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1. Introduction

To companies operating in an ever more globalised marketplace, fluctuating exchange
rates and volatile interest rates represent two significant sources of risk. Derivative fi-
nancial instruments such as options are increasingly used to protect against unwanted
exposures, in a way like one would buy insurance to safeguard against adversity. It has
long been understood that the dynamics of exchange rates and interest rates are linked
by fundamental economic relationships, but to date no attempt has been made to employ
a unified framework in which information about the volatilities and correlations of these
economic variables can be extracted from the prices of actively traded options.

Efficient financial markets subsume all information about an asset in its current price
and it is a standing hypothesis in models of these markets that future asset prices are not
predictable. The purpose of models for pricing by arbitrage in general and term struc-
ture models in particular is to process information available in liquid market prices in
order to manage risk. Derivative financial instruments are the vehicle for trading risk;
the corresponding hedge portfolio determines both the risk management strategy and the
arbitrage–free price for bearing the particular risk embodied in the instrument. However,
once derivatives are actively traded in a liquid market, their prices incorporate additional
market information to which the model must be calibrated. Standard fixed income deriva-
tives such as caps and swaptions are examples of such a development.

Term structure models directly specifying the arbitrage–free dynamics of market observ-
able forward LIBOR1 or swap rate processes (cf. Miltersen, Sandmann and Sondermann
(1997), Brace, Gatarek and Musiela (1997) (BGM), Jamshidian (1997), as well as Musiela
and Rutkowski (1997a)) have quickly gained an eminent role in the management of in-
terest rate risk by leading financial institutions. This is in particular due to the fact
that they provide a pricing methodology in which the market practice of pricing caps or
swaptions by Black/Scholes–like formulas can be applied in a manner consistent with the
absence of arbitrage, hence the name Market Models. Musiela and Rutkowski (1997b)
give a self–contained and up–to–date treatment of this development, as well as the nec-
essary background, and Schlögl (2002b) extends this methodology to multiple currencies,
incorporating exchange rate risk.

Closed form solutions which mirror market practice for standard derivatives of course
facilitate the calibration to market data, but this resolves the problem only superficially.
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For example, the BGM model of lognormal forward LIBOR can easily be fitted to prices
for the individual “caplet” components of a cap contract. However, a term structure
of forward rate volatilities must be backed out of cap prices for different maturities and
information on correlation between various forward rates is required as well.

When these models are implemented in financial institutions, the most pressing problem
remains the calibration to market data. In the case of the term structure of interest
rates in a single currency, the problem of calibrating the lognormal Market Models to
observed prices has inspired a large body of literature.2 However, although swaption
prices depend on correlation between forward LIBORs as well as variances, all of these
approaches take the correlation structure as exogenously given and do not attempt to
fit it to market prices. This raises the question of how much of the variance/covariance
structure for interest rates is implied when cap/floor, swaption and possibly reset cap
prices are considered jointly, and what modelling freedom remains when this information
has been taken into account. Furthermore, the abundance of relationships between the
term structure of interest rates and exchange rates means that even more information
about correlation between these variables can be implied when market prices for derivative
financial instruments are considered within a consistent framework across two or more
currencies.

Implied volatilities from prices of interest rate caps only determine norms of the (vector–
valued) forward LIBOR volatility function, while swaption volatilities give information
about inner products. Thus the variance/covariance matrix is not uniquely determined
and one of the key problems is how this gap can be filled while still ensuring a good
fit to the market prices that are observable. Brace and Womersley (2000) approach this
problem by applying recently developed techniques of semidefinite programming (SDP).3

Their idea is to find, in the space of symmetric positive semidefinite matrices, the one that
has minimal distance from a variance/covariance matrix estimated from time series data
of the underlying variables (i.e. simply compounded forward rates), while satisfying the
constraint that volatilities implied by liquid at–the–money cap and swaption prices should
be fitted perfectly. Thus prices, which are forward–looking in the sense that they embody
an aggregation of the expectations of the market participants, are the primary inputs,
while the remaining gaps are filled in a consistent manner by statistically estimated values
from historical data, arguably the best choice in the absence of further information.

In order to embed the original calibration problem in a class of SDP problems for which
algorithms are readily available, Brace and Womersley (2000) reformulate it in a way which
greatly increases the number of variables and the number of constraints in the optimisation.
Even in the single currency case, if one wishes to solve the calibration problem without
introducing needlessly restrictive assumptions on the market data, we need to formulate the
algorithm to fit the original problem, as well as identify those structural features present
in the data which allow us to reduce the dimension of the problem.

For the multicurrency case, foreign exchange and interest rate risk must be specified in
a consistent way, imposing restrictions on the volatilities of forward interest and exchange
rates when these are modelled jointly. These restrictions are made explicit in Schlögl
(2002b). They provide the link between interest rate and currency risk. This opens a way
to approach a problem often encountered by risk managers and options traders: While
currency (FX) options are very actively traded for maturities up to two years, market

2cf. Rebonato (1999a, 1999b), Pedersen (1999), and Wu (2001)
3cf. Helmberg, Rendl, Vanderbei and Wolkowicz (1996), Vandenberghe and Boyd (1996), Overton and

Wolkowicz (1997), and Wolkowicz, Saigal and Vandenberghe (2000).
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information becomes thin for longer time horizons. Interest rate options, however, are
liquid up to longer maturities, in particular in terms of the maturity of the underlying
assets. Modelling currency and interest rate risk jointly allows long–dated foreign exchange
volatilities to be extrapolated from liquid prices for short–dated currency options and the
volatilities of forward interest rates in the component currencies. This is an example of
how structural relationships between FX and interest rates can be exploited to extract
additional information relevant to risk management. Further correlation information can
be implied at the short end of the maturity spectrum, where market data is available on
FX options as well as interest rate derivatives in domestic and foreign currencies.

2. Model setup in a single currency

The basic building block of the model to be calibrated is the δ–compounded simple
forward interest rate, i.e. a market observable rate such as forward LIBOR.4 Let B(t, T )
denote the price at time t of a zero coupon bond paying one monetary unit at maturity
T . Then the forward LIBOR L(t, T ) is given by

L(t, T ) =
1

δ

(
B(t, T )

B(t, T + δ)
− 1

)
In any arbitrage–free model, L(t, T ) must clearly be a martingale under the equivalent
probability measure PT+δ associated with taking B(·, T + δ) as the numeraire.5 Further-
more, assume deterministic volatility for L(·, T ), i.e.

dL(t, T ) = L(t, T )λ(t, T )dWT+δ(t)

where WT+δ is a standard Brownian motion of dimension d under PT+δ and, given a
time horizon T ∗, λ : [0, T ] × [0, T ∗] → IRd is a deterministic, vector–valued function of
its arguments. Then L(·, T ) is a lognormal martingale under PT+δ and a caplet contract
paying

δ max(0, L(T, T )− κ)

at time T +δ, for a fixed cap level κ, is priced according to the Black/Scholes–type formula

B(0, T + δ)ET+δ[δ max(0, L(T, T )− κ)]

= δB(0, T + δ)

(
L(0, T )N (h1)− κN (h2)

)
(1)

with

h1,2 =
ln L(0,T )

κ
± 1

2
ν2(0, T )

ν(0, T )

and

(2) ν(0, T )2 =

∫ T

0

λ2(t, T )dt

where ET+δ denotes the expectation operator under PT+δ and N (·) is the cumulative
distribution function of the standard normal distribution.

4London Interbank Offer Rate. This is as opposed to models constructed from continuously compounded
spot and/or forward rates, for example following the approach of Heath, Jarrow and Morton (1992).

5For a detailed discussion of numeraire assets and their associated equivalent martingale measures, see
Geman, El Karoui and Rochet (1995). Note that any asset with a strictly positive price process is a valid
choice of numeraire.
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The construction of consistent term structure models based on lognormality assumptions
of this type has been explored extensively in the literature.6 Because they reflect market
practice both in the compounding conventions of the interest rates modelled as well as
in the pricing of caps and floors,7 these models are generically known as the Lognormal
Forward Rate Market Models. The starting point of this calibration study is the discrete
tenor version of the model, as put forward by Musiela and Rutkowski (1997a).

Given a filtered probability space (Ω, {Ft}t∈[0,T ∗],PT ∗) satisfying the usual conditions,
let {WT ∗(t)}t∈[0,T ∗] denote a d–dimensional standard Wiener process and assume that
the filtration {Ft}t∈[0,T ∗] is the usual PT ∗–augmentation of the filtration generated by
{WT ∗(t)}t∈[0,T ∗].

The model is set up on the basis of assumptions8

(BP.1) For any date T ∈ [0, T ∗], the price process of a zero coupon bond B(t, T ), t ∈ [0, T ]
is a strictly positive special martingale9 under PT ∗ .

(BP.2) For any fixed T ∈ [0, T ∗], the forward process

FB(t, T, T ∗) =
B(t, T )

B(t, T ∗)
, ∀ t ∈ [0, T ]

follows a martingale under PT ∗ .

Note that assumption (BP.2) means that PT ∗ can be interpreted as the time T ∗ forward
measure and implies that the bond price dynamics are arbitrage–free.

Consider now the discrete tenor structure T = {T0 = 0, T1, . . . , Ti, . . . , TN = T ∗}. One
may specify the dynamics of each L(·, Ti) as

dL(t, Ti) = L(t, Ti)λ(t, Ti)dWTi+1
(t)

where WTi+1
is a standard Brownian motion under PTi+1

and the probability measures are
linked via the Radon/Nikodym derivatives given in terms of the Doléans exponential as10

(3)
dPTi

dPTi+1

= ETi

(∫ ·

0

γ(u, Ti, Ti+1) · dWTi+1
(u)

)
PTi+1

–a.s.

with

(4) γ(t, Ti, Ti+1) =
δL(t, Ti)

1 + δL(t, Ti)
λ(t, Ti) ∀ t ∈ [0, Ti]

In particular, we have

(5) dWTi
(t) = dWTi+1

(t)− γ(u, Ti, Ti+1)dt

6See Miltersen, Sandmann and Sondermann (1997), Brace, Gatarek and Musiela (1997), Jamshidian
(1997), as well as Musiela and Rutkowski (1997a).

7A cap is a sequence of caplets paying δ max(0, L(Ti, Ti) − κ) at Ti + δ for Ti = iδ, i = 0, 1, . . . , n − 1
and a floor is a sequence of floorlets paying δ max(0, κ−L(Ti, Ti)) at Ti + δ for Ti = iδ, i = 0, 1, . . . , n− 1.

8Labelling matches that of Musiela and Rutkowski (1997a)
9Musiela and Rutkowski (1997a) define a special martingale as a process X which admits a decom-

position X = X0 + M + A, where X0 ∈ IR, M is a real–valued local martingale and A is a real–valued
predictable process of finite variation.

10The Doléans exponential is given by

Et

(∫ ·

0

α(u)dW (u)
)

:= exp
{∫ t

0

α(u)dW (u)− 1
2

∫ t

0

α2(u)du

}
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Thereby the discrete tenor lognormal forward LIBOR model is completely specified. Note
that in this context, one can speak equivalently of volatilities and links between forward
measures — when one is specified, the other is fixed.

Since the goal of the present study is calibration to market data, and at any one time
we only observe forward LIBORs (and forward swap rates) for a discrete tenor structure,
the discrete tenor version of the model is sufficient. The calibrated model can then be
extended to continuous tenor in various ways, either explicitly or implicitly interpolating
interest rates and volatilities.11

Besides caps and floors, the model also needs to be calibrated to another set of liquidly
traded interest rate derivatives, swaptions. The underlying financial variable of a swap-
tion is the forward swap rate. Consider an option (a payer swaption), expiring in Tm,
which if exercised has option holder enter into a swap running n δ–periods, where every
r δ–periods the option holder pays a fixed rate κ and receives the r–period floating rate
L(Tm+jr, Tm+jr, r), given in terms of the δ–compounded rates as

(1 + rδL(Tm+jr, Tm+jr, r)) =
r−1∏
k=0

(1 + δL(Tm+jr, Tm+jr+k))

Floating rates are fixed at the beginning of an r–period and paid at the end (i.e. in arrears).
This contingent claim can be approximately priced at time 0 by the Black/Scholes–type

formula12

δ
n∑

j=1

roz(j, r)B(0, Tm+j)(ω(0, m, n, r)N (h1)− κN (h2))

with

h1,2 =
ln ω(0,m,n,r)

κ
± 1

2
ζ(m, n, r)√

ζ(m,n, r)

ζ(m,n, r) =

∫ Tm

0

σ2
0(t,m, r, n)dt

=
n∑

i=1

n∑
j=1

A
(m,n)
i (0)A

(m,n)
j (0)

∫ Tm

0

λ(t, Tm+i−1)λ(t, Tm+j−1)dt(6)

The often quoted Black implied volatility β(m, n, r) of the swaption is given by

ζ(m,n, r) = β2(m, n, r)Tm

Note that correlation between forward LIBORs enters the swaption price via the scalar
product of the volatility vectors λ in (6).

3. The calibration problem

In the single currency case, the task is to find forward LIBOR volatility functions λ(·, ·)
such that the model prices for at–the–money13 caps and swaptions agree with the market

11Brace, Gatarek and Musiela (1997) propose one possible extension; Musiela and Rutkowski (1997a)
suggest another. Schlögl (2002a) makes the interpolation explicit.

12This formula has been derived by numerous authors in numerous papers, see in particular Brace, Dun
and Barton (2001). Since this formula is central to the calibration approach, its derivation is summarised
in the appendix for the reader’s convenience.

13At–the–money means that the option strike κ is equal to the current (i.e. time 0) value of the
underlying, e.g. κ = L(0, Tm) for a caplet and κ = ω(0,m, n, r) for a swaption. Note that the at–the–
money concept is somewhat more complicated for caps, since there is only one strike, but potentially a
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prices of these instruments. The market prices provide information about integrals over
scalar products of the volatility vectors λ(t, T ) (cf. (2) and (6)). Given the discrete tenor
structure T, the smallest unit of volatility information is

(7)

∫ Ti

Ti−1

λ(t, Tj)λ(t, Tk)dt N > j, k ≥ i ≥ 0

Thus one is taking a completely nonparametric approach by assuming λ(t, T ) to be stepwise
constant in calendar time t on the intervals [Ti−1, Ti]. After calibration, one may choose
any functional form for λ(·, Tj) on the calendar time intervals, as long as the values of the
integrals (7) are preserved.

Now let Si denote the set of i × i real symmetric matrices. Brace and Womersley
(2000) propose to use semidefinite programming (SDP) to calibrate the market model
to observed prices of caps and swaptions and introduce the N − 1 positive semidefinite
matrices Γ(k) ∈ SN−k for k = 1, . . . , N − 1, defined by

Γ(k) =
(
Γ

(k)
i,j

)
with

Γ
(k)
i,j =

1

δ

∫ Tk

Tk−1

λ(t, Tj+k−1)λ(t, Ti+k−1)dt, i, j = 1, . . . , N − k

Note that Γ(1) ∈ SN−1, . . . , Γ
(N−1) ∈ S1.

The variable of the SDP optimisation is the 1
2
N(N − 1) × 1

2
N(N − 1) block–diagonal

positive semidefinite matrix

Γ =


Γ(1) · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · Γ(k) · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · Γ(N−1)


For later use, define g := 1

2
N(N − 1).

The goal of the approach of Brace and Womersley (2000) is to find a Γ which is as
close as possible to a Γ estimated from historical data (under some metric), subject to the
constraint that Γ matches implied at–the–money volatilities observed from market prices
exactly. Rewriting (6) in terms of Γ yields

ζ(m,n, r) =
n∑

i=1

n∑
j=1

A
(m,n)
i (0)A

(m,n)
j (0)

m∑
k=1

δΓ
(k)
m+i−1,m+j−1

⇔ β2(m,n, r) =
n∑

i=1

n∑
j=1

m∑
k=1

1

m
A

(m,n)
i (0)A

(m,n)
j (0)Γ

(k)
m+i−1,m+j−1(8)

Formulating the calibration problem in this manner addresses the key problem that the
implied volatility structure and most of all the correlation structure of forward LIBORs is
underdetermined by the market prices of actively traded interest rate derivatives. Out of
all possible volatility structures which support the option prices observed in the market, the

different at–the–money level for each caplet. The implied volatility “smile” of different volatilities for
different strikes contradicts the Black/Scholes paradigm of the present model and is thus left to further
research.
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optimisation selects the one closest to the historical volatilities. Thus the model is exactly
fitted to the “market’s view” of interest rate volatilities, and the remaining gaps in the
volatility structure are filled with information gleaned from time series data. Furthermore,
by simultaneously fitting the entire volatility structure, the SDP approach extracts implied
correlations as well as single rate volatilities, as opposed to other methods proposed in the
literature, which take the correlations between forward LIBORs as given14.

In order to employ readily available SDP algorithms, Brace and Womersley (2000) find
it necessary to reformulate the problem. As discussed in appendix B, this results in a very
inefficient implementation and it is thus desirable to develop an algorithm better suited to
the problem. In addition, two further useful extensions to the semidefinite programming
approach suggest themselves, both also requiring adaptation of the existing algorithms.
Firstly, with a view to statistical parsimony and tractability, it may be desirable to limit
the rank of the matrix Γ. Secondly, by allowing for a bid/ask spread in observed market
prices, one may achieve a closer fit to the target matrix Γ and/or a smoother evolution of
Γ in calibrations carried out daily.15 This means the constraints (8) become inequalities,
a problem which is not addressed in the existing SDP literature.

4. Construction of the target matrix Γ

Under the lognormal Market Model paradigm, the forward LIBOR volatilities λ(t, T )
may depend on calendar time t and maturity T deterministically. However, when using
(backward looking) empirical data to estimate the target volatility matrix Γ for (forward
looking) model calibration, it is simply consistent to assume time homogeneity for λ, i.e.
λ(t, T ) = λ(0, T − t). In this case we have

δΓ
(1)
ij =

∫ δ

0

λ(s, Ti)λ(s, Tj)ds =

∫ (k+1)δ

kδ

λ(s, Ti−k)λ(s, Tj−k)ds = δΓ
(1+k)
i−k,j−k ∀ i, j > k

It is therefore sufficient to estimate Γ
(1)
ij for all i, j.

Typically, the variance/covariance matrix (cov[ln L(t, Ti), ln(t, Tj)])ij is estimated from
time series data on fixed time–to–maturity forward rates. The model, on the other hand,
is based on fixed maturity forward rates. By the non-parametric volatility specification,
λ(s, Ti) is assumed to be constant on [0, δ), i.e.

δΓ
(1)
ij =

∫ δ

0

λ(s, Ti)λ(s, Tj)ds

and thus in the time homogeneous case,

λ(s, Ti) = λ(0, Ti − s) = λ(s, Ti−1 + s) on s ∈ (0, δ)

resulting in

δΓ
(1)
ij =

∫ δ

0

λ(s, Ti−1 + s)λ(s, Tj−1 + s)ds(9)

≈ cov[ln L(s, Ti−1 + s), ln L(s, Tj−1 + s)](10)

14e.g. Rebonato (1999a), Pedersen (1999) and Wu (2001)
15Note that the calibration method discussed here — with the exception of the target matrix Γ —

works on cross–sectional data only, i.e. the market prices for any one given day. The market practice of
recalibrating the model whenever prices change is implicitly assumed. However, a method which yields a
smoother evolution of the model calibration over time is desirable.
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e.g. the estimator for δΓ
(1)
12 is approximately16 given by the empirical covariance between

the logarithms of the spot δ–LIBOR L(s, T0 + s) and the one δ–period forward δ–LIBOR
L(s, T1 + s), where the covariance is normalised to one δ–period.

To calculate cov[ln L(s, Ti−1 + s), ln L(s, Tj−1 + s)], consider the following example. Let
there be daily data available for n trading days and let there be m trading days in a year
and m/4 trading days in a δ–period. For this data, calculate the empirical variance of each
logarithmic rate, as well as the variance of all pairwise sums of logarithmic rates. Scale
these for one δ–period by multiplying by m/4. The desired covariances are then given by

cov[ln L(s, Ti−1 + s), ln L(s, Tj−1 + s)] =
1

2

(
var[ln L(s, Ti−1 + s) + ln L(s, Tj−1 + s)]

−var[ln L(s, Ti−1 + s)]− var[ln L(s, Tj−1 + s)]

)
If the assumption of piecewise constant λ(·, ·) is relaxed, for example by allowing exponen-
tial decay of λ(s, T ) in (T−s), the relationship between (9) and (10) must be appropriately
adjusted. However, lacking further information on the form of λ(s, T ) on s ∈ [0, δ), one
can reasonably proceed under assumption of piecewise constant volatilities.

5. Reducing the dimension of the problem

5.1. Assumptions of time homogeneity without loss of generality for a typical
data set. In a typical data set, we have caps of length 1, 2, 3, 4, 5, 7, and 10 years.
Furthermore, we have a set of options on swaps of length 1, 2, 3, 4, 5, 7, and 10 years,
where the option maturities are 3 months, 6 months, or 1, 2, 3, 4, or 5 years (i.e. 7 × 7
different at–the–money swaptions).17 The required time horizon is thus 15 years; this time
period is spanned by 59 quarterly forward LIBORs, yielding a (1

2
· 59 · 60) × (1

2
· 59 · 60)

matrix Γ. It is therefore necessary to reduce the size of the matrix Γ in order to make the
problem more tractable.

In the present example, the longest option maturity is 10 years. Thus the blocks Γ(k)

making up the block diagonal matrix Γ are only required out to k ≤ 40, reducing the size
of Γ to N ′ ×N ′ with N ′ = 1

2
(59 · 60− 19 · 20).

The next step is to assume time homogeneity of volatilities where there is no information
in the data. Note that beyond the first year, option maturities increase in steps of one year

or more. Thus within each maturity step we can assume time homogeneity Γ
(k+1)
ij = Γ

(k)
ij .

This is without loss of generality in the sense that any desired time inhomogeneity (for
example to smooth volatilities in calendar time) consistent with the data can be introduced
after the fit. In our example, the thus reduced matrix Γ̃, now consisting of only nine blocks

16The fact that L(s, T ) has a level–dependent drift under all measures except for its “native” forward
measure PT+δ means that although quadratic variation and covariation are invariant under measure
transforms, variance and covariance are not. Freezing the level–dependent coefficients at their initial
values makes the drift deterministic and results in the approximation (9) ≈ (10).

17In a more extensive data set, one might have caps of length 1, 2, 3, 4, 5, 7, 10, and 15 years, and
swaptions with maturities 3, 6, 9, 12, 18 months and 2, 3, 4, 5, 7, 10, 15 years, on swaps with lengths 6
months, 1, 2, 3, 4, 5, 7, 10 and 15 years.
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Γ̃(h), is given by

(11) Γ
(k)
i−k+1,j−k+1 =


Γ̃

(k)
i−k+1,j−k+1 k = 1, 2, 3

Γ̃
int((k−1)/4+3)
i−k+1,j−k+1 3 < k ≤ 20

Γ̃
(8)
i−k+1,j−k+1 20 < k ≤ 28

Γ̃
(9)
i−k+1,j−k+1 28 < k ≤ 40

with int(x) denoting the integer part of x. Γ̃ is thus an N ′′ × N ′′ block diagonal matrix,
with

N ′′ =
9∑

k=1

nk

and block sizes

k 1 2 3 4 5 6 7 8 9
nk 59 58 57 55 51 47 43 39 31

The constraints can be written in terms of Γ̃ by substitution using (11).
A further reduction in the number of variables can be achieved by noting that the

longer–dated forward LIBORs do not enter into options of shorter maturities, e.g. the
12–year forward LIBOR does not enter into any of the cap contracts in our example, nor
into swaptions with a maturity less than three years. Thus we can make the additional
homogeneity assumptions

(12) Γ̃
(k)
i−k+1,j−k+1 = Γ̃

(1)
i−k+1,j−k+1

for

k ≤ 2 3 4 5 6 7
i, j ≥ 41 42 44 48 52 56

Note that i, j ≥ c means i ≥ c and j ≥ c, thus this is not a straightforward “pruning” of

each Γ. For i ≥ c and j < c, time homogeneity can only be assumed for Γ̃
(·)
i−k+1,i−k+1 and

the correlation coefficient, i.e. we could set

(13) Γ̃
(k)
i−k+1,j−k+1 =

Γ̃
(1)
i−k+1,j−k+1√
Γ̃

(1)
j−k+1,j−k+1

√
Γ̃

(k)
j−k+1,j−k+1

Using (12) and (13), we can in fact prune each Γ̃(k) by removing the terms involving longer–
dated forward LIBORs, at the cost of making the constraints non-linear, due to (13). The
block sizes then become

k 1 2 3 4 5 6 7 8 9
nk 59 39 39 39 39 39 39 39 31

5.2. Other homogeneity assumptions. While the homogeneity assumptions introduced
in the previous section are constructed so that they cannot be violated by any given data
set and can be relaxed post–fit without affecting the feasibility of the solution, some ad-
ditional homogeneity assumptions which do impose restrictions on the solution are worth
considering.

(1) As discussed in section 5.3, the assumption of complete time–homogeneity of Γ
(which would collapse Γ to a single block Γ(1)) is incompatible with cap price data on

some days. However, assuming homogeneity Γ̃
(k)
i−k+1,j−k+1 = Γ̃

(2)
i−k+1,j−k+1 for k ≥ 2

is leaves sufficient freedom to always fit observed cap prices. Since the swaption
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constraints do not involve any Γ̃(k) beyond k = 7 (maturity 5 years), one can assume
time homogeneity (Γ̃(k+1) = Γ̃(k)) for k ≥ 7, and still be sure to remain compatible
with the data. Since the underlying sets of forward LIBORs for swaptions overlap
in a nontrivial manner, one does not obtain any straightforward rule to determine a
“minimal” k∗all < 7, such that one could assume time homogeneity for all k ≥ k∗all.
One could, however, initially assume time homogeneity for k ≥ k∗ = k∗caps and
relax this assumption by incrementing k∗ until a feasible solution is found.

The potential trade–off is that assuming time homogeneity for k ≥ k∗ for some
k∗ may result in extreme values for the blocks Γ̃(k) for k < k∗; certainly this is to
be expected when setting k∗ = 2 and fitting only cap data. From this perspective,
making assumptions of this type on the volatility structure does not seem promising.

(2) Again departing from linear constraints, one could assume that time inhomogeneity
is restricted to volatility levels and that the correlation structure is time–invariant.
In this case, we fit a positive–semidefinite, symmetric 59× 59 correlation matrix ρ

and volatility levels v
(k)
j . The optimisation problem then reads

5.1. Problem. Find

ρ ∈ S59, v
(k)
j for 1 ≤ i− k + 1 ≤ 60− k, 1 ≤ k ≤ 40

to minimise

‖ρ− ρ̄‖
subject to

ρ % 0, v
(k)
j ≥ 0

and the cap and swaption price constraints given by substituting

Γ̃
(k)
i−k+1,j−k+1 = ρijv

(k)
i v

(k)
j

The number of variables v
(k)
j can be reduced by the time homogeneity assump-

tions discussed above.

5.3. Checking cap data for violations of time homogeneity. To verify whether
market prices for cap contracts on a given day are compatible with the assumption of time
homogeneous volatilities, we decompose the value of a cap contract into two parts. The
first part is made up of those caplets which are also part of a cap contract of shorter length.
We then value the remaining caplets using all those “units of volatility information” (cf.
(7)) which are given by the assumption of time homogeneity in terms of volatilities implied
by shorter cap contracts. All other entries of Γ are ignored (implicitly setting them to zero).
If the two parts add up to less than the quoted cap price, we know that those additional
entries give the freedom to fit a time homogeneous Γ to the cap price. If they add up to
more than the cap price, that price contradicts the assumption of time homogeneity.

Let Ci denote the price of the I-th cap contract and `i the length of this contract in
number of LIBOR accrual periods δ. Typically, in market data we have

i 1 2 3 4 5 6 7
`i 3 7 11 15 19 27 39

These are “spot” cap contracts, with the first caplet written on L(T1, T1), maturing at
the beginning and paying at the end of the accrual period [T1, T2]. Typically [T1, T2] =
[0.25, 0.5]. Thus C1 is a one–year cap with payments in 6, 9 and 12 months.
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The caplets in Ci are a subset of the caplets in Ci+1, so we start by stripping out the
remaining caplets by calculating

Ri+1 = Ci+1 − Ci

The forward LIBORs underlying the caplets in Ri+1 are L(·, Tj), `i < j ≤ `i+1, and the
corresponding caplet volatilities are determined by

ν2(0, Tj) =δ

j∑
k=1

Γ
(k)
j+1−k,j+1−k

and under time homogeneity Γ collapses to the first block Γ(1), so

=δ

j∑
k=1

Γ
(1)
j+1−k,j+1−k

The verification algorithm iterates forward over all cap contracts, beginning with the short-
est. For the shortest cap, no check is necessary, as a time homogeneous Γ can always be
fit to at least one cap contract. For the second contract, the implied volatilities ν2(0, Tj)
for the caplets remaining in R2 are set to

{ν2(0, Tj)}4≤j≤7 =

{
δ

j∑
k=5

Γ
(1)
j+1−k,j+1−k

}
4≤j≤7

=

{
δ

j∑
k=1

Γ
(1)
j+1−k,j+1−k

}
0≤j≤3

where the right hand side of the above equation is the set of implied volatilities for the
caplets making up the first contract, and therefore given. For the (i + 1)-th contract, we
then have

{ν2(0, Tj)}`i+1≤j≤`i+1
=

δ

j∑
k=`i+1−`i+1

Γ
(1)
j+1−k,j+1−k


`i+1≤j≤`i+1

=

{
δ

j∑
k=1

Γ
(1)
j+1−k,j+1−k

}
2`i−`i+1+1≤j≤`i

=

{
δ

j∑
k=1

Γ
(1)
j+1−k,j+1−k

}
1≤j≤`i

−

{
δ

j∑
k=1

Γ
(1)
j+1−k,j+1−k

}
1≤j≤2`i−`i+1

where the right hand side is again given by a set of implied volatilities for the caplets
making up preceding cap contracts.

6. The calibration problem for multiple currencies

As before, consider a tenor structure T = {T0 = 0, T1, . . . , Ti, . . . , TN = T ∗}. In a
multicurrency setting, the objects of interest are the forward LIBORs Lj(t, Ti) for each
maturity Ti ∈ T and each currency j ∈ {0, . . . , c}, and the forward exchange rates

(14) Xjh(t, Ti) =
Bh(t, Ti)Xjh(t)

Bj(t, Ti)
Ti ∈ T, j, h ∈ {0, . . . , c}
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where Bh(t, Ti) denotes the currency h zero coupon bond maturing in Ti and Xjh(t) is the
spot exchange rate in terms of units of currency j per unit of currency h. We have

Xjh(t) =
1

Xhj(t)

Let σjh(t, Ti) denote the volatility of Xjh(t, Ti), i.e.

dXjh(t, Ti) = Xjh(t, Ti)σjh(t, Ti)dW
(j)
Ti

(t)

since by (14) Xjh(·, Ti) is a martingale under P
(j)
Ti

, the equivalent measure associated with

taking Bj(·, Ti) as the numeraire. W
(j)
Ti

denotes a standard Brownian motion under this
measure.

Note that σjh(t, Ti) is not necessarily a deterministic function of its arguments, i.e.

Xjh(t, Ti) is not necessarily lognormal under P
(j)
Ti

.
To extend the lognormal Market Model to multiple currencies, various combinations of

lognormality assumptions are possible. In order to be consistent with no arbitrage, the
forward LIBOR and forward exchange rate volatilities must satisfy the relationship18

(15) σjh(t, Ti−1) = γh(t, Ti−1, Ti)− γj(t, Ti−1, Ti) + σjh(t, Ti)

where γ is given by (4), appropriately interpreted for each currency.
Given any three volatilities in (15), the fourth is fixed. Thus (15) imposes restrictions on

which variables can simultaneously be chosen to be lognormal.For example, if the λh(·, Ti)
and λj(·, Ti) are deterministic for all Ti ∈ T, only one σjh(·, Ti) can be chosen to be
deterministic as well, so only one Xjh(·, Ti) will be lognormal under its native forward
measure.19 More importantly, it is sufficient to calibrate three out of the four volatility
functions in (15).

Typically, the most liquid price data will be available for currency options of shorter
maturities, out to one or two years, For longer maturities, there is little reliable price data
for these instruments. However, swaptions with longer maturities are actively traded. This
suggests calibrating the following volatilities

• forward LIBOR volatilities for all maturities for a “base” currency, say currency 0,
i.e. λ0(t, Ti) ∀ i < N

• forward exchange rate volatilities out to some near time horizon Tm for all currency
pairs (0, h), h > 1, i.e. σ0h(t, Ti), i ≤ m (all other FX volatilities σjh(t, Ti), j > 0
are then fixed via cross–rate relationships)

• forward LIBOR volatilities for all currencies h > 0 beyond the FX time horizon
Tm, i.e. λh(t, Ti) ∀ m < i < N , h > 1.

It is convenient to assume these volatilities to be deterministic.
The matrix Γ must be expanded to accommodate the additional volatilities. As before,

Γ is a symmetric, positive definite block diagonal matrix with k = 1, . . . , N−1 blocks Γ(k).

18For the construction of the multicurrency Market Model and the derivation of its no arbitrage condi-
tions, see Schlögl (2002b).

19This implies that strictly speaking only for one maturity will a currency option be priced by a
Black/Scholes formula.
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To construct Γ(k), define θ(i,k)(t) by

θ(i,k)(t) =



λ0(t, Ti+k−1) i = 1, . . . , N − k

λh(t, Tı̂+k−1)

 h = int((i− (N − k))/(N −m)) + 1
ı̂ = (i− (N − k)) mod (N −m)
i = N − k + 1, . . . , N − k + c(N −m)

σ0h(t, Tı̂+k−1)

 h = int((i− (N − k + c(N −m)))/m) + 1
ı̂ = (i− (N − k + c(N −m))) mod m
i = N − k + c(N −m) + 1, . . . , (c + 1)N − k

Then we can write

δΓ
(k)
i,j =

∫ Tk

Tk−1

θ(i,k)(t)θ(j,k)(t)dt i, j = 1, . . . , (c + 1)N − k

As in the single currency case, each market price for an actively traded derivative (caplet,
swaption and currency option) leads to a constraint in the SDP. For all caplets and swap-
tions in the base currency, as well as for all caplets and swaptions maturing after Tm in all
other currencies, the constraints can be written in the form (8). Furthermore, as a result
of the deterministic volatility assumption, currency options maturing at or before Tm can
be priced by the Black/Scholes formula

B0(0, Ti)(X0h(0, Ti)N (φ1)−KN (φ2))

with

φ1,2 =
ln(X0h(0, Ti)/K)± ν2

0h(0, Ti)

ν0h(0, Ti)

and

(16) ν2
0h(0, Ti) =

∫ Ti

0

σ2
0h(s, Ti)ds =

i∑
k=1

∫ Tk

Tk−1

σ2
0h(s, Ti)ds

i.e. there is an additional set of constraints (16).
Cross–currency options bear information about correlations between forward exchange

rates via

σjh(t, Ti) = σ0h(t, Ti)− σ0j(t, Ti)

⇒ ν2
jh(0, Ti) =

∫ Ti

0

(σ0h(t, Ti)− σ0j(t, Ti))
2dt

Further correlation information can be extracted if market prices are available for deriva-
tives which do not have Black/Scholes–type valuation formulas under the given set of
lognormality assumptions, for example caps involving forward LIBORs Lj(t, Ti), i ≤ m,
j > 0.
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Appendix A. Derivation of the approximate swaption pricing formula

The cashflow of the forward swap underlying the payer swaption presented in section 2
can be priced at time t ≤ Tm as

n/r−1∑
j=0

B(t, Tm+j(r+1))ETm+j(r+1)
[δr(L(Tm+jr, Tm+jr, r)− κ)|Ft]

=

n/r−1∑
j=0

B(t, Tm+j(r+1))

(
ETm+j(r+1)

[
B(Tm+jr, Tm+jr)

B(Tm+jr, Tm+j(r+1))
− 1|Ft

]
− rδκ

)

=

n/r−1∑
j=0

(B(t, Tm+jr)−B(t, Tm+j(r+1))(1 + rδκ)

which can be written as

=δ

n∑
j=1

B(t, Tm+j)(L(t, Tm+j−1)− roz(j, r)κ)

where roz(·, ·) is Brace’s r or zero function20

roz(j, r) =

{
r if j mod r = 0,
0 otherwise.

The corresponding forward swap rate ω(t,m, r, n) is defined as the fixed rate κ8, which
would make the value of the swap contract zero, i.e.

(17) ω(t,m, r, n) =

∑n
j=1 B(t, Tm+j)L(t, Tm+j−1)∑n

j=1 B(t, Tm+j)roz(j, r)

A payer swaption gives the option holder the right to enter into a swap contract at time
Tm, with a fixed rate of κ. The payoff of the payer swaption is thus given by

(18) max

(
0, δ

n∑
j=1

roz(j, r)B(Tm, Tm+j)[ω(Tm, m, r, n)− κ]

)

and for a receiver swaption (where the party in question receives fixed rate payments and
pays the floating rate) by

(19) max

(
0, δ

n∑
j=1

roz(j, r)B(Tm, Tm+j)[κ− ω(Tm, m, r, n)]

)

Note from (17) that ω(t,m, r, n) is a martingale under the equivalent measure associated
with taking the zero coupon bond portfolio

∑n
j=1 B(t, Tm+j)roz(j, r) as the numeraire.

Thus assuming deterministic volatility for ω(·, m, r, n) would allow the swaption to be
priced by a Black/Scholes–like formula, the so-called Black swaption formula. In the
current model framework, this is strictly speaking not compatible with the absence of

20cf. Brace, Dun and Barton (2001)
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arbitrage. By Ito’s lemma, the volatility of the forward swap rate ω(·, m, r, n) is determined
by the forward LIBOR volatilities by21

σ(t,m, r, n) =
n∑

j=1

A
(m,n)
j (t)λ(t, Tm+j−1)

with

A
(m,n)
j (t) = w

(m,n)
j (t) + µ(t, Tm+j−1)

n∑
l=j

(roz(l, r)u
(m,n)
l (t)− w

(m,n)
l (t))

and

w
(m,n)
j (t) =

B(t, Tm+j)L(t, Tm+j−1)∑n
h=1 B(t, Tm+h)L(t, Tm+h−1)

µ(t, Tm+j−1) =
δL(t, Tm+j−1)

1 + δL(t, Tm+j−1)

u
(m,n)
j (t) =

B(t, Tm+j)∑n
h=1 roz(h, r)B(t, Tm+h)

Thus forward swap rate volatility is not deterministic, but depends on levels of bond

prices and LIBORs. However, one can argue22 that the coefficients w
(m,n)
j (t), µ(t, Tm+j−1)

and u
(m,n)
j (t) vary comparatively little in t, and one is thus justified in “freezing” these

coefficients at their time 0 values.23 The approximate forward swap rate volatility

σ0(t,m, r, n) =
n∑

j=1

A
(m,n)
j (0)λ(t, Tm+j−1)

is a linear combination of deterministic volatilities λ(·, ·) of forward LIBORs, and the Black
swaption formula applies. For the time 0 value of the payoff (18) this yields

δ
n∑

j=1

roz(j, r)B(0, Tm+j)(ω(0, m, n, r)N (h1)− κN (h2))

with

h1,2 =
ln ω(0,m,n,r)

κ
± 1

2
ζ(m, n, r)√

ζ(m,n, r)

ζ(m,n, r) =

∫ Tm

0

σ2
0(t,m, r, n)dt

=
n∑

i=1

n∑
j=1

A
(m,n)
i (0)A

(m,n)
j (0)

∫ Tm

0

λ(t, Tm+i−1)λ(t, Tm+j−1)dt

21This volatility has been derived by numerous authors in numerous papers. The notation used here is
very close to Brace and Womersley (2000). Note that A

(m,n)
j (t) depends on r. However, since all swaptions

used for calibration usually will have the same r, it is omitted in the notation.
22This argument was first put forward by Brace, Gatarek and Musiela (1997), developed further by

Brace, Dun and Barton (2001) and formalised in Brace and Womersley (2000).
23Dun, Schlögl and Barton (2001) show that this approximation is applicable not only to pricing, but

to hedging as well.
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Appendix B. The problem formulation of Brace/Womersley

The constraints (8) can be rewritten as the Frobenius product24

Ψ(m,n) • Γ = β2(m,n, r)

where the g × g constraint matrices Ψ(m,n) are formed from the A
(m,n)
i to match (8).

As discussed by Brace and Womersley (2000), there are some limits on the choice of
metric measuring the closeness of Γ and the historical volatility structure Γ, due to the
necessity of maintaining a linear objective function. Thus the Frobenius norm ‖Γ−Γ‖2

F =
(Γ − Γ) • (Γ − Γ) is not a tractable objective function. They propose instead to use the
2–norm,

(20) ‖Γ− Γ‖2 = max
i=1,...,n

|Λi(Γ− Γ)|

where Λi(Γ−Γ) is the i–th eigenvalue of the matrix Γ−Γ. Then the calibration problem can
be formulated to minimise (20) subject to the constraints (8) and Γ positive semidefinite
(denoted by Γ % 0). This is equivalent to

B.1. Problem. The single currency calibration problem: Find the real symmetric
matrix Γ and an η ∈ IR, to minimise η, subject to

ηI − (Γ− Γ) % 0

ηI + (Γ− Γ) % 0

η ≥ 0 , Γ % 0

and a constraint (8) for each swaption or caplet market price to which the model is to be
calibrated. I denotes the identity matrix of appropriate size.

There are a variety of freeware implementations of SDP algorithms available.25 However,
existing algorithms for constrained SDPs26 only implement problems of the type

B.2. Problem. Generic SDP problem:

Find X ∈ Sn, x ∈ IRn

to minimise C •X + c>x

subject to Ak •X = bk k = 1, . . . ,ms

a>j x = βj j = 1, . . . ,ml

X % 0, x ≥ 0

24The Frobenius inner product is defined as

X • Y = trace(X>Y ) =
n∑

i=1

n∑
j=1

XijYij X, Y ∈ IRn×n

25For a list of links, see . . .
26see for example SDPA, . . .
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To bring (B.1) in line with this implementation, we define

X =

 Γ 0 0
0 ηI − (Γ− Γ) 0
0 0 ηI + (Γ− Γ)

(21)

C =

 0 0 0
0 I 0
0 0 I


c = 0, ml = 0

i.e. no vectors x. We expand each constraint (8) to

A(k) =

 Ψ(m,n) 0 0
0 0 0
0 0 0

 bk = β2(m, n, r)

Note that the SDP algorithm will seek any X ∈ Sn that satisfies the constraints. In order
to ensure that X can in fact be represented in terms of Γ, Γ and η as in (21), additional
constraints are required. X consists of 3 · 1

2
g(g + 1) unknowns, the entries in the three

symmetric blocks on the diagonal of X — note that the entries in the off–diagonal blocks
of X are irrelevant (though set to zero in (21)), since they figure neither in the objective
function nor in the constraints. Of the these unknowns, 1

2
g(g + 1) are free (Γ), plus one

(η). Thus we need 2 · 1
2
g(g+1)−1 additional constraints. 1

2
g(g+1) of these can be written

as
B(i,j) •X = dij

where the B(i,j) are matrices and the dij are scalars. They are given by

B(i,j) :zero everywhere except for 2 at the positions corresponding to the posi-
tions of Γij, Γji in X, 1 at the positions corresponding to (ηI−(Γ−Γ))ij,
(ηI−(Γ−Γ))ji and −1 at the positions corresponding to (ηI +(Γ−Γ))ij,
(ηI + (Γ− Γ))ji.

dij =4Γij

Thus we are using the identity

4Γij + 2(ηI − (Γ− Γ))ij − 2(ηI + (Γ− Γ))ij
!
= 4Γij

A further 1
2
(g − 1)g constraints27 are given by

(ηI − (Γ− Γ))ij + (ηI + (Γ− Γ))ij = 0 ∀ i 6= j

which can be written as
F (i,j) •X = 0 ∀ i 6= j

with F (i,j) zero everywhere except for 1 at the positions corresponding to (ηI − (Γ− Γ))ij

and (ηI + (Γ− Γ))ij in X. Lastly, we have

(ηI − (Γ− Γ))ii + (ηI + (Γ− Γ))ii = 2η

which yields the g − 1 constraints

D(i) •X = 0 ∀ 1 < i ≤ g

27As above, the number of unknowns and constraints is reduced by the fact that X is known to be
symmetric.
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with D(i) zero everywhere except for 1 at the position corresponding to (ηI − (Γ − Γ))11

and −1 at the position corresponding to (ηI + (Γ− Γ))ii in X.
Thus the calibration problem (B.1) has been rewritten in terms of (B.2). Unfortunately,

this results in a very inefficient implementation and it would thus be desirable to develop
an algorithm which solves the SDP (B.1) directly.
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