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This paper examines the size performance of the Toda-Yamamoto test
for Granger causality in the case of trivariate integrated and cointe-
grated var systems. The standard asymptotic distribution theory and
the residual-based bootstrap approach are applied. A variety of types
of distribution of error term is considered. The impact of misspecifica-
tion of initial parameters as well as the influence of an increase in sam-
ple size and number of bootstrap replications on size performance of
Toda-Yamamoto test statistics is also examined. The results of the con-
ducted simulation study confirm that standard asymptotic distribution
theory may often cause significant over-rejection. Application of boot-
strap methods usually leads to improvement of size performance of the
Toda-Yamamoto test. However, in some cases the considered bootstrap
method also leads to serious size distortion and performs worse than
the traditional approach based on χ2 distribution.
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Introduction

The causal relationship (in the Granger sense) between some considered
variables is one of the most important issues in modern economics. The
existence of this type of dynamic link guarantees that the knowledge of
past values of one considered time series is useful in predicting current
and future values of another one. Since the development of this con-
cept (Granger 1969) a number of studies examining properties of dif-
ferent testing methods have been published. One of the first approaches
was the standard Wald test based on asymptotic distribution theory. The
biggest advantage of this method was its simplicity and clarity. However,
in case of variables which are integrated of order one (i(1)) or cointe-
grated, the standard asymptotic approach turned out to be an improper
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tool for testing the causal effects. These nonstandard asymptotic prop-
erties of the Wald test were investigated by Granger and Newbold (1974,
empirical findings) and Philips (1986, theoretical framework). As a cure
for this problem the idea of the Vector Error Correction Model (see En-
gle and Granger (1987) and Granger (1988)) was developed. Although
theoretically it was a useful tool for testing for causality in integrated-
cointegrated var systems, the complicated pretesting procedure (esti-
mation of unit roots, analysis of cointegration properties and sensitivity
for improper lag establishment) turned out to be a serious difficulty in
empirical applications.

Another solution was proposed by Toda and Yamamoto (1995). This
approach ensures that asymptotic distribution theory is valid for var
systems, regardless of the order of integration of considered variables or
the dimension of cointegration space. Furthermore, the important ad-
vantage of this method is its simplicity since it is just a small modification
of the standard Wald test. The absence of pretesting bias made this pro-
cedure one of the most widely applied approaches in recent economic
research. However, when some standard assumptions do not hold (es-
pecially concerning the distribution of error term) the Toda-Yamamoto
approach is also likely to fail. Application of the bootstrap approach may
often provide better results since bootstrapping does not strictly depend
on model specification (for more details on bootstrap see Efron (1979)).

The properties of the augmented Wald test in both the asymptotic and
bootstrap variant were examined by a number of authors in recent years.
Dolado and Lütkepohl (1996) conducted a simulation exercise to exam-
ine the power of the considered testing method in the case of the inte-
grated varmodel (in this paper the error term was independently drawn
from identical multivariate normal distribution). Their outcomes show
that in high dimensional vars with a small true lag length the signifi-
cant reduction of power of the considered causality test may occur, es-
pecially for small samples. Mantalos (2000) conducted similar studies of
size and power properties of eight versions of the Granger causality test
(this time the error term was only N(0, i2) i. i. d.). His findings indicate
that the standard asymptotic approach may often lead to significant size
distortion. Application of the residual-based bootstrap technique usually
improves the size and power performance of causality tests. Hacker and
Hatemi (2006) examined size properties of the ty (Toda-Yamamoto) test
for two-dimensional var systems. In contrast to previously mentioned
authors, they also investigated the simple arch(1) case for error term
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series, finding that the bootstrap technique performed relatively well in
all cases. On the other hand they restricted the research only to models
without cointegration.

This paper is a generalization of previous studies concentrated on in-
vestigation of size properties of the ty test. The simulation study con-
tained in this article (in both asymptotic and bootstrap variants) exam-
ines three-dimensional integrated and cointegrated varmodels. All pos-
sible cointegration ranks are also considered. To check the size proper-
ties of the investigated test (also in cases where some standard assump-
tions do not hold) a variety of distributions of error term is applied in
dgp (spherical multivariate normal distribution, highly correlated er-
ror terms, structural break, mixture of distributions, arch(2) effect).
The impact of misspecification of initial parameters is also examined in
each case. Finally, the impact of increase of sample size (from small to
medium) as well as the influence of increase in the number of bootstrap
replications on size performance of the ty test is examined in some spe-
cific cases. To the knowledge of the author, the results of this kind of
study of size performance of the ty test in both asymptotic and boot-
strap variant have not been published so far.

This paper is organized as follows. The next section contains the main
research hypotheses to be tested by the simulation study. Section 3 pro-
vides details on the methodology of the ty test, specification of var
models used for simulation purposes and the considered bootstrap tech-
nique. Section 4 contains results of all conducted simulations. Section 5
concludes the paper.

Main Hypotheses

The main objective of this paper is the investigation of size properties
of the Toda-Yamamoto test for Granger causality. The first important
point that distinguishes this study from the existing literature is the use
of the trivariate var model for simulation purposes. Most of the previ-
ous papers examine two-dimensional models. In the three-dimensional
case the structure of causal links may be more extended. Another impor-
tant point is the fact that this paper examines all possible dimensions of
cointegration space. As already mentioned, former studies concentrating
on a similar topic provided evidence of poor performance of the modi-
fied Wald procedure in the case of nonstationary variables. Thus, it seems
to be reasonable to formulate:

h1 The Toda-Yamamoto test (asymptotic variant) often tends to over-
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reject the null hypothesis for integrated and cointegrated var systems
(with various cointegration ranks).

There are some ways to avoid the mentioned problem. One of the pos-
sibilities is the application of bootstrap methods. This approach has been
commonly used in recent years despite its numerical complexity. Thus,
one may be interested in testing the following hypothesis:

h2 The residual-based bootstrap method usually improves size perfor-
mance of the ty test.

In practice the proper specification of the var model is often difficult
to obtain. One of the most common problems is the misspecification
of lag parameter. Previous studies (see Hacker and Hatemi (2006) and
Mantalos (2000)) show that in this case the size performance of the ty
test (asymptotic variant) may significantly worsen. It may be interesting
to determine how the bootstrap-based technique performs in this case.
Therefore, we should test:

h3 Misspecification of lag parameter in the var model leads to consid-
erable aggravation of size performance of ty only in the asymptotic
variant.

Despite the fact that bootstrap methods are often a useful tool to over-
come the problem of size distortion in the ty test, there are some specific
cases where this approach may also fail. One important point that dis-
tinguishes this study from the existing literature is the fact that, in order
to perform suitable simulation, a variety of types of error term distribu-
tion was used (possibilities, where some standard assumptions about the
structure of the considered var models and ty methodology are unful-
filled, are examined). Therefore, this paper contains verification of the
following:

h4 Residual-based bootstrap is likely to fail in some specific cases and
therefore should not be used without second thought.

One of the main problems with the application of standard asymptotic
distribution theory is the sample size. Previous papers provided empiri-
cal proof that the increase of sample size may significantly improve size
performance of the ty test (see Dolado and Lütkepohl 1996; Hacker and
Hatemi 2006; Mantalos 2000). However, this process may strongly de-
pend on model specification (especially the error term structure). Thus,
it seems to be interesting to test the following hypothesis:
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h5 When standard assumptions hold, the increase of sample size im-
proves size performance of the ty test (asymptotic variant).

In order to apply the bootstrap technique the researcher must establish
the number of bootstrap replications. In previous papers this number
varied significantly (from dozens to hundreds). It may be interesting to
investigate whether the change of number of bootstrap replications may
lead to significant improvement of size performance of the ty test in
some specific cases (namely, cases of relatively significant size distortion).
This problem may be captured in verification of following:

h6 There is a relationship between the number of bootstrap replications
and size performance of the ty test in some specific cases.

In order to test the above research hypotheses some simulation study
must be performed. In the first step, comprehensive analysis of the con-
sidered methodology and dgp should be presented. The next section
contains some essential information concerning methodology and data.

Methodology and the Data Generating Process

In this article the Toda-Yamamoto approach for testing Granger causality
is considered. This method has been commonly applied in recent studies
since it is relatively simple to perform and free of complicated pretesting
procedures. Another issue worth underlying is the fact that this method
is useful for integrated and cointegrated systems. To understand the idea
of this type of causality testing consider the following n-dimensional
var(p) process:

yt = c +
p∑

i=1

Aiyt−i + εt , (1)

where yt = (y1t , . . . , yn
t )tr, c = (c1, . . . , cn)tr and εt = (ε1,t , . . . , εn,t)tr are

n-dimensional vectors, and {Ai}pi=1 is a set of n×n matrices of parameters
for appropriate lags (in this paper transpose of matrix M is denoted by
Mtr). The order p of the process is assumed to be known. Furthermore,
we shall assume that the error vector is an independent white noise pro-
cess with nonsingular covariance matrix

∑
ε (the elements of which are

constant over time). In this article cases where these standard assump-
tions do not hold are also investigated. We also assume that the condi-
tion E|εk,t |s+2 < ∞ holds true for all k = 1, . . . , n and some s > 0. The
Toda-Yamamoto (1995) idea of testing for causal effects is based on esti-
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table 1 Compact notation used to formulate ty test statistics

Object Description

Y := (y1, . . . , yT) n × T matrix

D̂:= (ĉ, Â1, . . . , Âp, . . . , Âp+d) n × (1 + n(p + d)) matrix

Zt :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

yt

yt−1
. . .

yt−p−d+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1 + n(p + d)) × 1 matrix, t = 1, . . ., T

Z:= (Z0, . . . , ZT−1) (1 + n(p + d)) × T matrix

δ̂:= (ε̂1, . . . , ε̂T) n × T matrix

mating the augmented var(p + d) model (circumflex indicates the ols
estimator of a specific parameter):

yt = ĉ +
p+d∑
i=1

Âiyt−i + ε̂t . (2)

The value of parameter d is equal to the maximum order of the inte-
gration of considered variables y1, . . . , yn. We say that the k-th element of
yt does not Granger-cause the j-th element of yt(k, j ∈ {1, . . . , n}) if there
is no reason for rejection of the following hypothesis:

h0: as
jk = 0, (3)

for s = 1, . . . , p, where As[as
pq]p,q=1,...,n for s = 1, . . . , p. According to Toda

and Yamamoto (1995) the number of extra lags (parameter d) is an unre-
stricted variable since its role is to guarantee the use of asymptotic theory.
In order to present the test statistics we shall make use of the compact
notation (T denotes the considered sample size) presented in table 1.

The initial point of the considered procedure is the calculation of
SU = δ̂δ̂

tr/T – the variance-covariance matrix of residuals from the
unrestricted augmented model (i. e. model (2)). Then we can define
β:= vec(c, A1, . . . , Ap, 0n×nd) and β̂:= vec(ĉ, Â1, . . . , Âp, . . . , Âp+d) where
vec(·) denotes the column stacking operator and 0n×nd stands for the
n × nd matrix filled with zeros. Using this notation one can write the
Toda-Yamamoto test statistics for testing for causal effects between vari-
ables in yt in the following form:
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ty:= (Cβ̂)tr(C((ZZtr)−1 ⊗ SU )Ctr)−1(Cβ̂), (4)

where ⊗ denotes Kronecker product and C is the matrix of suitable lin-
ear restrictions. In our case (testing for causality from one variable in yt

to another) C is p × (1 + n(p + d)) matrix, the elements of which take
only the value of zero or one. Each of p rows of matrix C corresponds to
a restriction of one parameter in β. The value of every element in each
row of C is one, if the associated parameter in β is zero under the null
hypothesis and it is zero otherwise. There is no association between ma-
trix C and the last n2d elements in β. This approach allows us to write
the null hypothesis of non-Granger causality in the following form:

h0: Cβtr = 0. (5)

Finally we shall note that the ty test statistic is asymptotically χ2 dis-
tributed with the number of degrees of freedom equal to the number of
restrictions to be tested (in our case this value is equal to p). In other
words, the ty test is just a standard Wald test applied for the first p lags
obtained from the augmented var(p + d) model.

In order to examine the size properties of the ty test some i(1) mod-
els are considered. Causality tests are conducted in the case of various
cointegration ranks. At this place we shall once again consider model (1).
This process can be rewritten in the following error correction form:

Δyt = c +
∏

yt−1 +
p−1∑
i=1

ΓiΔyt−i + εt , (6)

where
∏
= −i + ∑p

i=1 Ai and Γi = −∑p
j=i+1 Aj. To ensure that yt is inte-

grated of order one the following assumptions must hold (these assump-
tions are sufficient to prove the so-called Johansen-Granger representa-
tion theorem, for more details see Johansen 1991; 1996):

• The roots of the characteristic polynomial:

det(in − A1z − A2z
2 − · · · − Apzp) (7)

are either outside the unit circle or equal to one;

• The matrix
∏

has reduced rank r < n and therefore may be ex-
pressed as the product

∏
= αβtr, where α and β are n × r matrices

of full column rank r;

• The matrix αtr⊥Γβ⊥ has full rank, where Γ = I − ∑p
i=1 Γi and where

α⊥ and β⊥ are the orthogonal complements to α and β.
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table 2 Specification of trivariate var models considered in this paper

Matrix form Properties Symbol

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ No cointegration A1

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 −0, 125

0 1 0

0, 5 0, 5 0, 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ Two cointegrating equations A2

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0, 25 0 −0, 125

0 1 0

−0, 75 0 0, 875

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ One cointegrating equation A3

If the first assumption holds, then the considered process is neither
explosive (roots in the unit circle) nor seasonally cointegrated (roots on
the boundary of the unit circle different from z = 1, for more details on
this issue see Hylleberg et al. 1990; Johansen and Schaumburg 1988). The
second assumption ensures that there are at least n−r unit roots. Cointe-
gration occurs whenever r > 0 and the number of cointegrating vectors
is equal to r. To restrict the process from being i(2), we shall assume the
last condition, because together with the second one it ensures that the
number of unit roots is exactly n − r.

In this paper trivariate var models are considered. In each the case
process described by the model is integrated of order one and the pa-
rameter p is equal to one. Therefore, we consider the following var(1)
model which is used as a dgp:

yt = c + Ayt−1 + εt , (8)

where c(0, 01 0, 01 0, 01)tr in all cases and matrix A provide specific coin-
tegration properties (see previously presented assumptions). For details
about matrices used in the simulation study explore table 2.

Directly from table 2 we can obtain some essential information.
Namely, in A2 and A3 models y3 is a causal variable for y1. Furthermore,
in all considered cases y2 does not Granger-cause y1 (this will be our
null hypothesis for further analysis of size performance). We should un-
derline that in three-dimensional var models the relationship between
y3 and y1, as well as between y3 and y2, may have indirect impacts on
links between y2 and y1. Beside various schemes of algebraic structure,
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table 3 Models used to generate distribution of error term

Distribution of error term Parameters Symbol

N(03×1,σ2i3) σ = 1 E1

N(μ,σ) μ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, σ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 1 0, 9

0 0, 9 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ E2

N(03×1,σ21 i3) for t = 1, . . . , T/2
N(03×1,σ22i3) for t = T/2 + 1, . . . , T

σ1 = 1, σ2 = 2 E3

sN1 + (1 − s)N2, where: N1 ∼ N(03×1,σ21 i3),
N2 ∼ N(03×1,σ22 i3),
P(s = 1) = p, P(s = 0) = 1 − p

σ1 = 1, σ2 = 3, p = 0, 7 E4

εj,t = wj,t

√
0, 5 + 0, 1ε2j,t−1 + 0, 4ε2j,t−2,

wj,t − i. i. d. N(0, 1)

j = 1, 2, 3, t = 1, . . . , T E5

some specific distributions of error vectors are also examined. At this
place it should be noted that in previous studies concentrating on simi-
lar topics the error term was usually N(0n×1,σ2in) distributed (n stands
for considered dimension) for some positive σ (see Hacker and Hatemi
2006; Dolado and Lütkepohl 1996; these authors also consider the case
of nonzero covariance between components of error term); Mantalos
2000). In this paper the size properties of the ty test are examined for
variety of types of time structure of the error term. In some consid-
ered specifications the standard assumptions for the ty method do not
hold. Some fundamental information is contained in table 3 (random
draw for error term is always based on i. i. d. variables – normal, discrete
uniform).

In this paper, beside the standard three-dimensional spherical multi-
variate normal distribution (denoted as E1), the situation where vectors
ε2,t and ε3,t are highly correlated (E2) is also investigated. In this case
the variance-covariance matrix SU is ‘nearly singular,’ which may often
lead to problems with application of bootstrap methods (see Horovitz
1995; or Chou and Zhou 2006). Another specification of the distribu-
tion of error term series is related to the structural break (E3). It is a
well known fact that in this case huge size distortions may occur while
testing for Granger causality. Another question is whether application of
the bootstrap approach may significantly improve the investigated size
properties. The fourth examined possibility (E4) is related to the idea of
a mixture of distributions. The last considered dgp for error vector (E5)
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is a simple arch(2) model with constant unconditional variance (equal
to one). A similar type of time dependence structure in the error term
series was examined by Hacker and Hatemi (2006) (the authors used
arch(1) model for var(1) and var(2) processes).

As a cure for the effect of start-up values, 50 presample observations
of yt are generated for each simulation study. Some of these data points
(based on random draw from N(0, 1) distribution) are used as the ini-
tial observations for var models. To make the results of the presented
research more comparable, the same random draw from N(0, 1) distri-
bution is also used for every type of the error term analyzed. Namely,
to create the E2 = (E2,t)t=1,...,T series, the following transformation of
E1 = (E1,t)t=1,...,T series is applied:

E2,t = ZE1,t , (9)

where t = 1, . . . , T and ZZtr =
∑

(Cholesky decomposition). The values
of the E1 series are also used in the process of generation of E4 series
and E3 series (for first T/2 observations). In order to generate E5 series,
initial observations are once again drawn from N(0, 1) distribution and
(w1,t w2,t w3,t)tr = E1,t for t = 1, . . . , T.

To examine the size properties of the considered test a set of simulated
observations is generated each time (using model (1) with specific Ai and
Ej) and the ty test statistics are calculated to test the hypothesis that y2

does not Granger-cause y1. Typical significance levels (namely, 1%, 5%
and 10%) are considered, and both the asymptotic distribution theory
(as noted by Toda and Yamamoto) and a residual-based bootstrap ap-
proach are used to get suitable critical values.

Let me now discuss shortly the bootstrap methods used in this pa-
per. All bootstrap simulations conducted for the use of this article are
based on resampling leveraged residuals. The application of leverages is
the simple modification of regression raw residuals, which helps to stabi-
lize their variance (for more details on this issue see Davison and Hinkley
1999; Hacker and Hatemi 2006). At first the considered augmented var
model (2) is estimated through ols methodology with the null hypoth-
esis assumed (that is: y2 does not Granger-cause y1). Many authors use
ols methodology in their empirical research, although other estimation
methods are more adequate for their data. This paper partly investigates
the influence of the mentioned approach on performance of the consid-
ered causality tests. In the next step, regression raw residuals are trans-
formed with the use of leverages (modified residuals will be denoted as
{ε̂m

i }i=1,...,T). Finally, the following algorithm is conducted:
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• draw randomly with replacement (each point has a probability
measure equal to 1/T) from the set {ε̂m

i }i=1,...,T (as a result we get
the set {ε̂**

i }i=1,...,T);

• subtract the mean to guarantee that the mean of bootstrap residuals
is zero (in this way we create the set {ε̂*

i }i=1,...,T , such that

ε̂*
k,i = ε̂

**
k,i −
∑T

j=1 ε̂
**
k,j

T
,

i = 1, . . . , T, k = 1, 2, 3);

• generate the simulated data {y*
i }i=1,...,T through use of the original

data ({yi}i=1,...,T), coefficient estimates from the regression
(ĉ, {Âi}i=1,...,p+d) and the bootstrap residuals {ε̂*

i }i=1,...,T ;

• calculate the ty test statistics.

After repeating this procedure N = 250 times it is possible to create
the empirical distribution of ty test statistics and next obtain empirical
critical values (bootstrap critical values). The suitable procedure (which
allows one to conduct every type of simulation presented in this article)
written in Gretl is available from the author upon request.

Empirical Results

In this section, results of the conducted causality tests are presented.
The following tables contain the rejection rates obtained while testing
the null hypothesis in the ty test with the application of both the stan-
dard asymptotic distribution theory and the residual-based bootstrap
approach. In recent years the problem of establishing adequate signif-
icance levels for diagnostic applications has been intensively discussed.
Some researchers recommended relatively large levels (Maddala 1992),
while others argue that typical values are the best choice (MacKinnon
1992). As already mentioned in this article, typical significance levels
are considered. Thus the results of the presented simulations are more
comparable with the similar research conducted by Hacker and Hatemi
(2006) and Mantalos (2000). To judge whether empirical rejection rates
are significantly different from considered nominal sizes for each signif-
icance level, the 95% two-sided confidence intervals were created by the
following expression:

Ts ± 2
√

Ts(1 − Ts)

Nr
, (10)
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where Ts denotes the considered nominal size (1%, 5%, 10%) and Nr =

1000 stands for the number of repetitions. This value (Nr = 1000) was
also used by Dolado and Lütkepohl (1996), Hacker and Hatemi (2006)
and Mantalos (2000). Furthermore, the considered type of confidence
intervals was used by Dolado and Lütkepohl (1996) and Mantalos (2000).
In this way, the intervals [0.4%; 1.6%], [3.6%; 6.4%], [8.1%; 11.9%] were
established for 1%, 5% and 10% significance levels respectively. The con-
sidered approach leads to the criteria of bad performance, namely, the
actual test size is significantly distorted whenever it lies outside the suit-
able confidence interval. In the following tables these findings are indi-
cated by bold typeface. In each case the parameter d (maximal order of
integration of considered variables) is equal to one (properly specified).
For tables 4–9 the considered sample size is T = 40 (small sample size).

First we shall focus on cases where parameter p was chosen properly.
Suitable results are contained in tables 4–6.

After analyzing the results contained in table 4, one can easily see that
the asymptotic distribution theory was found to cause serious size dis-
tortions in almost all cases. The largest distortions were indicated in the
case of structural change in error term distribution (E3). Furthermore, it
should be noted that whenever critical values were taken from suitable χ2

distribution the over-rejection was indicated, which seems to prove that
Hypothesis 1 is true. The application of the bootstrap method improved
the size properties of the ty test for all significance levels in cases of E1,
E4 and E5 distribution. These results provided a strong basis for claim-
ing that Hypothesis 2 is also true. Although the significant over-rejection
was still found for E3 error distribution (except for 10% level), size dis-
tortions were much smaller than in the non-bootstrap approach. How-
ever, one must note that the bootstrap test was found to under-reject
the null hypothesis in the case of E2 distribution, which led to signifi-
cant size distortions by 5% and 10% significance levels (even worse per-
formance than for χ2 distribution). The outcomes obtained by Hacker
and Hatemi (2006) in corresponding research conducted for similar two-
dimensional cases (A1 model, E1 and E5 error term) are in line with the
results presented in table 4.

The outcomes contained in table 5 and 6 also lead to some interesting
regularities and provide no significant reason for rejection of Hypothe-
sis 1 or Hypothesis 2. Firstly, they confirmed the hypothesis that the ty
test based on asymptotic distribution theory tends to over-reject the null
hypothesis also when there exists cointegration between considered vari-
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table 4 Size of ty test for Granger causality – no-cointegration case

(1) (2) (3) χ2 distribution Bootstrap distribution

1% 5% 10% 1% 5% 10%

A1 E1 1 1.7% 6.1% 13.2% 0.8% 4.6% 10.9%

E2 1 1.9% 5.6% 11.6% 0.4% 2.9% 7.7%

E3 1 7.7% 15.3% 20.6% 2.8% 7.4% 10.8%

E4 1 1.7% 7.8% 12.4% 0.6% 4.2% 9.6%

E5 1 1.4% 6.5% 11.2% 0.8% 5.2% 9.1%

notes Column headings are as follows: (1) algebraic structure, (2) distribution of er-
ror term, (3) lag p.

table 5 Size of ty test for Granger causality – case of two cointegrating vectors

(1) (2) (3) χ2 distribution Bootstrap distribution

1% 5% 10% 1% 5% 10%

A2 E1 1 0.8% 3.5% 10.8% 0.9% 4.8% 9.9%

E2 1 1.2% 5.5% 14% 1% 4.9% 11%

E3 1 5% 14% 25% 3.6% 8.9% 18%

E4 1 1.9% 6.7% 14% 1.1% 5.3% 12%

E5 1 1.5% 6.8% 11% 1.1% 4.7% 10.5%

notes Column headings are as follows: (1) algebraic structure, (2) distribution of er-
ror term, (3) lag p.

table 6 Size of ty test for Granger causality – case of one cointegrating vector

(1) (2) (3) χ2 distribution Bootstrap distribution

1% 5% 10% 1% 5% 10%

A3 E1 1 1.2% 7.4% 11.5% 0.9% 6.1% 10.6%

E2 1 2.6% 5.8% 14.7% 0.2% 2.1% 5.2%

E3 1 6.7% 11.6% 26% 2.4% 5.9% 11.4%

E4 1 2.5% 8% 15.6% 0.8% 4.7% 10.6%

E5 1 1.5% 5.9% 12.6% 0.7% 4.2% 9%

notes Column headings are as follows: (1) algebraic structure, (2) distribution of er-
ror term, (3) lag p.

ables (Dolado and Lütkepohl (1996) and Mantalos (2000) examine coin-
tegration ranks which are no greater than one). Secondly, they provided
a basis for claiming that the application of bootstrap methods leads to
reduction of actual test size in comparison to the asymptotic method.
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However, this reduction is still insufficient for the A2 algebraic structure
and E3 error distribution scheme (still over-rejection) and too intensive
for the A3 and E2 case (under-rejection, worse performance in compari-
son to χ2 distribution on 5% and 10% significance levels).

In practice it is often difficult to establish the lag parameter properly
before estimating the var model. Despite the variety of econometric
methods (aic, bic, fpe information criteria, more recently Hatemi’s
(2003) criterion) many researchers are still struggling to decide what
value of lag length to choose for further analysis. In the context of our
investigation this problem was examined by the repetition of all causal-
ity tests in case of a misspecified value of parameter p (set at the level of
2). For clarity it should be mentioned that true dgp was unchanged. The
results are shown in tables 7–9.

It seems to be obvious that the results contained in tables 7–9 should
be analyzed together with corresponding outcomes from previously pre-
sented cases (contained in tables 4–6 respectively). After analyzing the re-
sults contained in table 7 (no-cointegration case) one can easily see that
the standard approach (based on χ2 distribution) causes even stronger
over-rejection (higher rejection rates) than in the corresponding case
(table 4). On the other hand, the results obtained with application of
the bootstrap method belong to suitable confidence intervals in all ex-
cept for one case (in comparison to the corresponding case). For the
model with two cointegrating vectors (A2) the actual test size (case of
χ2 distribution) is too high in all except for 3 cases. This means that mis-
specification of parameter p considerably worsens size performance of
the ty test. Furthermore, the actual size of the bootstrap test was found
to lie outside the confidence interval for exactly the same combination
of considered significance levels and error term schemes, like in the cor-
responding case (table 5). The standard asymptotic approach was also
found to cause serious over-rejection for the A3 structure in almost all
cases. On the other hand, actual test size based on the bootstrap method
was distorted only for the E2 (under-rejection) and E3 (over-rejection)
case. In general, size performance of the ty test worsened significantly
only for the asymptotic variant, which allows us to claim that Hypoth-
esis 3 is true. Furthermore, the results contained in tables 4–6 as well as
in tables 7–9 strongly indicate that Hypothesis 4 is also true (see results
obtained for the E2 and E3 cases).

Additionally, to examine the size performance of the ty test in both
considered variants, causality tests were conducted for a longer sample.
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table 7 Size of ty test for Granger causality – no-cointegration case, misspecified
parameter p

(1) (2) (3) χ2 distribution Bootstrap distribution

1% 5% 10% 1% 5% 10%

A1 E1 2 2.1% 10.6% 16% 0.9% 4.5% 10.2%

E2 2 1.8% 6.5% 13.5% 0.8% 3.1% 7.1%

E3 2 9% 19% 33% 4.5% 9.1% 18.5%

E4 2 1.8% 9% 15.5% 0.9% 4.6% 9.5%

E5 2 1.4% 4.6% 14% 0.7% 4.1% 9.3%

notes Column headings are as follows: (1) algebraic structure, (2) distribution of er-
ror term, (3) lag p.

table 8 Size of ty test for Granger causality – case of two cointegrating vectors,
misspecified parameter p

(1) (2) (3) χ2 distribution Bootstrap distribution

1% 5% 10% 1% 5% 10%

A2 E1 2 1.3% 6.1% 12.8% 1.2% 4.6% 9.4%

E2 2 1.4% 7.2% 13.6% 0.8% 4.8% 9.6%

E3 2 8.5% 20% 27% 6.1% 14% 19.7%

E4 2 2.8% 6.8% 17.1% 0.8% 4.8% 13.4%

E5 2 2.1% 8.4% 12.7% 1.1% 5.6% 9.7%

notes Column headings are as follows: (1) algebraic structure, (2) distribution of er-
ror term, (3) lag p.

table 9 Size of ty test for Granger causality – case of one cointegrating vector,
misspecified parameter p

(1) (2) (3) χ2 distribution Bootstrap distribution

1% 5% 10% 1% 5% 10%

A3 E1 2 1.4% 6.3% 14.1% 0.9% 4.8% 10.3%

E2 2 3.9% 8.2% 14.8% 0.1% 1.9% 5.1%

E3 2 7.6% 13.6% 29% 3.9% 8.3% 14.7%

E4 2 2.8% 9.2% 17.6% 1.1% 4.4% 11.3%

E5 2 2.2% 8.5% 13.9% 0.8% 4.6% 9.5%

notes Column headings are as follows: (1) algebraic structure, (2) distribution of er-
ror term, (3) lag p.

One should expect the standard asymptotic approach to perform rela-
tively better in this case. Suitable tests were conducted for the sample size
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table 10 Impact of increase of sample size on size properties of ty test for Granger
causality – no-cointegration case

(1) (2) (3) χ2 distribution Bootstrap distribution

1% 5% 10% 1% 5% 10%

A1 E1 1 1.1%
(1.7%)

6.2%
(6.1%)

12%
(13.2%)

0.9%
(0.8%)

4.2%
(4.6%)

9.5%
(10.9%)

E1 2 1.3%
(2.1%)

5.6%
(10.6%)

13.5%
(16%)

1.1%
(0.9%)

4.9%
(4.5%)

10.3%
(10.7%)

notes Column headings are as follows: (1) algebraic structure, (2) distribution of er-
ror term, (3) lag p.

table 11 Size of ty test for Granger causality – different number of bootstrap
replications in specific cointegrated systems

(1) (2) (3) χ2 distribution Bootstrap distribution N

1% 5% 10% 1% 5% 10%

A2 E3 2 8.5% 20% 27% 9.1% 19.6% 24% 100

5.2% 16.3% 22.1% 200

6.1% 13.5% 20.1% 300

A3 E2 2 3.9% 8.2% 14.8% 0% 3% 3.4% 100

0.5% 2.5% 5.5% 200

0.6% 1.2% 3.5% 300

notes Column headings are as follows: (1) algebraic structure, (2) distribution of er-
ror term, (3) lag p.

T = 100 and no-cointegration model with parameter p = 1 and p = 2

(Hacker and Hatemi (2006) also considered a sample size equal to T = 40
(small sample) and T = 100 (medium sample)). For comparability with
previous results (obtained for T = 40), the first 40 data points were ex-
actly the same. Once again the true value of parameter d was assumed to
be known. The results are presented in table 10. For clarity it should be
noted that values in parentheses denote the rejection rates obtained in a
similar investigation conducted for a small sample (T = 40).

The analysis of the above table confirmed the hypothesis that size
properties of the ty test for Granger causality are improving with the
increase of sample size. Although for a 10% significance level the actual
size of tests still lies outside the 95% confidence interval, the increase of
sample size moved actual size closer to the nominal one. Furthermore,
the actual size of bootstrap tests was again found to lie with in suitable
confidence intervals in all cases. On the other hand, it should be noted
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that for other the considered distributions of error term (E2, E3, E4, E5)
such significant improvement of size performance was not found in con-
sidered algebraic specification (A1). All these facts confirm that there is
no significant reason for the rejection of Hypothesis 5.

One of the initial arbitrary decisions in every bootstrap application is
the establishment of the number of replications. In previous research
concentrated on similar investigation this value varied significantly.
Horovitz (1994) used 100 replications, Mantalos (2000) – 200, Hacker
and Hatemi (2006) – 800, while Davidson and MacKinnon (1996) used
1000 replications to create bootstrap distribution each time. Increase
of the number of replications may often have an important impact on
improvement of performance of the ty test size. However in some situ-
ations bootstrap methods are likely to fail, regardless of the number of
replications used (Horovitz 1995). This paper takes part in the discussion
of the mentioned problem, as it contains results of some simulations
based on different numbers of bootstrap replications. The investiga-
tion covers two specific cases in which the size distortion of bootstrap
distribution was relatively largest and far away from 95% confidence in-
tervals (namely, high correlation and structural change cases). It should
be noted that for comparability with the previously presented outcomes
(conducted for 250 bootstrap replications) the same series of random
numbers were used to generate the data. Therefore, the actual size of the
ty test conducted with application of χ2 distribution was unchanged.
Parameter d was again assumed to be known (d = 1). The examined
number of bootstrap replications was denoted by N. Table 11 contains
the results of suitable simulations.

The results contained in table 11 confirmed that the increase in the
number of bootstrap replications caused a decrease of actual test size for
the A2 model at 5% and 10% significance levels. However, the intensity of
this process turned out to be insufficient and the actual size still lay out-
side confidence intervals in all cases. A similar effect (decrease of actual
size) was found for the A3 model at 5% significance level, but this time
the size performance had worsened while N increased. Finally, it should
be noted that for the A3 model the actual size was found to grow with
an increase of N at 1% significance level (relatively good performance
was found for N = 200 and N = 300 replications). Summarizing, these
outcomes provided no clear evidence of whether Hypothesis 6 is true or
false. However, they did provide a strong basis for claiming that Hypoth-
esis 4 is indeed true.
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Concluding Remarks

The aim of this paper was to examine the size properties of the Toda-
Yamamoto test for Granger causality in the case of a relatively small
sample size. The simulation study was conducted for integrated order-
1 trivariate var models, and a variety of distribution of error vector was
also considered during computation. In order to perform suitable re-
search, both the standard asymptotic distribution theory as well as the
residual-based bootstrap technique were used.

The results of the conducted simulation study in the case of properly
specified lag parameters indicate that the standard asymptotic approach
causes significant over-rejection in almost all considered cases. The ap-
plication of the residual-based bootstrap method improved the size per-
formance of the ty test, however, in the case of structural break and high
correlation the actual size was still far away from the nominal one.

The misspecification of the lag parameter caused much worse perfor-
mance of the ty test when asymptotic theory was applied. In general,
the performance of the bootstrap method has not worsened in such a
significant way.

The results contained in this paper support the hypothesis that asymp-
totic distribution theory performs better for longer time series. However,
except for the case of spherical multivariate normal distribution of er-
ror term, this type of significant improvement has not been observed.
Furthermore, test results obtained in cases of high size distortion of the
bootstrap-based technique brought no clear suggestion about the rela-
tionship between the number of bootstrap replications and the actual
size of the test.

The outcomes contained in this article should be useful tips for other
researchers using considered variants of the Toda-Yamamoto test in their
practical applications. The presented results ensure that bootstrap based
on leveraged residuals is often an effective tool for Granger causality test-
ing, which allows avoidance of the problem of over-rejection of the con-
sidered null hypothesis. However, the conducted simulation study con-
firms that this method cannot be used without a second thought, since
it is likely to fail for specific models.
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