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Abstract 
This paper extends Ramsey-Cass-Koopmans growth model, including energy consumption 

and proxies for environmental quality. The analytic solution of the extension’s maximization 

problem had shown through two methodologies (algebraic and by a computational simulation) 

that emissions are positively related with capital accumulation (as well as income). 

Corroborating the empirical studies found on the literature. It also has been defined the 

conditions for a EKC (Environmental Kuznets Curve) situation (named here as the green 

golden rule). 
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O presente trabalho estende o modelo de crescimento econômico de Ramsey-Cass-Koopmans, 

incluindo o consumo de energia e uma proxy para qualidade ambiental. Usando duas 
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também definidas as condições para a existência de uma EKC (Environmental Kuznets 
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1.  INTRODUCTION 
 

Energy is a fundamental resource in the economy.  Any activity requires energy in 

some form. Consequently, economic growth is directly related to energy consumption and 

affected by its availability. On the other hand, the use of energy generates negative impacts. 

Externality caused by pollutants resulting from combustion processes (specially in case of 

fossil fuels), the possibility of exhaustion and, as a consequence, the risk of energy shortages 

in the future are just few examples. 

The importance of the relationship between energy consumption, environmental 

quality and economic growth is reflected by its wide discussion within and outside 

Academics. The Environmental Kuznets Curve (EKC) is one special case among several 

interesting theoretical developments. 

EKC is a model largely explored in recent years. Theoretical and empirical studies 

have shown that the relationship between income and the use of natural resources – or the 

environmental quality – may be described by an inverted U-shaped relationship (SHAFIK & 

BANDYOPHADYAY, 1992; GROSSMAN & KRUEGER, 1993; WORLD BANK, 1992, 

and SELDEN & SONG, 1994). According to stylized facts, the inverted “U-shaped” 

relationship results from interactions of several effects.  The most important are: consumer 

demand for environmental quality, des-industrialization and development of new and more 

efficient technologies. 



 

 

 

 
2  

However, there are situations where EKC does not seem to occur.  The energy 

consumption is one example in which EKC does not show perspective of a short-run turning-

point (RICHMOND & KAUFFMAN, 2006). 

Problems related to property rights, market failures, politics and polices not related to 

people’s will, geographical and climate barriers and even forces out of human control seems 

to significantly affect the relationship between environmental quality and income (SHAFIK & 

BANYOPHADYAY, 1992; SHAFIK, 1994; SELDEN & SONG, 1994). 

Besides these theoretical limitations, EKC has received many methodological 

criticisms.  Unfortunately, many models are built on weak econometrics.  Problems such as 

spurious correlation, incomplete models, omitted variables and lack of cointegration tests are 

commonly found on EKC studies (PERMAN & STERN, 2003; STERN, 2004).  Models use 

static comparative approach, estimated on a reduced form and income is used as exogenous 

variable. The use of a structured dynamic model that incorporates the general equilibrium 

approach for the economy can generate a better, stronger and complete analysis. 

One interesting model is the Ramsey-Cass-Koopmans growth model. It is a dynamic 

model, well explored and applied in several situations. It is a neoclassical growth model based 

upon the consumer’s intergenerational utility maximization (BARRO & SALA-I-MARTIN, 

2004; ROMER, 1996). Its usual application is the evaluation of macroeconomic polices but it 

is also useful to estimate the effect and interaction between macroeconomics with 

microeconomics issues (such as the environmental quality). 

The main objective of this paper is to theoretically develop an extension for the 

neoclassical Ramsey-Cass-Koopmans dynamic model including the relationship between 

economic growth, energy consumption and environmental quality. As a secondary objective, 

it simulates a case situation using the model parameters traditionally found on the literature by 

the method of analytic solution.  
 

2. THE MODEL 
 

Traditionally, the Ramsey-Cass-Koopmans model problem is represented by the 

maximization of a (infinitely lived) intergenerational household’s utility function represented 

by (eq. 1) (BARRO & SALA-I-MARTIN, 2004; ROMER, 1996): 

 

( ) ( )
0

max expU u t n t dtρ
∞

= ⋅ − − ⋅  ∫  (eq. 1) 

 

Where:  

u(t) is the utility per person in the period of time t;  

n is the rate of population growth; and,  

ρ  is the rate of intertemporal preference ( )0ρ > . 

 

In this model, instant utility function has two components: the consumption per 

person and the environmental quality
1
 (STOKEY, 1998).  The utility function is assumed to 

be perfect separable between consumption and environmental quality. The utility function is 

represented by (eq. 2): 

 

( ) ( ) ( )ˆ ˆ,t t t t tu c X v c h X= −  (eq. 2) 

 

Where:  

                                                 
1   In this study, this variable is represented by the net flow of CO2. 
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t̂c  is the intensive form
2
 per capita consumption in period t;  

X(t) is the net flow of CO2 in period of time t; 

v is increasing and strictly concave ( )( )0limc v c→
′ = ∞ ; and, 

h is increasing and strictly convex ( )( )0lim 0X h X→
′ = .  

 

Assuming Constant Intertemporal Elasticity of Substitution (CIES) on consumption 

and externality stock return to utility (BARRO & SALA-I-MARTIN, 2004), (eq. 2) is re-

written as: 

 

( ) ( )
1ˆ 1

ˆ ,
1

t
t t t t

c B
u c X X

σ
γ

σ γ

− −
= −

−
 (eq. 3) 

 

Where:   

0;  0 1 and 1.B σ γ> < < >  

 

Assuming that i) a Cobb-Douglas production function with a labor augmenting 

technology
3
;  ii) split of physical capital in intensive and non-intensive on energy use 

(RASMUSSEN, 2001); and, iii) perfect substitutability and additive separable, the production 

function can be written as: 

 

( )
^ ^

ˆ
t ttf k ke kne

α
 

= +  
 (eq. 4) 

 

Where:  

k̂  is the intensive form (per capita) capital stock;  

k̂e  represents (per capita) stock of capital, intensive in energy;  

k̂ne  is (per capita) stock of capital, non-intensive on energy; and, 
ˆ 0kne e∂ ∂ =  and ˆ 0ke e∂ ∂ >  (e represents per capita energy consumption). 

 

In each period t, the net flow of externality is assumed to be function of the flow of 

pollutant ( )tF  minus a natural environmental recovery rate 
4
, as follows: 

 

( )1t tX Fη= − ⋅
i

 (eq. 5) 

 

STERN (2004) proposes that Ft  be function of the product level ( )tY , the energy 

intensity ( )tINT , the rate of pollutants generated by unit of energy consumed for each source 

of energy ( )jtg , and the share of J sources on the energy matrix ( )/j jt tpart e E= . In this 

                                                 
2 ˆ xt

t tc c e= ⋅ . 
3  This is the only way a steady-situation is guaranteed (BARRO & SALA-I-MARTIN, 2004). 

 
4   This is similar to KELLY (2003). 
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study, however, the product t tY INT⋅  has been substituted by the capital stock intensive on 

energy use ( tKE ). Thus, the flow of pollutants is represented by (eq. 6): 

 

( )
1

J

t t j jt

j

F KE tg part
=

= ⋅ ⋅∑  (eq. 6) 

 

From (eq. 5) and (eq. 6), the rate of change in the stock of CO2 is defined by: 

 

( ) ( )
1

1
J

t t j jt

j

X KE tg partη
=

= − ⋅ ⋅ ⋅∑
i

 (eq. 7) 

 

The constraint on household’s budget is the same as in the traditional Ramsey-

Koopmans model. But, assuming that the physical capital is split into two types (eq. 4) and 

incorporating the competitive firms hypothesis, the flow of capital is given by: 

 

^ ^ ^ ^
ˆ ˆ( )t t t tt tk ke kne x n ke kne c

α

δ   
= + − + + + −      

i

 (eq. 8) 

 

Where:  

x is the rate of technological change ( )0x > ; and,  

δ  is the rate of capital depreciation (δ > 0). 

 

The optimization problem is to choose the path for consumption, stock of capital and 

energy consumption
5
 that maximizes the utility of the infinitely lived representative 

household. In other terms, the problem is to choose ( ), ,c e k  that maximizes (eq. 9) and binds 

the transversality condition
6
: 

 

( ) ( )
1

0

^ ^ ^ ^

ˆ 1
max exp

1

. .

ˆ ˆ( )

t
t

t t t tt t

c B
n t X dt

s t

k ke kne x n ke kne c

σ
γ

α

ρ
σ γ

δ

−
+∞  −

 − − ⋅ ⋅ −   − 

   
= + − + + + −      

∫

i

 

( ) ( )

( )

1

1

ˆlim exp 0

J

t t j jt

j

t
t

X KE tg part

k r T T

η
=

→∞

= − ⋅ ⋅ ⋅

 ⋅ − ⋅ = 

∑
i

 

(eq. 9) 

 

The maximization problem is represented by the following Hamiltonian: 

 

                                                 
5  Notice that it is not possible to choose the energy matrix, but just the energy intensity. 
6 This restriction implies that assets have non-negative present-values (BARRO & SALA-I-MARTIN, 2004). 
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( ) ( )

( ) ( )

1

^ ^ ^ ^

1

2

1

ˆ 1
exp

1

ˆ( )

ˆˆ1

t
t

t t t tt t

J

t t t j jt

j

c B
H n t X

ke kne x n ke kne c

ke L tg part

σ
γ

α

ρ
σ γ

λ δ

λ η

−

=

 −
 = − − ⋅ ⋅ − +   − 

    
+ + − + + ⋅ + − +         

 
+ − ⋅ ⋅ ⋅ ⋅ 

 
∑

 (eq. 10) 

 

Where:  

1,2tλ  are shadow-prices of capital (1) and externality stock (2); and, 

, , , , , 0;  0 1 e 1.B x n δ ρ η σ γ> < < >  

 

The first-order equilibrium conditions, binding the transversality condition and 

assuming constant marginal ‘des-utility’ of externality stock on each period of time, is given 

by 
7
: 

 

( )( )

1

1

2

1

ˆ
ˆ 1

ˆ 1
ˆ 1

ˆ

t

t
t t

tt

k x
c

ke
Z B Xc

k

α

γ

α δ ρ

λ ησ
λ

−

−

 ⋅ − − − +
  

= ⋅ ∂   + ⋅ − ⋅ − ⋅ ⋅ ⋅   ∂ 

i

 (eq. 11) 

 

By assumption, in the early stages of economic growth, the marginal benefits of 

emissions are larger than their marginal costs (des-utility) (STOKEY, 1998).  Thus, the use of 

energy-intensive form of capital grows in the beginning of the transition to a more developed 

economy.  Which means that, in the limit, the change in capital will occur in the form of 

capital intensive in energy use. Which implies that: 
ˆ

0 1
ˆ

ke

k

∂
< <

∂
. The utility is assumed to be 

increasing and strictly concave in consumption ( )( )0limc v c→
′ = ∞  and increasing and strictly 

convex with respect to pollution ( )( )0lim 0X h X→
′ = . This implies that 

1 2lim 0 and lim
t t

λ λ
→∞ →∞

= = ∞ . As a consequence, along the capital accumulation path, 

consumption and emissions are monotonically increasing.  Graphically, this translates as a 

steady-state consumption dynamics that moves to the right (Figure 1). 

This expansion will be limited by two conditions: the golden rule of capital; or if 

faced by the Green Golden Rule - GGR (LE KAMA, 2001). The GGR is met whenever 

marginal benefit and cost of the emissions become equal
8
.  Beyond this point it is not possible 

to extract an extra utility from emissions and further intensification on energy use does not 

occur. Under a Social Planner solution
9
, this is a sufficient condition for an U-shaped EKC. 

From the GGR  locus, reduction of CO2 stock in the atmosphere (EKC for the stock) requires 

a marginal productivity of capital non-intensive in energy use larger than the sum of the rate 

                                                 
7 See section 1 in the Appendix. 

8 The locus where

1

1ˆ1
ˆ t

t t
t

c
X c

B X

γ
σ

−
− ∂

= ⋅ ⋅ 
∂ 

. 

9 The underlying idea is a central decision maker that controls set of state variables (BARRO & SALA-I-

MARTIN, 2004). 
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of technological change plus the rate of capital depreciation and the rate of intertemporal 

preference
10

:

1
^

kne

α

α
−  

⋅     
> x δ ρ+ + . 

 

3 ANALYTICAL SOLUTION AND SIMULATION METHOD 
 

The system of differential equations that describes the maximization problem (eq. 9) 

is represented by a model with two equations: optimum consumer behavior (eq. 11) and 

budget constraint (eq. 8). Two alternative methodologies were used to solve this system.  The 

first is an algebraic analytical solution.  The second is a graphical solution using a 

computational algorithm (TABARROK, 2000). 

 

3.1 Algebraic analytical solution 

 

Analytical solutions are the primitive functions of a dynamic system obtained using 

the integration calculus
11

.  They are essential to observe the behavior of the economy and its 

dynamical variables along time (including the speed of convergence) and, also, to check the 

system’s stability (BARRO & SALA-I-MARTIN, 2004).  

The dynamic system that represents a Ramsey-Koopmans like problem is generally 

represented by (eq. 12): 

 

( ) ( )y t A y t= ⋅
i

 (eq.12) 

 

Where:  

( )y t
i

 is the vector that represents the dynamics of the state variables;  

A  is the matrix of constants; and,  

( )y t  is the vector of state variables. 

Assuming some boundary conditions, the analytical solution of system in (eq. 12) is 

represented by: 

 

( ) ty t e ε−= −  (eq. 13) 

 

Where:  

ε  is the negative eigenvalues of matrix A. 

 

Larger eigenvalues (in absolute terms) will imply faster convergence to the steady-

state (BARRO & SALA-I-MARTIN, 1992). The essential result to guarantee the stability of 

the system is that the eigenvalues of matrix A have opposite signs. 

 

                                                 
10 This results from the GGR condition, assuming 1γ > (Appendix, Section 2). 
11 For further discussion upon the analytical solution see CHIANG (1982) and BARRO & SALA-I-MARTIN 

(2004). 
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3.2 Computational algorithm 

 

The solution for the Ramsey-Koopmans model that describes the behavior of the 

variables k̂  and ĉ , were obtained using a set of algorithms in Mathematica® (Tabarrok, 

2000) 
12

. The coefficientsα , x, n, δ , σ  and ρ  are from BARRO & SALA-I-MARTIN 

(2004) and ROMER (1996)
13

. The values of 2 1λ λ  were controlled for two scenarios: 1 and 

64. It has been included two starting points for k̂  and ĉ : ( ) ( )ˆ ˆ0 1 and 0 0.5k c= =  and the 

saddle point path from a value close to the origin. 

 
4 RESULTS 
 

4.1 Algebraic analytical solution 

 

The system of equations that describes the optimal behavior of the dynamics variables 

is:  

 

( )
( )

( )( )

( )
( )

*

*

2ˆlog

0ˆlog

ˆ ˆlog

ˆ ˆlog

x n x n
d k dt

d c dt

k k

c c

α ζ δ ζ δ

α ζ

σ

 − − − ⋅ + + + − − −  
    = ⋅⋅         

 
 

⋅ 
  

 (eq. 14) 

 

Where:  

( )( )1

2

1

ˆ1 1
1

ˆ
t

t t

tt

ke
Z B X x n

k

γζ λ η δ
α λ

−
 ∂ 

= ⋅ − ⋅ − ⋅ ⋅ ⋅ + + +   ∂  
;  

*k̂  and *ĉ  are steady-state per capita stock of capital and consumption. 

 

The eigenvalues that define the speed of convergence are obtained according to: 

 

( )( ) [ ]2 2 0x n x n
α ζ

ε α ζ δ ε ζ δ
σ

⋅
+ − − ⋅ + + + ⋅ − ⋅ − − − =  (eq. 15) 

 

The value of coefficients α , x, n, δ , σ  and ρ  (used to extract the effect of the 

stock of pollution change on the speed of convergence) are also from BARRO & SALA-I-

MARTIN (2004) and ROMER (1996).  
^

ˆke k∂ ∂  are the variable controlled and 2 1λ λ  was 

simulated on three scenarios (1, 4 and 16). 

According to the simulation, the effect of a change in the stock pollution on the 

speed of convergence is increasingly in 
^

ˆke k∂ ∂  and 2 1λ λ . This relation is graphically 

presented in Figure 2.  This means that the intensification of energy use, simulated by the 

                                                 
12 The set of algorithms used are available by e-mail request. 
13 1 3;  0.02;  n 0.01; 0.05;  1.75;  and, 0.02.xα δ σ ρ= = = = = =  
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increase of 
^

ˆke k∂ ∂  and 2 1λ λ , is positively related to convergence (larger levels of emission 

make the economy reach the steady-state faster).  This implies that income growth, and its 

level, are positively related to emissions. 

 

4.2 Result from computational model 

 

  According to (Figure 1) intensification of CO2 emissions moves the steady-state of 

capital forward. This is confirmed by the results given by the computational algorithm (Figure 

3 and 4). It also confirms suggestion on (Figure 2). According to (Figure 5), intensification of 

emissions raises the rate of economic growth and the speed of convergence. 

 
5 CONCLUSIONS 

 

The theoretical and analytical solutions (for both methods: algebraic and graphical) 

show that economic growth and flow of pollutants are positively correlated. Increasing flow 

of pollutants along economic growth implicates not only increasing stock of CO2 in the 

atmosphere but also increasing speed of growth. This result confirms empirical studies that 

did not find an inverse-U-shaped EKC for energy and CO2 emissions.  

Thus, air pollution only will stop getting worse when the marginal benefits of CO2 

emissions equals its costs (the GGR – green golden rule). The determination of GGR locus, 

however, requires the definition of some parameters not found on traditional literature 

(specifically: B and γ ). These parameters help define the GGR locus, but also, determine 

which comes first: GGR or the golden rule of capital. A suggestion for future studies is the 

estimation of their values. 

It is interesting to notice that, although net emissions cease (from GGR) the stock of 

CO2 in the atmosphere remains constant.  Its reduction requires some other conditions. Those 

specific conditions could be a major problem if people’s sensitiveness toward the costs of 

pollution is poorly underestimated. A problem because such result would overestimate the net 

benefit from pollution, pushing up the potential GGR locus, and until the stocks get stabilized 

or reduced to a lower level possibly the humanity would be under great negative influence of 

global warming. The present paper, however, doesn’t want to discuss the negative effects of 

global warming, the focus is just algebraic derive the conditions and discuss some possible 

results. 

As a final comment, the results of this study show that the market forces: i) does not 

optimally leads to a reduction on CO2 emissions; ii) reduction of pollution stock in the 

atmosphere depends on people’s behavior and some special conditions; and, iii) people’s poor 

perception regarding emissions’ cost can generate negative consequences in the future.  

 
APPENDIX 

 
Section 1. The first-order condition for equilibrium 
 

Reallocating the terms in the Euler equation (eq. 10)
14

, considering that  ( )ˆ x n t

tL e
+ ⋅

= , 

( )
1

J

j jt

j

Z tg part
=

= ⋅∑  and ˆ 0jtpart ke∂ ∂ =   results in:  

  

                                                 
14 Taking the optimum levels of k̂ . 
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( )( )

1

11

1 1

2

ˆˆˆ ( )
ˆ

1

xtt
nt

t
t t

t
t

tt tt
t

X
B X e ke ekek x n

k
e Z

γ

α

ρ

λ
α δ

λ λ
λ η

−

−

−

∂ 
⋅ ⋅ ⋅ −  ∂∂ = − ⋅ − + + + ⋅ ⋅   ∂ − ⋅ − ⋅ ⋅ 

i

 (A.1) 

 

Substituting (A.1) in the log operator of the first-order condition of (eq. 10) and 

assuming that the decision is always made in the present (t=0): 

 

( )( )

1

1

2

1

ˆ
ˆ 1

ˆ 1
ˆ 1

ˆ

t

t
t t

tt

k x
c

ke
Z B Xc

k

α

γ

α δ ρ

λ ησ
λ

−

−

 ⋅ − − − +
  

= ⋅ ∂   + ⋅ − ⋅ − ⋅ ⋅ ⋅   ∂ 

i

 (A.2) 

 
Section 2. Condition for reduction of pollution stock 
 

Assuming the utility function defined in (eq. 3), the equilibrium condition for marginal 

benefit and cost of the pollutants is given by: 

 

( )
1ˆ 1

1
t

t t t

c B
X X X

σ
γ

σ γ

−   −
∂ ∂ = ∂ ∂   −   

 (A.3) 

 

Or, equivalently: 

 

( )
1

1ˆ ˆ1 1

ˆ1

t t
t

t t

c c
B X

c X

σ
γ

σ

−
− − ∂

∂ ⋅ = ⋅ 
− ∂ ∂ 

 (A.4) 

 

Using the natural log, it becomes: 

 

( )
ˆ

ˆln ln ln 1 lnt
t t

t

c
c B X

X
σ γ

∂
− ⋅ + = + − ⋅

∂
 (A.5) 

 

Taking the time differential results in: 

 

( )
ˆ ˆ ˆ

1
ˆ

c Xc c

X Xc X
σ γ

∂ ∂
− ⋅ + = − ⋅

∂ ∂

i ii

 (A.6) 

 

The relationship between per capita consumption and the stock of pollutants is 

constant in GGR, which means that 
ˆ ˆ

0
c c

X X

∂ ∂
=

∂ ∂

i

. Rearranging the terms gives: 

 

( )
ˆ

ˆ1

X c

X c

σ

γ
= − ⋅

−

i i

 (A.7) 
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 Substituting (A.2) in (A.7), given that ˆˆ 0ke k∂ ∂ =  and ˆ 0ke t∂ ∂ = , the condition for 

0X X <
i

 is: 

 

( )

1
^1

0
1

kne x

α

α δ ρ
γ

−  
− ⋅ ⋅ − − − <  

−    
 (A.8) 
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Figures 

 

 

 

 

   

 

 

 

Figure 1 – Phase diagram for ĉ  and k̂  for the proposed model. 
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Figure 2 – Effect of the change on the level of stock of pollutants on the convergence rate.  

 

1 2 3 4 5 6

Capital stock

0.2

0.4

0.6

0.8

1

1.2

1.4

Consumption

 
Figure 3 – Jointed phase diagram for the maximization problem (eq. 9) (the dashing dynamics 

represents the second scenario starting point). 
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Figure 4 – Evolution of per capita income along time (the dashing dynamics represents the 

second scenario starting point). 
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Figure 5 – Evolution of per capita income growth along time (the dashing dynamics 

represents the second scenario starting point). 

 


