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Abstract

In this paper we introduce adoption costs in a vintage capital model.
We assume that the incorporation of technological innovations into the
production sector requires an extra labor cost during a �xed period.
First, we show how adoption crucially matters in the shape of short
run and asymptotic dynamics. Then, we analyze the consequences
of adoption costs in technological substitution extending the model
in two ways: we let adoption costs depend on the technical growth
rate, and we endogenize them, depending on the technological gap.
When adoption costs depend on the technical growth rate, the e�ect of
growth on optimal lifetime of machines is indeterminate; the creative
destruction e�ect can be compensated by the adoption e�ect, and
faster growth rates delay the technological substitution. Finally, when
adoption costs are endogenous, we recover the typical obsolescence
e�ect in vintage capital models and show that technological progress
has a negative e�ect on the technological gap.
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1 Introduction

In the neoclassical theory technological progress is assumed to increase the

productivity of all existing capital. However, the embodied nature of tech-

nological progress has been invoked in some recent empirical contributions.

In particular, Greenwood, Hercowitz and Krusell (1997) estimate that the

investment speci�c technological progress accounts for 63% of output growth

in the US economy. The key assumption in investment speci�c technology

is that technological progress is embodied in new machines, which gives rise

to an endogenous process of creative destruction, that is, the process of re-

placing old machines with new and more productive ones1. Some theoretical

papers2 have stressed the suitability of vintage capital models for the anal-

ysis of investment volatility as investment takes the form of a replacement

activity.

A number of empirical contributions have emphasized the importance of

adoption costs (which takes the form of learning, experience, skill require-

ments or technological barriers) in the process of implementing a new tech-

nology. Bahk and Gort (1993) �nd that a plant's productivity increases

by 15% over the �rst 14 years of its lifetime due to learning e�ects. Using

cross-country data, Flug and Hercowitz (1997) point out that an increase in

equipment investment leads to a rise in the demand of skilled labor. Alder

an Clark (1991) reinforces the previous idea and show that the opening of a

plant is followed by a temporary increase in the use of skilled labor whose

job is to get the production process \up to speed". Quantitatively, adoption

costs have been estimated in Jovanovic (1995) as 10% of GDP.

The process of implementing new technologies is uncertain in nature and

the best way to model it is from a Bayesian perspective (Jovanovic and

Nyarko, 1995). However trying to do this in a general equilibrium framework

is a daunting task, and general equilibrium models deal with this problem

assuming a mechanistic process. Parente and Prescott (1994) introduce ex-

ogenous institutional and external constraints to adoption. Greenwood and

Yorukoglu (1997) stress the diÆculty of modelling the adoption process in an

endogenous manner and assume that as the rate of technological increases,

the more costly it becomes to adopt a new technology since enterprises will

1As shown by Benhabid and Rustichini (1993), endogenous replacement can be gener-

ated with any production function with complementary factors.
2See Boucekkine, Germain and Licandro (1997); Boucekkine et al. (1998).
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be less familiar with it.

The adoption of a new technology may carry a large forgone output cost

incurred during the learning period, as it takes some time for a new technol-

ogy to operate at its theoretical level (Parente, 1994). On the other hand, an

increase in the production costs (or a rise in the labor devoted to implement-

ing new technologies) during a temporary period, can help the new capital

to reach its potential productivity. Magnac and Verdier (1993) analyze in

a duopolist framework the process of adoption when the new technology is

characterized by adaptation costs and learning e�ects. They consider that

technological implementation shows two phases; in the �rst phase, the imma-

ture stage of the new technology, the �rm must incur larger costs since it has

to adapt the new technology it is using for the �rst time; in the second period,

the mature stage, the �rm has already learned how to use the new technology

and it is able to produce at a lower cost. This means that adopting the new

technology generates learning and consequently decreases costs. In fact, the

previous theories are equivalent in that they cause a decline in the �rms' net

revenues; in the �rst case this is introduced directly through a decrease in

output, while in the latter case it is assumed that the decrease in productivity

during the adoption phase is compensated by extra production costs or by

hiring an extra amount of labor. In this paper we consider a Ramsey growth

vintage capital model with linear utility and Leontie� technology, previously

studied by Boucekkine, Germain and Licandro (1997), and we relax the zero

adoption cost they assume. We model adoption costs, following the Magnac

and Verdier setup of two adoption phases, as an additional labor cost to be

paid over a �xed interval of time. The modelling of adoption through ad-

ditional labor requirements is standard. In some recent contributions (as in

Greenwood and Yorukoglu, 1997) adoption requires skilled labor. In others,

as in Easterly et al. (1994), adoption costs are simply taken proportional to

the labor force. Following Greenwood and Yorukoglu (1997) we let adoption

labor requirements to depend positively on the rate of technical progress.

The objective of the paper is twofold. First, we study how the short and

long run dynamics are a�ected by the costly technological implementation

process. In contrast with the model considered by Boucekkine et al. (1997),

in which the dynamics of investment is purely periodic in the short and in

the long run, the inclusion of adoption costs gives rise some \irregular pat-

terns" in the short run and convergence to the steady state in the long run.

Moreover, we analyze the consequences of costly adoption on the machine
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replacement process. We prove that the presence of adoption costs delays

the replacement of the oldest machines and increases the lifetime of capital

goods. Hence, costly adoption can destroy the inherent obsolescence e�ect

obtained in vintage capital models; when adoption costs depend on the tech-

nical growth rate, the e�ect of growth on the optimal lifetime of machines

in indeterminate; the creative destruction e�ect can be compensated by the

adoption e�ect and faster rate of technical progress may imply the use of

older technologies by �rms or countries facing up to higher adoption costs.

The problem of costly adoption is more crucial for developing countries

which typically lack capital and skills and su�er from institutional and ex-

ternal barriers to adoption. As a result, technology upgrading tends to be

less frequent and they often invest in dominated technologies. An extension

of the model let us to obtain the optimal technological decisions taking into

account the existing trade-o� between investing in newer technologies and

the consequent bigger adoption costs. Since it is assumed that implementa-

tion of dominated technologies are cheaper, the optimal investment decisions

lead to a positive technological delay which is increasing in the adoption cost

size.

This paper is organized as follows. Section 2 describes and shows the

centralized equilibrium of the model. Section 3 develops the dynamics, in

particular, we study the asymptotic stability of the model and the short run

behavior. Section 4 characterizes the balanced growth paths of this economy,

gives the comparative statics and shows the e�ect of costly adoption on the

machine replacement process. In section 5 we analyze the e�ect of adoption

costs on the technological delay when they depend on the adopted technology.

Section 6 concludes.

2 The model

We consider an economy with an unique good produced by a representative

�rm. The production technology is the usual Leontie� vintage capital tech-

nology with exogenous (Harrod neutral) labor augmenting technical progress.

Technical progress is continuously embodied in the new capital goods, which

yields an endogenous process of creation and destruction through the re-

placement of the old obsolescent machines by the new and more productive

capital goods. We assume that the productivity of new machines grows at
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�xed exponential rate , such that labor productivity grows exogenously at

rate .

Our economy does not innovate, it simply adopts technologies already in-

vented; however, it must exert an e�ort to adopt new technologies. In fact,

we assume that adoption is costly and that it requires an extra amount of la-

bor during a �xed period of time, say D. The modelling of adoption through

additional labor requirements is standard. In some recent contributions (as

in Greenwood and Yorukoglu, 1997) adoption requires skilled labor. In oth-

ers, as in Easterly et al. (1994), adoption costs are simply taken proportional

to the labor force. In our setting, although we consider that adoption and

production are two distinct activities, we do not introduce any skill di�eren-

tial in the model: labor is homogeneous and hence the labor market is not

segmented. More precisely, production and adoption are linked as follows:

to form a production unit, a �rm should combine one unit of capital, one

unit of labor devoted to production (which is needed along the lifetime of

the production unit), and � units of labor for D periods of time devoted

to adoption. Our speci�cation can be interpreted as follows. There are two

distinct phases in the lifetime of a production unit: for the �rst D periods an

extra labor e�ort is needed to operate the capital goods which incorporate

the latest technological advances. Once this phase is �nished, the �rm is

assumed to have enough expertise to produce the same quantity of output

with a lower amount of labor. It is worth pointing out that because of the un-

derlying Leontie� structure, our setting is equivalent to assuming a decrease

in labor productivity for the �rst D periods, which the �rm compensates

by hiring an extra amount of labor which is a standard speci�cation in the

recent literature of the �eld.

The Leontie� technology described below states that a production unit

created at t requires a capital unit of vintage t, an unit of productive labor

along the lifetime of the production unit, � units of adoption labor during D

periods and produces expftg units of output. If we denote T (t) the age of

the oldest operating machines at time t, aggregate output Y (t) and aggregate

employment L(t) are given by:

Y (t) =

Z t

t�T (t)

H(s)esds

L(t) =

Z t

t�T (t)

H(s)ds+

Z t

t�D

�H(s)ds
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where H(t) denotes the production units creation rate. Under zero adoption

costs, H(t) also denotes the job creation rate at period t; in our model the

job creation rate is equal to (1 + �)H(t).

As it will be clear later, the lifetime of production units, T (t), is deter-

mined endogenously in the model in contrast to the adoption period D which

is taken as constant. The assumptions underlying our speci�cations are ob-

viously consistent with T (t) > D for every t: the adoption phase cannot

exceed the lifetime of the production units. Instead, in the spirit of the

model, the lifetime of the production units should be signi�cantly greater

than the adoption time. We will return to this issue later.

Investment costs, that is, the costs of creating a production unit are lin-

eal and grow at the exogenous rate . To close the model, we specify the

consumer side: the economy comprises a continuum of agents, indexed from

0 to 1. All individuals share the same linear preferences over lifetime con-

sumption: Z 1

0

C(t)e�rtdt

where r > 0 is the subjective rate of time preference, and C(t) is the individ-

ual's consumption at time t; there is no disutility of labor, hence the labor

supply is exogenous and equal to one.

2.1 The Central Planner Problem

The central planner solves the following problem:

max

Z 1

0

C(t)e�rtdt

subject to

Y (t) =

Z t

t�T (t)

H(s)esds (1)

L(t) =

Z t

t�T (t)

H(s)ds+

Z t

t�D

�H(s)ds (2)

i(t) = H(t)et

C(t) = Y (t)� i(t)

0 � i(t) � Y (t)

given H0(t) for all t < 0.
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In order to solve this control problem we maximize the associated La-
grangian function; then, after changing the order the integration (following
Malcomson (1975)), and some algebra, the problem can be rewritten as:

L(t) =

Z 1

0

�
Y (t)�H(t)et � �(t)Y (t) + !(t)

�
e�rtdt+

Z 1

0

H(t)[

Z t+J(t)

t

[et�(s)� !(s)]e�r(s�t)ds� �

Z t+D

t

!(s)e�r(s�t)ds]e�rtdt+

Z 0

�T (0)

H(t)

"Z t+J(t)

0

[et�(s) � !(s)]e�r(s�t)ds� �

Z t+D

0

!(s)e�r(s�t)ds

#
e�rtdt

J(t) = T (t+ J(t)) (3)

�(t)and !(t) are the Lagrangian multipliers associated with constraints (1)

and (2) respectively. Equation (3) is just a de�nition: the expected lifetime

of the new capital goods J(t) is equal to the age of the oldest capital goods

at time t+ J(t)

The interior solution of this optimization problem is characterized by the

following �rst order conditions:

�(t) = 1 8t

et = !(t+ J(t)) (4)

et =

Z t+J(t)

t

�
�(s)et � !(s)

�
e�r(s�t)ds� �()

Z t+D

t

!(s)e�r(s�t)ds (5)

Equation (4) is an exit condition which states that a production unit of

vintage t will be replaced at t + J(t) when its productivity does not cover

the worker's reservation wage. Equation (5) is an entry condition which

corresponds to the optimal investment rule. It equalizes the marginal cost of

investment, on the left hand side, to the expected marginal revenue over its

planned lifetime J(t); the marginal revenue is determined by the production

bene�ts minus the production labor costs, minus the cost of implementing

a new and more productive technology. Whereas production labor costs

depend on the future scrapping time, adoption costs depend on the adoption

period. It is important to emphasize that although the adoption parameters

(�;D) are exogenously given, adoption costs are endogenously determined;

since they are measured in labor units, they depend on the reservation wage

and on the creation units.

We are now able to de�ne an equilibrium for our economy.

De�nition 1 Given the adoption time D � 0, and given the initial condi-

tions H0(t), 8t < 0, an equilibrium for our economy is a path for T (t), J(t),
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H(t) and Y (t), 8t � 0, such that T (t) and J(t) are strictly greater than

D � 0, and satis�es the following system of equations:

1 =

Z t+J(t)

t

h
1� e�(t�s+T (s))

i
e�r(s�t)ds� �

Z t+D

t

e�(t�s+T (s))e�r(s�t)ds(6)

J(t) = T (t+ J(t)) (7)

1 =

Z t

t�T (t)
H(s)ds+

Z t

t�D
�H(s)ds

Y (t) =

Z t

t�T (t)
H(s)esds

2.2 Optimal Scrapping and Adoption Time

Our equilibrium conditions show a clear recursive forward-looking sub-block,
namely the sub-block formed by equations (6)-(7). This sub-block allows
to solve for the timing variables T (t) and J(t) independently of the other
endogenous variables. By di�erentiating (6), using (7) and rearranging terms,
we �nd the following functional relation

T (t) = F (T (t+D); J(t))

= �
1


ln

�
1

1 + �()

�
1� (r � )�



r
(1� e�rJ(t)) + �()e�T (t+D)e�(r�)D

��

In order for function F (:; :) to map from R+ � R+ into R++, we need the

following assumption:

Assumption 1 The parameters of the model must satisfy the following con-

ditions: 0 <  < r < 1:

This assumption on the parameters is a standard condition for the ex-

istence of solutions in exogenous growth models; it is not diÆcult to prove

that under assumption 1, (i) function F (:; :) is increasing with respect to

each of its arguments, and (ii) function G(x) = F (x; x) has a unique strictly

positive �xed-point. The following existence-uniqueness result generalizes

Boucekkine, Germain and Licandro's Proposition 2 (1997).

Proposition 1 Under assumption 1, for any value of the adoption time D �

0, the unique equilibrium paths for T (t) and J(t), t � 0, are constant and

equal to the �xed-point T � of the function G(x) = F (x; x).
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The proof consists in constructing a sequence of upper bounds and lower

bounds for T (t), 8t, and to show that these two sequences converge to the

�xed-point of function G(x). Recall that

T (t) = �
1


ln
�
A+Be�rJ(t) + Ce�T (t+D)

�

A =
r � 

1 + �

�
1

r
� 1

�
> 0

B =


r(1 + �)
> 0

C =
�

1 + �
e�(r�)D > 0

An obvious lower bound for T (t) is F (0; 0) = � 1

ln [A+B + C], and a simple

upper bound is F (1;1) = � 1

ln [A]. We get:

�
1


ln [A+B + C] � T (t) � �

1


ln [A]

for all t � 0. Since the previous inequalities hold for all t, they hold at t+D
and at t+ J(t). As T (t+ J(t)) = J(t), we can �nd another lower bound and
another upper bound for T (t) using the fact that function F (:; :) is increasing
in each of its arguments:

�
1


ln
h
A+Be

r


ln[A+B+C] + Celn[A+B+C]

i
� T (t) � �

1


ln
h
A+Be

r


lnA + Celn[A]

i

We can keep on generating successive lower bounds (an) and upper bounds

(bn) for T (t) in this way. For lower bounds we get the sequence a0 =

� 1

ln [A+B + C] and an = � 1


ln [A+Beran�1 + Cean�1 ] = G(an�1), for

all n � 1. For upper bounds we get the sequence b0 = � 1

ln [A] and

bn = � 1

ln
�
A+Berbn�1 + Cebn�1

�
= G(bn�1). The sequence an (bn) is triv-

ially increasing (decreasing) and bounded. Thus, both sequences converge,

they converge to the �xed point of functionG(:) by construction. Proposition

1 follows immediately.

Note that the constancy of the optimal lifetime of production units is

obtained even in the zero adoption case, namely if D = 0. This property is

useful for comparison purposes. A �rst interesting economic insight can be

gained from the study of optimal lifetime when adoption time varies.

Proposition 2 Under assumption 1, the optimal lifetime of production units

T � is an increasing but concave function of the adoption time D.
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See the proof in the appendix.

This proposition shows two interesting economic properties of the model.

First, we analytically obtain that adoption costs increase the lifetime of pro-

duction units and delay the technological substitution process. This is a

very good property of the model since adoption costs have been repeatedly

invoked to explain technological sclerosis and the higher age of capital in

developing countries. Secondly, the growth rate of the production's units

lifetime is decreasing with respect to the adoption time. This is rather an

expected property having in mind equilibrium equation (6). An increase in

the adoption time will increase the associated labor cost, which tends to in-

crease the lifetime variable J(t), as it requires time to recover the additional

labor costs. However, an increase in the lifetime variable J(t) decreases the

\shadow" wages by equation (4), so it will reduce ex-post the labor costs. As

a result, the optimal lifetime tends to growth less than the adoption time.

The previous proposition implies that it can be possible, in equilibrium,

to scrap the oldest machine before �nishing the adoption period; it would

modify the structure of the problem as it has no sense to incur in implemen-

tation costs once the production unit have been removed from the production

process. Indeed, the later issue as a whole is not that important in our sim-

ple framework since the adoption time is exogenous and can be �xed to a

convenient value consistently with the view underlying our speci�cation of

adoption. Recall that, by de�nition of equilibrium, the optimal lifetime of

production units should be lower than the adoption time. The concavity

result above implies that the latter desired property may not be obtained

for large values of D. We can prevent such an undesirable con�guration

by restricting the values of adoption time. We can establish the following

existence result.

Proposition 3 Under assumption 1, there exists D0 > 0 such that T � > D

if and only if 0 � D � D0

The previous proposition restricts the value of the adoption time under

which T (t) = T � is an equilibrium for all t � 0. We think of adoption time as

a short transition period compared to the whole lifetime of production units.

In this context, proposition 3 works extremely well.3

3For example, if r = 0:05,  = 0:03, � = 0:2 and D = 3, T � equals to 11:25 years, while

D0 is 16:7 years.
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3 Dynamics and Asymptotic Properties of

Investment and Production

In this section we study the short and run dynamics and the asymptotic

stability of investment and production. To derive the investment dynamics,

we di�erentiate the labor market equilibrium equation. Production dynamics

are obtained di�erentiating equation (1) and, taking into account equation

(8):

H(t) = aH(t�D) + (1� a)H(t� T �) (8)

Y (t) = aY (t�D)eD + (1� a)Y (t� T �)eT
�

(9)

where a = �
1+�

.

With zero adoption costs (�;D = 0), as in the RVCM studied by Boucekkine

et al (1997), the dynamics of investment and production are purely periodic

in the short and in the long run, and are given by:

H(t) = H(t� T �)

Y (t) = Y (t� T �)eT
�

The main implication of adoption costs is the appearance of a second delay

in the investment dynamics. This second delay is obtained under the as-

sumption that the two activities have not identical timing: the introduction

of adoption costs will distort the equilibrium dynamics as long as they in-

volve a di�erent timing with respect to the main creation and destruction

decisions. As the dynamics of Y (t) are identical to those of H(t), we will

focus on the dynamics of H(t).

Proposition 4 All the nonzero roots of (8) are stable

The characteristic function associated to equation (8) is

g(�) = 1� ae��D � (1� a)e��T
�

= 0 (10)

Let � = x + iy, then g(�) = 0 implies that the real and imaginary part of

(2.10) must be zero.

1� ae�xD cos(xD)� (1� a)e�xT
�

cos(xT �) = 0 (11)

ae�xD sin(yD) + (1� a)e�xT
�

sin(yT �) = 0 (12)
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First, we prove that g(�) has a non-positive real part; we then check that

if the real part is zero, the imaginary part is also zero. It is easy to see that

x > 0 is impossible since it implies ae�xD cos(xD)+(1�a)e�xT
�

cos(xT �) < 1,

(e�z and cos t � 1, for any t, and for any z > 0). On the other hand, if x = 0,

equations (11) and (12) can be written as

1� a cos(xD)� (1� a) cos(xT �) = 0

a sin(yD) + (1� a) sin(yT �) = 0

and it is trivial to check that the only value of y that satis�es the previous

equations is y = 0. So, the unique real root is the trivial root � = 0.

The previous proposition gives us the following result for the short run

and asymptotic behavior:

Corollary 1 (i) Unless the initial condition function H0(t) is constant and

equal to H, the investment dynamics have a cyclical, but \asymmetrical"

behavior in the short run;

(ii) For all H0(t),

lim
t!1

H(t) = H =
1

T � + �D

The previous corollary is a direct result of equation (8) and proposition

4. Given that the characteristic function associated to equation (8) has only

� = 0 as a real root, the investment dynamics are asymptotically stable and

H(t) converges to its steady value.

In contrast with the zero adoption costs model we have obtained two main

results. First, when the adoption costs are positive, uctuations vanish in

the long run. Second, convergence to the steady state is cyclical, but shows

some irregular patterns; this asymmetric behavior is a consequence of the

existence of a second delay, that is, the adoption time, and depends on the

size of the adoption costs.

Equation (8) lets us to analyze the role that � and D play in the short

run dynamics. The parameter a is an increasing function of �. Given D,

the adoption labor requirement measures the weight of the adoption delay in

H(t); if � is large (small), the investment behavior is driven mainly by the

investment carried out D (T �) periods before. On the other hand, given �,
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the adoption time gives the frequency of the irregular patterns. The irregular

behavior of H(t) depends crucially on the initial conditions. If we establish

an increasing (decreasing) initial conditions, the irregular patterns are bigger

than if we assume cyclical initial conditions. Since investment at period t

is a linear combination of the previous investment D and T periods before,

the irregular and convergence behavior is emphasized by the gap between

H(t�D) and H(t� T ). We report, in the appendix, some examples of the

short run dynamics behavior, assuming di�erent initial conditions.

4 Stationary equilibrium and Comparative

Statics

This section characterizes the long run equilibrium and gives some compara-

tive statics results. The balanced growth path of this economy is a situation

in which the rate of job creation, detrended production and the optimal

lifetime of the capital goods are constants, ie., H(t) = H, Y (t) = Y et,

T (t) = T (t+D) = J(t) = T �. It is characterized by the following equations:

1 =
1� e�rT

�

r
�
e�T

�

� e�rT
�

r � 
�
�e�T

�

(1� e�(r�)D)

r � 
(13)

H =
1

T � + �D
(14)

Y =
H(1� e�T

�

)


(15)

Using the equations above, we can establish the following comparative

statics results:

(i)
@T �

@D
> 0;

@T �

@�
> 0;

@T �

@
< 0

As we have proved in proposition 2, an increment in the adoption period

will increase the associated labor costs; then, the optimal lifetime of ma-

chines tends to increase in order to recoup the additional costs. A raise in

the amount of labor required to implement a new technology also rises the

adoption costs and the lifetime of machines.

The inverse relation between T � and  is standard in vintage capital mod-

els; it is the typical obsolescence e�ect, reecting that an increment in the
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rate of technological progress makes replacement more pro�table. Since new

technology is embodied in new capital and investment is irreversible, faster

rate of technical progress encourages the machine replacement process in or-

der to get rid of old capital and replace it with new and more productive

kinds. Adoption costs do not take a relevant role on the obsolescence e�ect:

as (�, D) are exogenous and constants, they are considered by the planner

as an increment on the total labor costs.

(ii)
@H

@D
< 0;

@H

@�
< 0,

@H

@
> 0

A rise in D (�) has two negative e�ects on the detrended investment.

First, there is a direct e�ect: adoption costs increase labor costs and discour-

age investment. Second, there is an indirect e�ect which reinforces the direct

one: adoption costs increase labor costs and augment the optimal lifetime

T �, then job creation should diminish to check the labor market equilibrium

condition, and then investment should decrease as well.

An increase in the rate of technical progress speeds up the job creation

process: faster technical progress decreases the optimal age of the machines

and consequently, in equilibrium, job creation must increase.

(iii)
@Y �

@D
< 0;

@T �

@�
< 0;

@Y

@
< 0

An increment in D (�) has two opposing e�ects on detrended output. It

increases the optimal lifetime and tends to raise detrended output. More-

over, there is a negative e�ect working through a reduction of the detrended

investment, pushing toward an increase in detrended output. As we show in

the appendix, the total e�ect is unambiguously negative and adoption costs

decrease the output level.

An increase in  has three competing e�ects on detrended output:

@Y

@
=

1� e�T
�



@H

@
+He�T

� @T �

@
+
H(T �e�T

�

� 1 + e�T
�

)

2

First, there is a positive e�ect which works in the direction of increasing

the equilibrium job creation rate, and hence augmenting detrended output.

Second, a rise in the rate of technical progress decreases the optimal lifetime

and has a negative e�ect on detrended output. Finally, given H and T �, an

increment in  reduces the long run output. The positive e�ect, due to a

13



rise in the creation of production units, is totally compensated by the two

negative e�ects and faster technical progress rate has a negative e�ect on

detrended output.

4.1 Adoption costs and technological progress

The process of implementing new technologies is uncertain in nature and

the best way to model it is from a Bayesian perspective (Jovanovic and

Niarko, 1995). However, trying to do this in a general equilibrium framework

is a daunting task, and general equilibrium models deal with this problem

assuming a mechanistic process. Greenwood and Yorukoglu (1997) stress the

diÆculty of modelling the adoption process in an endogenous manner, and

assume that as the rate of technological process increases, the more costly it

becomes to adopt the new technology since enterprises will be less familiar

with it.

We consider the same approach as Greenwood and Yorukoglu (1997)

and assume that adoption costs depend positively on the rate of technical

progress. We think in an economy which does not innovate, it simply adopt

technologies invented abroad, and better technologies are more diÆcult to

implement and lead to higher adoption costs. We have pointed out that in

vintage capital models with constant adoption parameters, as the technical

growth rate increases, the obsolescence e�ect makes the replacement of the

oldest machine pro�table. We study the robustness of this result when the

e�orts required to adopt a new technology are positively correlated with the

rate of technical progress. As we see, technological progress can hold up

machine replacement if the adoption costs are suÆciently large.

We consider the following adoption cost function, C(�(); D); it implies

that the adoption period is constant whereas the adoption labor requirement

depends on the rate of technical progress4.

Assumption 2 �0() > 0, �00() > 0

Assumption 2 states that faster technical progress makes the technological

implementation process more diÆcult. The convexity assumption is required

to reect that faster technical growth rates lead to larger di�erences between

4The same results are obtained if C(�;D()).
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technologies of di�erent vintages, and so, implementation of the latest tech-

nologies is costly.

Proposition 5 1) If the technical progress rate , the additional labor re-

quirement �; or the duration of the adoption phase D, are suÆciently small,

then @T �

@
becomes strictly negative.

2) If the adoption process is suÆciently costly, 9 0 so that @T �

@
> 0 8 >

0. Besides, 0 is a decreasing function in the adoption period, D.

We di�erentiate equation (13) taking into account that � depends on the

rate of technical progress:

@T �

@
=

@T �

@jC
+

@T �

@�()

@�()

@
(16)

Technological progress also a�ects the optimal lifetime through the adoption

cost function. As we can see, equation (16) clearly shows two opposing e�ects.

First, there is a direct destruction creative e�ect which decreases the age

of capital. Given the adoption costs, an increase in the technical growth

rate implies faster obsolescence and a decrease in the age of capital. The

direct destruction e�ect decreases with  since T � is a decreasing and convex

function of .

Second, there is an adoption e�ect, which increases the lifetime of capital:

an increment in the growth rate of technological progress raises the additional

labor requirement and increases T � as it requires time to recoup the larger

adoption costs.

The adoption e�ect is given by:

@T �

@�()

@�()

@
=

(r � )�0()(1� e�(r�)D)

(r � )[1� e�(r�)T
� + �(1� e�(r�)D]

and it depends mainly on the adoption cost function; the adoption period

and the adoption labor requirements reinforces the adoption e�ect. The total

e�ect is ambiguous and depend mainly on the adoption costs function.

Proposition 5 shows that technological progress can delay the machine re-

placement process when adoption costs are suÆciently large. Since adoption

costs and technical progress are treated jointly, the increment in adoption

costs pushes for a longer lifetime of capital in order to recoup the additional
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costs. The inherent creative destruction e�ect is totally or partially compen-

sated by the adoption e�ect, and faster technical progress may discourage

the substitution of the older technologies for the leader one.

If we think that di�erent adoption costs across countries reect di�erent

skills or di�erent institutional barriers, the previous proposition rises up an

interesting property of the model: developed countries, with a free-uid for-

eign trade and skill intensive labor, can compensate the negative adoption

e�ect and faster growth accelerates technological substitution. However, in

developing countries which confront larger adoption e�orts, the predominant

e�ect is the adoption one, and technical progress discourages machine re-

placement leading to technological sclerosis.

We deal with a numerical example to compare two economies with dif-

ferent adoption cost functions (Ci(�i(); Di), i = 1; 2 to depict a developed

(i = 1) and a developing economy (i = 2). According to Greenwood and

Yorukoglu (1997), adoption costs may amount about 10% GDP in devel-

oped countries. We set the following adoption labor requirement functions

�i() = ai
b, with a1 = 300, a2 = 700, b = 2, D1 = 2 years, D2 = 5 years.

With r = 0:05 and  = 0:03, the ratio adoption costs over GDP is about

6% ( 12%) in the developed (developing) economy. The following Figure

shows the relationship between  and the optimal lifetime of machines. In

the developed economy, the optimal lifetime of the machines is a decreasing

function of the technical progress rate. The obsolescence e�ect totally com-

pensates the adoption e�ect regardless of the value of . In contrast, in the

developing economy the obsolescence e�ect predominates for low values of

; but, as the technical growth rate increases, the predominant e�ect is the

adoption one and the machine replacement process is delayed.

0.01 0.015 0.02 0.025 0.03 0.035 0.04
7.5

10

12.5

15

17.5

20

22.5

25

T __C1, - -C2

Note that the relationship between the rate of technical progress and the

lifetime of capital depends mainly on the size of the �rst derivative of the
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adoption cost function (the adoption e�ect tends to zero when �0() tends

to zero). Further numerical examples show that the bigger �0(), the smaller

is the adoption period and the technical growth rate required to break down

the obsolescence e�ect.

5 Adoption of dominated technologies

In the previous sections we have assumed that adoption and investment costs

are independent of the adopted technology and grow at rate . As a con-

sequence the model predicts that all economies invest in the latest vintages

whenever investments are made, and countries facing up to higher adoption

costs di�er only in the frequency of adoptions. A de�ciency of these kinds of

models is that there are not consistent with the stylized fact that developing

countries do not operate with the latest technologies used in the developed

ones.

There are many reasons whereby poor countries invest in older technolo-

gies. Regulatory and legal constraints, bribes and import tari�s, which have

the e�ect of increasing the cost of technology adoption, can a�ect to the opti-

mal investment decisions. Hence, the literature of vintage technology empha-

sizes the role of technology speci�c skills; di�erent technologies may require

completely di�erent skills (Evenson and Westphal, 1994; Keller, 1994), and

the skill factor may constraint the choice between technologies as far as new

machines embody an increasing level of technological sophistication. As a

result, the di�erent investment-speci�c decisions taken by di�erent countries

give rise to a technological gap, recently studied in the empirical literature.

In this section we continue exploring the role of adoption costs on techno-

logical substitution, but we take into account the existing trade-o� between

investing in newer technologies and the costly consequences of these invest-

ment decisions. We also assume that there is a frontier technology at each

date that increases exogenously at rate , but we introduce two important

di�erences with respect to the theoretical framework studied in section 2.

First, the investment cost is proportional to the productivity of the acquired

technology. Second, the cost of technology adoption depends on how close

the adopted technology is to the technological frontier, ie. adoption costs

depend on the di�erence between the leader and the adopted technology.

We assume that machines embodying older technologies have lower adoption
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costs; the underlying idea is that the older a technology is, the more pub-

lic information available about its use, the less an economy must spend in

implementing and learning about it.

We denote by B(t) the technological delay in t; ie. the machine's relation

to the technological frontier at the time of adoption. Then in period t, the

economy adopts the capital goods created in t � B(t), with an associated

productivity e(t�B(t)). We assume that the adoption period D is constant,

whereas the labor requirement devoted to adoption depends on the technolog-

ical delay, �(B(t)); since we assume that older technologies have lower adop-

tion costs, �0(B(t)) < 0. Following Barro and Sala-i-Martin (1997), we de�ne

the technological gap at period t as the fraction between the productivity of

the leader technology and the adopted one, TG(t) = et

e(t�B(t))�1 = [eB(t)�1],

which is fully determined by B(t); unless the economy adopt the latest tech-

nology whenever it carries out the technological replacement process, the

technological gap is positive.

Now, the central planner solves the following problem:

max
fY (t);H(t);B(t);T (t);J(t)g

Z 1

t=0

[Y (t)� i(t)]e�rtdt

subject to

Y (t) =

Z t

t�T (t)

H(s)e(s�B(s))ds (17)

1 =

Z t

t�T (t)

H(s)ds+

Z t

t�D

�(B(s))H(s)ds (18)

i(t) = H(t)e(t�B(t))

0 � i(t) � Y (t)

B(t) � 0 (19)

given H0(t) for all t < 0. This problem is equivalent to that solved in section

2.1, apart from the additional endogenous variable, B(t): each period the

planner chooses, among the invented ones, which technology to adopt, taking

into account the adoption and the investment costs. Since the economy only

can adopt technologies already invented, B(t) � 0. Note that an implicit

requirement of the model is that the adopted technology must be superior to

the scrapped one; this issue is addressed later on.

The Lagrangian function associated to the planner's problem is given in
the appendix. We focus on the �rst order condition which characterize the
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interior solution:
�(t) = 1 8t

w(t+ J(t)) = e(t�B(t)) (20)

e(t�B(t)) =

Z t+J(t)

t

h
�(s)e(t�B(t) � w(s)

i
e�r(s�t)ds� �

Z t+D

t

w(s)e�r(s�t)ds (21)



Z t+J(t)

t

�(s)e
(t�B(t))

e�r(s�t)ds = e(t�B(t)) � �0
Z t+D

t

w(s)e�r(s�t)ds (22)

Equation (20) is an exit condition with states that a production units

adopted at period t, with an associated productivity of e(t�B(t)), will be

replaced when its productivity does not cover the worker's reservation wage,

w(t + J(t)). Equation (21) is the entry condition which corresponds to the

optimal investment rule, and equation (22) is the optimal condition for the

technological delay: it requires that the marginal revenue of decreasing the

adoption lag equalizes the marginal cost of investment and the additional

adoption costs.

We restrict our analysis to the stationary equilibrium of our economy.

De�nition 2 Given the adoption time D � 0, and given the initial condi-

tions H0(t), 8t < 0, a stationary equilibrium for our economy is a situation

in which the rate of job creation, detrended output, the optimal lifetime of

capital, the technological delay and the technological gap are constants, ie.

H(t) = H, Y (t) = Y et, T (t) = J(t) = T , B(t) = B, TG(t) = TG.

The stationary equilibrium is given by the following equations:

1 =
1� e�rT

r
�
e�T � e�rT

r � 
�
�(B)e�T [1� e�(r�)D]

r � 
(23)

1 =
1� e�rT

r
+
�0(B)e�T [1� e�(r�)D]

(r � )
(24)

Y =
He�B [1� e�T ]



1 = HT + �(B)HD

TG = eB � 1

It is straightforward to verify that although the economy incurs in a techno-

logical delay in the long run, it always adopt more productive technology than

the scrapped one. Notice that the optimal lifetime of the capital goods and

technological delay remain constants in the long run, then, e�B > e�(T+B).
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We next study the existence of a balanced growth path. This problem is

reduced to check the existence of a pair (T , B), which solves equations (23)

and (24). Equation (23) is obtained from the free entry condition taking into

account the shadow price of labor. It de�nes a negative relation between

optimal lifetime of machines and the technological delay; as B increases, the

embodied productivity of the adopted capital goods and the period during

which the planner �nds pro�table to keep in use the adopted technology

before replacing it decreases. Equation (24) describes the �rst order condition

with respect to the technological delay and its slope is determined by �00(B).

Assumption 3 (i) �(B) 2 [0; �0]; �
0(B) < 0, �00(B) > 0.

(ii)j�0(0)j > [1+�(0)(1�e�(r�)D)]

(1�e�(r�)D)

Proposition 6 A balanced growth path exists if and only if assumption 3 is

checked.

The proof is given in the appendix.

Assumption 3 restricts the values of � and the behavior of �(B) in a

reasonable way. Adoption costs are a decreasing and convex function of the

technological delay. The older a technology is, the more public information

about its use and the lower marginal gains of delaying adoption. We denote

by �0 the additional labor requirement when the economy acquires the leader

capital good. Hence, when the economy adopt a technology enough far from

the leader one, the adoption requirements tends to zero, ie. it exists Bmax

such that �(Bmax)! 0.

It also imposes a necessary condition on the behavior of �0(0) for a sta-

tionary equilibrium to exist. As �00(B) > 0, equation (24) de�nes an implicit

function T = f(B), with f 0(:) < 0: an increase in B, reduces the marginal

costs of adoption and then T should decrease in order to diminish marginal

revenues to adoption. The second part of assumption 3 is required to verify

that both decreasing function intercept once.

The existence of an interior solution implies that it is optimum not to

invest in the leader technology when implementation costs are heterogeneous

across the technological menu. The existence of a positive technological delay

is not only suitable for the study of developing countries; it is well known that

the largest part of R&D in many sectors, information technologies among

20



others, is undertaken in USA, and the European countries adopt technologies

already invented with a small delay. In order to deal with some numerical

comparative statics exercise, we set the following speci�cation of the adoption

function, which satis�es assumption 3:

�(B) =
�o

log[e +B]

where �0 denotes the additional adoption labor requirement when the econ-

omy adopts the leader technology. We display below the most interesting

sensitivity analysis results, namely those for the parameters D, and 5. We

compute the deviations from the initial steady state (in percentage) for the

more relevant variables.

4D T B TG 4 T B TG

1% 0:11 0:66 0:68 1% �0:26 �0:27 0:23
5% 0:54 3:2 3:35 5% �2:5 �2:6 2:28

A larger adoption period induces a longer lifetime of capital and a bigger

technological delay; consequently the technological gap increases. A rise

in D increases the adoption costs and then T rises in order to recoup the

additional adoption costs induced by a longer adoption period. An increment

in D has two opposing e�ects of the technological delay; �rst, higher D tends

to augment B to reduce adoption costs; second, a longer lifetime of capital

should be compensated with a smaller technological delay ( an increase in

the productivity of the adopted technology) in order to be pro�table to use

the adopted technology for a longer period of time. The main di�erence

with the exogenous adoption parameters model is the existence of another

channel to adjust the long run variables after the shock: the technological

adoption decision, via B, has an indirect e�ect on the optimal lifetime of

capital. There exists a trade-o� between adopting an older technology and

using it for a smaller period of time. As it is shown in the previous table the

economy reacts incurring in a larger technological delay in order to reduce

the negative e�ect on T .

We next investigate the long run implications of a technological acceler-

ation. A faster rate of technical progress decreases the lifetime of machines

5Setting r = 0:05;  = 0:02; D = 3; �0 = 0:25, we obtain the following stationary

values: T = 13:5, B = 2:28, TG = 0:047
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and the technological delay, but has a positive e�ect on the technological

gap. Technical progress makes replacement more pro�table and reduces the

optimal lifetime of machines. Higher  increases the reservation wage in-

ducing to a rise in the technological delay; however, faster  also leads to

an increment in capital productivity and stimulates the adoption of better

technologies to take advantage of the productivity improvements. The nu-

merical results suggests that the wage e�ect is totally compensated by the

productivity e�ect, and the economy reacts decreasing B and adopting bet-

ter technologies. Despite the economy reduces the technological delay, the

technological gap increases; higher  rises the productivity di�erentials across

technologies augmenting the equilibrium technological gap.

The model predicts a negative role of adoption costs on the technological

delay and on the technological replacement. The positive e�ect on the life-

time of capital induced by an increment on the adoption period is smoothed

by a bigger technological delay. However, it is not totally compensated, since

it would imply negative consequences on productivity and hence on the long

run level of output. In contrast, technical progress encourages machine re-

placement and the adoption of better technologies, although the e�ect on the

technological gap is negative.

These numerical �ndings are quite consistent with the empirical adoption

literature. Navaretti et al. (1999) models the �rm's choice between new

and used technologies (that can be interpreted as dominated technologies)

assuming that machines last for two periods. They analyze U.S. export data

on some types the vehicles, equipment and machinery, and �nd that the use

of dominated technologies is higher the lower the level of development of the

importing country and the faster technical change. In Jaumotte (1999) a

sample covering 63 developing countries is analyzed, and the main �nding

is that human capital plays a decisive role in the absorption of technologies.

Our model predicts that the technological delay is higher the bigger the

adoption cost ( as a proxy of the level of development of the country ), and

hence the lower the frequency of adoptions. In contrast we obtain that faster

technical change encourages the adoption of better technologies reducing the

technological delay. This result may crucially depends on the homogeneous

labor assumption: we lose the speci�c-investment constraint due to the skills

requirements to run a better machine eÆciently.
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6 Conclusion

In this paper, we incorporate costly adoption in a Ramsey growth vintage

capital model with linear utility and Leontie� technology, in order to ana-

lyze the e�ect of adoption costs on the dynamics properties of the model;

Moreover, we study the consequences of a costly process of implementing

new technologies, already invented, in the replacement process. We �nd that

adoption costs increases the lifetime of machines and delay the technological

substitution. This is a very good property of the model since adoption costs

have been invoked to explain the technological sclerosis and the higher age of

capital in developing countries. The obsolescence e�ect is a well known fea-

ture of creative destruction models: faster growth induces a faster machine

replacement, in order to take advantage of the new and more productives

capital goods. We prove that when adoption costs depend positively on the

technical growth rate, the obsolescence e�ect can hold up, depending on the

size of the adoption costs. Countries with lack of skilled labor or technolog-

ical barriers (as a proxy of adoption costs), delay the replacement process

since the adoption e�ect compensates the obsolescence one. The problem

of costly adoption is more crucial for developing countries which typically

lack capital and skill. We extend the model in order to be consistent with

the stylized fact that developing countries do not operate with the latest

technologies. We found that when adoption costs depend on the adopted

technology, it is optimum to incur in a technological delay in order to take

advantage of the lower implementation costs. The model predicts a negative

role of adoption costs on the technological delay and on the machine substi-

tution, whereas technical progress encourages machine replacement and the

use of better technologies. Obviously, it would be highly interesting to check

these results in a more complex model, including heterogeneous labor and

technology speci�c skills in the adoption side of the economy.

As theoretically shown by Boucekkine et al. (1997), the RVKM with

Leontie� technology and lineal utility yields periodic solutions paths for de-

trended investment and production, beginning at a �nite date. This result

comes mainly from the fact that the optimal scrapping rule is constant under

the previous assumptions. With the adoption function assumed in section

2, we prove that although the optimal scrapping rule remains constant, the

introduction of costly adoption distorts the equilibrium dynamics as long as

they involve a di�erent timing with respect to the main creation and de-
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struction decisions. As a consequence, uctuations vanish in the long run

and the convergence to the steady state is cyclical, but shows some irregular

patterns.

The main implication of the presence of the technological delay in section

5 is that we can not assured that the optimal scrapping rule T (t) (and con-

sequently J(t) ) is constant for any t � 0. In order to analyze the dynamics

properties, it is required to solve a mixed-delay integro di�erential equation

system with endogenous leads and lags. We got over the analysis of the con-

vergence properties to the steady state and we have restricted our analysis to

the steady state equilibrium. Given that an important economic issue is the

technological catch-up experienced by developing countries (conditional on

their steady state technological gaps), a natural extension of this research is

to handle with the technical diÆculties and to analyze the role of the optimal

scrapping rule and the technological delay in the technological convergence

process.
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8 Appendix

1. Proof of Proposition 2

@T �

@D
=

�(r � )e�(r�)D


�
1� e�(r�)T

� + �(1� e�(r�)D
� > 0

Under assumption 1, the optimal lifetime increases with D. To establish the

concavity result, much more tedious computations are needed. Let us de�ne

the function Q(:; :) in the following way:

Q(D;T �) =
1� e�rT

�

r
�
e�T

�

� e�rT
�

r � 
�
�e�T

�

(1� e�(r�)D

r � 
� 1 = 0

if we denote by f(:) the functional relation between T � and D, T � = f(D),

the second order derivative should satisfy

f 00(D) = �
1

(Q2)3
�
Q11Q

2
2 +Q22Q

2
1 � 2Q1Q2Q12

�

with

Q1 = ��e�T
�

e�(r�)D < 0

Q2 =
e�T

�
�
1� e�(r�)T

�

+ �(1 � e�(r�)D
�

r � 
> 0

Q11 = �(r � )e�T
�

e�(r�)D > 0

Q12 = �e�T
�

e�(r�)D > 0

Q22 =
�2e�T

�
�
1� e�(r�)T

�

+ �(1� e�(r�)D
�

r � 
+ e�T

�

e�(r�)D

Now observe that

Q22Q
2
1�2Q1Q2Q12 = �2e�3T�e�2(r�)D

�
e�(r�)T� +

[1� e�(r�)T� + �(1� e�(r�)D]

r � 

�

is bigger that zero. As Q22Q
2
1 > 0 and Q22Q

2
1 � 2Q1Q2Q12 > 0, we do get

f 0(D) < 0
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2. Comparative Static Results (i) Di�erentiating equation (13) with

respect to the adoption cost parameters we obtain:

@T �

@D
=

�(r � )e�(r�)D


�
1� e�(r�)T

�

+ �(1� e�(r�)D
� > 0

@T �

@�
=

1� e�(r�)D


�
1� e�(r�)T

�

+ �(1� e�(r�)D
� > 0

Di�erentiating equation (13) with respect to  gives:

@T �

@
=

1� e�(r�)T� � T �(r � )

(r � )
�
1� e�(r�)T� + �(1� e�(r�)D

� +
�
�
1� e�(r�)D �D(r � )e�(r�)D � T �(r � )(1� e�(r�)D

�
(r � )

�
1� e�(r�)T� + �(1� e�(r�)D

�

As 1 � e�x � x < 0 and [1 - e�(r�)D-D(r � )e�(r�)D - T �(r � )(1 �

e�(r�)D)] is a decreasing function of T � and is zero for T � = 0, we obtain

a negative relation between the technical progress rate and the lifetime of

machines.

(ii) Di�erentiating equation (14):

@H

@D
= �

�
@T �

@D
+ �

�
H2

< 0

@H

@�
= �

�
@T �

@�
+ T

�
H2

< 0

@H

@
= �

1

H2

@T �

@
> 0

(iii) We �rst check that adoption costs a�ect detrended output in a neg-
ative way. Replacing H in equation (15), and di�erentiating with respect to
the adoption parameters:

@Y

@D
=

1

(T � + �D)

�
(e�T

�

(T � + �D)� 1 + e�T
�

)
@T �

@D
� �(1� e�T

�

)

�

@Y

@�
=

1

(T � + �D)2

�
(e�T

�

(T � + �D)� 1 + e�T
�

)
@T �

@�
�D(1� e�T

�

)

�

As @T �

@D
, @T �

@�
> 0, and the function [e�T

�

(T � + �D) - 1 + e�T
�

]

takes the value 0 for T � = 0 and decreases for T � > 0, then @Y
@D

, @Y
@�

> 0.
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To check the negative relation between technical progress growth rate and

detrended output, we �rst de�ne x = T �, and we rewrite Y as a function of

x and :

Y =
1� e�T

�

T � + �D
=

1� e�x

x+ �D
= G(x(); )

then
@Y

@
=
@G

@x

@x

@
+
@G

@

Di�erentiating G with respect to , and x, we obtain an inverse relation in

both cases:
@G

@
= �

�D(1� e�x)

(x+ �D)2
< 0

@G

@x
=
e�x + xe�x � 1 + �De�x

(x+ �D)2
< 0

we need to prove that
@x

@
> 0; that is, T � is increasing with respect to .

@(T �)

@
= T � + 

@T �

@

developing the previous equation, we �nd that its sign depends on the sign
of the following expression:h

1� e�(r�)T� � T �(r � )e�(r�)T�
i
+ �

h
1� e�(r�)D �D(r � )e�(r�)D

i

which is zero for T � = 0, and in increasing in T �, then @Y
@

< 0

3. Lagrangian associated to the planner's problem (section 5)

L(t =

Z 1

t=0

[Y (t)�H(t)e(t�B(t)) � �(t)Y (t) + !(t)]e�rtdt+

Z 1

0

H(t)

"Z t+J(t)

t

�
�(s)e(t�B(t)) � !(s)

�
e�r(s�t)ds

#
e�rtdt�

Z 1

0

H(t)

"Z t+D

t

�(B(t)!(s)e�r(s�t)ds

#
e�rtdt+

Z 0

�T (0)

H(t)

"Z t+J(t)

0

�
�(s)e(t�B(t)) � !(s)

�
e�r(s�t)ds

#
e�rtdt�

Z 0

�T (0)

H(t)

"Z t+D

0

�(B(t)!(s)e�r(s�t)ds

#
e�rtdt
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4. Proof of proposition 6 The steady state equilibrium values of (T;B)
are obtained from the following equations:

F (T;B) =
1� e�rT

r
�
e�T � e�rT

r � 
�
�(B)e�T [1� e�(r�)D]

r � 
� 1 = 0 (25)

G(T;B) =
1� e�rT

r
+
�0(B)e�T [1� e�(r�)D]


� 1 = 0 (26)

We denote by f(:),( g(:)) the functional relation between T and B given by
F (T;B) (G(T;B)); it is easily checked that both functions de�ne a decreas-
ing relation between the optimal lifetime of machines and the technological
delay:

f 0(T ) =
�0(B)[1� e�(r�)D]

[1� e�(r�)T + �(B)(1� e�(r�)D)]
< 0

g0(T ) = �
�0(B)[1� e�(r�)D]

(r � )e�(r�)T � �0(B))[1� e�(r�)D]
< 0

When B ! 0, under assumption 3, G curve is above F curve, and when

B ! Bmax, G curve is below F curve, then both functions intercept once,

and the steady state is unique.
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5. Short Run Dynamics of Investment

In all the �gures we set r = 0:05,  = 0:03, and we vary D, and � to isolate

the e�ect of each one of them in the dynamics of H(t). In order to show

the e�ect of adoption costs on the dynamics properties, we also plot the

zero adoption costs case. In �gure 2.1, we assume cyclical initial conditions:

H0(t) = a + b cos(2�t
T
); In �gure 2.2 we set the following increasing initial

conditions: H0 = cedt
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Figure 1: Detrended investment under cyclical initial conditions.
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Figure 2: Detrended investment under increasing initial conditions.
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