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Abstract

We consider a selection process and a hierarchical institution in a dynamic model as in Harrington [3], where

agents are "climbing the pyramid" in a rank-order contest based on the "up or out" policy. Agents are ranked

according to the quality of their performances in a particular environment that they face in groups, and a fraction

of the highest ranked agents are promoted. The size of this fraction characterizes the selectivity of the process,

and we distinguish between local and global selectivity. We study the role of the degree of local and global

selectivity in the dynamic process where agents�’ types di er in their expected performances. Surprisingly, we

nd that an increase in the selectivity of the process can be detrimental to the agents with the highest expected

performances. In fact, it does not matter how small the expected performance of a particular type of agent is.

If the degree of selectivity is high enough, that type of agent will survive. However, if the selectivity decreases,

the only survivor is the agent with the highest expected performance.

JEL classication: D00; D23; C73; D72

Keywords: Social hierarchy; Selection; Selectivity; Promotion
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1 Introduction

Selection processes exist in all societies. In general terms, agents interact with one another, within organizations

and institutions, and as a result of that interaction certain individuals are promoted over others and achieve

higher status in the form of greater political or economic power, increased prestige, more responsibility and

wider intellectual inuence. In such selection processes, the characteristics of the individual agents obviously

play an important role, but institutional factors such as the selectivity of the promotion system and hierarchical

structures are also highly inuential.

In this paper we present some interesting and counterintuitive properties of a family of selection systems

in a hierarchical institution. These selection systems are characterized according to the amount of selectivity

implemented. In fact, we parameterize the degree of selectivity and study the dynamic of the process for all

possible values of the selectivity parameters.

In our model, the concept of degree of selectivity is determined by the fraction of agents promoted. For

example, consider a set of agents that are ranked by the outcomes of their activities or by any other "agent�’s

characteristic". We then select a fraction (0 1) of the highest ranked agents to be promoted. The closer

is to zero, the greater the selectivity of the process. We can dene the degree of selectivity of the selection

process as 1 .

We consider a selection process and a hierarchical structure in a dynamic model as in Harrington [3], where

agents are "climbing the pyramid" in a rank-order contest based on the "up or out" policy. We generalize the

selection process used in Harrington.

Like Harrington, we do not consider strategic interaction and each agent is endowed, at = 0, with one of

two actions or behavioral rules: and . Thus, we consider only two types1 of agent: type and type . The

environment where type outperforms is more frequent than the environment where outperforms . In

this sense, is a better type and has a higher expected success rate.

The population at any level of the hierarchy is matched in groups of agents, and each group faces a particular

environment. Agents are ranked according to the quality of their performances in this particular environment.

The top performing agents from each group become eligible for promotion: this is the local selection process.

The eligible agents are pooled together and the top fraction of performing agents is promoted; this is the global

selection process.

In the next period, the agents promoted compete with one another again on their new level for promotion to

the following level, always under the "up or out" policy. Thus, the non-promoted agents are no longer considered

for promotion.

In our model, -agents have good performances more often than -agents. Therefore, we might expect

increases in selectivity to punish -agents, and the proportion of -agents promoted to decrease as selectivity

1Our main conclusion holds if more than two types are considered.
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increases. However, we show that this is not always the case, and, in fact, the proportion of -agents promoted

increases if selectivity increases enough.

We obtain the following main results. If the level of selectivity is low enough, the selection process is not

strong enough to overcome the inertia of the initial population. The dynamic depends on the initial conditions,

and the population eventually becomes homogeneous, i.e. either type or type . If selectivity increases

enough, the whole population will come to be type for any initial mixed population. In that case, the selection

process is strong enough eventually to select agents of type , the best performers. Finally, if the selectivity is

increased far enough, the behavior of the system depends only on local selectivity. If it is not too high, then only

-agents survive as before. However, surprisingly, if local selectivity is increased far enough, type agents also

survive, and the proportion for which they account at equilibrium increases as selectivity increases. Therefore,

no matter how low the success rate of a type is, if the selection process has a high enough selectivity, agents of

this type survive in the long run.

To understand why this happens, we must rst observe that the probability of promotion of a particular type

depends on three things: the initial proportions of each type of agent in the population, the selectivity of the

selection process, and the probability of success of each type of agent. If, for example, -agents are scarce, the

rivals of a -agent are mostly -agents. In that case, almost the only way for that -agent to get promoted

is to be better than -agents. Otherwise, he is at the bottom of the rank order. Therefore, the probability of

promotion of a scarce type depends mainly on the probability of success of his type, and selectivity does not

a ect him too much. By contrast, if a particular type, e.g. -agents, is abundant, the rivals of an -agent are

also mostly -agents. Being successful is not too important for promotion because all -agents are doing the

same thing. The probability of promotion depends mainly on the selectivity, on how many agents are promoted.

Therefore, an increase in selectivity tends to punish the more common type of agents because it decreases

their probability of promotion, but it does not a ect the relatively scarce type. Thus, we can favor or punish

diversity by tuning the level of selectivity. A deeper intuition is provided in Section 5.

The structure of our model is quite similar to the way in which some sports competitions are organized.

There are di erent levels, players compete in separate groups at each level and the best players in each group

are promoted to the next level. The nal goal of each player is to get the top of the pyramid. In this example,

there is only local competition in groups.

In many social systems, however, there is not only local competition for promotion but also broader competi-

tion throughout each level. In the academic world, for example, students rst compete at their own universities

(local competition), and once they have nished their courses some of the most brilliant students from all uni-

versities then compete for a position at a university department (global competition). If they are able to secure

a position they then compete locally again, within their new departments, to obtain a Ph.D.. After obtaining

their Ph.D., however, they must then compete general once again with other Ph.D. graduates from all other
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universities for a limited number of jobs in a given number of organizations. Similar processes exist among

people who work in business. They rst compete within their own groups or departments (locally) and the best

among them become candidates for promotion. Those candidates, however, must sometimes compete again in a

broader context with candidates from other departments for promotion to a higher status.

A stylized example would be that of a sales company that promotes people according to their success in

selling. The company employs men and women and men sell better to men and women sell better to women.

If the potential market has more men than women, men could be the -agents and women the -agents. In

another example, we can think of the rules ( and ) as di erent available technologies: one of them is the best

more often than the other, and agents are procient in either technology or .

In political careers we could consider two kinds of politicians: demagogues and principled politicians. The

demagogues could be the -agents if they have the favor of the voters in some political environments that are

less probable than those in which the principle agents ( -agents) have the best results.

The promotion of -agents may or may not be desirable depending on the nature of the situation and the

preferences of the institutions concerned.

It is not easy to nd an application that ts all of the model�’s elements because the model seeks to represent

a family of complex institutions in a very stylized manner to point out a very specic characteristic of a selection

process. Obviously, in any real situation the selection process is inuenced by many more factors. However, we

believe that the property identied with our model is robust enough to play a role in more complex situations.

The rest of this article is presented as follows: Section 2 describes the model and the dynamic equations,

Sections 3, 4 and 5 analyze the dynamics and provide some intuitions, and Section 6 gives the conclusion and

discusses related literature.

2 The Model

As in Harrington [3], we consider a hierarchical system with a lowest level and no upper bound on the highest

level. The initial population resides at the lowest level of the system, and comprises two types: and , which

compete for promotion. The objective is to analyze how the proportions of -agents and -agents in this initial

cohort of agents change as they migrate up through the hierarchy. This analysis is conducted for any degree of

selectivity. If the hierarchy is to be kept "full" then at the end of each round a fresh cohort of agents must enter

the lowest level to replace those who have moved on. Another structure that can be considered is a hierarchy

with just levels where new agents imitate the agents at the top, as described in Harrington [4]. Note that the

two cases are equivalent if the new agents in this second case reproduce the prole of agents at the top.

Therefore, we consider that at level there is a large enough population of agents (a continuum), where

[0 1] denotes the proportion of -agents at level , and the proportion of -agents (with = 1

). We seek to specify a dynamic function +1 = ( ) that relates the proportion of -agents at level to
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the proportion of -agents after going through a selection process, i.e., the proportion of -agents in the set of

agents promoted to level + 1.

We consider that the agents at level are randomly matched in groups of 2. We assume that

the random matching process has the following properties: First, the probability with which a given agent is

matched with agents of given types equals the product of the proportions of agents of the respective types in

the population. Second, the proportion of a given class of grouping is equal to the probability (ex-ante) of such

a grouping. The existence of a random matching process having these properties is proved in Alós-Ferrer [1]2 .

Thus, the proportion of groups containing -agents (and = -agents) is equal to the probability

of such a group 3, i.e.,
¡ ¢

(1 ) . This is also the proportion of agents in groups with -agents with

regard to the initial population (level ) because the groups are composed of equal number of agents.

These agents face a stochastic environment which is the same for all the members of a particular group.

However, the environment of each group is stochastically independent of other groups. We categorize all the

di erent possible environments into three types. In a type 1 environment, -agents respond correctly to the

environment and -agents respond wrongly. In a type 2 environment, -agents respond correctly and -agents

wrongly. Finally, in type 3, neither nor responds correctly4. The probability5 of an environment of type

is , with = 1 2 3, and
P3

=1 = 1. Therefore, each agent faces an uncertain future environment, but there

is no aggregate uncertainty because of our assumptions. Therefore, at each level after the random matching, a

proportion 1 ( 2, 3) of the groups has a type 1 (2 3) environment. This is assumed to be i.i.d. across levels,

so that the probability of an agent facing a given environment is independent of the environment that he/she

has faced in the past.

Therefore, the proportion of agents in groups with a number of -agents under a type 1 environment is
¡ ¢

(1 ) 1. In such groups -agents outperform -agents. The system selects the top performing

agents from each group, with . This process is called local selection. The selected agents from each

group become eligible for promotion or survival. The proportion of eligible agents is with regard to the initial

population (level ). This ratio measures the selectivity of the local selection. Thus, if a group in a type 1

environment has more -agents than vacancies available (i.e., ), then all the eligible agents selected from

this group are successful, and the proportion of eligible -agents that have been successful is
¡ ¢

(1 ) 1.

However, if , then successful -agents are selected as eligible and some unsuccessful -agents have to be

randomly chosen to ll the vacancies, and the proportion of eligible -agents that have been successful is
¡ ¢

(1 ) 1. Analogously, a fraction 2 of groups will face a type 2 environment and similar reasoning

can be used. Finally, a fraction 3 of groups will face a type 3 environment. In this case, all the eligible

2Alós-Ferrer [1] gives a constructive existence proof for the case = 2. The generalization to groups of agents is straightforward.
3The is distributed as a binomial distribution, v ( ).
4A fourth environment can be considered in which both rules are right answers. This environment adds no new insights to the

analysis, so we do not consider it.
5This probability can also be seen as the expected success rate of an agents of type , with = 1 2
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agents will be unsuccessful. Consequently, the total proportion of eligible -agents that have been successful

will be: =
1P

=0

¡ ¢
(1 ) 1 +

P
=

¡ ¢
(1 ) 1 =

P
=0

[ ] 1
¡ ¢

(1 ) 1, and

the proportion of eligible -agents6 that have been successful will be =
P
=0

[ ] 1
¡ ¢

(1 ) 2.

Clearly, the proportion of eligible agents who are successful will be = + . On the other hand, the

proportion of eligible agents who are unsuccessful will be = . Finally, the proportion of eligible

-agents who are unsuccessful comprises two terms. First, the -agents selected as eligible from the groups

under the type 2 environment that do not have enough -agents to ll all the vacancies, i.e. ( )

-agents; and second the -agents selected from the groups under the type 3 environment. The latter will

be a proportion of type -agents from groups with -agents: =
P

= +1

( ( )) 1
¡ ¢

(1

) 2 +
P
=1

1
¡ ¢

(1 ) 3

In the second step of the selection process, these eligible agents selected from each group are pooled together

and a new rank-order is made according their previous performances in their groups, with the eligible successful

agents on top and the unsuccessful ones after them. The top fraction is eventually promoted to the next

level. This process is called global selection. The parameter measures the selectivity of the global selection

process. Thus, the proportion of agents eventually promoted is .

The dynamic equation +1 = ( ) is a piecewise function which has two di erent pieces because two cases

can occur in global selection.

First case: the proportion of agents promoted ( ) is or less. In this case, the system selects a proportion

of agents randomly from among the eligible successful agents. Since the proportion of -agents among the

eligible successful agents is , this will be the proportion of -agents in the next level: +1 = .

Second case: the proportion of agents promoted ( ) is greater than . The system now selects all eligible

successful agents plus a randomly selected proportion of eligible unsuccessful agents. Note that the

proportion of -agents among the eligible unsuccessful agents is . Consequently, the proportion of -agents

selected will be +
¡ ¢

with regard to the initial population (level ). Finally, the proportion of

-agents with regard to the population of agents selected (level +1) is +1 =
1
³

+
¡ ¢ ´

=

1
³

+
´
.

Therefore the dynamic equation has this form:

+1 = ( ) =
1
³

+
´ (1)

The following property of the proportion of successful eligible agents ( ) is worth pointing out: has a

lower bound, which is reached when the whole population of the level is type , i.e. = 1. As indicated above,

-agents have a lower success rate because the type 2 environment is less probable than type 1, ( 1 2).

Thus, the proportion of successful agents is smallest when the whole population of agents is type . Note that
6The number of -agents in a group is =
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is the proportion of eligible agents (all type if = 1), a fraction 2 of them from under environment type

2 and consequently successful. Therefore, if = 1, then = 2. We can state that in all cases 2.

As a consequence, if the proportion of agents eventually promoted, , is lower than 2, then all the agents

promoted are successful eligible agents. Note that 2 2, so if 2 all agents promoted are

successful eligible agents.

Another interesting property derived from this is the following: For all (0 2), the dynamic is the same,

i.e. the proportion of -agents in the set of promoted agents does not change for any (0 2). That is because

the system randomly chooses agents from among the eligible successful agents, so the proportion of -agents

selected is always the same and equal to the proportion of -agents among the eligible successful agents, i.e.

. Therefore, the e ective selectivity of the global selection is limited because it is parameterized by . This

result is related to our assumption of considering only two results: right and wrong. Consequently, in the pool

of eligible agents there are only two kinds of agent: successful and unsuccessful. If we had considered more

than two possible results7, the role of global selection would have been more signicant. At the beginning of

Section 5, we show that if only global selection works, the composition in the long run is identical for any level

of selectivity.

Remark 1 The proportion of agents who are successful ( ) is always 2 or greater. If 2, all the

agents promoted are successful. For all (0 2), the proportion of -agents among the agents promoted does

not change, and the e ect of global selection on the population prole is identical for any level of global selectivity

in this interval. However, local selectivity always has an e ect on the population prole.

We use [ ] to denote the promotion system that selects agents from groups of agents in local selection

and a proportion of eligible agents in global selection. We consider the following concept of equilibrium.

Denition 1 [0 1] is a globally stable equilibrium of the dynamic system given by +1 = ( ) if for all

0 (0 1), lim = . And,
£
[ ]

¤
denotes for the promotion system [ ].

In the following sections, we analyze the dynamics. First, we study the simple case where = 2 , i.e.

[ =2 =1 ] and only global selection changes. After that, we x global selection and local selection changes.

Eventually, we focus on the general case [ ].

7For example, ten levels of success.
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3 Selection in Pairwise Contest [ = 2 = 1 ]

To derive the dynamic equation, we detail the equation (1) for = 2 and = 1.

+1 = ( ) =
1( )

2( )

=

2 1 1
2

2+2 1 ( 1+ 2) 2 2+2 1 ( 1+ 2)
2

³
2 1 1 +

( 2+2 1 ( 1+ 2)
2)

1 ( 2+2 1 ( 1+ 2) 2)
(1 1 (1 ) 2)

´
2+2 1 ( 1+ 2)

2

(2)

The following proposition gives us the globally stable equilibrium of the system under the selection process

[ =2 =1 ], i.e., [ [ =2 =1 ]]. The expression represented by is a root of the equation 2( ) = 0

and depends on 1, 2 and . The explicit expression can be found as 3 in the proof of proposition 1 in the

Appendix.

Proposition 1 Let 1 2, ¯1 = 3 1 2

1+ 2
, and ¯2 =

2
1+2 2 1(1+ 2)

2
, and consider the selection system

[ =2 =1 ] specied by the Eq. (2). The globally stable equilibrium is:

�• If 1 2 2 then [ [ =2 =1 ]] = 1

�• If 1 2 2 then8 [ [ =2 =1 ]] =

2 1 2

1+ 2

¯
1

¯
1

¯
2

1 ¯
2 1

In addition, if [¯1 ¯2], then [2 1 2

1+ 2
1]. Moreover, is increasing in

The propositions outlined above establish that if -agents are on average much better performers than -

agents ( 1 2 2), in the long run all agents will be type . Thus, the value of (global selectivity) does not

really matter, as we get the same result for any . The performance of -agents is too strong.

On the other hand, if the gap between the two success rates 1 and 2 is not too large ( 1 2 2), in the

long run the population prole depends on the value of , i.e. the degree of selectivity of the system. Thus,

if selectivity is low enough, i.e., is greater than ¯2, in the long run all agents will be type . However, if

selectivity increase and ¯
2, -agents survive, and their proportion increases as selectivity increases. This

happens until drops below a certain threshold (¯1). If ¯
1 (selectivity is maximum) the proportion of each

type of agent does not change with . This is consistent with remark 1. Thus, if selectivity is intense then

-agents, who follow the rule with the lower success rate, survive in a greater proportion than for any other

value of .

The propositions outlined above therefore establish, surprisingly enough, that the more selective the system

is (smaller ), the higher the proportion of agents who follow the rule with the worse success rate is. We provide

a comprehensive intuition at the end of the section 5.
8 If 1 2 2, then ¯1 ¯

2 (see proof of Proposition 1 in the Appendix).
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In this section, local selectivity is xed and only global selection changes. Therefore, the e ective selectivity

is limited because of remark 1. In next section, we x global selection and change local selectivity by mean of

. The ratio 1 determines the level of local selectivity. Thus, we can increases the e ective selectivity as much

as we want it.

4 Groups of n agents with = 1, [ = 1 ]

In this section, we assume = 1 and consider as a parameter: The agents now interact in groups of agents.

If we consider di erent group sizes, we can also consider a wide range of degrees of local selectivity. The level

of local selectivity is characterized by the quotient : in fact it is 1 . By changing parameter , we can thus

consider levels of local selectivity9 between
1

2
and 1.

To derive the dynamic equation, we detail the equation (1) for = 1.

+1=
(1 (1 ) ) 1

(1 (1 ) ) 1+(1 ) 2

(1 (1 ) ) 1+(1 ) 2

1
h
(1 (1 ) ) 1+( 2+ (1 1 2)) (1 (1 ) ) 1+(1 ) 2

1 (1 (1 ) ) 1+(1 ) 2

i
(1 (1 ) ) 1+(1 ) 2 (3)

To understand what happens in the long run, we consider two extreme cases, one in which there is no global

selection, (i.e. = 1), and another in which there is the strongest possible global selection (i.e. 2).

4.1 The promotion system [ = 1 = 1]

In this case, there is no global selection, = 1, and Eq. (3) becomes:

+1 = (1 (1 ) ) 1 + 2 + (1 1 2) (4)

Let 1 be an inner root that belongs to the open interval (0 1) of the equation:

2( ) = (1 (1 ) ) 1 + 2 ( 1 + 2) = 0 (5)

This root exists and is unique if 1 ( 1) 2 (see the proofs of the result in the Appendix).

Proposition 2 Let 1 2. Consider the selection process [ =1 =1] specied by the Eq. (4). The globally

stable equilibrium is:

[ [ =1 =1]] =
1 1 ( 1) 2

1 1 ( 1) 2

Proposition 3 In addition, [ [ =1 =1]] is decreasing in . Thus, [ [ 1 =1]] [ [ +1 1 =1]], and the

inequality is strict if 1 ( 1) 2.

The propositions outline above establish that if -agents are on average much better performers than -

agents ( 1 ( 1) 2), in the long run all agents will be type . However, the previous propositions also

9Since we consider in this section = 1, the fraction belongs to 0 1
2
, more specically 1 , thus the level of

local selectivity will be in the interval [ 1
2
1)
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demostrate that no matter how low the success rate of a type is, if the selection process has a high enough

selectivity, agents of this type survive in the long run. If increases enough, type agents survive and increase

in proportion. This might well seem paradoxical, but the intuition for it is in the section ??.

To conclude this section, note that if goes to innity, Eq. (4) goes to the equation +1 = 1+ (1 1 2),

and therefore [ [ 1 =1]] goes to 1

1+ 2
. Thus, [ [ 1 =1]] ( 1

1+ 2
1], and the proportion of -agents has

an upper bound.

4.2 The promotion system [ = 1 2]

In this case, the global selectivity is intense, the proportion of agents selected in the global selection (
1
) is

always smaller than the proportion of eligible successful agents ( ), (see remark (1)). Thus, we can rewrite

the Eq. (3) as:

+1 =
(1 (1 ) ) 1

(1 (1 ) ) 1 + (1 ) 2
(6)

As in the previous section, we nd two possible kinds of long-run behavior: The entire population is type ,

and with both types of agent surviving. As before, it is not possible to nd an explicit expression for the inner

stady state, which we denote by 2. Where 2 is a root of the equation:

+1 =
(1 (1 ) ) 1

(1 (1 ) ) 1 + (1 ) 2
= 0 (7)

This root belongs to the open interval (0 1), and it exists and is unique if 1 2, (see the proof of the

result below in the Appendix).

Proposition 4 Consider the selection process [ 1 2] specied by Eq. (6). The globally stable equilibrium is:

[ [ 1 2]] =
2 1 2

1 1 2

Note that Eq. (7) above can be written as (1 (1 ) +1) 1+
+1

2 ( 1+ 2)
(1 (1 ) ) 1+(1 ) 2

= 0 and it has the same roots as

the equation (1 (1 ) +1) 1+
+1

2 ( 1+ 2) = 0. The only di erence between this last equation and

Eq. (5) is that + 1 appears instead of . We can therefore state that:

[ [ +1 1 =1] = [ [ 1 2]]

Therefore, if we increase the size of the groups by one individual, the e ect in the long run is the same as

imposing the highest degree of global selectivity. In other words, increasing local selectivity by increasing from

to + 1 is equivalent to increase the global selectivity by decreasing from = 1 to 2.

Moreover, since the solution is decreasing in :

[ [ 1 =1] [ [ 1 2]]

11



On the other hand, note that if goes to innity, Eq. (6) goes to the equation +1 = 1

1+ 2
, and therefore,

[ [ 1 2
] goes to 1

1+ 2
. Thus, [ [ 1 2]] ( 1

1+ 2
1] as before.

In this section, the level of local selectivity is specied by the expression 1 1 , and thus we have so far only

considered levels of selectivity that are higher than 1
2 . We now look at what happens when the level of selectivity

is lower than 1
2 , i.e. the proportion of agents promoted is greater than

1
2 . To nd the answer to this question

we look in the following section at the more general family of promotion systems [ ].

5 The General Case [ ]

First, we show that if there is no local selection, i.e. = 1, then the global selection by itself is not enough to

produce a result di erent from [ [ ]] = 1, only -agent survive. The e ect of global selection is bounded

as is shown in remark 1. The proof is in the Appendix.

Proposition 5 Let 1 2, = , and consider the selection processes [ ] specied by the Eq. (1).

The globally stable equilibrium is: [ [ ]] = 1.

We now consider the general promotion system with . The objective is to give a general picture of

the dynamics involved. From now on, we simplify matters by considering that 3 = 0 (i.e. 1 + 2 = 1). The

expression that we obtain if we expand Eq. (1) is far too large and complex, which makes it impossible for us

to work in the same way as we did in the previous sections. For this reason, we rst show an analytical result

that characterizes the local stability of the steady states = 0 and = 1. Then, we state a conjecture that we

check by numerical analysis. After that, we can draw some conclusions.

Note that ( ) = ( ) is a continuous function, the roots are the steady states, and the sign of ( )

determines whether increases or decreases. As = 0 and = 1 are always steady states of the system,

(0) = (1) = 0. Obviously, if ( ) 0 for any (0 ) with some 0, then = 0 is unstable. Also, it is

unstable if 0(0) 0. Next, we present a result about the local stability of the steady states = 0 and = 1.

The proof is in the Appendix.

Proposition 6 Let 1 2, 3 = 0, 1 and consider the selection process [ ] specied by the Eq. (1):

If 2 and,
2

1
then = 0 and = 1 are unstable.

2

1
then = 0 is unstable and = 1 is locally stable.

.

If [ 2 1], then = 0 is unstable and = 1 is locally stable.

If 1, then = 0 and = 1 are locally stable.

Therefore, only three types of behavior are possible. Type I, = 0 and = 1 are unstable. Note that, as

( ) is continuous, there must be at least one inner steady state (a root) in this case10 . If there was only one,

10This is true by Bolzano�’s Theorem. On the one hand, if = 0 and = 1 are unstable, then ( ) is positive around = 0 and

negative around = 1. On the other hand, ( ) is continuous and (0) = (1) = 0.
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this would be globally stable, and -agents would also survive. Type II, = 0 is unstable and = 1 is stable.

In this case, if there was no inner steady states, then = 1 would be globally stable, and -agents would be the

only survivors. Type III, = 0 and = 1 are stable. As in the rst case, there must be at least one inner steady

state. If there was only one, then both = 0 and = 1 would be locally stable and the basins of attraction

would be determined by that inner steady state.

Conjecture 1 In the open interval (0 1), ( ) has no roots in the second type described above and has only one

root in the rst and third types if 1 is not very close to 2

We check the validity of this conjecture by numerical analysis. It is presented in further detail in the

appendix. In order to conduct numerical analysis, values must be specied for a sizable subset of the function�’s

four parameters11: ( 1). After specifying values for ( 1), the equation ( ) = 0 becomes an

equation of just one variable, and it is a quotient of univariate polynomials. It is straightforward to prove that

the denominator is always positive, thus, we only have to check the roots in the open interval (0 1) of just one

univariate polynomial12.

Our numerical results conrm the validity of the conjecture13 if 1 is not very close to 2, see Appendix for

details. Therefore, we can draw some conclusions from Proposition 6. Under low enough levels of selectivity

( 1) in the promotion system, the selection process is not strong enough to overcome the inertia of

the initial population. The dynamic depends on the initial conditions, and the population eventually becomes

homogeneous, i.e. either type or type . We call this dynamics as . If selectivity is increased,

the basin of attraction of the state = 1 increases. If selectivity increases enough ( [ 2 1]), the whole

population will be type for any initial population. In that case, the selection process is strong enough to

eventually select the -agents. We call this dynamic . Finally, if the selectivity is increased far enough

( 2) the behavior of the system depends on local selectivity alone14 . If that selectivity is not too high

( 2

1
), then only -agents survive as before, i.e., the dynamic is also . However, surprisingly, if the

local selectivity is increased far enough ( 2

1
), type agents also survive. We call this dynamic .

Therefore, no matter how low the success rate of a type is, if the selection process has a high enough selectivity,

agents of that type survive in the long run.

To understand why this happens, we must rst observe that the dynamic of the system depends on the

probabilities of promotion of each type of agent15 . For example, if the system is in a period and the probability

of an -agent being promoted is greater than that of a -agent, then the proportion of -agents in period +1

11 In this section, 2 = (1 1).
12This simple numerical analysis does not present any di culty and can be done with any mathematical software such as Math-

ematica or Matlab.
13When the performance of both actions ( and ) are very similar, and consequently 1 and 2 are close to 1

2
, the dynamic

can be more complicated in some very few particular cases. However, if actions are too similar, selection becomes less interesting.

More details are given in the Appendix.
14This is consistent with Remark 1.
15 See proof of proposition 6.
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is greater than in . I.e., the proportion of -agents increases and the proportion of -agents decreases. To

simplify matters we consider a promotion system with local selection only16. Let us now focus on a particular

type of agent who faces one of the two following extreme scenarios:

�• If agents of this particular type are scarce (let us say close to extinction), an agent of this type will

generally match with agents of the other type17. Thus, in general, there will only be one agent of this

particular type in a group, who will only be promoted if he/she is successful (responds in the right way

to the environment). In this case, the rest of the agents in his/her group will be unsuccessful. Thus, if

an agent of this scarce type is successful, he/she is almost sure to get promoted. In such a context, the

probability of promotion of this particular type of agent is not inuenced by an increase in the degree of

selectivity in the system. His/her probability of promotion depends almost entirely on his/her probability

of success, i.e. it is 1 if the agent is type and 2 otherwise.

�• However, when agents of this particular type abound (let us say the other type is close to extinction),

an agent of this particular type will generally match with agents of his/her own type17. Thus, if all the

agents in a group are of the same type, they respond in the same way to the same environment. The

competitors of a particular agent in his/her own group are also successful (or unsuccessful) as he/she is.

Thus, for purposes of promotion, it does not matter at all if this particular type of agent is successful or

not: the probability of promotion depends almost entirely on how many people are promoted. Therefore,

the probability of promotion of this particular type of agent is strongly inuenced by an increase in the

degree of selectivity in the system.

Therefore, an increase in selectivity tends to punish the more common type of agents because it decreases

their probability of promotion, but it does not a ect the relatively scarce type. If selectivity is high enough, no

one type can be abundant enough to be the only survivor. Thus we can favor or punish diversity by tuning the

level of selectivity.

To give a clearer picture of just what is happening we present the following particular case. We continue to

consider only local selection ( = 1) and assume that the dynamic of the model is . In that case, the only

global equilibrium is the whole population being type ( = 1). Consequently, for any state of the system ,

the probability of promotion of -agents is greater than that of -agents. In the rest of the paragraph, we focus

on states in which ' 1. When ' 1, the probability of promotion of -agents is approximately equal to

the proportion of agents promoted ( ), and the probability of promotion of -agents is approximately equal to

their probability of success ( 2). Obviously, if the dynamic is , then 2. However, if is decreased

(selectivity increases), the probability of promotion of -agents decreases, while the probability of promotion of

-agents remains practically unchanged. Therefore, if decreases beyond 2, then the probability of promotion

16The argument is similar, though more complicated, if we also consider global selection.
17This happens with a probability close to one.
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of -agents is greater than that of -agents, and the proportion of -agents will decrease in the next period.

When this happens, the homogeneous equilibrium = 1 becomes unstable, and the system converges to a

stable globally mixed equilibrium in which there are agents of both types. The dynamic changes from

to .

On the other hand, we can show by a similar argument that if increases beyond 1, the state = 0 becomes

locally stable. In that case, for states of the system close to = 0, the probability of promotion for -agents is

greater than for -agents. In addition, the state = 1 changes from globally to locally stable, and the dynamic

changes from to . The less selective a system is, the easier it is for it to be dominated by one

type of agent and for it to achieve homogeneity.

Therefore, if selectivity increases two forces work together. On the one hand, the more selective a system

is, the more important an agent�’s success or failure in the promotion becomes and, thus, the less important the

e ect of the initial proportions of the di erent types of agent is. On the other hand, an increase in selectivity

tends to punish the more common type of agent because it decreases their probability of promotion but does

not a ect that of the relatively scarce type. Thus, selectivity can encourage diversity.

In this section, obviously, if we consider = 2 the results are consistent with proposition 118.

6 Conclusion

In this paper we show that the degree of selectivity in a selection process can play an important and counter-

intuitive role even in the long run. By means of a dynamic model, we study the role of selectivity in a family

of promotion systems within a hierarchy. The dynamic depends on the probability of promotion of each type of

agent, which in turn depends on three factors: rst, the composition of the population, i.e. the proportion of

agents of each type; second, how strong the selection process is (which we measure with the level of selectivity);

and third, the probability of success in the activity undertaken by agents within the organization. We show that

an increase in selectivity tends to punish the more common type of agent because it decreases their probability

of promotion, while it does not a ect the relatively scarce type. Consequently, we must be careful about the

degree of selectivity in the promotion mechanism within hierarchical social systems. As we show, if we wish to

increase the presence in the social system of certain agents with a high expected success rate we may, in certain

contexts, have to decrease the selectivity of the promotion mechanism rather than increasing it. By contrast,

we may have to increase the selectivity if we want to increase the presence of agents with low performances.

Our result depends largely on one particular critical assumption: In a group, all agents of the same type are

either better or worse than other types simultaneously, thus their successes (or failures) correlate perfectly with

one another. If two agents are under the same environment and are following the same rule and one of them is

successful, then the other will also be successful, or at least more successful than other types, with a probability

18Note that ¯2 = 2 2 when 3 = 0
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of one. If that is the case, selectivity will have this paradoxical e ect in the dynamic of the process. In the real

world it is not easy to nd a situation where this correlation is so strong. We expected that the stronger the

correlation is, the more noticeable this paradoxical e ect will be.

The parameters that we use to measure the level of selectivity in the promotion system can be adjusted to

obtain the optimum population prole for an organization. Obviously, the rst step is to dene an institutional

payo function. We could consider this payo function as the aggregate of the payo of all the groups, and

the group payo s as the aggregate of individual performances. For example, this payo function could depend

on the one hand on the institutional cost of having groups with no agents responding in the right way to the

environment. On the other hand, it could depend on the proportion of groups with at least one agent who

responds in the right way to the environment. After dening institutional payo s, we can calculate the optimum

prole. By tuning19 the level of selectivity, we can get the optimum prole if the optimum is within certain

limits, though not all population proles can be achieved by tuning the level of selectivity.

This paper is closely related to a number of papers. In Harrington [3,6], he uses a selection process in a

hierarchical structure to compare the performance of rigid behavior with that of exible behavior. Harrington

considers only one particular selection process with a unique level of selectivity, while we consider a family of

selection processes that we characterize according to the amount of selectivity implemented. In Harrington[4,7],

he follows the same line of study but now introduces the concept of "social learning", i.e. young agents who

observe the older ones at the top of the hierarchy and imitate them. Finally, in Harrington [5], he adopts a

strategic approach. In these papers, the degree of selectivity is always 12 . In fact, the promotion system that he

uses in his papers is [ =2 =1 =1]. Thus, the level of selectivity is xed, and there is no global selection. By

contrast, Vega-Redondo[11] employs only global selection, although with a di erent approach and purpose.

Although Harrington considers more kinds of agent behavior, our result can be applied to his model. Re-

garding Harrington [3] which was the main inspiration of the present paper, we could say that his results would

change if the degree of selectivity increases or decreases. If the level of selectivity is increased enough, the stable

equilibrium where the entire population follows the most successful rigid rule will lose its stability and there

will be a heterogeneous population in the long run following di erent rules. And if the degree of selectivity is

decreased enough, all the homogenous equilibria become locally stable equilibria. We can make this assertion

because the reasoning in the previous section can be applied to his model.

The present paper is also related to the literature on tournaments developed since the seminal paper by

Lazear and Rosen [9]. There are some papers which have also focused on the selection role of contests, e.g.,

Rosen ([10], Section V), and Hvide and Kristiansen [8].

An interesting extension would be to analyze the role of selectivity with a strategic approach, and how the

level of selectivity can modify individual behavior.

19This makes sense if the system only selects according to performance and not to type. This can happen if the types are not

observable, the types are related to gender, race, or nationality and it is therefore politically incorrect, and so on.
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Appendix

Appendix
PROOF OF PROPOSITION 1

We assume 1 2 0, 1 + 2 1, [0 1], [0 1], and we omit the time subscript wherever it is

not confusing to do so.

The dynamic of the selection process [ ] is given by the equation:

+1 = ( ) =

(
1( ) ( ) 0

2( ) ( ) 0

=

2 1 1
2

2+2 1 ( 1+ 2) 2
2+2 1 ( 1+ 2)

2 0

³
2 1 1 +

( 2+2 1 ( 1+ 2)
2)

1 ( 2+2 1 ( 1+ 2) 2)
(1 1 (1 ) 2)

´
2+2 1 ( 1+ 2)

2 0

(8)

Note that to analyze the dynamics of +1 = ( ), it su ces to study the function:

( ) = ( ) =

(
1( ) = 1( ) ( ) 0

2( ) = 2( ) ( ) 0
(9)

Thus, if �ˆ [0 1] is a root of ( ), i.e., (�ˆ) = 0, then �ˆ is a steady state of +1 = ( ), i.e., �ˆ = (�ˆ). In

addition, if ( ) 0, then +1.

Obviously, = 0 (all the population is type ) and = 1 (all the population is type ) are always steady

states, and, therefore roots of ( ).

For example, in our model, if ( ) 0 for all (0 1), then = 1 is a globally stable equilibrium, i.e., for

any initial condition belonging to (0 1) the system converges to = 1. On the other hand, if there is only one

inner root �ˆ, i.e. (�ˆ) = 0, and ( ) 0 for all (0 �ˆ), and ( ) 0 for all (�ˆ 1), then �ˆ is a globally

stable equilibrium. An inner root is a root that belongs to the open interval (0 1)

As the proof is long and involves several steps, it is useful rst to present an outline of the proof: First, we

show that ( ) is continuous. Second, we calculate the roots of ( ), which are the steady states of the dynamic

equation. With this purpose, we calculate the roots of 1( ) and 2( ), and we prove that the function ( )

has either no inner roots or only one. In fact, we prove that if 1 2 2, then there are no inner roots, and if

1 2 2, then there may be one inner root depending on the value of .

After that, we analyze the stability of the steady states, which can be done by checking the sign of ( )

between the steady states. In fact, it su ces to check the sign of the rst derivatives of ( ) in = 0 and = 1.

Note that on the one hand ( ) is continuous, on the other hand (0) = 0, (1) = 0, and there is either one

inner steady state or none. Thus, it can be stated that if 0(0) 0 then ( ) must be greater than zero between

= 0 and the second steady state. If there is no inner steady state, i.e. the second steady state is = 1, it

can be stated that ( ) must be greater than zero for all (0 1). This means that for any initial condition

(0 1) the system converges to = 1, i.e., = 1 is globally stable equilibrium. However, if there is an inner

steady state, then ( ) is positive between = 0 and that inner steady state and negative between that inner

steady state and = 1. Consequently, the system converges to the said inner steady state.

We also need to prove that there are no periodic points. Note that we work with di erence equations because

we consider discrete time, and there may be periodic points.

We prove the proposition in several steps.

Lemma 1 The function ( ) = ( ) is continuous in [0 1].

It is straightforward to show that 1( ) and 2( ) are continuous: Both functions are quotients of polyno-

mials and both denominators are strictly greater than zero. Furthermore, if 2 +2 1 ( 1 + 2)
2 = , then

1( ) = 2( ) Since ( ) is continuous, ( ) = ( ) is also continuous.¥
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The following lemma determines the inner roots of the function ( ) for (0 1).

Lemma 2 a) If 1 2 2, then ( ) has no inner roots.

b) If 1 2 2, then ( ) has either one or inner root or none depending on the value of

b.1) If ¯
1 =

3 1 2

1+ 2
, then the inner root will be ¯3 = 2 1 2

1+ 2
,

which is the only possible inner real root of 1( ).

b.2) If (¯1 ¯2), with ¯2 =
2
1+2 2 1(1+ 2)

2
, then the inner root will be 3,

which is the only possible real root of 2( ) in the interval (0 1).

b.3) Finally, when ¯
2, there is no inner root.

Several steps are also needed to prove this lemma. As the roots of ( ) have to be roots of either 1( ) or

2( ), we rst calculate the roots of 1( ), which reveals that there is only one root (called ¯3) in addition on

= 0 and = 1. Second, we calculate the roots of 2( ), which shows that there are two roots (called 3 and

4) in addition on = 0 and = 1. Then we prove that 4 1, and 3
1

1+ 2
0. We also prove that 3 1

if and only if [0 ¯2). Consequently, the only candidates for inner roots of ( ) are ¯3 and 3. We show when

either ¯3 or 3 is the root of ( ). We also show that it is not possible for both ¯3 and 3 simultaneously to be

roots of ( ). We prove the above lemma using Claims (2.1)-(2.6).

Claim 2.1 a) 1( ) has a root, ¯3 in addition on = 0 and = 1.

b) ¯3 = 2 1 2

1+ 2
1 1 2 2

Note that 1( ) = 1( ) =
2 1 1

2

2+2 1 ( 1+ 2) 2 = ( 1) ( 1+ 2) +( 2 2 1)

2+2 1 ( 1+ 2) 2 , and the denomi-

nator is greater than zero. The equation 1( ) = 0 has the following roots:

¯1 = 0 ¯2 = 1 ¯3 =
2 1 2

1+ 2

The root ¯3 = 2 1 2

1+ 2
0, and it is straightforward to show that 2 1 2

1+ 2
1 1 2 2.

Claim 2.2 a) 2( ) has two roots, 3 and 4 in addition on = 0 and = 1.

b) 4 (0 1)

c) 3 ( 1

1+ 2
1) if and only if [0 ¯2). And, 3 0

As 2( ) = 2( ) =

µ
2 1 1 +

( ( 2+2 1 ( 1+ 2)
2))(1 1 (1 ) 2)

1 ( 2+2 1 ( 1+ 2) 2)

¶

=
( 1) ( 2( 2

2
2
1 )+ (2 1( 1 2)+( 1+ 2)(1 ))+ 2(1 2) 1(2 2))

(1 ( 2+2 1 ( 1+ 2) 2))

It is straightforward to show that the denominator
¡
1 2 1 2 +

2( 1 + 2)
¢

0. Thus, the equation

2( ) = 0 has four roots. Two of them are 1 = 0 and 2 = 1. The other two, 3 and 4, are given by the

polynomial:

[ ] = 2
¡

2
2

2
1

¢
+ (2 1 ( 1 2) + ( 1 + 2) (1 )) + 2(1 2) 1 (2 2)

Let [ ] = 2 + + . It is straightforward to show the sign of the coe cients, , , and :

=
¡

2
2

2
1

¢
0

= 2 1 ( 1 2) + ( 1 + 2) (1 ) 0

= 2(1 2) 1 (2 2) 0

(10)

It is tedious but straightforward to prove that the discriminant is:

2 4 = ( 1 + 2)
2 (1 )2 4 ( 1 2)

2 (( 1 + 2) (1 2)
2
1 ) (11)

If the discriminant 2 4 0, then 3 and 4 are real roots, and since 0 and 0 it results that:

3 =
+ 2 4

2

2 4

2 = 4
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Now we prove by contradiction that if 4 is a real root it is not smaller than 1.

4 =
2 4

2 1
p

2 4 2
p

2 4 2 +

Therefore, if 4 1, then 2 + 0 is necessary condition. Next we show that it is not possible for both

conditions to hold simultaneously; 2 4 0 (real 4) and 2 + 0.

Using (10) and (11) it is straightforward to show that:

First, 2 + 0 ( 1 + 2) (1 ) 2 2 ( 1 2) 0

( 1 + 2)
2 (1 )2 (2 2 ( 1 2))

2,

and second, 2 4 0 ( 1 + 2)
2 (1 )2 4 ( 1 2)

2 (( 1 + 2) (1 2)
2
1 ) 0

( 1 + 2)
2 (1 )2 4 ( 1 2)

2 (( 1 + 2) (1 2)
2
1 )

Combining the above expressions:

4 ( 1 2)
2 (( 1 + 2) (1 2)

2
1 ) ( 1 + 2)

2 (1 )2 (2 2 ( 1 2))
2

Therefore, the following expression is a necessary condition for 2 + 0 and 2 4 0 to hold

simultaneously:

4 ( 1 2)
2 (( 1 + 2) (1 2)

2
1 ) (2 2 ( 1 2))

2

( 1 + 2) (1 2)
2
1

2
2 0

We obtain a contradiction because it is straightforward to show that the above expression is always greater

than zero. Thus, 2 + 0 and 2 4 0 cannot hold simultaneously, and 4 cannot be smaller than one

( 4 (0 1)). Consequently, 4 cannot be an inner root of ( ). In addition, if 2 4 = 0, 3 = 4 (0 1).

Now, we prove part ) of the Claim (2.2): 3 ( 1

1+ 2
1) if and only if [0 ¯2).

Initially, we prove that [0 ¯2) = 3 ( 1

1+ 2
1). We rst prove that 3 is a real number if [0 ¯2).

Then we prove that if 3 is real, then 3 is greater than 1

1+ 2
, increasing in , and 1 when = ¯2.

Using expression (11), ( 2 4 ) = 2 ( 1 + 2)
2
( 1) 0. Thus, 2 4 is decreasing in . On the

other hand if = ¯2 =
2
1+2 2 1(1+ 2)

2
, it is tedious but straightforward to show that then: 2 4

¯̄
=¯2

=
1
2
2

¡
3
1

2
1 + 1

2
2 2 3

2 +
2
2

¢2
0. As 3 is real if the discriminant is non-negative, i.e.

2 4 0, the

root 3 has to be real if [0 ¯2).

We now prove that 3
1

1+ 2
if 3 is real:

3 =
+ 2 4

2
1

1+ 2

p
2 4 2 1

1+ 2
+ . It is straightforward to show that 2 1

1+ 2
+

= ( 1 + 2) (1 ) 0. Thus, 3
1

1+ 2

2 4 ( 1 + 2)
2
(1 )

2

( 1 + 2)
2 (1 )2 4 ( 1 2)

2 (( 1 + 2) (1 2)
2
1 ) ( 1 + 2)

2 (1 )2

4 ( 1 2)
2 (( 1 + 2) (1 2)

2
1 ) 0. It straightforward to show that the above expression is

always negative.

We next prove that 3 is increasing in when 3 is real. We use expressions (10) and (11).

3 =
(

+ 2 4
2 )

= 1
2 ( + 1

2(
2 4 )

1
2

( 2 4 ) ) 0 + 1
2(

2 4 )
1
2

( 2 4 ) 0

( 1 + 2) +
1
2(

2 4 )
1
2 2 ( 1 + 2)

2 ( 1) 0 ( 2 4 ) ( 1 + 2)
2 (1 )2

( 1 + 2)
2 (1 )2 4 ( 1 2)

2 (( 1 + 2) (1 2)
2
1 ) ( 1 + 2)

2 (1 )2

4 ( 1 2)
2 (( 1 + 2) (1 2)

2
1 ) 0. As expression ( 1 + 2) (1 2)

2
1 is clearly greater than

zero, it can be stated that 3 0.

We now prove that if 3 is real then 3 = 1 when = ¯2:

3 =
+ 2 4

2 = 1
p

2 4 = 2 +
³p

2 4
´2
= (2 + )

2
0 = + +

0 =
¡

2
2

2
1

¢
+ (2 1 ( 1 2) + ( 1 + 2) (1 )) + ( 2(1 2) 1 (2 2))

0 = 2 2 1 +
2
1 2 1 2

=
2
1+2 2 1(1+ 2)

2
= ¯2

Therefore, we have proved that if [0 ¯2) then 3 is real. And if 3 is real then 3 has to be greater than
1

1+ 2
, increasing in , and 1 when = ¯2. Consequently, if [0 ¯2) then 3 belongs to ( 1

1+ 2
1).
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We next prove part ) of Claim (2.2) in the other direction: 3 ( 1

1+ 2
1) = [0 ¯2)

If 3 ( 1

1+ 2
1) then 3 is real. We have shown above that if 3 is real then 3 0 and 3 = 1 if and

only if = ¯2. Thus, if 3 ( 1

1+ 2
1) then [0 ¯2).

Claim 2.3 If 0 {¯3 3}, then 0 is not an inner root of ( ).

This claim is true because, rst, ( ) =

(
1( ) ( ) 0

2( ) ( ) 0
; and, second, 1( ) has only one possible

root in the interval (0 1), which is ¯3, and 2( ) has only one possible root in the interval (0 1), which

is 3.

The following result denes a property of thresholds ¯1 and ¯2 which will be useful later.

Claim 2.4 Let ¯1 = 3 1 2

1+ 2
and ¯2 =

2
1+2 2 1(1+ 2)

2
. ¯

1
¯
2 1 2 2

This claim is easy to prove:
3 1 2

1+ 2

2
1+2 2 1(1+ 2)

2
( 1 2 2)( 2 + 1(1 1 2 2)) 0

Since ( 2 + 1(1 1 2 2) 0, the sign depends on ( 1 2 2).

Claim 2.5 If 1 2 2, then ( ) has no inner roots.

By Claim (2.3), only ¯3 and 3 can be inner roots of ( ). By Claim (2.1), if 1 2 2, then ¯3 1.

Therefore, ¯3 cannot be an inner root if 1 2 2.

We now show that 3 cannot be an inner root of ( ) if 1 2 2. Note that if ( 3) 0 then 3 cannot be

an inner root of ( ), see expression (9). Thus, we show that if 1 2 2 then ( 3) 0.

Consider ( 3) = 2+2 1 3 ( 1+ 2)
2
3 as a function of , i.e. ( 3( ) ). The derivative is:

( 3( ) ) = 2 1
3 2( 1+ 2) 3

3 1 = 2 3 ( 1 ( 1+ 2) 3) 1 0. It is smaller than zero because
3 0 and 3

1

1+ 2
, see Claim (2.2). Therefore, ( 3( ) ) 0, i.e. if decreases, ( 3) increases.

As shown in Claim (2.2), 3 = 1 if and only if = ¯2. Consequently, if ( 3(¯2) ¯2) 0 then 3 is not an

inner root of ( ). It is straightforward to show that, ( 3(¯2) ¯2) = (1 ¯2) = 1
¯
2. And, 1

¯
2 0

1

2
1+2 2 1(1+ 2)

2
0 1

2
( 1 2 2) (1 1) 0 1 2 2.

The following result shows when ¯3 and 3 are roots of ( ). Note that the sign of ( ) determines whether

( ) = 1( ) or ( ) = 2( ), see expression (9)

Claim 2.6 Let 1 2 2.

a) [¯3 (0 1) and (¯3) 0] ¯
1. Consequently, if ¯

1 then ¯3 cannot be an inner root of ( ).

b) [ 3 (0 1) and ( 3) 0] (¯1 ¯2). Consequently, if (¯1 ¯2) then 3 cannot be an inner root of ( ).

We prove the rst part of the claim, (¯3) 0 ¯
1 =

3 1 2

1+ 2
:

By Claim (2.1), ¯3 1 1 2 2. From expression (8), (¯3) = 2 1¯3 ( 1 + 2) (¯3)
2
+ 2 =

2 1
2 1 2

1+ 2
( 1 + 2)

³
2 1 2

1+ 2

´2
+ 2 0 3 1 2

1+ 2
0

The proof of part ) of the claim ( ( 3) 0 (¯1 ¯2)) is a little longer. First note that, by Claim (2.4),
¯
1

¯
2 1 2 2.

We need a preliminary result: ( 3) = (¯3) = 0 when = ¯1.It is simple to show that if = ¯1, then 3 =

1+ 2+2
2
1 5 1 2 ( 1 2 2

1+ 2+ 1 2 2 2
2 )

2

2( 2
1

2
2 )

= 2 1 2

1+ 2
. In the radicand, the expression 1 2 2

1+ 2+ 1 2 2 2
2

is positive if 1 2 2. Thus, if = ¯1 then 3| =¯1 =
2 1 2

1+ 2
= ¯3

Therefore, if = ¯1 then ( 3) = (¯3) = 0, see part ) of this Claim. On the other hand, it is proven in the

previous Claim that ( 3) is strictly decreasing in . Thus, ( 3) 0 when ¯
1, and ( 3) 0 when ¯

1.

In the case when ¯
2, Claim (2.2) shows that 3 1.
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Consequently, if [ 1 2 2 and ¯
1] then ¯3 is the unique inner root of ( ). If [ 1 2 2 and (¯1 ¯2)]

then 3 is the unique inner root of ( ). If [ 1 2 2 and ¯
2)] then ( ) has no inner roots.¥

Before analyzing the stability of the steady states, we prove that there are no periodic points20 of +1 = ( ).

Lemma 3 +1 = ( ) has no periodic points.

By Claim (2), the function ( ) =

(
1( ) ( ) 0

2( ) ( ) 0
has either only one inner steady state in (0 1)

or none at all. If the function has none, there are obviously no periodic points because either +1 for all

(0 1) or +1 for all (0 1). In the case in which there is one steady state in (0 1), if the function is

increasing in the interval between the inner steady state and one, any possibility of there being periodic points

completely disappears because for all equal to or greater than the inner steady state (�ˆ) either +1 for

all (�ˆ 1) or +1 for all (�ˆ 1), and always +1 �ˆ. Thus, it su ces to prove that the function

( ) is increasing from values that are higher than the inner steady state. We study the derivatives of 1( )

and 2( ).

The function 1( ) is increasing in :

1( ) =
2 1 1

2

2 + 2 1 ( 1 + 2) 2 ;
0

1( ) =
2(1 + 2) 1 2

( 2 + 2 1 ( 1 + 2) 2)
2 0

We now prove that the function 2( ) is increasing in [ 1

1+ 2
1]

2( ) =

µ
2 1 1 + (1 1 (1 ) 2))

( 2 + 2 1 ( 1 + 2)
2)

1 ( 2 + 2 1 ( 1 + 2) 2)

¶

Let ( ) = 2 + 2 1 ( 1 + 2)
2, which is a concave function with a maximum in = 1

1+ 2
. Note

that ( ) = ( ) , therefore ( ) = 2( ) if ( ) . We can rearrange 2( ) in the following way:

2( ) =
1
µ
2 1 1

2 +
¡
(1 1 2) + 2

2
¢ ( )

1 ( )

¶

0
2( ) =

1
µ
(2 1 2 1 ) + ((1 1 2) + 2 2 )

( )

1 ( )
+
¡
(1 1 2) + 2

2
¢ 0( )( 1)

(1 ( ))2

¶

All the terms in the previous expression are always positive except ( 1) (which is negative) and 0( ) (which

may be either positive or negative). The function ( ) is concave, with a maximum in = 1

1+ 2
. Thus,

0( ) 0 when 1

1+ 2
, and 2( ) will be increasing in [ 1

1+ 2
1].

As 1( ) and 2( ) are increasing in [ 1

1+ 2
1], ( ) is also increasing in [ 1

1+ 2
1].

By Claim (2.2), 3
1

1+ 2
. On the other hand, ¯3 = 2 1 2

1+ 2

1

1+ 2
1 2. As ¯3 and 3 are the

only candidates for inner steady states, it can stated that the function ( ) is increasing in the interval between

the inner steady state and one. Therefore, there are no periodic points.¥
From now on, it can considered that there are no periodic points, and there is no need to mention them

further.

We now study the stability of the steady states of ( ), which are the roots of ( ). We need the following

results, which show the sign of the derivative of ( ) in = 0 and = 1.

Lemma 4 ) 0(0) 0

)
h

�ˆ
2 and 2 2 1

i
0(1) 0

20 It is possible in di erence equations for a solution not to be a steady point. Thus, point is called a periodic point of +1 = ( )

if ( ) = for some positive integer , i.e is again reached after iterations. See Elaydi [2].
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If 0
1(0) 0 and 0

2(0) 0 then 0(0) 0. As 0
1( ) =

0

1( ) 1, it is straightforward to show that
0
1(0) =

2 1

2
1. Since 1 2, we can state that 0

1(0) 0. On the other hand, as 0
2( ) =

0

2( ) 1, it is

straightforward to show that 0
2(0) =

2
2
2+ 1( 2+ 2)
( 2 1) , the denominator is negative ( 2 1) 0, and it is

easy to show that the numerator is also negative, 2
2
2 + 1( 2+ 2) = 2(1 2)+ 1( 2+( 2)) 0,

therefore 0
2(0) 0.

Part ).
0(1) is equal to either 0

1(1) or
0
2(1).

0
1(1) =

2 2

1
1, and this expression is greater than zero if and only if 2 2 1.

0
2( ) =

0

2( ) 1, and it is straightforward to prove that 0
2(1) =

1(1+ 2)+ 2( 2) 2
1

( 1 1) . The denominator

is negative, ( 1 1) 0, and the numerator is negative if and only if
2
1+2 2 1(1+ 2)

2
= �ˆ

2 Therefore
0
2(1) 0 if and only if �ˆ

2

Therefore, if either 2 2 1 and (¯1 ¯2) or 2 2 1, then there are no inner roots by Lemma (2), and

as 0(0) 0 the system converges to = 1. If 2 2 1 and ¯
2, by Lemma (2) there is one inner root, and

as 0(1) 0 the system converge to the inner root. This inner root is either ¯3 if ¯
1 or ¯3 if (¯1 ¯2).¥

PROOF OF PROPOSITION 2

We assume 1 2

The dynamics of the selection process [ =1 =1] is given by the equation:

+1 = ( ) = (1 (1 ) ) 1 + 2+ (1 1 2)

Let ( ) = ( ) = (1 (1 ) ) 1+ 2 ( 1+ 2). The solutions of the equation ( ) = 0 are the

steady points.

As that equation does not have an explicit solution, we study the rst and the second derivatives:

0( ) = (1 ) 1
1 +

1
2 ( 1 + 2)

00( ) = ( 1) (1 ) 2
1 + ( 1) 2

2

We now calculate the inection points:
00(�ˆ) = 0 ( 1) (1 �ˆ) 2

1 + ( 1) �ˆ 2
2 = 0 (1 �ˆ) 2

1 = �ˆ 2
2 (1

�ˆ)
1
2

1 = �ˆ
1
2

2

�ˆ =

1
2

1
1
2

1 +
1
2

2

= 1

1+( 2
1
)

1
2

Therefore, if 2 we can then state that the function ( ) has no more than one inection point in (0 1).

As �ˆ must be smaller than one, ( 2

1
)

1
2 must be positive (no negative roots).

Obviously, = 0 and = 1 are roots of the equation ( ) = 0. The second derivative at these points are
00(0) = ( 1) 1 0 and 00(1) = ( 1) 2 0. Therefore, the function ( ) is concave at = 0 and

convex at = 1. As ( ) is continuous in [0 1], the function ( ) is concave in [0 �ˆ) and convex in

(�ˆ 1].

On the other hand the rst derivatives of ( ) at = 0 and = 1 are:
0(0) = ( 1) 1 2 0, thus, the function ( ) is increasing at = 0.
0(1) = ( 1) 2 1, thus, the function ( ) at = 1 is either increasing if ( 1) 2 1 or decreasing

if ( 1) 2 1

Therefore, if ( 1) 2 1, the function ( ) is necessarily equal to zero only in one point in the open

interval (0 1). Calling this point 1, we can state that the function ( ) is greater than zero in (0 1)

and smaller that zero in ( 1 1). Thus,
£
[ =1 =1]

¤
= 1 if ( 1) 2 1.
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On the other hand, if ( 1) 2 1, then the function ( ) can not have a value of zero in the interval

(0 1). Moreover, ( ) will be positive in (0 1), thus
£
[ =1 =1]

¤
= 1 if ( 1) 2 1

To complete the proof we need only note that periodical points are not possible. This is because the rst

derivative of the function ( ) is positive and, as such, ( ) is increasing: ( ) = (1 (1 ) ) 1 + 2 +

(1 1 2) and 0( ) = (1 ) 1
1+

1
2+(1 1 2) 0 Periodical points are therefore not

possible.¥
PROOF OF PROPOSITION 3

It is only necessary to prove that 1| 1| +1, if 1 ( 1) 2

Let ( ; ¯)be the function ( ) evaluates in = , with the parameter = ¯.

Let 1 = �˜ if = ¯, and let 1 =  if = ¯ + 1. Thus, (�˜; ¯) = 0 and (; ¯ + 1) = 0

We wish to prove that  �˜ if (¯ 1) 2 1.

Note that proving the previous statement is the same as proving that (�˜; ¯ + 1) 0 because of the charac-

teristics of the function ( ). Therefore, it su ces to prove that (�˜; ¯ + 1) 0.

As (�˜; ¯) = 0,

(�˜; ¯) = (1 (1 �˜)¯) 1 + �˜
¯

2 �˜( 1 + 2) = 0

(1 �˜) 1 (1 �˜)¯ 1 + �˜
¯

2 �˜ 2 = 0 (12)

�˜ �˜¯

(1 �˜) (1 �˜)¯
=

1

2

On the other hand, (�˜; ¯ + 1) = (1 (1 �˜)¯+1) 1 + �˜
¯+1

2 �˜( 1 + 2) is smaller than 0 if and only if:

(1 �˜) 1 (1 �˜)¯+1 1 + �˜
¯+1

2 �˜ 2 0

Given Eq. (12), the previous expression will be true if and only if:

�˜¯ 2 �˜¯+1 2 (1 �˜)¯ 1 (1 �˜)¯+1 1
�˜¯ �˜¯+1

(1 �˜)¯ (1 �˜)¯+1
1

2
(= �˜ �˜¯

(1 �˜) (1 �˜)¯ )

�˜¯ �˜¯+1

(1 �˜)¯ (1 �˜)¯+1
�˜ �˜¯

(1 �˜) (1 �˜)¯
�˜¯ 2

(1 �˜)¯ 2
1 �˜¯ 1

1 (1 �˜)¯ 1
�˜¯ 2

1 �˜¯ 1
(1 �˜)¯ 2

1 (1 �˜)¯ 1

It is straightforward to show that the left hand of the previous expression is increasing in �˜, and the right

hand is decreasing in �˜. Moreover, if �˜ =
1

2
the two terms are equal. Therefore, if �˜

1

2
then the previous

expression will be true.

Note that: ( 12 ; ¯) = (1 (1 1
2)
¯) 1 +

¡
1
2

¢¯
2

1
2( 1 + 2) =

¡
1
2

1
2¯

¢
( 1 2) 0

Since the previous expression is greater than zero, we can state that �˜
1

2
¥

PROOF OF PROPOSITION 4

The dynamics of the selection process [ =1 2] is given by the equation:

a +1=
(1 (1 ) ) 1

(1 (1 ) ) 1+(1 ) 2

Let be +1 = ( ) and

( ) = ( ) = (1 (1 ) ) 1

(1 (1 ) ) 1+(1 ) 2
= 1 1(1 ) 1+ 1(1 ) 2+

1+
2

1+ 2 1(1 ) 2
=

(1 (1 ) +1) 1+
+1

2 ( 1+ 2)

1+ 2 1(1 ) 2

Since the denominator is greater than zero, the sign and the roots of the previous expression depend on

the numerator. Notice that the only di erence between this numerator and the function ( ) in the previous

proposition 2 is that + 1 appears instead of . We can therefore state that:

[ [ +1 1 =1] = [ [ 1 2]]
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Moreover, since the equilibrium is decreasing in (provided that 1 2):

[ [ 1 =1] [ [ 1 2]]

¥
PROOF OF PROPOSITION 6

Let 1 2, 3 = 0, 1 and consider the selection process [ ] specied by the Eq. (1).

We must rst observe that the dynamic of the system depends on the probabilities of promotion of each type

of agent. If the system is in a period (or level ) and the probability of an -agent being promoted ( ( ))

is greater than that of a -agent ( ( )), then the proportion of -agents in period +1 is greater than in

. I.e. the proportion of -agents increases and the proportion of -agents decreases.

It is easy to prove the previous statement. Note rst that we can obtain the dynamic equation from those

probabilities.

+1 = A-agents promoted
agents promoted =

P ( )
P ( )+ P ( ) =

P ( )

Analogously, +1 =
P ( )

Lemma 5 If ( ) ( ), then +1

Note that, +1 =
P ( )

( ) = +1 ,

and +1 =
P ( )

( ) = +1 . Therefore:

( ) ( ) +1 +1 +1 +1

+1 (1 +1)
(1 ) 0 +1 0 +1 ¥

To nd when equilibria = 0 and = 1 are either stable or unstable, we can study the promotion probabilities

when the system are close to these equilibria. Thus, if we prove that the probability of promotion for an -agent

is greater (smaller) than it is for a -agent, provided that the system is indenitely very close to = 0, then we

can state that these equilibria are unstable (stable). We can do the same thing with = 1. Thus, we obtain the

following result, which explains when equilibria = 0 and = 1 are either (locally) stable or unstable.

We rst obtain the probability of promotion. An agent can be promoted in two di erent events, i.e. he is

either eligible and successful ( ) or he is eligible and but unsuccessful ( ). Therefore, the probability of

an agent�’s following the rule being promoted (in period ) can be written as:

( ) = ( ) ( ) + ( ) ( )

Thus, the probability of promotion for an agent who follows rule is a linear combination of the agent�’s

probability of being in event (i.e. ( )) and in (i.e. ( )), where the weights are given by

the probability of being promoted in each event (i.e. ( ) and ( )).

tES tEU

k
n

k Eligible Agents
n

t
k ESn

tES tEU

k
n

k Eligible Agents
n

t
k ESn

Figure 1: The grey rectangle represents the Eligible Agents
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Using Figure 1, it is straightforward to derive the following probabilities:

( ) = min{ 1} ( ) = max{ 0}

( ) = ( ) =

( ) = (1 ) =
( )
(1 ) ( ) = (1 ) =

( )
(1 )

(13)

For example, ( ) = = Proportion of A-agents that are eligible and successful
Proportion of A-agents that can be chosen .

If we want to analyze the stability21 of = 1, then it is su cient to nd which probability of promotion is

greater when the state of the system is very close to one ( ' 1). If the promotion probability of an -agent

is greater(smaller) than that of a -agent and this is true as much as the state closes to one is, then the state

= 1 will be locally stable(unstable).(Analogously to = 0).

Notice that,

�• if ' 1 then:

' ' 1

' ' 2

Note that , , , and are polynomials, see the expressions in Section 2. It is straightforward

to derive that lim
1

= 1. Analogously to , , and .

The probabilities ( ) and ( ) are straightforward to derive. We rst replace the , ,

, and in expression 13 by the expressions in Section 2 and simplify them, afterwards, we calculate the

limits of the expressions when goes to 1.

Therefore:

( ) ' min{
1
1} ( ) ' max{ 1

2
0}

( ) ' 1 ( ) ' 2

( ) ' 2 ( ) ' 0

The promotion probability for an -agent when the state is close to one, ' 1, is:

'1( ) ' min{
1
1} 1 +max{

1

2
0} 2 = min{ 1} +max{ 1 0}

= (min{ 1}+max{ 1 0}) =

(
if 1

( 1 + 1) = if 1

)
=

And for a -agent (if ):

P '1( ) ' min{
1
1} 2 +max{

1

2
0}0 = min{

1
1} 2 = 1

2 if 1

2 if 1

Thus;

P '1( ) '

P '1( ) '

(
1

2 if 1

2 if 1

We know that if '1( ) ( ) '1( ) then = 1 is stable (unstable). Thus, if 1, then

= 1 will be stable (unstable) provided that ( )
1

2 ( ) 2

1
. On the other hand, if 1 then

= 1 will be stable (unstable) provided that ( ) 2

21 In this proof, the stability we refer to is always the local stability
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Analogously, we can study the state = 0 and derive the promotion probabilities in this case:

P '0( ) '

P '0( ) '

(
2

1 if 2

1 if 2

If 2 then = 0 will be stable (unstable) provided that ( )
2

1 ( ) 1

2
Since 1 2,

the state = 0 will be unstable provided that 2. On the other hand, if 2, then = 0 will be stable

(unstable) provided that ( ) 1. Since 1 1 1 2, the state = 0 will be unstable if

1 and this state will be stable if 1.

In short:

if 1 then

(
= 1 stable if 2

1

= 1 unstable if 2

1

if 2 then = 0 unstable

if 1 then

(
= 1 stable if 2

= 1 unstable if 2

if 2 then

(
= 0 stable if 1

= 0 unstable if 1

It is straightforward to derive that:

�• If 1 and,

2

1
then = 0 and = 1 are unstable (type I ).

2

1
then = 0 is unstable and = 1 is stable (type II ).

�• If 1 and,

2 then = 0 and = 1 are unstable (type I) (type I ).

2 1 then = 0 is unstable and = 1 is stable(type II ).

1 then = 0 and = 1 are stable (type III ).

The Figure 2 shows this result in graphic form. There are two cases22.The above result in a more compact
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Figure 2: The vertical axes of these graphs represent and the horizontal axes represent . The right graph is the case

of 1
2

1
and the left graph 1

2

1
.

way:

If 2 and,

(
2

1
then = 0 and = 1 are unstable.

2

1
then = 0 is unstable and = 1 is stable.

.

If 2 1, then = 0 is unstable and = 1 is stable.

If 1 , then = 0 and = 1 are stable.

¥
22 It is straightforward to show that 2

2

1
is always true, and 1

2

1
1

(1 1)

1

2
1+ 1 1 0 1

5 1
2

' 0 618
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NUMERICAL ANALYSIS

We check the validity of the conjecture by numerical analysis. In order to conduct numerical analysis,

values must be specied for the function�’s four parameters23 : ( 1). Numerical analysis was conducted

for a sizable subset of ( 1) { | {1 2 100}} × {3 4 19 20 50 100} × { 150
2
50

50
50} ×

{ 51100
52
100

99
100}. When = 100, a wide range of local selectivity is considered: { 1

100
99
100}. In addition,

we consider other values of . After specifying values for ( 1), the equation24 ( ) = 0 becomes an

equation of just one variable, and it is a quotient of univariate polynomials. It is easy to see that because

is dened by a univariate polynomial, and the product of two polynomials in is a polynomial in . It is

straightforward to prove that the denominator of that quotient is always positive, thus, we only have to check

the roots in the open interval = (0 1) of just one univariate polynomial. This simple numerical analysis does

not present any di culty and can be done with any mathematical software such as Mathematica or Matlab.

Given the parameter values that we considered, we calculated the roots of this polynomial for 825650 di erent

parameter combinations.

The set of parameters considered is divided into four parts according to proposition 6. We obtained the

following results:

If 2 and 2

1
, then there is only one root in the open interval = (0 1). Therefore, if selectivity

is strong enough there is only one inner root and by proposition 6 it will be globally stable.

If 2 and 2

1
, then there is not any root in the open interval = (0 1). Therefore, by proposition

6, = 1 will be globally stable.

If [ 2 1], as in the previous case, there is not any root in the open interval = (0 1) when 1 0 57.

However, there are some few isolated cases in which we found another kind of dynamic behavior. When this

happens, we observe that 1 0 57 and 1
2

2

1
. As it is stated above, if selectivity is high enough, there

is only one inner steady state. When selectivity decreases, the steady state = 1 can become locally stable

before the inner steady state disappear but in some very few particular cases. As a result two inner steady states

appear for an exceedingly small set of parameters. This is discussed below.

If 1, there is only one root in the open interval open interval = (0 1) and by proposition 6 = 0

and = 1 will be locally stable. However, we found just one parameter combination where the conjecture does

not hold in this interval. In this case, both = 0 and = 1 are locally stable and the inner steady state

remains. Consequently, there are three steady states. When this happens, 1 is very close to 1
2 ( 1 0 51) and

1
2

2

1
.

Although we cannot state that the conjecture is generically true because the set of parameter (in which the

conjecture is not true) does not have measure zero, we observe that this parameter set is exceedingly small.

For example, if = 50 we compute the equation ( ) = 0 for 242550 di erent parameter combinations and we

only found three cases where the conjecture does not hold. When = 100, the conjecture always holds for the

parameter set considered.

Anyway, we found that the conjecture always hold if 1 0 57. In the case 1 0 57 we found a few cases

where the conjecture does not hold, and only when 1
2

2

1
and 2. This suggests that has to

be greater than 2 which is in turn greater than 1
2 . The interval of where the conjecture does not hold is

extremely small and belongs to the open interval ( 2 1). For example, if = 50, = 26, 1 = 51 and 2 = 49,

the interval of where the conjecture does not hold belongs to (0 9423 0 9454). As 1 increases we observed

that this interval decreases. For example, if = 50, = 26, 1 = 57 and 2 = 43 the interval of where the

conjecture does not hold belongs to (0 826923 0 826928).

23We assumed that, 2 = (1 1)
24 ( ) = 0 ( ) = 0, and ( ) is dened in expression (1)
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