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Abstract:

There is a growing literature considering deviations from standard con-

stant discounting. In this paper we combine time-inconsistent (non-constant

discounting) preferences with recursive utilities. We apply this setting to the

demand side properties of what we call arduous goods. The rational for a

non-standard discounting is that production and consumption are not sepa-

rable in these kinds of goods. The necessary effort implies that individuals

discount consumption of these goods in a special way: both biased prefer-

ences and dynamic recursive adjustment are present. In this way, willingness

to make an effort, modeled as a discount factor, becomes endogenous.

Resum:

Hi ha una literatura creixent que considera desviacions del descompte ex-

ponencial estàndar. En aquest article combinem preferències temporalment

inconsistents (descompte no constant) amb preferències recursives. Aquest

formalisme l’apliquem a les propietats relatives a la demanda del que anome-

nem bens ardus. La justificació del descompte no estàndar proposat ve dona-

da pel fet que la producció i el consum no són separables per a aquest tipus de

bens. L’esforç implica que els individus descompten el consum d’aquests bens

d’una manera especial, amb la presència de preferències esbiaixades i d’un

ajustament recursiu dinàmic. D’aquesta manera, la voluntat de realitzar un

esforç, caracteritzada per un factor de descompte, resulta endògena.

JEL classification: C61; D83; D99; D03

Keywords: arduous and easy goods; non-constant discounting; recursive

utility; time-consistent solution; continuous-time
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1 Introduction

Once upon a time all goods were arduous to get. In order to drink a sim-

ple glass of water one would need to make the glass or whatever recipient,

walk for a while in order to find a natural spring, etc... But as time went

on, many things changed and human life became much easier. Essentially,

labor division and market exchange allowed people to sell their labor in the

labor market and use the resulting income to buy goods of different types.

In this way consumption and production became almost completely separate

activities for a wide range of goods. One could say that those goods became

“easy”, while only a few goods remained “arduous”, or “hard”. Undoubtedly

this process, reinforced by technological advances, has improved the welfare

of humankind. But what happens to those goods which remain arduous?

Is their consumption reduced or reinforced? Does it depend upon economic

variables? Does it affect human welfare? Is this a relevant economic issue on

which we should spend some thought? These are some of the questions raised

by a consideration of the existence of hard goods. We could think of exam-

ples of hard goods as simple consumption goods whose enjoyment requires

the kind of training only attainable by practice, such as sport, listening to

classic music, reading literature, going to the theater, etc... Going a step

further, many other commodities might be also considered as arduous. Pure

knowledge and human capital accumulation can in a way be considered as

hard goods, although the result of the time and effort invested is marketable

(can be sold on the market). Going even further, the formation of prefer-

ences itself might be a time- and effort-consuming activity, such as altruism

formation and all kinds of interpersonal relationships -including having and

raising children- as an outstanding example. The aim of this paper is to

address some issues concerning the demand side of these goods, in particular

the possibility that the unavoidable production effort affects the way such
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goods are discounted.

There is a growing literature considering deviations from standard con-

stant discounting. In order to avoid the deficiencies of optimal growth theory

due to the use of a constant discount rate, Koopmans (1960) introduced the

so-called recursive utilities. Uzawa (1968) extended Koopmans’ discrete-time

concept of recursive utility to a continuous-time setting. The Uzawa’s model

was used in Nairay (1984) for the analysis of convergence and optimal prop-

erties in a consumption investment model (see also Chang (1994)). A general

description of recursive (non-additive) utility functionals was given in Epstein

(1987). The basic idea of recursive utilities is that the rate of time preference

is not exogenous. In this way, different degrees of impatience appear (e.g.

due to different experienced past consumption levels). The relevant property

of time consistency of preferences in the standard case is preserved within the

context of recursive utilities. Drugeon and Wigniolle (2007) recently used a

particular form of these utilities in a rational explanation of addiction and

satiation.

An alternative way to deviate from standard discounting was motivated

by Strotz (1956), who studied the effects of choosing an exogeneous but vari-

able rate of time preference. Strotz illustrated how for a very simple model

preferences are time consistent if, and only if, time preferences are exponen-

tials with a constant discount rate. In a discrete time framework, effects of

the so-called hyperbolic (or quasi-geometric) discount functions introduced

by Phelps and Pollak (1968) have recently been extensively studied. Laibson

(1997) has made compelling observations about ways in which rates of time

preference vary. The most relevant effect of non-constant discounting is that

preferences change with time. In this sense, an agent making a decision at

time t has different time preferences compared with those at the initial time

t0.

The main motivation for these approaches, especially in the first case
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(recursive utilities), seems to be the need to overcome limitations of the

standard discount model. The second approach has recently been applied

to some economic problems in which myopic behavior plays a role1. In this

paper we apply these two main strands of literature to the consideration of

hard goods.

As stated above, one might think that the main property of a hard good

is that consumption and production are not separable activities, i.e. human

effort cannot be substituted by the service of a capital good, and labor sup-

ply should be provided by consumers themselves. As regards this property,

it turns out that hard good production tends to be affected very little by

technological progress. These are the supply side properties of hard goods,

which nevertheless might affect the demand side. In particular, in this paper

we focus on a possible deviation from standard discounting in intertemporal

decision making due to the non-separability of consumption and production

activities, which makes effort an inevitable ingredient of these types of goods.

To some extent, Becker’s (1965) analysis of the allocation of time is somehow

related to the issue we are tackling, as long as it considers how individuals (or

households) allocate time - a limited, personal and non-transferable resource

- to a consumption production joint activity. We take a different approach.

Given that those commodities are not only time- but also effort-consuming,

we consider this effort as interfering in the discounting process. In this way,

we model an endogenous discount factor, interpreted as the willingness to

make an effort to consume arduous good. On the one hand we consider

1Thaler and Bernartzi (2004) and Imrohoglu et al (2003) analyze the role of social

security as a saving commitment device for myopic individuals with time inconsistent

preferences of this kind. Fehr et al (2008) combine rational and hyperbolic consumers in

order to isolate this commitment effect, while Pestieau and Possen (2006) introduce both

myopic and prodigal individuals. Finally Diamond and Koszegi (2003) discuss the self

control problems that arise when both the retirement decision and the saving decision are

exogenous.
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the case in which the agent has presently biased preferences with respect

to the hard good. As long as effort is always previous to the benefits in

hard good consumption, agents discount future benefits associated to effort

more heavily, and the agent ends up under-consuming compared with the

case where benefits are instantaneous2. On the other hand one might think

that these kinds of commodities are affected by a special learning process,

since the more they are consumed the more valued they might be, following

a kind of learning-by-consuming process. This leads us to the literature on

recursive utility, in which the discount factor depends on the vector of past

consumption.

Summarizing, we consider a model where the agent has to decide between

consumption in a standard (easy) good and a hard good. The main features

are:

• Future utilities due to consumption in the easy good are discounted in

the standard way, by using a constant instantaneous discount rate.

• Future utility due to consumption in the arduous good is discounted

taking into account effects of non-constant discounting, and effects due

to previous experience in consumption of the hard good, together with

a dependence on the quantity of stock accumulated.

The paper is organized as follows. In Section 2 the consideration of a

single hard good is addressed, while in Section 3 the interaction between a

hard and an easy good is considered. The particular case in which the agent

uses standard constant, but different discount rates for the easy and hard

2See O’Donoghue and Rabin (1999) and Brocas and Carrillo (2001). Both papers

analyze (in a simplified setting) the self control problem when preferences are presently

biased and agents face activities or projects characterized either by immediate cost and

delayed reward, or the opposite. The later considers the role of competition between

agents and of complementarity of projects.

6



goods is discussed in Section 4. This simplified situation illustrates the main

features of the general model, and allows us to solve an example explicitly.

Section 5 analyzes the case where the planning horizon (the time devoted by

the agent to consumption of the hard good) is not an exogenous variable, but

a decision (control) variable. Finally, Section 6 contains the main conclusions

of the paper.

2 A basic model for hard goods

2.1 Preliminaries

Let us first recall the basic description of utility functions within the con-

text of recursive utilities and time-inconsistent preferences. We work in a

continuous time setting.

According to Uzawa (1968), a utility function U0 is said to be recursive if

U0 =

∫ T

0

e−
∫ s
0 ρ(c(τ)) dτu(c(s)) ds + e−

∫ T
0 ρ(c(τ)) dτF (x(T ), T ) . (1)

For an axiomatization of this functional form in a discrete time setting, see

Epstein (1983). In particular, an agent at time t will maximize

Ut =

∫ T

t

e−
∫ s

t ρ(c(τ)) dτu(c(s)) ds + e−
∫ T

t ρ(c(τ)) dτF (x(T ), T ) . (2)

Note that the discount factor, given by

D(s, t) = e−
∫ s

t ρ(c(τ)) dτ ,

differs from the standard one, since the instantaneous discount rate of time

preference is not constant, but depends on past consumption.

Remark 1 Most papers on recursive utilities are addressed to the study of

economic growth, where models are usually constructed within an infinite

horizon setting (T = ∞). Therefore, no final function appears. In our model
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for hard goods, where we work in a finite horizon setting, the introduction of a

final function plays a crucial role. Since recursive utilities are time-consistent

(the maximization problem associated with (1) is a standard optimal control

problem), only the expression of U0 (with T = ∞ and no final function) is

usually found in the literature.

Secondly, concerning time-inconsistent preferences, following the ideas

first introduced in Strotz (1956), Phelps and Pollak (1968) proposed the

so-called quasi-hyperbolic (or quasi-geometric) discounting. If δ ∈ (0, 1) is

the standard geometric discount factor, the utility function for the agent at

time t (the so-called t-agent in the literature of non-constant discounting) is

defined as

Ut = ut + β(δut+1 + δ2ut+2 + δ3ut+3 + · · · ) ,

where 0 < β ≤ 1, and uk, k = t, t + 1, . . . , denotes the utility in period

k. Therefore, the agent at time t applies not only the geometric discount

factor δ, but also a “future discount factor” β > 0 to all future periods.

Clearly, if β 6= 1, preferences for the agent in different periods of time will

change. In fact, Laibson (1997) argues that β would be substantially less

than one on an annual basis; perhaps between one-half and two-thirds. Both

discount factors, δ and β, are exogenously given. In a recent paper, Young

(2007) derives a ‘generalized Euler equation’ for an agent with multi-period

deviations from geometric discounting. A dynamic programming equation

and numerical analysis for solving the general problem can be found in Fujii

and Karp (2008).

In a continuous time setting, Barro (1999) and Karp (2007) extended the

standard assumption of constant discount rate of time preference to the case

of a non-constant instantaneous discount rate r(s), which is assumed to be

non-increasing. The discount factor at time t used to evaluate a payoff at

time t+ τ , for τ ≥ 0, is θ(τ) = exp
(
−

∫ τ

0
r(s) ds

)
. Then, the objective of the
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t-agent is to maximize

Ut =

∫ T

t

e−
∫ s−t
0 r(τ) dτu(c(s)) ds + e−

∫ T−t
0 r(τ) dτF (x(T ), T ) . (3)

In our model for hard goods, we put together elements of the utility

functions (2) and (3) in a precise way.

2.2 The model with one hard good

As a starting point, in this section we derive the optimal consumption level of

an arduous good with no other alternative choice. Although the main interest

of hard goods arises when the agent has to allocate his effort between easy

and hard goods, we begin by presenting this simpler problem for the sake of

clarity. In order to stress that effort comes before enjoyment, we consider

the extreme case in which the agent invests resources throughout the decision

period in order to accumulate an arduous good that will only be enjoyed in

the final time. This extreme assumption can be relaxed without changing

the essential features of the model.

Let x(t) = (x1(t), . . . , xn(t)) be the set of stock variables describing the

economic system (accumulated arduous good, for instance), and denote by

a(t) = (a1(t), . . . , am(t)) the decision variables describing the effort (con-

sumption in arduous good) expended in completing different tasks. In gen-

eral, the dynamical evolution of x(t) will depend on the effort made a(t), and

also perhaps on the state of the system. Therefore, ẋi(s) = fi(x(s), a(s)),

i = 1, . . . , n, given x(0) = x0. For simplicity, in the following we restrict our

attention, without loss of generality, to the case of just one arduous good

whose effort is described by one decision variable a(t), and such that the

utility due to consumption depends on one state variable x(t).

If the payoff due to consumption in the hard good is only achieved at

the end of the (finite) planning horizon T , at t = 0 the agent will look

to maximize U0 = D(T, 0)F (x(T ), T ), where D(T, 0) denotes the discount
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factor. If, in addition, the consumer’s time preferences have a bias to the

present and also depend on the previous consumption levels, we can define

the discount factor as

D(T, 0) = e−
∫ T
0 ρ(a(τ),τ) dτ .

The above discount factor is the natural generalization of the discount factors

of recursive utilities and time-inconsistent preferences.

In general, at each moment t, the t-agent will seek to maximize

Ut = D(T, t)F (x(T ), T ) , (4)

where x(t) evolves according to the differential equation

ẋ(s) = f(x(s), a(s)) , x(t) = xt , (5)

with x(0) = x0. The discount factor of the t-agent is given by

D(T, t) = e−
∫ T

t ρ(a(τ),τ−t) dτ . (6)

Therefore, the t-agent values the consumption of the hard good at time T at

an instantaneous discount rate ρ(a(T ), T−t). Note that we avoid considering

that a produces disutility. Instead we consider that the level of a affects the

willingness to make an effort captured by the recursive part of the discount

factor.

For an explanation of the above discount factor, note that (6) is the

continuous time limit of the discrete discount factor

D(T, t) = e−
∑T−1

τ=t ρ(a(τ),τ+1−t) .

When discounting the future, the agent takes into account two factors: the

distance to the future and his previous consumption level experienced at the

previous moment. Since there is substantial evidence that agents are impa-

tient about choices in the short term but are more patient when choosing be-

tween long-term alternatives, then according to the non-constant discounting
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literature, we should assume that
∂ρ(a, s)

∂s
≤ 0. However, since a represents

an effort, and the utility is obtained at the end of the planning horizon, it

seems natural to assume the opposite, i.e.
∂ρ(a, s)

∂s
≥ 0. This reflects the

fact that agents will value more highly the consumption in the arduous good

(effort) the closer they are to enjoying the benefits of the accumulated effort.

The dependence of ρ(a, s) in a is not clear in general. For instance, it seems

natural to assume that, if the level of previous effort is high, a greater effort

produces tiresome and hence reduces the willingness to make an effort (in-

creases the discount factor). In this case,
∂ρ(a, s)

∂a
≥ 0. On the other hand,

this tiring effect dissapears if the previous effort is very low or null, and in

this case it may happen that
∂ρ(a, s)

∂a
≤ 0.

The formalism above describes the situation of an agent whose decisions

about the optimal amount of arduous good at each instant depend on the

distance to final enjoyment and the past level of effort. If the dominant

effect of past effort is a lower willingness to make an effort, the time path

of a decreases and an undesirable result may arise in the form of laziness or

hard good consumption trap.

An alternative would be to consider that rather than the flow it is the

stock of accumulated arduous good that affects the willingness to make an

effort, by means of a kind of learning-by-doing or consuming process. In

fact, in many of those arduous activities such as reading, learning, or play-

ing sports, the more time one devotes to them the less tiresome and more

enjoyable they become. In this case it would be natural to assume that accu-

mulated knowledge of the good has a positive effect on their valuation. For

instance, if ẋ(t) = a(t), x(t) represents the accumulated stock throughout

the period [0, t], and we can assume that the discount factor in equation (4)

takes the form

D(T, t) = e−
∫ T

t ρ(x(τ),τ−t) dτ .
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By assuming that
∂ρ(x, s)

∂x
≤ 0, we might obtain a positive time path of

arduous good consumption.

In this paper we consider both possibilities, so that the discount factor

depends on both the flow and the stock. In this way, an effort can give rise

to a short-run negative effect - tiredness - and a long-run positive effect -

knowledge. The discount factor becomes

D(T, t) = e−
∫ T

t ρ(x(τ),a(τ),τ−t) dτ , (7)

where the instantaneous discount rate ρ(x, a, s) satisfies the conditions
∂ρ

∂x
≤ 0

and
∂ρ

∂s
≥ 0.

Problem (4),(7) is not a standard optimal control problem. It is clear that

if the agent is naive (according to the literature of non-constant discounting),

he will solve a series of optimal control problems (one for each t), and the

(time-inconsistent) solution will be obtained by patching together the “op-

timal” solutions obtained by each t-agent. If we look for a time-consistent

solution (the agent is sophisticated), things are more complicated. In the

following subsection we derive a dynamic programming equation satisfied by

the equilibria describing the time consistent solution of a sophisticated agent

to the problem.

2.3 A dynamic programming equation

In order to obtain a dynamic programming equation (DPE) in continuous

time, let V S(xt, t) be the value function of the sophisticated t-agent with

initial condition x(t) = xt. It is clear that, for the T -agent, V S(xT , T ) =

F (xT , T ). In general, the t-agent, knowing the reaction of the s-agents,

s > t, to his decision a(t) at time t, chooses a∗(t) as the maximizer of the

utility function (4) with initial value x(t) = xt. Let a∗(s), s ∈ [t, T ] be

the equilibrium rule obtained in this way, and x∗(t) the solution to ẋ∗(s) =
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f(x∗(s), a∗(s)), x∗(t) = xt. Then the value function of the sophisticated

t-agent is given by

V S(xt, t) = e−
∫ T

t ρ(x∗(τ),a∗(τ),τ−t) dτV S(x∗(T ), T ) . (8)

Next we derive a DPE satisfied by the value function V S(xt, t). We adopt

an approach similar in spirit to that in Barro (1999) or Ekeland and Lazrak

(2008) for non-constant discounting, where it is implicitly assumed that the

t-agent can precommit his future behavior during an infinitesimal period of

time [t, t+ε], and then the limit ε → 0 is taken. We also assume that both the

decision rule and the function f(x, a) are continuous, and the value function

is continuously differentiable in all its arguments.

Note that, for t ∈ [0, T ], the sophisticated t-agent, knowing his future

behavior as a function of his present actions, chooses his consumption level

at time t as the maximizer of his present value, so we can informally write

V S(xt, T ) = max
{a(t)}

{D(T, t)F (x(T ), T )} . (9)

Since the value function for the (t + ε)-agent can be written as

V S(xt+ε, t + ε) = e−
∫ T

t+ε ρ(x∗(τ),a∗(τ),τ−t−ε) dτV S(xT , T ) , (10)

where x(t + ε) = xt+ε is obtained from (5) with x(t) = xt, solving V S(xT , T )

in (8) and (10) we obtain

e
∫ T

t+ε ρ(x∗(τ),a∗(τ),τ−t−ε) dτV S(xt+ε, t + ε) = e
∫ T

t ρ(x∗(τ),a∗(τ),τ−t) dτV S(xt, t) . (11)

If the decision rule is a continuous function in t, then

e
∫ T

t+ε ρ(x∗(τ),a∗(τ),τ−t−ε) dτV S(xt+ε, t + ε) = e
∫ T

t ρ(x∗(τ),a∗(τ),τ−t) dτV S(xt, t)+

+
d

dε

∣∣∣∣
ε=0

[
e

∫ T
t+ε ρ(x∗(τ),a∗(τ),τ−t−ε) dτ · V S(xt+ε, t + ε)

]
+ o(ε) .

Since

d

dε

∣∣∣∣
ε=0

V S(xt+ε, t + ε) =
∂V S(xt, t)

∂t
+

∂V S(xt, t)

∂x
· f(xt, a

∗(t))
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and
d

dε

∣∣∣∣
ε=0

e
∫ T

t+ε ρ(x∗(τ),a∗(τ),τ−t−ε) dτ =

= e
∫ T

t ρ(x∗(τ),a∗(τ),τ−t) dτ · d

dε

∣∣∣∣
ε=0

[∫ T

t+ε

ρ(x∗(τ), a∗(τ), τ − t− ε) dτ

]
where

d

dε

∣∣∣∣
ε=0

[∫ T

t+ε

ρ(x∗(τ), a∗(τ), τ − t− ε) dτ

]
=

= −ρ(x∗
t , a

∗(t), 0)−
∫ T−t

0

∂ρ(x∗(s + t), a∗(s + t), s)

∂s
ds ,

from (9) and (11) we obtain the dynamic programming equation

−∂V S

∂t
= max

{a(t)}

[
∂V S

∂x
· f −

(
ρ(x(t), a(t), 0) +

∫ T−t

0

∂ρ(x(s + t), a(s + t), s)

∂s
ds

)
V S

]
.

(12)

Hence, we have proved:

Proposition 1 If the decision rule and the function f(x, a) are continuous,

and the value function V S(x, t) for the problem (4) with discount factor (7)

is of class C1, it satisfies the DPE given by Equation (12) with boundary

condition V S(x, T ) = F (x, T ).

Clearly, as resources in this setting have no alternative other than hard

good consumption, the agent will decide to consume it as long as it gives

a positive marginal benefit. Condition (12) shows all the marginal effects

involved. With respect to the standard HJB equation, a new term appears

which groups together the effect of all changes in the time preference rate.

First, provided that the agent has consumed some a, the passage of time

alters the discount factor, either in a positive or in a negative direction.

Second, there is an increase in the time preference rate due to the direct

effect of time on the biased part of the time preference rate. Overall, the net

effect can be either positive or negative.
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If the instantaneous discount rate ρ(x, a, t) is additively separable, ρ(x, a, t) =

ρ1(x, a) + ρ2(t), the DPE (12) simplifies to

ρ2(T − t)V S − ∂V S

∂t
= max

{a(t)}

[
∂V S

∂x
· f − ρ1(x(t), a(t))V S

]
.

If V (x, t) is the solution in case ρ2(s) = 0, then V S = exp
(
−

∫ T−t

0
ρ2(s) ds

)
V

and the equilibrium trajectory is independent of ρ2(s). Therefore, the equi-

librium rule a∗(x, t) coincides with the optimal control for the problem with

ρ2(s) = 0. In fact, it becomes clear from the formulation of the problem that

the equilibrium decision rule and the associated state trajectory are indepen-

dent of the instantaneous discount rate ρ2()s for both naive and sophisticated

agents.

3 A more general model for easy and hard

goods

Let us now assume that there is an easy good competing with the hard good,

so that the agent must decide how to allocate his resources between the two

goods over the time. In the description of the utility function for the hard

good, we follow the model presented in the previous section, which reflects

one of the main characteristics of these kinds of goods: the benefits of con-

sumption in these good are achieved only at the end of a time horizon T , after

a period of time [0, T ] of continuous effort. Nevertheless, resources can now

also be devoted to other consumption activities, which give an immediate

reward and have no long-term effects on utility. Given that those activities

involve no effort, we assume that future utilities due to consumption of easy

goods are discounted in a standard way. If c(s) represents the instantaneous

consumption at time s of the easy good, which provides the agent an instan-

taneous utility u(c(s)), the objective of the agent at time t = 0 will be to
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maximize

U0 =

∫ T

0

e−rsu(c(s)) ds + D(T, 0)F (x(T ), T ) ,

where D(T, 0) is the discount factor of the hard good given by (7), and r is the

instantaneous discount rate applied on the utility obtained by consumption

in the easy good. In general, at each moment t ∈ [0, T ], the t-agent aims to

maximize

Ut =

∫ T

t

e−r(s−t)u(c(s)) ds + D(T, t)F (x(T ), T ) , (13)

where

ẋ(s) = f(x(s), a(s), c(s)) , x(t) = xt (14)

with x(0) = x0.

There are different ways of modeling the resources constraint in (14). One

of them could be to assume that
∂f

∂a
> 0 and

∂f

∂c
< 0. We could take, for

instance, ẋ = f(x, a)− c, with f an increasing function in a.

In this paper we follow an alternative approach. At time t, the agent earns

a wage w(t). The hard good has a cost in effort and time, the latter being

reflected in the fact that it reduces the working time. A natural consequence

of this is that the actual wage becomes (1 − a)w. We also assume that all

the salary is spent on consumption in the easy good (there is no saving),

so (1 − a)w = c. The need to make an effort is not directly captured by a

disutility but by the special shape of discounting. Since ẋ = f(x, a, c), we

can eliminate the dependence on the consumption of the easy good in the

model: ẋ = f(x, a, (1 − a)w) = f̄(x, a, t), and u(c) = u((1 − w)a) = ū(a, t).

Hence we have to solve the following problem:

max

{
Ut =

∫ T

t

e−r(s−t)ū(a, s) ds + D(T, t)F (x(T ), T )

}
, (15)

ẋ(s) = f̄(x(s), a(s), s) , x(t) = xt , x(0) = 0 . (16)
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Once again, we define the value function V S(xt, t) of the sophisticated

t-agent with initial condition x(t) = xt as

V S(xt, t) =

∫ T

t

e−r(s−t)ū(a∗(s), s) ds + e−
∫ T

t ρ(x∗(τ),a∗(τ),τ−t) dτF (x∗(T ), T ) ,

(17)

where a∗(s), s ∈ [t, T ], is the equilibrium rule and ẋ∗(s) = f̄(x∗(s), a∗(s), s)

with x(t) = xt. Clearly, V S(xT , T ) = F (xT , T ). We assume that V S(xt, t)

is of class C1, and the decision rule and f̄(x, a, s) are continuous. As in the

previous section, we can informally write

V S(xt, t) = max
{a(t)}

{∫ T

t

e−r(s−t)ū(a(s), s) ds + D(T, t)F (x(T ), T )

}
. (18)

By solving F (x∗(T ), T ) in the right hand term in (17) we obtain

F (x∗(T ), T ) = e
∫ T

t ρ(x∗(τ),a∗(τ),τ−t) dτ

[
V S(xt, t)−

∫ T

t

e−r(s−t)ū(a∗(s), s) ds

]
.

(19)

In a similar way, since

V S(xt+ε, t + ε) =

{∫ T

t+ε

e−r(s−t−ε)ū(c∗(s), s) ds + D(T, t + ε)F (x∗(T ), T )

}
,

we can solve F (x∗(T ), T ) as

F (x∗(T ), T ) =

= e
∫ T

t+ε ρ(x∗(τ),a∗(τ),τ−t−ε) dτ

[
V S(xt+ε, t + ε)− erε

∫ T

t+ε

e−r(s−t)ū(a∗(s), s) ds

]
=

= e
∫ T

t ρ(x∗(τ),a∗(τ),τ−t) dτ

[
V S(xt, t)−

∫ T

t

e−r(s−t)ū(a∗(s), s) ds

]
+

d

dε

∣∣∣∣
ε=0

[
e

∫ T
t+ε ρ(x∗(τ),a∗(τ),τ−t−ε) dτ

(
V S(xt+ε, t + ε)− erε

∫ T

t+ε

e−r(s−t)ū(a∗(s), s) ds

)]
+o(ε) .

Therefore, using (19) we get

0 =
d

dε

∣∣∣∣
ε=0

[
e

∫ T
t+ε ρ(x∗(τ),a∗(τ),τ−t−ε) dτ

(
V S(xt+ε, t + ε)− erε

∫ T

t+ε

e−r(s−t)ū(a∗(s), s) ds

)]
.

From the above equation, and after several calculations, we obtain

∂V S

∂t
+

∂V S

∂x
·f̄+ū(a∗(t), t))−

(
ρ(x(t), a∗(t), 0) +

∫ T−t

0

∂ρ(x∗(s + t), a∗(s + t), s)

∂s
ds

)
·
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·
(

V S

∫ T

t

e−r(s−t)ū(a∗(s, s)) ds

)
− r

∫ T

t

e−r(s−t)ū(a∗(s), s) ds = 0 .

Finally, by solving equation (16) for the equilibrium rule, a∗(s)s = a∗s(xt, s),

and from (18) then we easily obtain:

Proposition 2 Let V S(x, t) be the value function of the sophisticated t-agent

with initial condition x(t) = x. If the decision rule and the function f̄(x, a, s)

are continuous, and V S(x, t) is of class C1, it satisfies the DPE

K − ∂V S

∂t
= max

{a(t)}

[
ū(a(t), t) +

∂V S

∂x
· f̄(x(t), a(t), t)− ρ(x(t), a(t), 0)V S+

+ (ρ(x(t), a(t), 0)− r)

∫ T

t

e−r(s−t)ū(a∗(s), s) ds

]
, (20)

V S(xT , T ) = F (xT , T ) , (21)

where K = K(xt, t) is given by

K =

∫ T−t

0

∂ρ(x∗(s + t), a∗s+t(xt, s), s)

∂s
ds

(
V S −

∫ T

t

e−r(s−t)ū(a∗s(xt, s), s) ds

)
.

(22)

The solution V S(x, t) to equations (20-22) is a Markov Perfect equilibrium

(MPE), and if a∗ is the maximum in Equation (20), then the associated

control trajectory a∗(x, t), t ∈ [0, T ], is the equilibrium rule.

Remark 2 Note that the derivation above can be reproduced step by step for

the general problem obtained when we do not impose the budget constraint

(1−a(t))w(t) = c(t). The resulting DPE is very similar to (20-22), with just

some notational changes.

In particular, when ρ(x, a, s) = ρ1(x, a) + ρ2(s), Equation (20) simplifies

to

K̃ + ρ2(T − t)V S − ∂V S

∂t
= (23)

= max
{a}

[
ū(a, t) +

∂V S

∂x
· f̄ − ρ1(x, a)

(
V S −

∫ T

t

e−r(s−t)ū(a∗(s), s) ds

)]
,
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where K̃ = K̃(xt, s) is given by

K̃ = (r − ρ2(T − t))

∫ T

t

e−r(s−t)ū(a∗s(xt, s), s) ds . (24)

The way we model the discount factor, interpreted as the willingness to

make an effort, gives interesting insights which cannot be reproduced by us-

ing a standard intertemporal utility function with a constant instantaneous

discount rate of time preference. First, due to the existence of a biased time

preference, if the distance to the final time T is large, the t-agent consumes

a low amount of hard good. Only when t approaches to T will the t-agent

begin to value the final utility more. This effect is reinforced by the possi-

bility of getting utility only from the easy goods. In other words, the agent

underconsumes and could even end up in a sort of unwished laziness trap,

consuming no hard good at all. Secondly, the fact that discounting depends

endogenously on previous consumption decision enriches the time path of

a(t). For example, if the flow of effort applied has a negative short run effect

on the willingness to make an effort -showing tiresome-, this negative effect

on hard good consumption prolongs the time spent in a laziness trap. Never-

theless, if the accumulated stock of hard good has a positive long run effect

-reflecting an increase in valuation due to learning by consuming process-, if

effort is positive it will produce a gradual correction of the bias. As we will

show in the next section, these effects of undervaluing consumption of hard

good in the long-run are already present if the hard good is discounted at a

constant but greater instantaneous discount rate ρ compared with that for

the easy good, i.e., ρ > r ≥ 0.
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4 Constant but different discount rates for

hard and easy goods. An illustration

Let us assume that inter-temporal utilities are non-recursive, i.e., the discount

factor does not depend on previous consumption and the state variable. Let

us also assume that there is no temporal bias in the instantaneous discount

rate of time preference for the arduous good, i.e., ρ(x, c, τ − t) = ρ, where

ρ is a constant. We consider ρ > r ≥ 0. This is a very interesting case

which illustrates some of the main characteristics concerning consumption

in arduous goods: when t approaches to T , the valuation of the hard good

increases, compared with the valuation of previous t-agents. In addition,

the relative simplicity of this simplified model allows us to solve explicitly a

particular example showing this property. Note that the DPE in Proposition

2 is a very complicated functional equation with non-local terms. If ρ is

constant, the DPE above simplifies to

K̃ + ρV S − ∂V S

∂t
= max

{a}

[
ū(a, t) +

∂V S

∂x
· f̄

]
, (25)

with

K̃ = (r − ρ)

∫ T

t

e−r(s−t)ū(a∗s(xt, s), s) ds . (26)

When ρ = r we recover the standard Hamilton-Jacobi-Bellman equation.

But if ρ 6= r, the new term K̃ recovers the effects due to the difference of

instantaneous discount rates of time preference. This term reflects the fact

that naive agents will be time-inconsistent, in general.

Within this context, let us illustrate how equations (25)-(26) can be used

in order to find a time-consistent solution for our model of easy and hard

goods. In order to find a solution in closed-form, we take r = 0 (the agent

does not discount the utility due to consumption in the easy good) and

logarithmic utilities for both goods, with w a constant. We have to solve

max
a,c

∫ T

t

ln c ds + e−ρ(T−t)ln x(T ) , for t ∈ [0, T ] , (27)
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ẋ = a , x(t) = xt , (28)

c = (1− a)w . (29)

For this simple problem, let us derive and compare the solutions obtained

for an agent who has the possibility of precommiting his future behaviour at

t = 0 (precommitment solution) with those for (time-inconsistent) naive and

(time-consistent) sophisticated agents without precommitment.

4.1 Precommitment solution

In this case, the agent at time t = 0 maximizes his discounted utility func-

tion according to his present preferences. Future t-agents (t > 0) cannot

modify the decisions, although from their perspective they are not optimal.

The solution is obtained by solving the standard optimal control problem

associated to the 0-agent. The Hamiltonian function is

H = ln c + p a = ln [w(1− a)] + p a . (30)

By applying Pontryagin’s Maximum Principle (PMP) to the Hamiltonian

function (30) with the transversality condition p(T ) =
∂(e−ρT ln x(T ))

∂x(T )
=

e−ρT

x(T )
we obtain

aP (t) =
e−ρT − x0

e−ρT + T
, xP (t) = x0 +

e−ρT − x0

e−ρT + T
t . (31)

Hence, the effort devoted to the hard good remains constant, the state vari-

able is a linear function in t and the consumption rule is linear in xP ,

aP (t) =
e−ρT

e−ρT + T − t
− 1

e−ρT + T − t
xP (t) . (32)

4.2 Solution for a naive agent

If the agent is naive, the t-agent will solve Problem (27-29) as a standard op-

timal control problem with initial condition x(t) = xt. By applying the
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PMP to the Hamiltonian function (30) with the transversality condition

p(T ) =
∂(e−ρ(T−t)ln x(T ))

∂x(T )
=

e−ρ(T−t)

x(T )
, the optimal solution is given by

a(s) =
e−ρ(T−t) − xs

e−ρ(T−t) + T − s
, ∀s ∈ [t, T ] .

However, this solution will not be optimal for future s-agents, s > t; since

preferences change over the time, the decision rule will change continuously,

and the solution is not time-consistent. The optimal solution from the per-

spective of the t-agent will be satisfied only for s = t. Therefore

aN(t) =
e−ρ(T−t)

e−ρ(T−t) + T − t
− 1

e−ρ(T−t) + T − t
xN(t) . (33)

Note that the solution for the problem of a naive agent does not coincide

with the precommitment solution, unless ρ = 0.

4.3 Solution for a sophisticated agent

We apply Proposition 2 which, for our problem, particularizes to equations

(25-26). The right hand term in equation (25) becomes

max
{a}

[
u(w(1− a)) +

∂V S

∂x
· f

]
= ln w − ln V S

x + V S
x − 1 ,

where we have used that

∂
[
ln (w(1− a)) + V S

x a
]

∂a
= 0 ⇒ a = 1− 1

V S
x

.

From the precommitment and naive solutions, we conjecture that the con-

sumption rule for the arduous good is linear in the state variable, i.e., a =

A(t) + B(t)x. Since V S
x = 1/(1− a) = 1/(1− A(t)−B(t)x), then

V (x, t) = − 1

B(t)
ln (1− A(t)−B(t)x) + C(t) .

From the final condition

V (x, T ) = − 1

B(T )
ln (1− A(T )−B(T )x) + C(T ) = ln x(T )
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we get A(T ) = 1, B(T ) = −1 and C(T ) = 0.

Then, equation (25) becomes

K̃ + ρ

(
− 1

B(t)
ln (1− A(t)−B(t)x) + C(t)

)
−

−B′(t)

B2(t)
ln (1− A(t)−B(t)x)− A′(t) + B′(t)x

B(t)(1− A(t)−B(t)x)
− C ′(t) =

= ln w + ln (1− A(t)−B(t)x) +
1

1− A(t)−B(t)x
− 1 , (34)

where

K̃ = −ρ

∫ T

t

[ln w + ln (1− A(s)−B(s)x(s))] ds =

= −ρ(T − t)ln w − ρ

∫ T

t

ln (1− A(s)−B(s)x(s)) ds .

Since ẋ(s) = a(s) = A(s) + B(s)x(s) with the initial condition x(t) = xt,

then

x(s) = e
∫ s

t B(τ) dτ

[
xt +

∫ s

t

e−
∫ τ

t B(z) dzA(τ) dτ

]
and we can rewrite K̃ as

K̃ = −ρ(T − t)ln w − ρ

∫ T

t

ln (1− Λ(s, t)− Γ(s, t)xt) ds , (35)

where

Λ(s, t) = A(s) + B(s)e
∫ s

t B(τ) dτ

∫ s

t

e−
∫ τ

t B(z) dzA(τ) dτ , (36)

Γ(s, t) = B(s)e
∫ s

t B(τ) dτ . (37)

Note that Λ(t, t) = A(t) and Γ(t, t) = B(t).

Lemma 1 The function K̃ given by (35-37) can be expressed as

K̃ = −ρ(T − t)lnw + ρα(t)− ρ(T − t)ln (1− A(t)−B(t)) ,

where

α(t) =

∫ T

t

(T − s)

(
B′(s)

B(s)
+ B(s)

)
ds .
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Proof: We define

G(x, t) =

∫ T

t

ln (1− Λ(s, t)− Γ(s, t)xt) ds .

Then
∂G

∂x
= −

∫ T

t

Γ(s, t)

1− Λ(s, t)− Γ(s, t)x
ds

and

∂G

∂t
= −ln (1− A(t)−B(t)x)−

∫ T

t

Λt(s, t) + Γt(s, t)x

1− Λ(s, t)− Γ(s, t)x
ds .

Since

−
∫ T

t

Λt(s, t) + Γt(s, t)x

1− Λ(s, t)− Γ(s, t)x
ds =

= −
∫ T

t

−A(t)B(s)e
∫ s

t B(τ) dτ −B(t)B(s)e
∫ s

t B(τ) dτx

1− Λ(s, t)− Γ(s, t)x
ds =

= (A(t) + B(t)x)

∫ T

t

B(s)e
∫ s

t B(τ) dτ

1− Λ(s, t)− Γ(s, t)x
ds =

= (A(t) + B(t)x)

∫ T

t

Γ(s, t)

1− Λ(s, t)− Γ(s, t)x
ds

then we find that G(x, t) satisfies the first order partial differential equation

∂G

∂t
= − ln (1− A(t)−B(t)x)− (A(t) + B(t)x)

∂G

∂x
. (38)

We conjecture that

G(x, t) = α(t) + γ(t) ln (1− A(t)−B(t)xt) . (39)

Then equation (38) becomes

α′(t) + γ′(t) ln (1− A(t)−B(t)x)− γ(t)
A′(t) + B′(t)x

1− A(t)−B(t)x
=

= − ln (1− A(t)−B(t)x) + (A(t) + B(t)x)
B(t)

1− A(t)−B(t)x
γ(t)

which can be written as

α′(t) + γ(t)
B′(t)

B(t)
+ γ(t)B(t) + (γ′(t) + 1) ln (1− A(t)−B(t)x)−
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− γ(t)

1− A(t)−B(t)x

(
A′(t) +

B′(t)

B(t)
(1− A(t)) + A(t)B(t) + B(t)(1− A(t))

)
= 0 .

Since the equation above must be satisfied for every pair (x, t), necessarily

α′(t) + γ(t)
B′(t)

B(t)
+ γ(t)B(t) = 0 , (40)

γ(t)

(
A′(t) +

B′(t)

B(t)
(1− A(t)) + A(t)B(t) + B(t)(1− A(t))

)
= 0 , and

(41)

γ′(t) + 1 = 0 . (42)

From the definition of G(x, t) it is clear that G(x, T ) = 0, i.e.,

0 = α(T ) + γ(T ) ln (1− A(T )−B(T )x) = α(T ) + γ(T ) ln x

so α(T ) = γ(T ) = 0. From (42) we obtain γ(t) = T − t. Since γ 6= 0,

equation (41) becomes a consistency condition to be satisfied by functions

A(t), B(t), concretely

A′(t) +
B′(t)

B(t)
− A(t)B′(t)

B(t)
+ B(t) = 0 . (43)

Then, the conjecture (39) is verified and, by integrating equation (40), the

result follows. �

Using Lemma 1, equation (34) becomes

−ρ(T−t)ln w−ρα(t)−ρ(T−t)ln (1−A(t)−B(t)x)− ρ

B(t)
ln (1−A(t)−B(t)x)+

+ρC(t)− B′(t)

B2(t)
ln (1− A(t)−B(t)x)− A′(t)

B(t)

1

1− A(t)−B(t)x
−

−B′(t)

B(t)

(
− 1

B(t)
+

1− A(t)

B(t)

1

1− A(t)−B(t)x

)
− C ′(t) =

= ln w + ln (1− A(t)−B(t)x) +
1

1− A(t)−B(t)x
− 1 .

Since the above equation has to be satisfied for every x, the equations

−ρ(T − t)− ρ

B(t)
− B′(t)

B2(t)
= 1 , B(T ) = −1 , (44)
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−ρ(T − t) ln w−ρ α(t)+ρ C(t)+
B′(t)

B2(t)
−C ′(t) = ln w−1 , C(T ) = 0 (45)

and (43) must be satisfied. It is easy to check that the solution to (44) and

(43) with the final condition A(T ) = 1 is given by

A(t) =
e−ρ(T−t)

e−ρ(T−t) + T − t
, B(t) = − 1

e−ρ(T−t) + T − t
(46)

and C(t) is the solution to (45). Therefore, the equilibrium decision rule

coincides both for naive and sophisticated agents. This property is no longer

satisfied for more general utility functions.

4.4 Comparison of the solutions

Let us briefly compare the precommitment and naive/sophisticated solutions.

We assume that x0 = 0.

With respect to the precommitment solution, note that the effort devoted

to consumption in the arduous good remains constant, and is a decreasing

function in ρ and T , as might be expected. The final value of the state

variable xP (T ) and the final function ln xP (T ) are also decreasing functions

in ρ, and consumption in the easy good is increasing in the discount rate ρ.

With respect to the naive and sophisticated solutions, at time t = 0,

aP (0) = aN(0) = aS(0), but ȧN(0) = ȧS(0) > 0. This reflects the fact that

if the 0-agent takes into account that his time preferences will change in the

future, he values the final function more, recognizing in this way the higher

valuation of the effort devoted to consumption in the hard good when the

time t approaches to the final time T in which the benefits of the effort are

obtained. More precisely, from (33) and (28) we obtain

ȧN(t) =
ρe−ρ(T−t)

e−ρ(T−t) + T − t
(1− aN(t)) . (47)

Since aN(t) ≥ 0, then aN(t) is non decreasing for every t ∈ [0, T ]. Note

that the first term in the right hand term in (47),
ρe−ρ(T−t)

e−ρ(T−t) + T − t
, is an
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increasing function in t, but when aN(t) increases, the second term 1−aN(t)

contributes by reducing the value of ȧN(t). Let us illustrate numerically the

time evolution of aN(t). The solution to equation (47) is given by

aN(t) = 1− T

e−ρ(T−t) + T − t
e

∫ t
0

ds

e−ρ(T−s)+T−s .

For T = 3, the values of aN(t), t = 0, 1, 2, 3, for ρ = 0.05 and ρ = 0.2 are

given in Table 1.

T = 3 t = 0 t = 1 t = 2 t = 3

ρ = 0.05 0.2229 0.2331 0.2478 0.2732

ρ = 0.2 0.1516 0.1874 0.2404 0.3357

Table 1: Consumption in the arduous good in the case T = 3.

For T = 5, the values of aN(t), t = 0, 1, 2, 3, 4, 5, for ρ = 0.05 and ρ = 0.2

are given in Table 2.

T = 5 t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

ρ = 0.05 0.1348 0.1413 0.1496 0.1607 0.1768 0.2046

ρ = 0.2 0.0685 0.0840 0.1067 0.1412 0.1973 0.2980

Table 2: Consumption in the arduous good in the case T = 5.

Tables 1 and 2 illustrate how the effort in the arduous good increases

when t approaches to T in the sophisticated and naive solutions. For the

precommitment solutions the effort is constant and coincides with those for

t = 0.

With regard to the value of the state variable, xP (T ) and xN(T ) = xS(T )

are not higher than 1, but xN(T ) ≥ xP (T ) (the inequality is strict if ρ > 0).

Note that, if xN(t) is near to 1, the effort goes to 0. The agent is actually

minimizing the loss of final utility due to underconsumption in the hard good.
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5 Terminal time as a decision variable

In Propositions 1 and 2, we implicitly assume that the terminal time T is

fixed. If the terminal time is a decision variable of the agent, the DPE in the

previous propositions remain true, but a new transversality condition has to

be imposed reflecting the “optimal” decision T ∗.

Since preferences are changing due to the differences in the discount rates,

under no commitment the terminal time T is decided by the final agent (the

T -agent in this case). Naive agents will solve the free terminal time problem

by assuming that, at each moment t, they decide the value of T ; that is, the

decision-maker at time t will solve a standard optimal control problem where

the terminal time is fixed in such a way that it is optimal from the viewpoint

of the t-agent. Therefore, in general, not only the consumption decisions of

naive agents will be time-inconsistent, but also the terminal times. If we

look for a time-consistent decision rule under no commitment (the agent is

sophisticated), we must analyze the game theoretic framework in which the

final time is decided by the final agent, who is the one to decide whether

or not to stop. We can adapt the proof in Maŕın-Solano and Navas (2009)

in the case of non-constant discounting. For our problem with easy and

hard goods, since T ∗ is optimum from the perspective of the T ∗-agent, if

the optimal decision for the (T ∗ + ε)-agent, ε > 0, is to stop, then from

the optimality of T ∗ we get F (x(T ∗), T ∗) ≥ V S
T ∗+ε(x(T ∗), T ∗), where V S

T ∗+ε

denotes the value function of the T ∗-agent if the terminal time is T ∗ + ε. In

this case,

F (x(T ∗), T ∗) ≥
∫ T ∗+ε

T ∗
e−r(s−T ∗)u(c, s)ds+D(T ∗+ε, T ∗)F (x(T ∗+ε), T ∗+ε) =

= F (x(T ∗), T ∗) + ε

[
u(c, s)− ρ(x, a, 0)F +

(
∂F

∂x
· ẋ +

∂F

∂T

)]∣∣∣∣
T ∗

+ o(ε) .

(48)

Otherwise, if the (T ∗ + ε)-agent prefers to continue until a new terminal
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time T ′ ≥ T ∗ + ε (which will be optimum for the T ′-agent), the optimality

of T ∗ for the T ∗-agent implies that F (x(T ∗), T ∗) ≥ V S
T ′(x(T ∗), T ∗), where

V S
T ′(x(T ∗ + ε), T ∗ + ε) ≥ F (x(T ∗ + ε), T ∗ + ε). Therefore,

F (x(T ∗), T ∗) ≥ V S
T ′(x(T ∗), T ∗) =

= u(c(T ∗), T ∗)ε + D(T ∗ + ε, T ∗)V S
T ′(x(T ∗ + ε), T ∗ + ε) + o(ε) ≥

≥ u(c(T ∗), T ∗)ε + D(T ∗ + ε, T ∗)F (x(T ∗ + ε), T ∗ + ε) + o(ε) =

= F (x(T ∗), T ∗) + ε

[
u(c, s)− ρ(x, a, 0)F +

(
∂F

∂x
· ẋ +

∂F

∂T

)]∣∣∣∣
T ∗

+ o(ε) .

(49)

Taking the limit ε → 0+ in (48) and (49) we obtain[
u(c, s)− ρ(x, a, 0)F +

∂F

∂x
· f +

∂F

∂T

]∣∣∣∣
T ∗
+

≤ 0 . (50)

Next, a (T ∗ − ε)-agent, ε > 0, will decide to continue until T ∗ only if

F (x(T ∗ − ε), T ∗ − ε) ≤
∫ T ∗

T ∗−ε

e−r(T ∗−s)u(c, s)ds + D(T ∗ + ε, T ∗)F (x(T ∗), T ∗)

and in the limit ε → 0+ we obtain[
u(c, s)− ρ(x, a, 0)F +

∂F

∂x
· f +

∂F

∂T

]∣∣∣∣
T ∗
−

≥ 0 . (51)

Since we are assuming that u(c) and F (x, T ) are of class C1, from (50) and

(51) we obtain:

Proposition 3 In Problem (15)-(16) with T free, if the agent is sophisti-

cated and there is no commitment in the terminal time, then the following

condition is satisfied in the terminal time T ∗:[
u(c, s) +

∂F

∂x
· f

]∣∣∣∣
T ∗

=

[
ρ(x, a, 0)F − ∂F

∂T

]∣∣∣∣
T ∗

.

In the above analysis we have implicitly assumed that the terminal state

x(T ) is free.

In the example analyzed in the previous section, if T is free, then T ∗ = ∞

unless ρ < 0, which makes no economic sense.
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6 Concluding remarks

In this paper we model the consumption decision of what we call arduous

goods, which are basically consumption goods in which not only time but

also effort is unavoidable, due to the non-separability of consumption and

production tasks.

In particular, we derive a general formulation of the decision problem

where the willingness to make an effort -to accumulate arduous goods- is

modeled as a changing discount factor combining two different strands of

literature. First, the time preference is modeled to be non-constant with

time - the agent has biased preferences with respect to these goods. This

implies that the solution path for consumption obtained by using standard

optimal control theory is time-inconsistent. Secondly, the willingness to make

and effort is considered to be partially endogenous, in the spirit of recursive

utilities. Specifically, the rate of time preference depends on past hard good

consumption levels, both the flow - effort - and the stock - accumulated

arduous good.

First we analyze the case in which the agents can only spend their re-

sources on the hard good. As a result of their biased preferences, the stronger

the bias and the further the agent from the final period, the higher is the

possibility of entering an arduous goods consumption -or a laziness- trap.

Additionally, the recursive part of the discount factor will interact with this,

producing inertia in these effects. For example, if the flow of effort applied

has a negative short run effect on the willingness to make an effort -showing

tiresome-, this negative effect on hard good consumption prolongs the time

spent in a laziness trap. Nevertheless, if the accumulated stock of hard good

has a positive long run effect -reflecting an increase in valuation due to learn-

ing by consuming process-, provided that effort is positive it will produce a

gradual correction of the bias.
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Secondly we introduce the possibility of consuming an easy good, com-

peting with the arduous good. The latter is discounted as above, while the

former is discounted in a standard way. In general, the possibility of con-

suming an easy good will reduce the amount of arduous good consumed, and

the possibility of an arduous good trap is reinforced.

Thirdly, given the difficulties in obtaining closed form solutions to this

problem, we derive a simplified illustration in which both goods are dis-

counted using standard discount factors, though at different constant instan-

taneous discount rates. Despite its simplicity, the differential constant-time

preference suffices to obtain time-inconsistent results and hence differences

between the precommitment solution and the naive and sophisticated -the

latter two being equal for the particular utility functions employed in the

example. Even though the discount factor does not depend on time, the

differential value of the rate of time preference plays the same role.

Fourthly, the consideration of a free-terminal time for the arduous good

consumption shows that the trade off the agent faces in accumulating hard

good for an additional period is also affected by the willingness to make an

effort, and hence distorted by this.

Finally, and given that we only focus on the demand side of the problem, it

is worth recalling that the arduous goods analyzed in this paper are strictly

consumption goods. Nevertheless, given that the main property of these

goods is the non-separability of consumption and production activities, it

becomes relevant to consider the supply side of the problem. We consider it

partially in the above model, since we take into account that the time spent on

arduous good cannot be directed to earning income in order to consume easy

goods. However, in this context there might be other interactions between

non-market and market production that would be worth approaching. A

natural extension of the above analysis would be to consider the case in

which the time and effort devoted to hard good consumption has an impact
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(potentially positive) on the level of human capital acquired by the agent.
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