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1 Introduction

Time spent in a previous state can affect the duration of sojourn in the cur-
rent state. Multiple causes of transitions are furthermore possible for each
sojourn. Modelling is in a competing risks framework, where random vari-
ables measure the duration until a risk materialization, and only the small-
est of all these durations are observed along with the corresponding exit
destination. The joint distribution of all the durations, observed and cen-
sored, is not non-parametrically identified in a single spell competing risks
framework (Cox, 1962; Tsiatis, 1975). Identification requires more structure,
such as independent risks, parametric failure times joint distribution (see
van den Berg (2001) for a survey), or variation in the explanatory variables
(Heckman and Honoré, 1989; Abbring and van den Berg, 2003a; Lee, 2006).

We show the identification of mixed proportional hazard (MPH) mod-
els with lagged duration dependence in a multiple spells competing risks
framework. We consider the simplest case where two consecutive spells
are observed per unit, and each spell can terminate because of two compet-
ing risks. Our identification result can be easily extended to more than two
spells or two destination states. We thus generalize the single risk results
of Honoré (1993) and Frijters (2002) and, in contrast to Omori (1998), we do
not use exclusion restrictions across risks of failure and across spells. More-
over, we extend the identification analysis to the case in which repeated
realizations of the lagged durations are observed for each unit. We show
that covariates are not required for identification and can enter the model in
a general way.

Finally we establish a link between our identification analysis and Ab-
bring and van den Berg’s (2003b) identification result for treatment effects
in duration models. Abbring (2008) rephrased Abbring and van den Berg’s
(2003b) type of model in terms of an event-history competing risks model
with state dependence. On the basis of this reformulation, we show that the
identification of Abbring and van den Berg’s (2003b) models with hetero-
geneous treatment effects1 can be extended to allow the treatment effect to
also depend on pre-treatment duration.

Applications include the study of repeated temporary jobs (Gagliarducci,
2005), youth job stability after early unemployment events (Doiron and Gør-
gens, 2008; Gaure et al., 2008; Cockx and Picchio, 2009), the impact for the
unemployed of different training programs on subsequent labour market
performance (Gritz, 1993; Bonnal et al., 1997).

1We are referring to Abbring and van den Berg’s (2003b) Models 1B and 2B, pp. 1507
and pp. 1510, respectively.
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Section 2 describes the model. Section 3 and Section 4 derive the identi-
fication result when data provide single and repeated realizations of lagged
duration for each subject, respectively. Section 5 establishes a link between
our identification result and Abbring and van den Berg’s (2003b) analysis.
Finally, Section 6 concludes.

2 Lagged Duration Dependence in MPH Compet-
ing Risks Models

Let t = 0 be the start of the process and {Z(t), t ∈ <+} be a finite state point
process. Z(t) indicates the state occupied by each unit at time t and takes
values in {o, a, b, c, d, e, f}. Z(t) is generated by the following sequence:

(i) The state space is {o, a, b}. State o is the origin state of the first spell, for
all the units under study. Every unit can experience at most a unique
transition to a state in {a, b}. The observed outcome of the first spell is:

T1 = min(T ∗oa, T
∗
ob),

∆1 = arg min
{a,b}

(T ∗oa, T
∗
ob),

T ∗ok = inf{t|Z(t) = k}, ∀ k ∈ {a, b}.

The T ∗ok’s are latent origin-destination-specific durations. We only ob-
serve their minimum and the destination state of the first spell. As-
sume ties have zero probability and define the latent duration distri-
butions by the following mixed proportional hazard (MPH) rates:

θok(t|x, vok) = λok(t)φok(x)vok, ∀ k ∈ {a, b}, (1)

where the functions λok(·) are the baseline hazards, φok(·) the system-
atic parts, x a vector of regressors and vok, for all k ∈ {a, b}, a vector
of unobserved non-negative specific random variables. Dependence
between T ∗oa and T ∗ob is assumed to be captured by observed and unob-
served characteristics.

(ii) For all k ∈ {a, b}, let us denote by tok the observed duration of a first
spell ending up in k, that is tok = T ∗ok when T1 = T ∗ok. New state spaces
are available: a transition to a leads to a new state space where the only
possible further transitions are toward {c, d}, whereas a transition to b
leads to a new state space with transitions toward {e, f}. Consider a
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first transition toward a. We have:

T2 = min(T ∗ac, T
∗
ad),

∆2 = arg min
{c,d}

(T ∗ac, T
∗
ad),

T ∗ak = inf{t− toa|Z(t) = k}, ∀ k ∈ {c, d}.

Distributions the of T ∗ak are characterized by the origin-destination-
specific hazard functions:

θak(t|x, toa, vak) = λak(t)φak(x)hak(toa)vak, ∀ k ∈ {c, d}, (2)

where hak(·) captures the effect of lagged duration in state o, toa, on
the current transition intensity. Dependence between T ∗ac and T ∗ad is as-
sumed to be captured by observed characteristics, unobservables, and
lagged duration toa. Duration of a sojourn in b are defined in a sym-
metric way. The joint cumulative distribution of the unobserved het-
erogeneity vector v ≡ (voa, vob, vac, vad, vbe, vbf ) is G. G is allowed to be
such that the unobserved heterogeneity components may have mass
points at 0, with Pr(v > 0) > 0.

At the end of the second spell, we observe (T1,∆1, T2,∆2), and possible
trajectories are in {oac, oad, obe, obf}. Denote by D1 = {oa, ob} the set of the
possible transitions during the first spell and by D2 = {ac, ad, be, bf} the set
of transitions during the second spell. The joint survival function is:

Pr{∩j∈(D1∪D2)(T
∗
j > tj), |x} = S(toa, tob, tac, tad, tbe, tbf |x)

=

∫
<6

+

exp
[
−
∑
k∈D1

Λk(tk)φk(x)vk −
∑
l∈D2

m(l)∈D1

Λl(tl)φl(x)hl(tm(l))vl

]
dG(v), (3)

where Λk(tk) =
∫ tk

0
λk(u)du, for k ∈ (D1 ∪ D2). It is equal to:

LG

{
Λoa(toa)φoa(x),Λob(tob)φob(x),Λac(tac)φac(x)hac(toa),

Λad(tad)φad(x)had(toa),Λbe(tbe)φbe(x)hbe(tob),Λbf (tbf )φbf (x)hbf (tob)
}
,

where LG is the Laplace transform of G.2

Denote by Ql(t1, t2|x), for l ∈ D2, the subsurvival probability function,
that is probability to survive t1 time periods in the origin state o and t2 time
periods in a second state. Data provide information on these subdensities,

2See, e.g., Lancaster (1990, appendix 2) for properties of the Laplace transform.
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i.e. we can compute:

Qac(t1, t2|x) ≡ Pr(T ∗oa > t1, T
∗
ob > T ∗oa, T

∗
ac > t2, T

∗
ad > T ∗ac|x),

Qad(t1, t2|x) ≡ Pr(T ∗oa > t1, T
∗
ob > T ∗oa, T

∗
ac > T ∗ad, T

∗
ad > t2|x),

Qbe(t1, t2|x) ≡ Pr(T ∗oa > T ∗ob, T
∗
ob > t1, T

∗
be > t2, T

∗
bf > T ∗be|x),

Qbf (t1, t2|x) ≡ Pr(T ∗oa > T ∗ob, T
∗
ob > t1, T

∗
be > T ∗bf , T

∗
bf > t2|x).

Applications of a competing risks model with lagged duration depen-
dence may embrace assessment of the participation to the labour market.
Suppose state o denotes unemployment, a employment, and b inactivity.
An employment spell can be terminated by a transition either to a second
unemployment event c = o or to inactivity (d = b). Inactivity can end be-
cause of a transition either to a second unemployment event (e = c = o) or
to employment (f = a). Such a model is estimated in Doiron and Gørgens
(2008) and Cockx and Picchio (2009) to understand the effect of the previous
labour outcome on the subsequent labour market performance. Another ex-
ample is the analysis of the effect of different training programs durations
on subsequent job stability. Our theoretical framework is more general than
what is assumed in these examples.

3 Identification with Single Realization Data

Theorem 1 Assume that the joint survivor function of (T ∗oa, T
∗
ob, T

∗
ac, T

∗
ad, T

∗
be, T

∗
bf )

conditional on x is given by (3). Functions LG, (Λj, φj), ∀j ∈ D1 ∪ D2, and
hl, ∀l ∈ D2, are identified from the distribution of (T1,∆1, T2,∆2)|x under the
following assumptions:

A1 The support χ of x is an open set in <n. For all j ∈ D1 ∪D2, the φj’s are con-
tinuous functions such that {φoa(x), φob(x), φac(x), φad(x), φbe(x), φbf (x)}
contains a non-empty open set in <6

+.

A2 Λj(t) <∞ are non-negative, differentiable, and strictly increasing ∀j ∈ D1∪
D2 and ∀t ∈ <+.

A3 Vector v has non-negative components with distribution function G indepen-
dent of x, E[vojvjk] <∞, with jk ∈ D2, and E[v] <∞.

A4 For all j ∈ D1∪D2, φj(x0)=1 for some fixed x0 ∈ χ. ∀j ∈ D1∪D2, Λj(t
0) = 1

for some fixed t0 ∈ <+.

A5 The hl’s are non-negative on <+ and hl(t00
m(l)) = 1 for some fixed t00

m(l) ∈ <+,
for all (l ∈ D2) ∩ (m(l) ∈ D1).
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Proof: 1: Under Assumptions A1-A4 and from the marginal distribution
of (T1,∆1)|x, we can identify (Λk, φk) and the marginal distribution of vk,
∀k ∈ D1 (Abbring and van den Berg, 2003a).

Conditional on (T ∗oa, T
∗
ob), x is no longer independent on the unobserved

heterogeneity (vac, vad, vbe, vbf ) and we can not iteratively apply Heckman
and Honoré’s (1989) or Abbring and van den Berg’s (2003a) single spell
identification results. A specific approach is required to identify the second-
spell functions. From now on the proof proceeds in steps. In step (a), iden-
tification of the second-spell systematic parts is shown. Step (b) deals with
the identification of the unobserved heterogeneity distribution. In step (c)
the lagged dependence functions are identified. Finally, step (d) shows iden-
tification of the second-spell baseline hazards.

(a) From the data we can compute the densities:

Q′′ac(t1, t2|x) =
[ ∂2S

∂toa∂tac

]
toa=tob=t1
tac=tad=t2

, Q′′ad(t1, t2|x) =
[ ∂2S

∂toa∂tad

]
toa=tob=t1
tad=tac=t2

,

Q′′be(t1, t2|x) =
[ ∂2S

∂tob∂tbe

]
tob=toa=t1
tbe=tbf=t2

, Q′′bf (t1, t2|x) =
[ ∂2S

∂tob∂tbf

]
tob=toa=t1
tbf=tbe=t2

.

Consider for instanceQ′′ac(t1, t2|x). It is the observed probability distribution
function of first spell o terminating in a after t1 time periods and second spell
a terminating in c after t2 time periods. Formally, it is equal to

Q′′ac(t1, t2|x) = λoa(t1)φoa(x)λac(t2)φac(x)hac(t1)

×DacLG

{
Λoa(toa)φoa(x),Λob(t1)φob(x),Λac(t2)φac(x)hac(t1),

Λad(t2)φad(x)had(t1),Λbe(t2)φbe(x)hbe(t1),Λbf (t2)φbf (x)hbf (t1)
}
,

where DacLG() ≡ ∂2LG

{
soa, sob, sac, sad, sbe, sbf

}
/∂soa∂sac.

Consider Q′′ac and fix (x, x0) ∈ χ2. As t2 → 0,

Q′′ac(t1, t2|x)

Q′′ac(t1, t2|x0)
→ φoa(x)φac(x)

φoa(x0)φac(x0)

× DacLG [Λoa(t1)φoa(x),Λob(t1)φob(x), 0, 0, 0, 0]

DacLG [Λoa(t1)φoa(x0),Λob(t1)φob(x0), 0, 0, 0, 0]
. (4)

As t1 → 0, DacLG(.)→ E(voavac) <∞. Since φoa has already been identified,
identification of φac is obtained up to a constant. Analogously working on
Q′′l , ∀l ∈ D2 − {ac}, yields the identification of φad, φbe, and φbf .
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(b) After imposing toa = t00
oa and tob = t00

ob , evaluate the joint survivor
function (3) at tl = t0, ∀l ∈ D2. We obtain:

S(t00
oa, t

00
ob , t

0, t0, t0, t0) = LG

[
Λoa(t

00
oa)φoa(x),Λob(t

00
ob)φob(x),

φac(x), φad(x), φbe(x), φbf (x)
]
. (5)

The left-hand side of (5) is observed from the data. By exploiting Assump-
tion A1, we can trace the completely monotone function LG on a non-empty
open subset of <6

+ by appropriately varying x in (5).3 This uniquely identi-
fies it on an non-empty open subset of <6

+ by Proposition 1 of Abbring and
van den Berg (2003a). As LG is real analytic, it can be extended to all of <6

+

and uniqueness of the Laplace transform concludes the identification of G.

(c) Consider Q′′ac and fix (t1, t
00
oa) ∈ <2

+ and x ∈ χ. As t2 → 0,

Q′′ac(t1, t2|x)

Q′′ac(t
00
oa, t2|x)

→ λoa(t1)

λoa(t00
oa)

hac(t1)

hac(t00
oa)

× DacLG [Λoa(t1)φoa(x),Λob(t1)φob(x), 0, 0, 0, 0]

DacLG [Λoa(t00
oa)φoa(x),Λob(t00

oa)φob(x), 0, 0, 0, 0]
. (6)

Since LG, the first-spell baseline hazards, and the first-spell systematic parts
have already been identified, by letting t1 vary over <+ we identify hac up
to a constant. Identification of had, hbe, and hbf on all of <+ is analogous.

(d) To identify Λjk, ∀jk ∈ D2, compute for given t1 and x the Q′′jk’s and
solve in λjk’s. One gets a system of differential equations with initial condi-
tions Λjk(t

0) = 1, ∀jk ∈ D2, made up of:

λjk

(
t2,Λac(t2),Λad(t2),Λbe(t2),Λbf (t2)

)
=

Q′′jk(t1, t2|x)

λoj(t1)φoj(x)φjk(x)hjk(t1)Mjk

,

(7)
where:

Mjk =DjkLG

[
Λoa(t1)φoa(x),Λob(t1)φob(x),Λac(t2)φac(x)hac(t1),

Λad(t2)φad(x)had(t1),Λbe(t2)φbe(x)hbe(t1),

Λbf (t2)φbf (x)hbf (t1)
]
.

Set t2 = t0. The numerators are observed in (7) and LG, Λk, hl and φj have

3Complete monotonicity of the Laplace transform is ensured by the Hausdorff-
Bernstein-Widder Theorem, in Widder (1941, pp. 160).
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already been identified, ∀k ∈ D1,∀l ∈ D2,∀j ∈ D1 ∪ D2. We can compute,
for all jk ∈ D2, the λjk(t0)’s using the normalization in assumption A4. We
can also compute the Λjk(t

0 + ε)’s for a sufficiently small ε, and deduce the
marginal changes λjk. Plugging them into the system of differential equa-
tions (7) and solving iteratively, we can trace out the Λjk’s on all of <+.4 This
completes the proof.

Our assumptions are in line with Honoré’s (1993) and Abbring and van
den Berg’s (2003a) assumptions. In contrast to Omori (1998), neither exclu-
sion restrictions across spells and/or risks nor time-variation of the covari-
ates from one spell to another are required.5 Moreover, we do not need the
systematic parts to take on every value in the set of the positive real num-
bers. A non-empty open set of the positive real numbers suffices. This is a
condition more likely to be satisfied in empirical applications, in particular
if spell- and time-varying explanatory variables are available. Variability in
the explanatory variables, assumed in A1, is required in step (b) to identify
the unobserved heterogeneity distribution. Assumption A2 is a regularity
requirement on the integrated baseline hazards which is standard in the
literature. Assumption A3 normalizes the unobserved heterogeneity com-
ponent by restricting the mean to be finite. This is required in step (a) to
identify the systematic parts. Note that, as in Abbring and van den Berg
(2003a), the model is allowed to be defective in the distribution of the la-
tent failure times since the individual heterogeneity distribution is allowed
to have mass points at zero. The hazard rates are proportional and a way
to identify their components is to normalize them. Assumptions A4 and A5
are innocuous normalizations of the integrated baseline hazards, systematic
parts, and the lagged duration dependence functions.

4 Identification with Repeated Realizations

In this section, the identification analysis is extended to the case in which
data cover repeated realizations of the first and the subsequent second spells
for each subject.6 For the sake of simplicity, we focus on two repeated ob-

4Satisfaction of the generalized smoothness Lipschitz continuity ensures the uniqueness
of the traced out Λl’s (Abbring and van den Berg, 2003a).

5However, in applications, spell- and time-varying explanatory variables would help to
achieve identification by making it easier to satisfy Assumption A1.

6Applications that used such data focused, for example, on multiple “new” unemploy-
ment spells followed by either employment or inactivity spells (Doiron and Gørgens, 2008;
Cockx and Picchio, 2009), by different types of training (Gaure et al., 2008), and by different
types of job contract (Bonnal et al., 1997; Gagliarducci, 2005).
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servations of the first and second spells. The identification result can be
trivially extended to more that two repeated realizations. For each indi-
vidual we observe a random drawn identified minima (T 1

1 ,∆
1
1, T

1
2 ,∆

1
2) from

the first realization and a random drawn identified minima (T 2
1 ,∆

2
1, T

2
2 ,∆

2
2)

from the second realization. The identified minima are defined as in Sec-
tion 2. Hyperscripts 1 and 2 refer to the order of the realization. Therefore,
(T 1

1 ,∆
1
1) is the identified minimum at the end of the first spell of the first real-

ization and (T 2
1 ,∆

2
1) is the identified minimum at the end of the first spell of

the second realization. We assume that (T 1
1 ,∆

1
1, T

1
2 ,∆

1
2) and (T 2

1 ,∆
2
1, T

2
2 ,∆

2
2)

are independent conditional on v. This means that repeated trajectories and
timings are treated as causally unrelated, though dependent through the
unobserved determinants.

Similarly to Section 2, the distribution of the latent failure times of the
first spells, T ∗rok with k ∈ {a, b}, is characterized by the following MPH rates

θrok(t
r|vok) = λkok(t

r)vok, ∀ k ∈ {a, b}, r = 1, 2. (8)

The distribution of the latent failure times of the subsequent spells, T ∗rjk with
jk ∈ D2, is characterized by the following MPH rates

θrjk(t
r|troj, vjk) = λrjk(t

r)hrjk(t
r
oj)vjk, ∀ jk ∈ D2, r = 1, 2. (9)

Note that we suppress the covariates x. The following identification results
does not indeed require regressors variation. As in Honoré (1993) and Ab-
bring and van den Berg (2003a; 2003b), the analysis can be thought of being
conditional on x, that can enter the model in a general way. This means that
the identification analysis in this section can be extended to cover a model
where the baseline hazards, lagged duration dependence functions, and in-
dividual heterogeneity distribution depend on x. Note also that, while the
baseline hazards and lagged duration dependence functions are allowed to
vary between the first and the second realization of the process, the individ-
ual heterogeneity components are kept fixed. Variation between spells and
within individual will be exploited to identify the baseline hazards and the
lagged duration dependence.
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The joint survival function of ∩r=1,2(T
r
1 ,∆

r
1, T

r
2 ,∆

r
2) is

Pr{∩j∈(D1∪D2)
r=1,2

(T ∗rj > trj)} = S(t1oa, t
1
ob, t

1
ac, t

1
ad, t

1
be, t

1
bf , t

2
oa, t

2
ob, t

2
ac, t

2
ad, t

2
be, t

2
bf )

=

∫
<6

+

∏
r=1,2

exp
[
−
∑
k∈D1

Λr
k(t

r
k)vk −

∑
l∈D2

m(l)∈D1

Λr
l (t

r
l )h

r
l (t

r
m(l))vl

]
dG(v)

= LG

{ ∑
r=1,2

Λr
oa(t

r
oa) ,

∑
r=1,2

Λr
ob(t

r
ob) ,

∑
r=1,2

Λr
ac(t

r
ac)h

r
ac(t

r
oa) ,∑

r=1,2

Λr
ad(t

r
ad)h

r
ad(t

r
oa) ,

∑
r=1,2

Λr
be(t

r
be)h

r
be(t

r
ob) ,

∑
r=1,2

Λr
bf (t

r
bf )h

r
bf (t

r
ob)
}
, (10)

where LG = {soa, sob, sac, sad, sbe, sbf} is the six-variate Laplace transform of
G.

Before moving on to the identification result, consider that from large
data we can compute, exploiting information on those individuals that ex-
perience, for example, a trajectory of type oac in the first realization, the
subsurvival probability function

Q1
ac(t

1
1, t

1
2, t

2
1, t

2
2) ≡ Pr

(
T ∗1oa > t11, T

∗1
ob > T ∗1oa , T

∗1
ac > t12, T

∗1
ad > T ∗1ac ,

T 2
oa > t21, T

2
ob > t21, T

2
ac > t22, T

2
ad > t22, T

2
be > t22, T

2
bf > t22

)
. (11)

Similarly, exploiting information on those individuals that experience a tra-
jectory of type oac in the second realization, we can compute

Q2
ac(t

1
1, t

1
2, t

2
1, t

2
2) ≡ Pr

(
T ∗1oa >t

1
1, T

∗1
ob >t

1
1, T

∗1
ac >t

1
2, T

∗1
ad >t

1
2, T

∗1
be >t

1
2, T

∗1
bf >t

1
2

T 2
oa > t21, T

2
ob > T 2

oa, T
2
ac > t22, T

2
ad > T 2

ac

)
. (12)

Subsurvival probabilities like those in (11) and (12) will be used to prove the
following theorem.

Theorem 2 Assume that the joint survivor function of ∩r=1,2(T
∗r
oa , T

∗r
ob , T

∗r
ac , T

∗r
ad ,

T ∗rbe , T
∗r
bf ) is given by (10). Functions LG, Λr

j , ∀j ∈ D1 ∪ D2 and r = 1, 2, and hrl ,
∀l ∈ D2 and r = 1, 2, are identified from the distribution of ∩r=1,2(T

r
1 ,∆

r
1, T

r
2 ,∆

r
2)

under the following assumptions:

B1 Λr
j(t), ∀j ∈ D1 ∪ D2 and r = 1, 2, are non-negative, differentiable, strictly

increasing, and not allowed to be∞, ∀t ∈ <+. ∀j ∈ D1 ∪ D2, Λ1
j(t

0) = 1 for
some fixed t0 ∈ <+.

B2 The hrl ’s are non-negative on <+ and hl(t0rm(l)) = 1 for some fixed t0rm(l) ∈ <+,
for all (l ∈ D2) ∩ (m(l) ∈ D1) and r = 1, 2.
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B3 Vector v has non-negative components with distribution function G.

Proof: 2: Under Assumption B1, from the marginal distribution of (T 1
1 ,∆

1
1,

T 2
1 ,∆

2
1) we can identify Λr

k, ∀k ∈ D1 and r = 1, 2, by invoking Proposition
3, part (a), of Abbring and van den Berg (2003a). Identification of second-
spells functions, both for r = 1 and r = 2, is now considered in sequential
steps. In step (a), identification of lagged duration functions is shown. Step
(b) concerns identification of the second-spells baseline hazards. Finally,
step (c) deals with identification of the individual heterogeneity distribu-
tion.

(a) From a large data set we can compute the subdensity

Q1′′
ac(t

1
1, t

1
2, t

2
1, t

2
2) ≡

∂2Q1
ac(t

1
1, t

1
2, t

2
1, t

2
2)

∂t11∂t
1
2

=
[ ∂2S

∂t1oa∂t
1
ac

]
t1oa=t1ob=t

1
1

t1ac=t
1
ad=t12

= λ1
oa(t

1
1)λ

1
ac(t

1
2)h

1
ac(t

1
1)DacLG(soa,sob,sac,sad,sbe,sbf ), (13)

where DacLG()≡∂2LG

{
soa, sob, sac, sad, sbe, sbf

}
/∂soa∂sac. We can also com-

pute the subdensity

Q2′′
ac(t

1
1, t

1
2, t

2
1, t

2
2) ≡

∂Q2
ac(t

1
1, t

1
2, t

2
1, t

2
2)

∂t21∂t
2
2

=
[ ∂2S

∂t2oa∂t
2
ac

]
t2oa=t2ob=t

2
1

t2ac=t
2
ad=t22

= λ2
oa(t

2
1)λ

2
ac(t

2
2)h

2
ac(t

2
1)DacLG(soa,sob,sac,sad,sbe,sbf ). (14)

If we divide the subdensity in (13) by the subdensity in (14), the component
related to the second derivative of the Laplace transform drops out. This
is the advantage of having variation within individual in repeated realiza-
tions data. Indeed, fix (t12, t

2
1, t

2
2) ∈ <3

+ and pick (t11, t
01
oa) ∈ <2

+. Remind that
h1
ac(t

01
oa) = 1 and consider Q1′′

ac/Q
2′′
ac :

Q1′′
ac (t11,t

1
2,t

2
1,t

2
2)

Q2′′
ac (t11,t

1
2,t

2
1,t

2
2)

Q1′′
ac (t01oa,t

1
2,t

2
1,t

2
2)

Q2′′
ac (t01oa,t

1
2,t

2
1,t

2
2)

=

λ1
oa(t11)λ1

ac(t
1
2)h1

ac(t
1
1)

λ2
oa(t21)λ2

ac(t
2
2)h2

ac(t
2
1)

λ1
oa(t01oa)λ1

ac(t
1
2)h1

ac(t
01
oa)

λ2
oa(t21)λ2

ac(t
2
2)h2

ac(t
2
1)

=
λ1
oa(t

1
1)h

1
ac(t

1
1)

λ1
oa(t

01
oa)h

1
ac(t

01
ac)
. (15)

Since λ1
oa has already been identified, we get identification of h1

ac (up to a
constant). Similarly, by fixing (t11, t

1
2, t

2
2) ∈ <3

+ and picking (t21, t
02
ac) ∈ <2

+ we
can identify h2

ac. Identification of hrad, h
r
be, and hrbf , for r = 1, 2, is analogously

yielded working on Q1′′
l /Q

2′′
l with l ∈ D2 − {ac}.

(b) With the normalization Λ2
ac(t

0) = 1 and working on the ratioQ1′′
ac/Q

2′′
ac ,
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we get

Λ2
ac(t

2
2) =

∫ t22

0

[ ∫ t0

0

Q1′′
ac(t

1
1, τ

1
2 , t

2
1, τ

2
2 )λ2

oa(t
2
1)h

2
ac(t

2
1)

Q2′′
ac(t

1
1, τ

1
2 , t

2
1, τ

2
2 )λ1

oa(t
1
1)h

1
ac(t

1
1)
dτ 1

2

]−1

dτ 2
2 . (16)

Since λ1
oa, λ2

oa, h1
ac, and h2

ac have already been identified, fixing (t11, t
2
1) ∈ <2

+

and letting t22 vary over <+ yield identification of Λ2
ac. From similar compu-

tations we get

Λ1
ac(t

1
2)

Λ2
ac(t

2
2)

=

∫ t12

0

[ ∫ t22

0

Q2′′
ac(t

1
1, τ

1
2 , t

2
1, τ

2
2 )λ1

oa(t
1
1)h

1
ac(t

1
1)

Q1′′
ac(t

1
1, τ

1
2 , t

2
1, τ

2
2 )λ2

oa(t
2
1)h

2
ac(t

2
1)
dτ 2

2

]−1

dτ 1
2 . (17)

Since Λ2
ac, λ1

oa, λ2
oa, h1

ac, and h2
ac have already been identified, fixing (t11, t

2
1) ∈

<2
+ and letting t12 vary over <+ yield identification of Λ1

ac. Identification of
all the other second-spell integrated baseline hazards is obtained by analo-
gously working on Q1′′

l /Q
2′′
l with l ∈ D2 − {ac}.

(c) The distribution of ∩r=1,2(T
r
1 ,∆

r
1, T

r
2 ,∆

r
2) provides data on the sur-

vivor function S(t11, t
1
2, t

2
1, t

2
2) for (t11, t

1
2, t

2
1, t

2
2) ∈ <4

+. By Equation (10) we
have

S(t11, t
1
2, t

2
1, t

2
2) = LG

{ ∑
r=1,2

Λr
oa(t

r
1) ,

∑
r=1,2

Λr
ob(t

r
1) ,

∑
r=1,2

Λr
ac(t

r
2)h

r
ac(t

r
1) ,∑

r=1,2

Λr
ad(t

r
2)h

r
ad(t

r
1) ,

∑
r=1,2

Λr
be(t

r
2)h

r
be(t

r
1) ,

∑
r=1,2

Λr
bf (t

r
2)h

r
bf (t

r
1)
}
. (18)

All the functions entering LG have already been identified. Hence, LG can
be traced on a non-empty open set by appropriately varying (t11, t

1
2, t

2
1, t

2
2).

As LG is real analytic, it is uniquely determined on <6
+. Uniqueness of the

Laplace transform concludes identification of G.

With repeated realizations of the lagged duration of interest, the multiple-
spells MPH model is identified under weaker assumptions. We need neither
the finite-mean of the individual heterogeneity distribution nor regressor
variation. The latter implies that we can relax some of the separability as-
sumptions, which are instead required with single realization data, and that
the baseline hazards, lagged duration functions, and individual heterogene-
ity distribution can depend on x. Note however that the individual hetero-
geneity components v are not allowed to vary from the first to the second
realization of the process. Whether or not this assumption is reasonable
depends on the application. If it is more reasonable to assume that the un-
observed heterogeneity components are realization-specific, Theorem 1 can
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be iteratively applied under the corresponding required assumptions.

5 Discussion

As Abbring (2008) pointed out, Abbring and van den Berg’s (2003b) du-
ration models with treatment effects can be reformulated in a competing
risks framework. Consider an individual in a certain origin state o, e.g.
unemployment, that at each point of time can leave this state either for e,
e.g. employment, or p, e.g. participation to some kind of training program.
Those individuals who ended up in p can still move to state e after some
random time. The interest lies in understanding whether transition from
unemployment to the training program makes people more likely to end
up in employment than in the case in which the program is not provided.
Such a framework is encompassed in the more general model analysed so
far. Moreover, in this study the hazard rate of leaving p for e is allowed to
depend on the pre-treatment duration, i.e. the duration of the preceding
unemployment event.

On the basis of this competing risks reformulation, identification of Ab-
bring and van den Berg’s (2003b) models with heterogeneous treatment ef-
fects7 can be extended in our framework to allow the treatment effect to
depend also on the pre-treatment duration, provided that pre-treatment du-
ration affects the hazard proportionally.

Under the same assumptions as in Abbring and van den Berg (2003b)
and Assumption A5 (Assumption B2 with repeated realizations data), t2+t1
periods since the beginning of the origin state we can define and identify the
treatment effect

δ(t2|t1, x, voe, vpe) ≡
λpe(t2)φpe(x)hpe(t1)vpe
λoe(t2 + t1)φoe(x)voe

, (19)

which depends on observables, unobservables, and pre-treatment duration.
Equation (19) compares two conditional instantaneous probabilities of en-
tering employment evaluated at the same time since the beginning of the
unemployment spell o. The numerator of (19) is the instantaneous probabil-
ity of entering employment from the treatment p conditional on surviving
t2 periods in the treatment and having spent t1 quarters in unemployment
before the treatment. The denominator is the instantaneous probability of

7We are referring to Abbring and van den Berg’s (2003b) Models 1B and 2B, pp. 1507
and pp. 1510, respectively. Empirical studies applying such models can be found in van
den Berg et al. (2002) and Zijl et al. (2004).
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directly entering employment from unemployment conditional on surviv-
ing t1 + t2 periods in unemployment.

We can compare the treatment effect in (19) with the one provided in
Abbring and van den Berg (2003b, pp. 1508) by adapting it to our notation.
They coincide when it is imposed that λpe(t2)hpe(t1) = λpe(t2 + t1). However,
in general the two models are non-nested.8

In a single realization framework, identification of δ requires separa-
bility assumptions on observables, unobservables, pre-treatment duration
(lagged duration), and current duration dependence. We have nonetheless
seen in Section 4 that, with repeated realizations of the first and second spell,
separability on observables is not needed. Theorem 2 indeed implies that
the covariates can enter δ in a general way and the identification of a treat-
ment effect in which, for instance,

δr(tr2|x, tr1, voe, vpe) =
λrpe(t

r
2|x)hrpe(t

r
1|x)vpe

λroe(t
r
2 + tr1|x)voe

, with r = 1, 2, (20)

and where the unobserved heterogeneity distribution may depend on x.

6 Conclusions

This paper focuses on identifiability of the effect of a spell duration on the
duration of the subsequent spell when individuals are under dependent
competing risks of exit. We show that under the MPH assumption lagged
duration dependence is identified without exclusion restrictions over risks
and/or over spells and without parametric functional-form assumptions.
In contrast to Omori (1998), we do not need the regressor effects to take
value on the set of positive real numbers but just on a non-empty open set
of it. This is a condition more likely to be satisfied in empirical applications,
in particular if spell- and time-varying explanatory variables are available.
A standard assumption in the MPH single-realization literature (e.g. Elbers
and Ridder, 1982; Honoré, 1993; Abbring and van den Berg, 2003a) is the
finite-mean assumption on the individual heterogeneity distribution, which
is required for identification (Ridder, 1990) and also necessary here when
data provide information on single realization of the lagged duration.

If data provide information for each individual on repeated realizations

8They are nested in the particular case in which in our model the transition intensities
are log-linear in t1 and t2, i.e. λpe(t2) = exp(αt2) and hpe(t1) = exp(βt1), and in Abbring
and van den Berg (2003b) the baseline hazard is log-linear in its argument, i.e. λpe(t2+t1) =
exp[γ(t2 + t1)].
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of the lagged durations, timings of the process, and transition, variation
within individuals can be exploited to identify the model under weaker as-
sumptions. The finite-mean assumption on the individual heterogeneity
distribution can now be relaxed and, as opposed to Omori (1998), we do
not require the separability of the effect of covariates, which are allowed to
enter the functional forms of the model in a general way.

Finally, reformulating Abbring and van den Berg’s (2003b) duration mod-
el with a dynamically assigned binary treatment as a multiple-spell com-
peting risks model, our result suggests that the timing of events conveys in-
formation to identify a treatment effect that can be heterogeneous not only
because of observed and unobserved individual characteristics but also be-
cause of different pre-treatment durations, provided that pre-treatment du-
ration affects the hazard proportionally.
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