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Abstract

We study the impact of alternative detrending techniques on the distributional properties of
U.S. output time series. We detrend GDP and industrial production time series employing
first-differencing, Hodrick-Prescott and bandpass filters. We show that the resulting distri-
butions can be approximated by symmetric Exponential-Power densities, with tails fatter
than those of a Gaussian. We also employ frequency-band decomposition procedures finding
that fat tails occur more likely at high and medium business-cycle frequencies. These results
confirm the robustness of the fat-tail property of detrended output time-series distributions
and suggest that business-cycle models should take into account this empirical regularity.
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Italy. Mail Address: Università di Verona, Dipartimento di Scienze Economiche, Via dell’Università, 3 - I-37129
Verona. Email: andrea.roventini@univr.it

1



1 Introduction

In the recent years, different detrending techniques (e.g. linear trend, first-differencing, Hodrick-

Prescott and bandpass filters) have been proposed in macroeconomics to study the business-cycle

properties of aggregate time series (see e.g. Stock and Watson, 1999; Christiano and Fitzgerald,

2003). However, the choice of the detrending procedure is anything but neutral: different filtering

methods can affect both the qualitative and the quantitative stylized facts of the business cycle

(Canova, 1998) and can bias the determination of business-cycle turning points (Canova, 1999).

Furthermore, the choice of the filter has also significant implications for macroeconomic theory:

Delle Chiaie (2009) shows that different detrending techniques affect the estimation of structural

parameters in Dynamic Stochastic General Equilibrium (DSGE) models (e.g., Woodford, 2003;

Gaĺı and Gertler, 2007), altering in turn the magnitude and persistence of model responses to

shocks.

Following this line of research, this work explores whether detrending has any relevant impact

on the distributional properties of filtered output time series. More specifically, we filter U.S.

GDP and industrial production (IP) time series employing a number of different detrending

techniques and we study the shape of the resulting time-series distributions using a parametric

approach.

Our results show that: (i) detrended U.S. output time-series distributions can be well proxied

by Expontial-Power densities with tails much fatter than those of a Normal distribution; (ii)

fat-tailed distributions emerge irrespectively of the particular filtering technique employed to

detrend the series (e.g. first-differencing, Hodrick-Prescott, bandpass filters).

Furthermore, we investigate whether there exist frequencies that are more conducive to fat-

tail behaviors. Our exercises suggest that fat tails do not seem to be a distinctive feature of

all classes of output fluctuations, as they can be more likely associated with high and medium

business-cycle frequencies.

The foregoing results have implications for both theoretical and empirical research. First,

they add further support to the widespread emergence of fat tails in the distributions of country

output fluctuations and growth shocks. Indeed, Fagiolo, Napoletano, and Roventini (2008)

show that fat-tailed, Exponential-Power densities can well proxy time-series distributions of

GDP and IP growth rates – computed employing a first-differencing filter – for the U.S. and

several other OECD countries1. Therefore, the findings presented in this note complement such

previous results suggesting that non-Gaussian fat tails are a distinctive and robust feature of all

distributions that proxy the deviations of business fluctuations around the trend.

Second, the fact that fat tails are more likely to appear at relatively high frequency bands

associated to business-cycle periodicities implies that short-run models such as the DSGE should,

on the one hand, try to replicate this additional stylized fact and, on the other hand, aim at

delivering implications that are robust to non Gaussian shocks. Finally, our results indicate

that short-run phenomena (e.g. business inventory management) might be possible candidates

to provide convincing theoretical explanations of output fat-tail distributions.

1Fagiolo, Napoletano, and Roventini (2008) also show that fat tails in output growth-rate distributions emerge
independently of the measures of the aggregate output used, the densities employed in the estimation, the length
of time lags used to compute growth rates, and the presence of outliers, autocorrelation and heteroschedasticity.
See also Castaldi and Dosi (2008) for similar results from a cross-country perspective.
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The paper is organized as follows: Section 2 describes the data and the methodology em-

ployed. Section 3 presents the results. Section 4 concludes.

2 Data and Methodology

The main objects of investigation are U.S. GDP and industrial production (IP) time series.

Quarterly GDP ranges from 1947Q1 to 2005Q3 (234 observations), monthly IP ranges from

1921M1 to 2005M10 (1017 observations). The series are provided by the St. Louis Federal

Reserve Economic Data (FRED) database2.

In order to observe the behavior of the series at business cycle frequencies it is common

practice to detrend the series employing different filters. In this paper we take an agnostic

approach to this problem: none of the filtering methods employed is supposed to be the correct

one. Instead, following Canova (1998), we assume that all procedures are approximations that

isolate different aspects of the secular and cyclical components of the series. So, the question

is not which method is the more appropriate, but whether the statistical properties of the

distributions of filtered time series are invariant to the filter employed. In what follows, we

shall employ four filters methods: first-differencing filter (FD), the Hodrick and Prescott (1981)

filter (HP), the Baxter and King (1999) bandpass filter (BK), and the Christiano and Fitzgerald

(2003) bandpass filter (CF).

After having removed the trend from output time series, we take a parametric approach to

the detection of fat-tail behavior by fitting detrended output time series with the Exponential-

Power (EP) family of densities, also known as Subbotin distribution (for details, see Bottazzi

and Secchi, 2003a,b). The EP probability density function reads:

f(x; b, a,m) =
1

2ab
1

b Γ
(

1 + 1

b

)

e−
1

b
|x−m

a
|
b

, (1)

where Γ (·) is the Gamma function.

The exponential-power density is a flexible statistical tool, which is characterized by a scale

parameter a, a location parameter m, and a shape parameter b. The latter determines the

fatness of the tails. Since the EP encompasses both Gaussian (b = 2) and Laplace (b = 1)

densities, the estimate of b (together with its standard deviation) can be employed to measure

how far the empirical distribution is from these benchmarks: the lower the estimate for b, the

fatter the tails. We jointly estimate the three parameters of the Subbotin density via maximum

likelihood (ML), employing the package SUBBOTOOLS3. In what follows, we indicate by x̂ the

ML estimate of the parameter x ∈ {a, m, b}.

3 Results

We start presenting the first four moments of U.S. output time series for the different filters

employed (cf. Table 1). The mean levels are near zero, with the exception of FD filter. More-

2Freely available online at http://research.stlouisfed.org/fred2/.
3Available online at http://cafim.sssup.it/giulio/software/subbotools/. See Bottazzi (2004) for details.

For other theoretical and computational issues concerning this procedure, we refer to Bottazzi and Secchi (2006).
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Series Filter Mean Std. Dev. Skewness Kurtosis

GDP FD 0.0083 0.0098 -0.0500 4.3614
GDP HP 0.0000 0.0165 -0.6071 3.8007
GDP CF -0.0001 0.0158 -0.2505 3.4900
GDP BK 0.0007 0.0156 -0.3896 3.0602

IP FD 0.0031 0.0191 0.3594 14.6537
IP HP 0.0000 0.0707 -0.4691 6.4696
IP CF 0.0005 0.0716 -0.1029 6.0671
IP BK 0.0001 0.0655 -0.5437 7.2340

Table 1: Summary Statistics of U.S. Output Time Series

over, the variance levels of HP, BK and CF filters are very large, relatively to the FD filter.

Furthermore, skewness levels are generally small, implying a marked symmetry of the underly-

ing distributions. Finally, the relatively large levels of kurtosis (especially for IP) suggest that

output distributions exhibit fat tails.

In order to better explore the leptokurtosis present in the data, we fit U.S. output distribu-

tions with the Exponential-Power density. Maximum likelihood estimates, standard errors and

Cramer-Rao confidence intervals (for b̂ only) are reported in Table 24. We find that filtered GDP

and IP series display tails fatter than Gaussian ones. The only exception is BK filtered GDP

series. Note also that for all filtered IP time series b̂ is smaller than 1, implying tails even fatter

than those of a Laplace distribution5. These results are statistically confirmed by Cramer-Rao

confidence intervals (CI), which show that all CIs are below 2 (again, BK filtered GDP is the

only exception). The CI for IP series remains entirely to the left of 1. The foregoing results seem

to confirm the findings of non-normality presented in Fagiolo, Napoletano, and Roventini (2008)

for the case of first-differencing filter (i.e., output growth rates). In addition, the considerable

fatter tails exhibited by IP distributions as compared to GDP ones suggest that there might

exist smoothing mechanisms at work (related to e.g. services industry, automatic stabilizers,

etc., cf. Zarnowitz, 1992) dampening the effects of idiosyncratic firm shocks.

Note also that estimates for the shape parameters of BK, CF and HP time series are greater

than those of the FD filter. A possible explanation is that HP, BK and CF filters wash away

high-frequency fluctuations, which could be responsible for the emergence of fat tails. In order

to explore this hypothesis, we try to understand which frequencies in the spectrum of the series

are more conducive to the leptokurtosis observed in the data. We address this issue by isolating

different frequency bands in the spectrum of the series and estimating the parameters of the

Exponential-Power density in each single band. More precisely, we bandpass filter output growth

rates employing rolling bandwidths of 1 and 6.5 years and we plot the ensuing b̂ together with

their CI in Figure 1.

Let us begin with GDP. For the wider bandwidth of 6.5 years, b̂ are initially almost constant

and then start growing as the band moves towards lower frequencies. In particular, filtered series

display tails fatter than Gaussian ones until the shifting band takes on board periodicities higher

than 35 quarters. The picture changes if we employ a one-year bandwidth. In this case, b̂ remains

4Goodness-of-fit analysis, performed through several tests, do not typically reject the null hypothesis that
filtered output time series are exponenial-power distributed.

5The comparison between GDP and IP b̂ can be biased by the different econometric sample sizes employed.
Nevertheless, in line with Fagiolo, Napoletano, and Roventini (2008), we find that (not shown) estimates of b rise
but are still lower than GDP ones if the same sample period is employed.
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Series Filter b̂ Std.Err. Cramer-Rao CIs â Std.Err. m̂ Std.Err.

GDP FD 1.1757 0.1454 0.8849 , 1.4665 0.0076 0.0005 0.0079 0.0005
GDP HP 1.3956 0.1798 1.0360 , 1.7552 0.0141 0.0010 0.0008 0.0011
GDP CF 1.5189 0.2001 1.1186 , 1.9191 0.0140 0.0010 0.0002 0.0012
GDP BK 1.8180 0.2656 1.2868 , 2.3492 0.0149 0.0011 0.0006 0.0017

IP FD 0.7026 0.0376 0.6274 , 0.7778 0.0095 0.0004 0.0032 0.0002
IP HP 0.7839 0.0428 0.6983 , 0.8695 0.0413 0.0017 0.0023 0.0011
IP CF 0.7210 0.0388 0.6434 , 0.7986 0.0402 0.0017 0.0025 0.0011
IP BK 0.7765 0.0438 0.6889 , 0.8641 0.0371 0.0016 0.0019 0.0010

Table 2: Estimated Exponential-Power Parameters

initially constant, then starts growing and finally, after a slight decrease, stays constant again.

Anyway, leptokurtosis is present in the data up to 13 quarters. More generally, the analysis of

filtered GDP seems to point out that relatively higher frequencies in the business cycle spectrum

are more conducive to fat-tail distributions. Filtered IP series distributions appear to be non

Gaussian whatever band and bandwidth we consider. In particular, shape parameters appear

to be lower than one. Moreover, similarly to GDP, fat tails are more marked at frequencies

belonging to the relatively more irregular part of the spectrum.

4 Concluding Remarks

In this paper, we have investigated the statistical properties of the distributions of U.S. filtered

output time series. We have shown that fat tails in the distributions of output are robust to

different filtering methods employed for isolating the cyclical component in the series. Moreover,

we have performed a detailed frequency analysis finding that high and medium frequencies in

the spectrum (associated to relatively short business cycle fluctuations) are also the ones more

conducive to fat tails in the data.

Our results bring further support to the claim that fat tails are a very robust feature of

detrended output distributions at the aggregate level, as they emerge also independently from

the particular filter applied to data. In addition, they suggest that business-cycle models such

as those belonging to the DSGE family, should try to reproduce this empirical regularity, but

their empirical performance should also be robust to the inclusion of shocks drawn from fat-tail

distributions. Finally, they appear to indicate that possible theoretical explanations of output

fat-tail distributions could be obtained studying short-run phenomena such as business inventory

management.

The present work could be extended in many ways. To begin with, one could perform the

same exercises in other countries taking into account different business cycle chronologies in the

specification of bandpass filter parameters. Moreover, one could study the distributional prop-

erties (and the relatively robustness as to different detrending techniques) of other important

macroeconomic time series, such as consumption, investment, monetary aggregates, etc. In par-

ticular, the presence of fat tails in filtered inflation and unemployment time-series distributions

may be of particular interest for policy makers. Finally, one could examine the distribution of

disaggregated industrial production time series in order to try to understand which sectors are

more responsible for the fat-tail property observed in IP series.
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Figure 1: Estimated Exponential-Power b̂ Parameters vs. Shifting Frequency Bands (q)
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