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 Abstract 
Caves, Christensen and Diewert proposed a method for estimating a theoretical 
productivity index for a firm using Törnqvist input and output indexes, augmented by 
exogenous estimates of local returns to scale. However, in order to implement their 
method, they assumed that the firm maximized revenue in each period, conditional on the 
observed input vector in each period, taking output prices as fixed. This assumption is not 
warranted when there are increasing returns to scale. Thus in the present paper, it is 
assumed that the firm solves a monopolistic profit maximization problem when there are 
increasing returns to scale and the results of Caves, Christensen and Diewert are modified 
in accordance with this assumption.   
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1. Introduction 
The application of the Malmquist (1953) productivity index by Caves, Christensen and 
Diewert (1982) (CCD) to a flexible functional form in an exact index number context has 
found many applications in diverse contexts.2 Applications include the assessment of the 
productive performance of countries3, regulated utilities4, agriculture in developing 
countries5, financial institutions6, dialysis markets7 and polluting firms8.  

The CCD framework uses the “economic approach” to justifying the choice of index 
number formulae for calculating aggregate indexes of input, output and productivity. This 
approach specifies the index of interest in terms of a theoretical (Malmquist) index, 
assumes a particular functional form to represent the underlying technology, and then 
derives the index number formula which corresponds to the theoretical index. An index 
number formula derived in such a way provides a straightforward means of estimating 
the underlying theoretical index. 

However, the CCD results have two weaknesses:   

• Their results are derived under the assumptions that producers minimize costs 
taking input prices and output targets as fixed and that they also separately 
maximize revenue taking output prices as fixed and inputs as fixed;  

• If there are increasing returns to scale, then exogenous estimates of the (local) 
degree of returns to scale are required in order to evaluate empirically their 
productivity measure.  

The present paper shows how the above two problems can be overcome. The assumption 
of competitive revenue maximizing behavior will be replaced by the assumption of 
monopolistic profit maximization if there are increasing returns to scale. The paper will 
also show how a simple one equation econometric model consistent with the underlying 
theoretical framework can be derived that will enable researchers to estimate the degree 
of returns to scale. Thus the paper will extend the results of CCD in order to demonstrate 
how a standard Törnqvist productivity index, derived from a theoretical Malmquist index, 
can be decomposed into technical change and returns to scale components. The Törnqvist 
productivity index is used by various agencies around the world to measure productivity 
growth, for example, by the U.S. Bureau of Labor Statistics (2002). Although the 
Törnqvist index formula has the form of a weighted geometric mean which allows useful 

                                                 
2 This theoretical productivity index was independently proposed by Hicks (1961) and Moorsteen (1961) 
and is based on the distance function idea originally introduced by Malmquist (1953) in the consumer 
context. 
3 See Färe, Grosskopf, Norris and Zhang (1994), Kumar and Russell (2002) and Kruger (2003).  
4 See Atkinson, Conwell and Honerkamp (2003) and Coelli, Estache, Perelman and Trujillo (2003).  
5 See Nin, Arndt and Preckel (2003).  
6 See Alam (2001) and Sturm and Williams (2004).  
7 See Ozgen and Ozcan (2004). 
8 See Hailu and Veeman (2000) and Weber and Domazlicky (2004).  For a range of other applications and 
references, see e.g. Färe, Grosskopf and Russell (1998), Fox (2002), and Cooper, Seiford and Zhu (2004). 
For recent theoretical advances, see Färe and Grosskopf (2004), De Borger and Kerstens (2000) and Briec 
and Kerstens (2004).  For a review of available software packages for the estimation of Malmquist 
productivity indexes, see Hollingsworth (2004). 
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decompositions in many contexts,9 these decompositions do not extend naturally to 
productivity indexes when there are increasing returns to scale. 

Conventional productivity growth, defined as an output growth index divided by an input 
growth index, can be driven by movements in the technology frontier (technical 
progress)10 as well as movements along the frontier (returns to scale).  The latter effect 
implies that returns to scale may be the cause of fluctuations in the index of conventional 
productivity growth. It is useful to theoretically and empirically determine the respective 
roles of technical progress and returns to scale. As well as the basic issue of gaining an 
understanding of the sources of productivity growth, the reasons for this interest include 
the recent increase in economic growth models with increasing returns to scale,11 the 
implications for understanding the role of returns to scale in industrial organization12 and 
the related implications for regulation.13  

In order to identify the sources of change in a productivity index, one needs to consider 
the underlying economic justification for the index. CCD provide such a justification, but 
their assumptions about producer behavior are not entirely satisfactory. Our results here 
are achieved in the context of a conventional model of imperfect competition, meaning 
that the usual assumption of price taking behaviour which CCD and others used to 
establish relationships between underlying economic functions and index number 
formulae is in fact unnecessary. This means that the economic approach to index numbers 
can be used to justify the use of exact index number formulae for productivity assessment 
even in non-competitive environments, such as the case of firms in regulated industries. 
This greatly strengthens the theoretical underpinnings of empirical analysis in this 
context. 

Finally, empirical implementation of the method for determining the role of returns to 
scale and technical progress yields statistical error terms, which can be interpreted as 
productivity “shocks” of the type of interest in many macroeconomic modelling contexts. 

In section 2 below, we provide the basic theoretical definitions for the Malmquist input, 
output and productivity indexes, and in section 3, we provide a simple method for 
separating technical progress and returns to scale for a Törnqvist productivity index 
derived from a Malmquist index using the economic approach to index numbers.  Section 
4 concludes. 

  

2. Malmquist Input, Output and Productivity Indexes 

 

There has been considerable recent interest in, and debate concerning, alternative 
approaches to decomposing the Malmquist productivity index introduced by CCD; for a 

                                                 
9 See Kohli (2003), Fox, Grafton, Kirkley and Squires (2003) and Shui (2003). 
10 See Tinbergen (1942), Solow (1957) and Jorgenson and Griliches (1967), who assumed constant returns 
to scale. 
11 See Bennett and Farmer (2000), Guo and Lansing (2002), Hintermaier (2003), Jones (2004), Guo (2004) 
and Benhabib and Wen (2004).  
12 See Ciccone (2002), Norman and Venables (2004) and Wang (2003).  
13 See McIntosh (2002). 



 4 

review of the issues and the debate, see Balk (2001) and Grosskopf (2003). Here we give 
the basic theoretical definitions for the Malmquist input and output indexes and a 
preliminary definition for the Malmquist productivity index, following fairly closely the 
definition of these indexes by CCD. 

Let St be the production possibilities set for a production unit or firm for periods t = 0,1.  
We assume that St is a nonempty closed subset of the nonnegative orthant in Euclidean 
M+N dimensional space. If (y,x) belongs to St, then the nonnegative vector of M outputs 
y ≡ [y1,...,yM] ≥ 0M can be produced using the period t technology by the vector of N 
nonnegative inputs x ≡ [x1,...,xN] ≥ 0N.14 

Using the period t production possibilities set St and given a strictly positive output 
vector y >> 0M and a strictly positive input vector x >> 0N, the production unit’s period t 
input distance function Dt for periods t = 0,1 can be defined as follows: 

(1) Dt(y,x) ≡ max δ>0 {δ : (y,x/δ)∈St}. 

Thus given the strictly positive vector of outputs y and the strictly positive vector of 
inputs x and the period t technology St, Dt(y,x) is the maximal amount that the input 
vector x can be deflated so that the deflated input vector x/Dt(y,x) can produce the vector 
of outputs y. Denote the period t observed production vector for the production unit by 
(yt,xt) for t = 0,1. If the period t production vector is on the frontier of the period t 
production possibilities set, then it can be seen that the period t input distance function, 
Dt(yt,xt), is equal to one.  

Instead of deflating the input vector x so that the resulting deflated vector is just big 
enough to produce the vector of outputs y, we could think of deflating the output vector 
so that the resulting deflated output vector is just producible by the input vector x. Thus 
given y >> 0M and x >> 0N, the production unit’s period t output distance function dt for 
periods t = 0,1 can be defined as follows: 

(2) dt(y,x) ≡ min δ>0 {δ : (y/δ,x)∈St}. 

It is not immediately clear that the maximum in (1) or the minimum in (2) will exist. In 
fact, in order to obtain the existence of the functions Dt and dt defined by (1) and (2), 
some restrictions on the production possibilities sets St are required (in addition to the 
assumption that St is a closed, nonempty subset of the nonnegative orthant). In the 
technical Appendix, we postulate a simple set of restrictions on the St which will 
guarantee the existence of these input and output distance functions. 

CCD did not use definitions (1) and (2) in order to define the input and output distance 
functions. Instead, they defined Dt and dt in an equivalent manner using the production 
unit’s period t production function, Ft, or the firm’s  input requirements function, gt. We 
will now explain how these functions can be defined, given the production possibilities 
sets, St. 

                                                 
14 Notation: y ≥ 0M means each component of the vector y is nonnegative, y >> 0M means that each 
component is strictly positive, y > 0M means y ≥ 0M but y ≠ 0M and p⋅y denotes the inner product of the 
vectors p and y. 
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Given St and nonnegative output and input vectors, y and x, we rewrite the output vector 
y ≡ [y1,y2,...,yM] as [y1, ] where , the vector of “other than y1 outputs”, is defined as 
the vector [y2,...,yM]. The period t production function, Ft, is defined as follows: 

(3) Ft( ,x) ≡ {y1 : (y1, ,x)∈St} ;                                                                   t = 0,1.   

If there is no y1 such that (y1, ,x)∈St, then we define Ft( ,x) = −∞. Basically, Ft( ,x) is 
the maximum amount of the first output that can be produced in period t by the 
production unit, given that it also produces the nonnegative vector of other outputs  and 
given that it has the nonnegative vector of inputs x at its disposal.   

Given St and nonnegative output and input vectors, y and x, we rewrite the input vector x 
≡ [x1,x2,...,xN] as [x1, ] where , the vector of “other than x1 inputs”, is defined as the 
vector [x2,...,xN]. The period t input requirements function, gt, is defined as follows: 

(4) gt(y, ) ≡ {x1 : (y,x1, )∈St} ;                                                                    t = 0,1.   

If there is no x1 such that (y,x1, )∈St, then we define gt(y, ) = +∞. Fundamentally, 
gt(y, ) is the minimum amount of the first input that is required in period t in order to 
produce the vector of outputs y given that the production unit has the nonnegative vector 
of other inputs  at its disposal. 

As mentioned above, CCD used the functions Ft and gt in order to develop their results. 
We will now outline some of their key definitions and results.15 

CCD (1982; 1396) defined the period 0 Malmquist input index, Q0(x1,x0), for the 
production unit using the period 0 input distance function as follows:16 

(5) Q0(x1,x0) ≡ D0(y0,x1)/D0(y0,x0) = D0(y0,x1) 

where the last equality follows if production is efficient in period 0 since in this case, 
D0(y0,x0) equals one.17 A value of the index greater than one implies that the input vector 
in period 1 is larger than the input vector in period 0, using the technology of period 0 as 
the reference technology. 

The above input index depends only on the period 0 technology. Using the period 1 
technology, CCD (1982; 1396) also defined the period 1 Malmquist input index, 
Q1(x1,x0), for the production unit as follows: 

(6) Q1(x1,x0) ≡ D1(y1,x1)/D1(y1,x0) = 1/D1(y1,x0) 

                                                 
15 In order to derive their results, CCD assumed that the first order partial derivatives of gt and Ft existed at 
the observed period 0 and 1 data points. Thus in order to apply their results in the present context, we 
assume that the period 0 and 1 production possibility frontiers are differentiable at the observed data points. 
16 Note that (y0,x0) and (y1,x1) are the observed period 0 and 1 output and input vectors respectively for the 
production unit. We assume that all of these vectors are strictly positive. 
17 It should be mentioned at this point that throughout the paper, we assume that each observation is 
technically efficient. The reason for this somewhat restrictive assumption is that we want to apply index 
number techniques (rather than DEA techniques, which can readily deal with inefficiency) in order to 
obtain productivity growth decompositions. Index number methods cannot deal with technical inefficiency 
and this limitation must be kept in mind. 
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where the last equality follows if production is efficient in period 1 since in this case, 
D1(y1,x1) equals one. A value of the index greater than one implies that the input vector in 
period 1 is larger than the input vector in period 0, using the technology of period 1 as the 
reference technology. 

Equations (5) and (6) define theoretical indexes which can be implemented empirically in 
alternative ways. For example, one way is to use linear programming techniques to 
estimate the distance functions.18 An alternative is to derive index number formulae from 
the theoretical indexes. For example, Theorem 1 in CCD (1982; 1398) showed that the 
geometric mean of the two alternative input indexes (5) and (6) is numerically equal to 
the Törnqvist input index, QT defined by (8) below, provided that the production unit 
minimizes the cost of producing its observed output vector yt in each period t (where it 
faces the vector of input prices wt >> 0N in period t) and the input distance functions Dt  
have the translog functional form 19  where the quadratic term coefficients in the 
logarithms of the input vectors in D0(y,x) and D1(y,x) are identical; i.e., under these 
hypotheses we have: 

(7) [Q0(x1,x0)Q1(x1,x0)]1/2 = QT(w0,w1,x0,x1) 

where the logarithm of the Törnqvist input index QT is defined as follows: 

(8) lnQT(w0,w1,x0,x1) ≡ (1/2)∑n=1
N [sn

0 + sn
1] ln[xn

1/xn
0] 

and the period t cost share for input n is defined as sn
t ≡ wn

txn
t/wt⋅xt for t = 0,1 and n = 

1,...,N. CCD showed that this result holds without making any assumptions on returns to 
scale for the translog distance function, but as noted above, their result did require the 
assumption of competitive cost minimizing behaviour on the part of the producer. 

CCD (1982; 1399-1401) derived analogous results for output indexes. CCD (1982; 1400) 
defined the period 0 Malmquist output index, q0(y1,y0), for the production unit using the 
period 0 output distance function as follows:20 

(9) q0(y1,y0) ≡ d0(y1,x0)/d0(y0,x0) = d0(y1,x0) 

where the last equality follows if production is efficient in period 0 since in this case, 
d0(y0,x0) equals one. A value of the index greater than one implies that the output vector 
in period 1 is larger than the output vector in period 0, using the technology of period 0 as 
the reference technology. 

The above output index depends only on the period 0 technology. Using the period 1 
technology, CCD (1982; 1400) also defined the period 1 Malmquist output index, 
q1(y1,y0), for the production unit as follows: 

(10) q1(y1,y0) ≡ d1(y1,x1)/d1(y0,x1) = 1/d1(y0,x1) 

where the last equality follows if production is efficient in period 1 since in this case, 
d1(y1,x1) equals one.  

                                                 
18 See Färe, Grosskopf, Norris and Zhang (1994). 
19 For material on translog functional forms, see Christensen, Jorgenson and Lau (1973) and Diewert 
(1974). 
20 Note that (y0,x0) and (y1,x1) are the observed period 0 and 1 output and input vectors respectively for the 
production unit. We assume that all of these vectors are strictly positive. 
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Theorem 2 in CCD (1982; 1401) showed that the geometric mean of the two alternative 
input indexes defined by (9) and (10) is numerically equal to the Törnqvist output index, 
QT

* defined by (12) below, provided that the production unit maximizes the revenue it 
can raise conditional on using its observed input vector xt in each period t (where it takes 
the period t vector of output prices pt >> 0M as a vector of fixed parameters) and the 
output distance functions dt  have the translog functional form where the quadratic term 
coefficients in the logarithms of the output vectors in d0(y,x) and d1(y,x) are identical; i.e., 
under these hypotheses we have: 

(11) [q0(y1,y0)q1(y1,y0)]1/2 = QT
*(p0,p1,y0,y1) 

where the logarithm of the Törnqvist output index QT
* is defined as follows: 

(12) lnQT
*(p0,p1,y0,y1) ≡ (1/2)∑m=1

M [Sn
0 + Sn

1] ln[ym
1/ym

0] 

and the period t revenue share for output m is defined as Sm
t ≡ pm

tym
t/pt⋅yt for t = 0,1 and 

m = 1,...,M. CCD showed that this result holds without making any assumptions on 
returns to scale for the translog distance function. However, their result required the 
assumption of competitive revenue maximizing behaviour on the part of the producer in 
each period, conditional on the observed vector of inputs, and this assumption may not be 
warranted in noncompetitive situations. 

One approach to measuring productivity growth is to take ratios of Malmquist output 
indexes to Malmquist input indexes. Given two possible definitions for both input and 
output indexes, this leads to four possible productivity indexes. This approach was 
suggested by Hicks (1961)21 and Moorsteen (1961), leading Diewert (1992) to label these 
as “Hicks-Moorsteen” indexes.   

Consider taking the geometric means of the two alternative Malmquist input and output 
indexes, respectively, and then taking their ratios. When the distance functions have the 
translog functional form, as can be seen from equations (7) and (11), this corresponds to 
taking the ratio of a Törnqvist output index to a Törnqvist input index as a measure of 
productivity growth; this “standard” Törnqvist productivity index approach is used by the 
Bureau of Labor Statistics to construct their productivity estimates for the U.S. 
manufacturing sector. No assumptions need be made on the returns to scale of the 
underlying translog functional forms in order to derive this result; the invariance of the 
Malmquist input and output indexes to returns to scale assumptions was emphasized by 
CCD and also noted by Bjurek (1996). However, this approach to the measurement of 
productivity does require the assumption of competitive cost minimizing behaviour 
conditional on observed outputs and competitive revenue maximizing behaviour 
conditional on observed inputs, assumptions that may not be satisfied in many contexts. 

                                                 
21 “This measure of input as a whole is not the same as the measure of output as a whole, as might perhaps 
be supposed at first sight. In the one case we should be asking whether A outputs could be produced from B 
inputs with B techniques; in the other whether B inputs would be sufficient to produce A outputs with A 
techniques; and vice versa for the other limb of the comparison. If all went well, the relation between the 
measure of output and the measure of input ought to give us a measure of the improvement in technique - 
or, as it might be better to say, a measure of the  efficiency with which resources are combined on the one 
occasion compared with the other.” J.R. Hicks (1961; 22).  
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In order to overcome the above limitations of the Hicks-Moorsteen-CCD approach to the 
measurement of productivity change, we will adapt another approach used by CCD 
(1982; 1401-1408) in order to obtain productivity growth indexes.  Our suggested 
modification of their second approach allows us to derive a simple method of separating 
the contributions of technical change and returns to scale to productivity growth, without 
assuming price taking behavior for outputs. 

 
3. Returns to Scale, Technical Change and Imperfect Competition 

 

Using the technology of the producer at period 0, CCD (1982; 1402) defined a period 0 
output based productivity growth index for the production unit going from period 0 to 1 
as follows: 

(13) m0(x1,x0,y1,y0) ≡ d0(y1,x1)/d0(y0,x0) 

                                = d0(y1,x1)                                                                if d0(y0,x0) = 1   

                                = min δ>0 {δ : (y1/δ,x1)∈S0}                                    using definition (2) 

                                = δ0. 

We assume that (yt,xt) is on the frontier of the period t production possibilities set, St, for 
t = 0,1. Generally speaking, production possibilities sets grow over time so that S0 will 
generally be a subset of S1. In this case, given that (y1,x1) is on the frontier of S1, it is 
likely that (y1,x1) will not belong to S0. Hence we must in general deflate y1 by a number 
larger than one so that the resulting deflated vector, y1/δ, is just small enough so that 
(y1/δ,x1) will be on the frontier of S0. This minimal deflation factor is δ0, which will be 
equal to or greater than 1 if S0 is a subset of S1. Thus if m0(x1,x0,y1,y0) = δ0 is greater than 
one, then we say that there has been productivity growth between the two periods. Using 
this productivity index, we are basically deflating the outputs of the period 1 production 
vector (y1,x1) so that the resulting deflated production vector (y1/δ0,x1) is on the period 0 
production surface. 

CCD (1982; 1402) defined the following companion period 1 output based productivity 
growth index for the production unit going from period 0 to 1 as follows: 

(14) m1(x1,x0,y1,y0) ≡ d1(y1,x1)/d1(y0,x0) 

                                = 1/d1(y0,x0)                                                            if d1(y1,x1) = 1   

                                = 1/min δ>0 {δ : (y0/δ,x0)∈S1}                                 using definition (2) 

                                = max δ>0 {δ : (δy0,x0)∈S1} 

                                = δ1. 

Assume that S0 is a subset of S1. In this case, given that (y0,x0) is on the frontier of S0, it 
is unlikely that (y0,x0) will be on the frontier of S1. Hence in order to obtain a production 
vector that is on the frontier of the set S1, we must in general inflate y0 by a number larger 
than one so that the resulting inflated vector, δy0, is just large enough so that (δy0,x0) will 
be on the frontier of S1. This maximal inflation factor is δ1, which will be equal to or 
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greater than 1 if S0 is a subset of S1. Thus if m1(x1,x0,y1,y0) = δ1 is greater than one, then 
CCD say that there has been productivity growth between the two periods. Using this 
productivity index, we are basically inflating the outputs of the period 0 production 
vector (y0,x0) so that the resulting inflated production vector (δ1y1,x0) is on the period 1 
production surface. 

In the case of one output and one input, it is easy to give a graphical interpretation of the 
above two CCD productivity indexes and we do this in Figure 1 below. The frontier of 
the period 0 production possibilities set is the line OCD (which is the period 0 production 
function) and the frontier of the period 1 production possibilities set is the line OEF 
(which is the period 1 production function). The observed output and input in period 0 is 
the point (y0,x0) (the point C) and the observed output and input in period 1 is the point 
(y1,x1) (the point F). Working through definitions (13) and (14) above, it can be verified 
that m0(x1,x0,y1,y0) is equal to the distance FB divided by the distance DB and 
m1(x1,x0,y1,y0) is equal to the distance EA divided by the distance CA.        

 

Figure 1: The CCD Productivity Indexes in the One Output and One Input Case 

 

 
 

It can be seen that the two CCD productivity indexes are not conventional productivity 
indexes, which are usually defined as an index of output growth divided by an index of 
input growth. In fact, m0 and m1 measure shifts in the production function going from 
period 0 to period 1. Thus in the time series context, m0 and m1 are actually measures of 

O                                                     A               B  

y 

C =(y0,x0) 
D 

E 

F 

(y1,x1) 

x 
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technical progress.22 Hence in what follows, we will interpret these measures as technical 
progress measures.  

As usual, there is no reason to prefer the technical progress index m0 over the companion 
index m1. Thus we can follow CCD (1982; 1404) and define an overall Malmquist-CCD 
productivity growth index, (or more accurately, a measure of technical progress), τ, as 
the geometric mean of the indexes m0 and m1:23 

(15) τ(x1,x0,y1,y0) ≡ [m0(x1,x0,y1,y0)m1(x1,x0,y1,y0)]1/2.   

We will follow the example of CCD and assume that the technologies of the producer in 
the two periods under consideration can be represented by the following two translog 
output distance functions, dt(y,x), for t = 0,1, where the logarithms of these functions are 
defined as follows for t = 0,1: 

(16) ln dt(y,x) ≡ α0
t + ∑m=1

M αm
t lnym + ∑n=1

N βn
t lnxn +(1/2)∑i=1

N ∑j=1
N γij lnxi lnxj 

                         + (1/2)∑k=1
M ∑m=1

M δkm lnyk lnym + ∑m=1
M ∑n=1

N φmn lnym lnxn 

where the parameters on the right hand side of (16) satisfy the following restrictions: 

(17) ∑n=1
N βn

t < 0 ; 

(18) ∑j=1
N γij = 0 for i = 1,...,N ; 

(19) γij = γji for all 1 ≤ i < j ≤ N ; 

(20) ∑m=1
M αm

t = 1 ; 

(21) ∑m=1
M δkm = 0 for k = 1,...,M ; 

(22) δkm = δmk for all 1 ≤ k < m ≤ M ; 

(23) ∑m=1
M φmn = 0 for n = 1,...,N ; 

(24) ∑n=1
N φmn = 0 for m = 1,...,M. 

Note that all of the quadratic parameters in the definitions of d0 and d1 are restricted to be 
the same in the two periods under consideration; only the constant term and linear terms 
are allowed to shift. Note also that the restrictions on the parameters (20)-(23) imply that 
each dt(y,x) is linearly homogeneous in the components of y; i.e., we have dt(λy,x) = 
λdt(y,x) for all λ > 0 and y >> 0M and x >> 0N, which is a property that output distance 
functions must satisfy. Technical progress is represented by changes in the constant term 
and the linear terms in definitions (16).  

The two translog output distance functions defined by (16) and the following restrictions 
on the parameters given by (17)-(24) are almost completely flexible functional forms24 for 
the case of a nonconstant returns to scale technology. However, imposing the restrictions 

                                                 
22 This point did not emerge clearly in the exposition of CCD since they explained their indexes in a cross 
sectional context. 
23 In the one output, one input case, it can be seen that τ is the geometric average of the distances FB/DB 
and EA/CA. 
24 See Diewert (1974; 139) for materials on the flexibility of translog functional forms that involve two sets 
of variables. 
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(18) and (24) destroys this complete flexibility. We imposed these extra restrictions so 
that our measures of local returns to scale, defined below by (25), become constant 
parameters for each period. 

Following CCD (1982; 1402), local returns to scale for the technology in period t, εt, can 
be defined using the derivatives of the period t output distance function dt as follows for t 
= 0,1:25 

(25) εt ≡ −[∂dt(yt,λxt)/∂λ | λ=1] 

           = − [xt⋅∇xdt(yt,xt)]                                                                                         

           = − [∂lndt(yt,λxt)/∂λ | λ=1]                                                                 using dt(yt,xt) = 1 

           = − [∑n=1
N ∂lndt(yt,xt)/∂lnxn]                                                                                     

           = − ∑n=1
N βn

t                                  differentiating (16) and using (18), (19) and (24) 

           > 0                              using (17)  

where ∇xdt(yt,xt) is the vector of derivatives of dt(yt,xt) with respect to the components of 
x. Thus (25) tells us that the degree of returns to scale in period t, εt, is a positive constant, 
which is equal to minus the sum of the βn

t parameters which match up with the lnxn 
variables in the definition of the period t output distance function dt defined by (16).26 

Assuming that the producer’s technology in each period can be represented by the 
translog output distance functions defined by (16)-(24), we can now work out expressions 
for the technical progress indexes, m0, m1 and τ defined by (13)-(15). To do this, we 
assume (for the remainder of the paper) that production is efficient in each period so that: 

(26) d0(y0,x0) = d1(y1,x1) = 1. 

Definition (14) and assumptions (26) imply that 

(27) m1(x1,x0,y1,y0) ≡ d1(y1,x1)/d1(y0,x0) = d0(y0,x0)/d1(y0,x0). 

Taking logarithms of both sides of (27) and using (16), we find that 

(28) ln m1(x1,x0,y1,y0) = ln d0(y0,x0) − ln d1(y0,x0)  
                                    = α0

0 − α0
1 + ∑m=1

M (αm
0 − αm

1)lnym
0 + ∑n=1

N (βn
0 − βn

1)lnxn
0. 

Definition (13) and assumptions (26) imply that 

(29) m0(x1,x0,y1,y0) ≡ d0(y1,x1)/d0(y0,x0) = d0(y1,x1)/d1(y1,x1). 

                                                 
25 In order to justify definition (25), we require that dt(yt,xt) = 1 so that the observed period t production 
vector is efficient. Note that εt > 1, εt = 1 and εt < 1 means that there are increasing, constant or decreasing 
returns to scale in period t respectively. 
26 The translog distance functions defined by (16)-(24) for each period are completely flexible functional 
forms in the class of constant returns to scale technologies. In this case, it turns out that dt(y,x) must be 
homogeneous of degree −1 in the components of x; i.e., dt must satisfy dt(y,λx) = λ−1dt(y,x) for all λ > 0, y 
>> 0M and x >> 0N. This extra homogeneity condition can be imposed upon the dt defined by (16)-(24) if 
we replace the restriction (17) by the restriction ∑n=1

N βn
t = −1. Thus our more general restriction (17) adds 

an extra free parameter to our specification and allows general nonconstant returns to scale in a very 
parsimonious way (and of course, constant returns to scale is allowed as a special case of our specification). 
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Taking logarithms of both sides of (29) and using (16), we find that 

(30) ln m0(x1,x0,y1,y0) = ln d0(y1,x1) − ln d1(y1,x1)  
                                    = α0

0 − α0
1 + ∑m=1

M (αm
0 − αm

1)lnym
1 + ∑n=1

N (βn
0 − βn

1)lnxn
1. 

Later in the paper, we will assume that the linear coefficients in the two translog 
functions defined by (16) are all equal so that we have: 

(31) αm
0 = αm

1 ; m = 1,...,M ; βn
0 = βn

1 ; n = 1,...,N. 

If assumptions (31) are satisfied, then definition (15) and equations (28) and (30)  imply 
that all of our measures of technical progress are equal to the same constant; i.e., we have 

(32) τ(x1,x0,y1,y0) = m0(x1,x0,y1,y0) = m1(x1,x0,y1,y0) = exp(α0
0 − α0

1) ≡ τ*. 

Thus under assumptions (31), there will be positive technical progress going from the 
period 0 technology to the period 1 technology in our translog model provided that τ* is 
greater than one and this condition will hold if and only if α0

0 − α0
1 is greater than 0.  

As was mentioned above, a difficulty with the CCD methodology is that it assumed 
competitive revenue maximizing behavior on the part of the producer, conditional on the 
observed input vector xt in each period. However, if there are increasing returns to scale 
in each period so that ε0 and ε1 are greater than one, then it is well known that 
competitive profit maximizing behavior breaks down. Thus for each period t, we assume 
that the firm or production unit faces the inverse demand functions Pm

t(ym) which give the 
market clearing prices for output m as a function of the amount of output ym that the firm 
produces, for m = 1,…,M.  Assuming that the firm faces the strictly positive input price 
vector wt ≡ [w1

t,…,wN
t] in period t, the firm’s period t monopolistic profit maximization 

problem is the following constrained maximization problem involving the vector of 
period t outputs y ≡ [y1,…,yM] and the input vector x: 

(33) max y,x {∑m=1
M Pm

t(ym)ym − wt⋅x : (y,x)∈St} ;                                                    t = 0,1. 

We assume that that for t = 0,1, the strictly positive period t observed output and input 
vectors, yt and xt, solve the period t monopolistic profit maximization problem and that 
the observed period t prices for the outputs are:27  

(34) pm
t ≡ Pm

t(ym
t) ;                                                                               m = 1,…,M ; t = 0,1. 

Assuming that the demand derivatives dPm
t(ym

t)/dym are nonpositive, the nonnegative ad 
valorem monopolistic markup µm

t for the mth output in period t can be defined as 
follows: 

(35) µm
t ≡ − [dPm

t(ym
t)/dym][ym

t/pm
t] ≥ 0 ;                                            m = 1,…,M ; t = 0,1. 

CCD assumed that yt and xt were solutions to certain (competitive) revenue maximization 
and cost minimization problems.28 We need to develop noncompetitive counterparts to 
these assumptions made by CCD. In order to accomplish this task, we note that our 

                                                 
27 We assume that the functions Pm

t(ym) are differentiable around ym
t. If the production unit has constant or 

decreasing returns to scale and behaves competitively, then this case can be modeled by setting Pm
t(ym) 

equal to the constant output price pm
t for m = 1,...,M and t = 0,1.  

28 See equations (25) and (37) in CCD. 
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assumption that (yt,xt) solves the period t monopolistic profit maximization problem 
defined by (33) for t = 0,1 means that the following equalities are satisfied: 

(36) max y,x {∑m=1
M Pm

t(ym)ym − wt⋅x : (y,x)∈St}                                                     t = 0,1 

         = max y {∑m=1
M Pm

t(ym)ym − wt⋅xt : (y,xt)∈St} 

         = max y {∑m=1
M Pm

t(ym)ym : (y,xt)∈St} − wt⋅xt 

         = max x {∑m=1
M Pm

t(ym
t)ym

t − wt⋅x : (yt,x)∈St} 

         = ∑m=1
M Pm

t(ym
t)ym

t − min x {wt⋅x : (yt,x)∈St}. 

Thus for t = 0,1, yt is a solution to the following conditional on xt monopolistic revenue 
maximization problem: 

(37) ∑m=1
M Pm

t(ym
t)ym

t = max y {∑m=1
M Pm

t(ym)ym : (y,xt)∈St}                                 t = 0,1 

                                     = max y {∑m=1
M Pm

t(ym)ym : x1
t = gt(y, t)} 

where we have used the period t input requirements function gt to represent the 
technology constraints in the second maximization problem in (36) instead of using the 
production possibilities set St. This second maximization problem is the counterpart to 
the maximization problem (25) in CCD (1982; 1400). Assuming that gt is differentiable 
when evaluated at the period t data, the following first order necessary conditions for 
maximizing (37) must be satisfied: 

(38) pm
t (1 − µm

t) = λt ∂gt(yt, t)/∂ym ;                                                    m = 1,...,M ; t = 0,1 

where the µm
t are defined by (35). Now multiply equation m in (38) for period t by ym

t, 
sum the resulting equations over m, solve for the period t Lagrange multiplier λt and 
substitute the resulting expression for λt back into equations (38). The resulting equations 
are: 

(39) pm
t (1 − µm

t)/[∑k=1
M pk

t (1 − µk
t)yk

t] = [∂gt(y, t)/∂ym]/yt⋅∇ygt(yt, t) 

                                                                 = ∂dt(yt,xt)/dym ;                    m = 1,...,M ; t = 0,1 

where the second set of equalities in (39) follows from a general result established by 
CCD (1982; 1399).   

If the individual product markups happen µm
t happen to be equal to a common markup µt 

in each period,29 or if there is only one output, then it can be seen that conditions (39) 
collapse down to the following simpler conditions: 

(40) pt/pt⋅yt = ∇ydt(yt,xt) ;                                                                                             t = 0,1. 

Recalling our assumption that (yt,xt) solves the period t monopolistic profit maximization 
problem defined by (33) for t = 0,1, the fourth equality in (36) implies that the observed 
period t input vector xt is a solution to the following period t conditional on yt cost 
minimization problem: 

(41) wt⋅xt = min x {wt⋅x : (yt,x)∈St} ;                                                                         t = 0,1 

                                                 
29 The case of competitive price taking behavior is a special case where µt = 0 for t = 0,1.  
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                = min x {∑n=1
N wn

txn : x1 = gt(yt,x2,...,xN)}. 

Assuming that gt(yt,x2,...,xN) is once differentiable with respect to x2,...,xN, the first order 
necessary conditions for the period t cost minimization problems represented by the 
second equation in (41) will hold and we can repeat the algebra developed by CCD 
(1982; 1403-1404) and show that the derivatives of the period t output distance function 
with respect to the components of x exist when evaluated at x = xt and have the following 
form: 

(42) ∇xdt(yt,xt) = − εt wt/wt⋅xt ;                                                                                   t = 0,1 

where εt is the period t degree of local returns to scale defined by (25) above. If the 
production unit’s distance function is defined by (16), then (25) shows that −εt is equal to 
the sum of the βn

t parameters in definitions (16) for t = 0,1.   

Now we are ready to establish a monopolistic competition version of CCD’s (1982; 
1407-1408) Theorem 4. We assume that the firm’s output distance function dt in each 
period t has the translog functional form defined by (16)-(24). We also assume that 
production is efficient in each period so that conditions (26) hold. 

Recall that the Malmquist-CCD technical progress index, τ, was defined by (15). Taking 
logarithms of both sides of (15) and using definitions (13) and (14) and assumptions (16), 
we have for t = 0,1: 

(43) ln τ(x1,x0,y1,y0) = (1/2)[ln d0(y1,x1) − ln d0(y0,x0)] + (1/2)[ln d1(y1,x1) − ln d1(y0,x0)] 

       = (1/4)[∇lny ln d0(y1,x1) + ∇lny ln d0(y0,x0)]⋅[ln y1 − ln y0]   

          + (1/4)[∇lnx ln d0(y1,x1) + ∇lnx ln d0(y0,x0)]⋅[ln x1 − ln x0]  

          + (1/4)[∇lny ln d1(y1,x1) + ∇lny ln d1(y0,x0)]⋅[ln y1 − ln y0]   

          + (1/4)[∇lnx ln d1(y1,x1) + ∇lnx ln d1(y0,x0)]⋅[ln x1 − ln x0]  

                           using (16) and applying Diewert’s (1976; 118) quadratic identity twice 

       = (1/2)[∇lny ln d0(y0,x0) + ∇lny ln d1(y1,x1)]⋅[ln y1 − ln y0]   

          + (1/2)[∇lnx ln d0(y0,x0) − ∇lnx ln d1(y1,x1)]⋅[ln x1 − ln x0]                    

                      using (16) and applying CCD’s (1982; 1404) generalized translog identity30 

       = lnQT
*(p1

0(1−µ1
0),...,pM

0(1−µM
0);p1

1(1−µ1
1),...,pM

1(1−µM
1);y0,y1) 

            − (1/2)[(ε0w0/w0⋅x0) + (ε1w1/w1⋅x1)]⋅[ln x1 − ln x0]                    using (39) and (42) 

                                                 
30 A referee asked whether similar results hold for other functional forms. Analogous exact index number 
results do hold for other functional forms but typically, the results are messier than the comparable results 
for the translog functional form; see Diewert (2002) (2009) for a listing of superlative index number 
formulae. All of these exact and superlative index number results rely on the underlying functional form 
being quadratic or a simple transformation of a quadratic functional form since the main tool used to derive 
the exact index number formulae is Diewert’s (1976; 118) Quadratic Identity and the Translog Identity in 
CCD (1982; 1412), which is a generalization of the Quadratic Identity. The translog functional form works 
well in this context because it is easy to impose restrictions on the parameters that ensure that the translog 
functional form has appropriate homogeneity properties.” 
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where the Törnqvist output index QT
*(p0,p1,y0,y1) was defined by (12) above but in the 

above application, the observed output prices for period t, pt ≡ [p1
t,...,pM

t] are replaced by 
the output prices adjusted for monopolistic markups, [p1

t(1−µ1
t),...,pM

t(1−µM
t)] where the 

ad valorem markups µm
t are defined by (35) above for t = 0,1 and m = 1,...,M.     

The final equation in (43) can be simplified if we define the period t vector of marginal 
costs, πt, as follows: 

(44) πt ≡ [π1
t,...,πM

t] ≡ [p1
t(1−µ1

t),...,pM
t(1−µM

t)] ;                                                   t = 0,1. 

To see why the πt vectors can be interpreted as vectors of marginal costs, define the 
firm’s period t cost function, ct, as follows:  

(45) ct(y,w) ≡ min x {w⋅x : (y,x)∈St} ;                                                                     t = 0,1. 

From equations (36), it can be seen that our assumptions imply that the observed period t 
output vector, yt, is a solution to the following period t monopolistic profit maximization 
problem: 

(46) max y {∑m=1
M Pm

t(ym)ym − ct(y,wt)} ;                                                               t = 0,1. 

Assuming that ct(y,wt) is differentiable with respect to the components of y at y = yt, the 
first order necessary conditions for (46) imply the following conditions: 

(47) pm
t (1 − µm

t) = ∂ct(yt,wt)/∂ym ;                                                         m = 1,...,M ; t = 0,1. 

Using definitions (44), conditions (47) can be written more succinctly as πt = ∇yct(yt,wt) 
for t = 0,1. 

Using definitions (44), (43) can be rewritten as follows: 
(48) lnτ(x1,x0,y1,y0)  
                             = lnQT

*(π0,π1,y0,y1) − (1/2)[(ε0w0/w0⋅x0) + (ε1w1/w1⋅x1)]⋅[ln x1 − ln x0]. 

The above equation is the main result in this paper. Thus we have the following result:31 

Proposition 1: Suppose that the technology of a production unit can be represented by the 
translog output distance functions defined by (16)-(24) for periods 0 and 1.32 Suppose 
further that (yt,xt) >> 0M+N solves the monopolistic profit maximization problem (33) for t 
= 0,1 where the inverse demand functions Pm

t(ym) are differentiable at ym
t with 

dPm
t(ym

t)/dym ≤ 0 for m = 1,...,M and t = 0,1. Then the logarithm of the Malmquist-CCD 
productivity (or more accurately, technical progress) index, τ(x1,x0,y1,y0) defined by (15), 
is equal to the right hand side of (48) where the vector of marginal cost prices πt is 
defined by (44) and (35) and the degree of local returns to scale at the period t data, εt, is 
defined by (25) for t = 0,1. 

                                                 
31 This result is similar to a result obtained by Diewert and Fox (2008; 178) except that they used translog 
cost functions instead of translog distance functions in order to obtain their main result. 
32 In order to apply various results in CCD, we also require that the period t output distance function, 
dt(y,x), be locally dual to a differentiable input requirements function, x1 = gt(y, ), around the point yt,xt 
with yt⋅∇y gt(yt, t) > 0 for t = 0,1. 
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Corollary 1: Suppose that the αm
t and βn

t parameters in the two translog distance 
functions do not depend on time so that assumptions (31) hold. In this case, the degree of 
local returns to scale is constant across time so that we have − ∑n=1

N βn = ε0 = ε1 ≡ ε and 
technical progress is also constant so that, recalling (32), we have τ(x1,x0,y1,y0) = exp(α0

0 
− α0

1) ≡ τ*. Under these conditions, equation (48) simplifies to: 

(49) lnτ* = lnQT
*(π0,π1,y0,y1) − ε lnQT(w0,w1,x0,x1) 

where lnQT(w0,w1,x0,x1) is the logarithm of the Törnqvist input index defined earlier by 
(8).  

Corollary 2: Suppose that in addition to assumptions (31), all of the ad valorem markups 
are equal in each period, or there is only one output. In this case, the period t marginal 
cost price vectors πt in the Törnqvist output index can be replaced by the observed period 
t output prices pt and (49) simplifies to: 

(50) lnτ* = lnQT
*(p0,p1,y0,y1) − ε lnQT(w0,w1,x0,x1). 

Corollary 3: Suppose in addition to the restrictions (31) we have constant returns to scale 
in production (so that − ∑n=1

N βn = 1 = ε) and price taking behavior on the part of the 
producer in each period (so that each µm

t = 0). Then (49) simplifies to: 

(51) τ* = QT
*(p0,p1,y0,y1)/QT(w0,w1,x0,x1) ; 

i.e., technical progress, τ*, is equal to the Törnqvist output index divided by the Törnqvist 
input index, which is the conventional Total Factor Productivity growth index used by 
Jorgenson and Griliches (1967) in their pioneering study.33 

Corollary 3 provides an exact (and superlative) index number justification for the 
productivity index introduced by Jorgenson and Griliches (1967).        

Note that (49) can be rewritten as follows: 

(52) lnQT
*(π0,π1,y0,y1) = lnτ* + ε lnQT(w0,w1,x0,x1). 

Equation (52) can be used as an equation that explains aggregate output growth; i.e., the 
logarithm of an output index, lnQT

*(π0,π1,y0,y1), is “explained” by technical change, lnτ*, 
plus the logarithm of input growth, lnQT(w0,w1,x0,x1), except that this input growth term 
is multiplied by the degree of returns to scale, ε. If there are increasing returns to scale so 
that ε is greater than one and if there is input growth so that QT is greater than one and 
hence lnQT is greater than zero, then the input growth term, lnQT, is magnified by the 
increasing returns to scale term, leading to a greater rate of output growth than can be 
explained by simply adding up input growth and technical progress. However, in order to 
implement this growth decomposition, we generally need to have some knowledge of the 
marginal cost prices in the two periods, π0 and π1. Of course, if all of the ad valorem 
markups are the same in each period or there is only one output, then lnQT

*(π0,π1,y0,y1) 
can be replaced by lnQT

*(p0,p1,y0,y1) and then the resulting equation (52) extended to 
many periods could be used as the starting point for an econometric specification that 

                                                 
33 Jorgenson and Griliches derived their productivity index using a continuous time Divisia type approach 
rather than using a discrete time approach as is done here. 
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would estimate the unknown parameters τ* and ε.34 The error terms that result from 
econometrically estimating this model could be interpreted as unexplained productivity 
growth effects.35 That is, in each period, the error term could be considered as a 
productivity shock unexplained by returns to scale and smooth rates of technical change. 
In many macroeconomic models, it is productivity shocks such as these which are of 
interest, rather than secular productivity growth driven by returns to scale and smooth 
rates of technical progress.  

 

4. Conclusion 

 

As indicated in the introduction, there is a considerable amount of theoretical interest in 
determining whether the Caves, Christensen and Diewert (1982) economic approach to 
obtaining productivity indexes is consistent with a distance function approach to the 
measurement of productivity change. The distance function approach to the measurement 
of productivity change can be implemented without making any assumptions about 
pricing behavior, which is an advantage of this approach. On the other hand, CCD 
showed how distance function measures of productivity growth could be estimated 
empirically using fairly simple index numbers (augmented by exogenous estimates of 
returns to scale) provided one made some assumptions about pricing behavior. Our 
conclusion is that the CCD approach is not fully satisfactory because their assumptions 
about producer behavior are not plausible in the case where there are increasing returns to 
scale. In the present paper, we modify their assumptions about producer behavior by 
assuming that the observed price and quantity data are consistent with a monopolistic 
profit maximizing model and we rework the analysis of CCD in order to obtain a variant 
of their results. This variant is equation (48) in the previous section or the simplified 
version of (48) that assumes that the degree of returns to scale is the same in each period, 
which is (52). Unfortunately, these new equations are more complicated than the 
corresponding equation in Caves, Christensen and Diewert (1982; 1404): in the present 
model (in the general case), the observed output prices pt which appear in CCD must be 
replaced by difficult to observe marginal cost prices πt. This will limit the usefulness of 
the present framework but it does have the benefit of being logically consistent when the 

                                                 
34 Finding an appropriate econometric specification is not a trivial problem due to endogeneity problems. 
The input price vectors, w0 and w1, can be regarded as exogenous but the output and input vectors, yt and 
xt, and the selling price vectors pt for  t = 0,1, are all endogenous variables. Econometric issues in similar 
regression models are discussed by Bartelsman (1995), Burnside (1996), Basu and Fernald (1997) and 
Diewert and Fox (2008). 
35 This sentence requires a bit of elaboration. If we somehow know all of the price and quantity vectors that 
appear in equation (52), when we extend the analysis from 2 periods to T+1 periods, we will end up with T 
technical progress parameters of the form lnτ* and one returns to scale parameter ε. But we will have only 
T degrees of freedom to estimate these T+1 parameters. Thus it is natural to introduce an econometric 
model that assumes that these technical progress parameters behave in a “smooth” manner; i.e., a constant 
rate or linear or quadratic trends or linear spline trends in the τt. Then the residuals in the resulting 
regression model can be interpreted as deviations from the smoothed period to period rates of technical 
progress or these residuals could be interpreted as technical progress “shocks”. 
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underlying technologies exhibit increasing returns to scale.36 In general, marginal costs 
can be estimated through econometric,37 engineering or accounting studies. In the special 
cases where there is only one output or where ad valorem markups can be assumed to be 
the same in each period across outputs, our new framework essentially reduces to the 
CCD model.38  

An alternative to the economic approach to productivity measurement (which is the 
approach taken in this paper) is the axiomatic approach. The axiomatic approach works 
as follows: choose a functional form for a quantity index, say Q*(p0,p1,y0,y1) for the 
output index and Q(w0,w1,x0,x1) for the input index. These choices of functional form are 
determined on the basis of the test or axiomatic approach to index number theory.39 Then 
the axiomatic productivity index A(p0,p1,y0,y1,w0,w1,x0,x1) is simply defined as the output 
index divided by the input index: 

(53) A(p0,p1,y0,y1,w0,w1,x0,x1) ≡ Q*(p0,p1,y0,y1)/Q(w0,w1,x0,x1). 

Note that observed market prices are used as the price weights in the above quantity 
indexes. Now it is certainly true that the above axiomatic approach to measuring 
productivity growth can be consistent with the economic approach since Corollary 3 in 
the previous section shows that (53) is justified from the viewpoint of the economic 
approach (under certain conditions) if we choose Q* and Q to be Törnqvist indexes. 
However, if there is noncompetitive behavior in the pricing of outputs on the part of 
producers, the analysis in the previous section shows that the axiomatic approach is not 
necessarily consistent with the economic approach. In particular, in noncompetitive 
contexts, from the viewpoint of the economic approach, it is not generally appropriate to 
use observed output prices in the output quantity index; instead marginal cost weights 
should be used. Thus if there is a discrepancy between the axiomatic and economic 
approach to the measurement of productivity growth, a certain amount of caution should 
be used in interpreting the axiomatic results.       

 

Appendix: Distance Functions and Regularity Conditions on the Technology 
 

Recall definitions (1) and (2) in the main text which defined the input and output distance 
functions, Dt(y,x) and dt(y,x), which corresponded to the technology set St. In this 
Appendix, we will place restrictions on the sets St which are sufficient to ensure that the 
maximum in definition (1) and the minimum in definition (2) exist and are finite, 
provided that the output and input vectors, y and x, are strictly positive. 

                                                 
36 Our new framework will also be useful in situations where there are constant returns to scale in 
production but innovative new technologies are developed and producers behave in a monopolistic manner. 
Our framework will also be useful in regulatory contexts where selling prices are set by the regulator but 
these selling prices are not equal to marginal costs. 
37 See Diewert and Lawrence (2005) for an example of econometric model where markups are estimated in 
a flexible functional form model. 
38 CCD did not work out the restrictions on the translog distance functions that make returns to scale 
constant over time periods. 
39 Fisher (1922) was a pioneer in this area of research. For more recent material on the axiomatic approach, 
see Diewert (1992) and Balk (1995). 
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In order to simplify the notation, we will drop the superscript t in what follows. We 
assume that the production possibilities set S is given and for y >> 0M and x >> 0N, the 
input distance function D and the output distance function d are defined as follows: 

(A1) D(y,x) ≡ max δ>0 {δ : (y,x/δ)∈S}. 

(A2) d(y,x) ≡ min δ>0 {δ : (y/δ,x)∈S}. 

Consider the following four properties for S: 

P1. S is a nonempty closed subset of the nonnegative orthant in Euclidean M+N 
dimensional space. 

P2. For every y ≥ 0M, there exists an x ≥ 0N such that (y,x)∈S. 

The interpretation of P2 is that every finite output vector y is producible by a finite input 
vector x. 

P3. (y,x1)∈S, x2 ≥ x1 implies (y,x2)∈S. 

Thus if S satisfies P3, then there is free disposability of inputs. 

P4. y > 0M implies that (y,0N)∉S. 

The interpretation of P4 is that zero amounts of all inputs cannot produce a positive 
output. 

We can now prove the following Proposition: 

Proposition 2: Let y > 0M and x >> 0N. Then D(y,x) is well defined as the maximum in 
(A1) with D(y,x) > 0 provided that S satisfies properties P1-P4. 

Proof: Let y > 0M and x >> 0N. Then by P2, there exists x* ≥ 0N such that (y,x*)∈S. Since 
x >> 0N, there exists a δ* > 0 that is small enough such that x/δ* ≥ x. Thus by P3, 
(y,x/δ*)∈S. We cannot increase δ* to plus infinity and conclude that (y,0N)∈S because 
this would contradict P4. Using the fact that S is a closed set , it can be seen that the 
maximization problem defined by (A1) has a finite positive maximum, δ**.             Q.E.D. 

In order to show that the output distance function d(y,x) defined by (A2) is well defined 
as a positive minimum, we will require an additional three properties that S must satisfy: 

P5. x ≥ 0N, (y,x)∈S implies 0M ≤ y ≤ b(x)1M where 1M is a vector of ones of dimension M 
and b(x) ≥ 0 is a finite nonnegative bound. 

The interpretation of P5 is: bounded inputs imply bounded outputs. 

P6. x >> 0N implies that there exists y >> 0M such that (y,x)∈S. 

Thus the technology is such that every strictly positive input vector can produce a strictly 
positive vector of outputs.   

P7. (y1,x)∈S, 0M ≤ y2 ≤ y1 implies (y2,x)∈S. 

Thus if the input vector x can produce the output vector y1 and y2 is equal to or less than 
y1, then x can also produce the smaller vector of outputs, y1 (free disposability of outputs).   
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Proposition 3: Let y >> 0M and x >> 0N. Then d(y,x) is well defined as the minimum in 
(A2) with d(y,x) > 0 provided that S satisfies properties P1 and P5-P7. 

Proof: Let y >> 0M and x >> 0N. Since x >> 0N, by P6, there exists a y* >> 0M such that 
(y*,x)∈S. Since y* and y are strictly positive, there exists δ* > 0 large enough so that y/δ* 
≤ y*. Using P7, we see that (y/δ*,x)∈S and thus we have a feasible solution for the 
minimization problem in (A2). From definition (A2), we want to make δ ≥ 0 as small as 
possible such that (y/δ,x)∈S. However, we cannot make δ > 0 but arbitrarily close to 0 
and have (y/δ,x) belong to S because this would contradict property P5. Using property 
P1, we see that a finite positive minimum for the minimization problem in (A2) exists. 
Q.E.D.    
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