� � CtKt�v�����jxj� jxjt�v���� exp���x�� t � �� ����

And the L�evy measure is of the following form�

��dx� � C
�
Ifx��g exp��c�jxj� � Ifx��g exp��c�jxj�

� jxj��dx� ����

where C� c�� c� are positive constants� In this case� the condition ���� is
satis�ed� and so we can use the expressions ���� and ����� Set the left hand
side of ���� as f�� namely we set

f���� � �� �

Z
Rnf�g

�ex � ��e
�e
x�����dx�� ����

So the equation f���� � r is

f���� � �� � C

�Z �

��

�

jxje
�c�jxj�ex � ��e
�e

x���dx�

Z �

�

�

jxje
�c�jxj�ex � ��e
�e

x���dx

�

� r� ����

It is clear that

f���� �� if � � �� ����

��



It can be proved that f���� is a continuous increasing function on ���� ��
and that

lim

���

f���� � ��� ����

lim

��

f���� � f����� ����

and

f���� � �� if c� � �� ����

f���� � �� if c� � �� ��
�

Thus we have obtained

Proposition � �
� If c� � �� then the equation f���� � r has a unique
solution ��� and the solution is negative�
��� If c� � � and f���� � r� then the equation f���� � r has a unique solution
��� and the solution is non�positive�
��� If c� � � and f���� � r� then the equation f���� � r has no solution�
�	� When the equation f���� � r has a solution ��� then the MEMM P � exists
and is determined by ��� The generating triplet �A�� ��� ����� of Zt under the
MEMM P � is given by

A� � �� �
��

���dx� � C

�
Ifx��g

e�c�jxje

��ex���

jxj dx� Ifx��g
e�c�jxje


��ex���

jxj dx

�
� �
��

��� � ��� �
��

Since �� is non�positive� the MEMM P � has good properties as we have
seen for the stable models in the above�

	� CGMY Model
The function f��� � r in the equation �C�� is

f��� � b � C

�Z ��

��

�ex � ��e
�e
x���e�Gjxj

jxj��	Y � dx

�

Z �

��

�
�ex � ��e
�e

x��� � x�
�
e�Gjxj

jxj��	Y � dx �

Z �

�

�
�ex � ��e
�e

x��� � x�
�
e�M jxj

jxj��	Y � dx

�

Z �

�

�ex � ��e
�e
x���e�M jxj

jxj��	Y � dx

�
� �
��

��



and f��� is

f��� � b� C

�Z ��

��

�ex � ��e�Gjxj

jxj��	Y � dx

�

Z �

��

�ex � �� x�e�Gjxj

jxj��	Y � dx �

Z �

�

�ex � �� x�e�M jxj

jxj��	Y � dx

�

Z �

�

�ex � ��e�M jxj

jxj��	Y � dx

�
� �
��

We can carry out the same argument as we have done in the above for the
stable processes and the VG processes� and we obtain the following results�

Proposition � �
� If M � �� then the equation f��� � r has a unique
solution ��� and the solution is negative�
��� If M � � and f��� � r� then the equation f��� � r has a unique solution
��� and the solution is non�positive�
��� If M � � and f��� � r� then the equation f��� � r has no solution�
�	� When the equation f��� � r has a solution ��� then the MEMM P � exists
and is determined by ��� The generating triplet �A�� ��� b�� of Zt under the
MEMM P � is given by

A� � �� �
��

���dx� � C

�
Ifx��g

e�Gjxje

��ex���

jxj��	Y � dx� Ifx��g
e�M jxje


��ex���

jxj��	Y � dx

�
� �
��

b� � b �

Z
Rnf�g

xIfjxj��gd��
� � ��� �
��

�� Hyperbolic Model and Generalized Hyperbolic Model
For the hyperbolic models and the generalized hyperbolic �GH� models�

we can do the same investigation as we have done for the stable models and
VG models in the above� and the results are similar to the above results�
However the formulas are complicated� so we omit the details�

� Remarks for Applications and Discussions

In order to apply the GLP � MEMM� Pricing Models obtained in the pre�
vious subsection� we have to do the following three procedures�

�� Estimation of the price process and L�evy measure�
�� Determination of the MEMM�

�




�� Computation of the option prices�
We will give some comments on these problems brie y�

�� Estimation of the price process and L�evy measure� What we
need to know is the generating triplet� It is not easy to solve this problem
theoretically� But if we want to solve in the sense of numerical analysis� then
the FFT�Fast Fourier Transform� method seems to be very useful�

�� Determination of the MEMM P �� This part is just what we have
seen in x����

�� Computation of the Option Prices� An option with a payo	 fT is a
functional of the price process fSt� � � t � Tg� and the price of it is given as
e�rTEP �fT � under the GLP � MEMM� Pricing Models� By St � S� exp�Zt��
an option is a functional of fZt� � � t � Tg� and Zt is a L�evy process under
the MEMM P �� Therefore the computation problems of option prices are
reduced to the computation problems of the L�evy functionals� This is a
subject of stochastic calculus of L�evy processes� and it is not easy to solve in
general�

�� Discussions� As we have mentioned above �see Corollary ��� even if
the price process St does not have the �nite moments under the original
probability P � it may have the �nite moments under the MEMM P �� This
property is very convenient for the computation of option prices� We think
that the MEMM has some relations with the idea of the exponential hedging
of ��� � In fact� in ��� the exponential hedging is discussed relating with
relative entropy�
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