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Abstract

The paper introduces a two-factor model of the common leading and
coincident economic indicators. Both factors are unobserved and each of
them captures the dynamics of a corresponding group of the observed time
series. The common leading factor is assumed to Granger-cause the com-
mon coincident factor. This property is used to estimate these two factors
simultaneously and hence more efficiently. Two models of the latent lead-
ing and coincident factors are studied: a model with linear dynamics and
a model with Markov-switching dynamics introduced through the leading
factor intercept term. Moreover, a possibility of the individual leading
variables having different leads over the common coincident indicator is
considered. These models - both with linear and with regime-switching
dynamics - were applied to the US monthly macroeconomic time series.
The business cycle dating resulting from the nonlinear model closely cor-
responds to the NBER chronology and leads its turning points by 3-5
months.

JEL Classification: C5, E3

Keywords: dynamic factor analysis, Markov switching, leading indica-
tor, coincident indicator, Granger causality

1 Introduction

In the modern macroeconomic literature many efforts are devoted to identifica-
tion of a hypothetical coincident economic indicator which represents a general
economic activity and allows to trace the evolution of the business cycle. It is
designed to serve as a reference time series to judge about the state of the affairs
in the economy. The most prominent examples of the one-factor models with
the linear dynamics is Stock and Watson (1988), while those with the Markov-
switching dynamics are the models proposed by Chauvet (1998), Kim and Yoo
(1995).
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With respect to this common coincident indicator one can then define the
leading and lagging macroeconomic variables. The former of these time series
are especially important since they permit to predict the changes in the state
of the economy before they have occurred.

Normally, however, the leading series are not aggregated into a common
leading factor. The evolution of the common coincident factor is conditioned
on each of them individually, either directly through a vector autoregression
(VAR) system of the common coincident factor and individual leading observed
time series as in Stock and Watson (1988), Chauvet and Potter (2000) or via
the time-varying transition probabilities which depend on the individual leading
variables as in Kim and Yoo (1995).

This paper sets up a two-factor model where one of the latent factors is
postulated as a common leading indicator, while the second factor is taken to
be the common coincident indicator. A one-way Granger causality is assumed
to exist coming from the former common factor to the latter one. The common
leading and coincident factors are estimated from a set of observed time series
which is split into a subset of leading and a subset of coincident variables.

First, we consider a linear model with leading and coincident factor following
an AR process. Next, we add a regime-switching dynamics to take care of the
possible asymmetries between the recession and expansion phases of the business
cycle captured by both common latent factors.

The linear specification of the two-factor model is presented in section two,
while section three contains a description of the model with nonlinear dynamics.
In section four we apply our models to the artificial data in order to see how well
these models reflect the true data-generating process. In section five the linear
and Markov-switching models with leading and coincident common factors are
estimated for the US monthly macroeconomic data. Section six concludes the
paper. All the tables and graphs are put into the Appendix following the list of
references.

2 Linear model

We consider a set of the observed time series, some of which may be defined as
leading while the rest of them are treated as the coincident series. The common
dynamics of the time series belonging to each of these groups are underlined
by a common factor: leading corresponding to the first group and coincident
corresponding to the second group. Moreover, the individual leading time series
are allowed to lead the coincident factor at different lead times. For example,
some series may lead the coincident factor by one period, other for two, and yet
the other for three or more periods. The only characteristic which is common
to all of them is that they lead, although for different periods of time. The
idiosyncratic dynamics of each time series in particular are captured by one
specific factor per each observed time series. Therefore the model can be written
as follows:



Ay, =TAfy +wy (1)

where Ay, = (Ayry | Ath)/ is the n x 1 vector of the observed time series in the
first differences; Afy = (Afre | A fCt)/ is the 2 x 1 vector of the latent common
factors in the first differences; u; = (up; | uCt)/ is the n x 1 vector of the latent
specific factors; I is the n x 2 factor loadings matrix linking the observed series
with the common factors.

The dynamics of the latent common factors can be described in terms of a
VAR model:

Afy=u+ (I)(L)Aft71 + & (2)

where g is the 2 x 1 vector of the constant intercepts; ®(L) is the sequence of
p (p = max{pr,pc}, where pr, is the order of the AR polynomial of the leading
factor, and p¢ is the order of the AR polynomial of the coincident factor) 2 x 2
lag polynomial matrices; e; is the 2 x 1 vector of the serially and mutually
uncorrelated common factor disturbances:

v ((5)(T )

We assume that the leading factor Granger-causes the coincident factor but
not vice versa. This assumption means that the matrices ®; (¢ = 1,...,p) are
diagonal or lower diagonal for all i. For simplicity we suppose that the causality
from the leading to the coincident factor is transmitted only at one lag, say 7.

Thus, if i # 7,
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The idiosyncratic factors are by definition mutually independent and are
modelled as the AR processes:

and if i = 7,

up = W(L)ug—q1 + 1, (3)

where W(L) is the sequence of ¢ (¢ = max{qu,..., ¢}, where g; is the order of the
AR polynomial of the i — th idiosyncratic factor) n x n diagonal lag polynomial
matrices and 7, is the n x 1 vector of the mutually and serially uncorrelated
Gaussian shocks:
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To estimate this model we express it in a state-space form:

Measurement equation:

Ay = AB, (4)

Transition equation:

By =a+CB_1+uv (5)

where 3, = (fi|u)" is the state vector containing stacked on top of each other
vector of common factors and the vector of specific factors; v; is the vector of the
common and idiosyncratic factors’ disturbances with mean zero and variance-
covariance matrix ); « is the vector of intercepts.
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where T', is the ny, x (r — 1) matrix of the leading factor loadings:

YL,1 0 0
YL2 0 0
'y = . .
0 0 --- Yems

in which the position of each leading factor loading depends on the lead time of
a corresponding observed time series.

Onxm 18 n X m matrix of zeros; o,, is the m x 1 vector of zeros; i,, is the
first row of the m x m identity matrix, and r = max{pr,7}.
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where ®L is the r x r matrix:
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where ¢; is the 1 x pr, row vector of the AR coeflicients of the leading factor,
I, is the n x n identity matrix, and o,, is the m x 1 vector of zeros.
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The matrices W', ..., U™ have the same structure as ®¢.
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where ¢ is the 1 X r vector of zeros with ¢, 7 at the 7 — th position.

The unknown parameters and the latent factors may be estimated using
Kalman filter recursions. To save space we will not present them here, referring
the reader, for instance, to Hamilton (1994) who gives very clear and systematic
explanation of the Kalman filter methodology.

3 Nonlinear model

It was observed by many authors, among them by Diebold and Rudebusch
(1996) that the model of the business cycle would be incomplete if it would not
take into account both the comovement of various macroeconomic variables and
the asymmetries between the phases of the cycle. The linear model presented in
the previous section incorporates the phenomenon of the simultaneous changes
in the levels of different individual time series. However, it lacks a mechanism
which would reflect the qualitatively different behavior of these series during
recessions and expansions. One of the ways to introduce this mechanism in our
model is to add to it the regime-switching dynamics.

The Markov-switching dynamics is introduced through the leading factor
intercept:

Afy = pu(st) + @(L)Afio1 + e (6)

where p(sy) = (pp(se),...,0).

st is the unobserved regime variable. In the two-regime (expansion-recession)
case it takes two values: 0 or 1. Depending on the regime, the leading factor
intercept assumes different values: low in recessions and high in expansions.
Thus, the common factors grow faster during the upswings and slower (or even
have negative growth rate) during the downswings of the economy.

The changes in the regimes are governed by the first-order Markov chain
process, which is summarized by the transition probabilities matrix:

$i-1=0| 5,1 =1
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where p;; = prob(s; = j|si—1 =1).
The rest of the equations of the model remains unchanged. The state-space
representation of the nonlinear two-factor model may be written as:

Measurement equation:

Ay = AB, (7)

Transition equation:

By =alst) + CO_1 + v (8)

where a(s;) = (g (se), ..., 0).

It is worthwhile to notice that, since it is the dynamics of the common lead-
ing factor which include the state-dependent intercept in the current period, the
conditional regime probabilities predicting the occurrence of recessions or ex-
pansions of the coincident factor are simply the conditional regime probabilities
computed for the leading factor shifted forward for 7 periods. Thus, the con-
ditional regime probabilities estimated using the above model provide us with
the 7-periods ahead forecast of the coincident factor regimes.

All the other system matrices are as in the linear model. Thus, we have a
model expressed in the state-space form and having Markov-switching dynamics.
Again, we will not reproduce here all the relevant recursions which are necessary
to estimate the parameters and the unobserved state vector. On the estimation
of the common factor models with Markov switching one can read in Kim (1994)
or Kim and Nelson (1999).

4 Simulated examples

To see how well our models replicate the true data-generating processes where
both common factors are present and the described above causal relationship is
introduced, we have generated four artificial data sets and have estimated the
corresponding models using as inputs the time series which may be observed.
In the first two cases the dynamics are linear, while in the last two cases the
common factors follow Markov-switching process. In the case one all the leading
variables have the same lead time, whereas in the case two one of the leading
variables leads the coincident factor at a smaller lead than the other observed
leading time series. The same distinction is maintained for the cases three and
four where the regime switching is added.

For the linear case one we have generated two common latent factors and
five individual observable series. The first two observed time series are leading,
while the three remaining are the coincident. Both the common factors (in
fact, their first differences, not levels) and the idiosyncratic components are



modelled as the stationary AR(1) processes. The coincident factor is positively
affected by the leading factor at the lag 7 = 3. The true parameters of the
data-generating process (DGP) are presented in the column two of the Table
1 of the Appendix. The length of all these series is 540 observations, which
is comparable to the length of an ordinary Post-World War II monthly time
series for the US economy. In the case two six observed series were simulated:
three leading and three coincident. The first two leading series lead the common
coincident indicator by three periods, while the third leading time series has a
lead of only two periods. The true parameters are printed out in the column
two of the Table 2 of Appendix.

To identify the model (in both cases), we set the factor loadings of the first
observable variable in each subset - leading and coincident - equal to unity.
Thus, we estimate only three of five factor loadings: one for the leading factor
and two for the coincident factor. The model is estimated by the maximum
likelihood. The estimated parameters together with the standard errors and
the p-values for case 1 are reproduced in the Table 1, for case two - in the Table
2. The mere observation of the true and estimated parameters’ values shows
that the latter are sufficiently close to the former suggesting that the proposed
model estimates the parameters generated process accurately enough.

The visual comparison of the common factors profiles suggests a very high
degree of similarity of the simulated and estimated common factors, especially
in the case of the latent leading factor. We do not display the graphs of the
simulated data here in order to save space.

In the two cases with the Markov-switching dynamics the length of the series
is also 540. In the case three the first two observable time series are leading,
meanwhile the last three series are coincident. The coincident factor is again
correlated to the leading factor with a lag of three periods. The same identifying
normalization - by setting the factor loadings of the first observed time series in
each group of the variables - is used. In the case four six observed series were
generated with the same leading structure as in the case two. The parameters
of the true DGP for the case three are presented in the second column of Table
3 and those for the case four - in the second column of Table 4 of the Appendix.
The estimates replicate the true parameters with a sufficiently high degree of
precision. Again, as in the case of the linear model, the estimated common
factors series are very similar to the simulated common factors.

The probabilities obtained from the nonlinear model are used to build the
business cycle chronology. If the probability of being currently in recession
exceeds some margin (say, 0.5) we say that the economy may be qualified to be
in a recession. The estimated model captures the recession dates pretty well.
However, the smoothed recession probabilities sometimes miss the recessions
when those have a very short duration. In contrast, the filtered probabilities
give sometimes false alarms by announcing the arrival of recessions which did not
take place. Thus, the smoothed probabilities turn out to be a more conservative
dating tool than the filtered probabilities.



5 Real example

The linear two-factor model was estimated using the US monthly data from
January 1959 to December 1998. To estimate the leading common factor the
data from Watson (2000) were used, namely three financial time series: spread
between the US Treasury bills 3-month interest rate and federal funds effective
annualized rate (SFYGMS3), spread between the US Treasury bills with con-
stant maturity 1-year interest rate and federal funds effective annualized rate
(SFYGT1), and NYSE common stock price index (FSNCOM). The common co-
incident factor was estimated based on the four real time series borrowed from
Mariano and Murasawa (2000): employees on nonagricultural payrolls; personal
income less transfer payments; index of industrial production; and manufactur-
ing and trade series.

The leading time series were selected by comparing them individually to
a coincident factor computed as if it were not dependent of a hypothetical
leading common factor. Figure 1 shows that the correlation between these series
(SFYGM3, SFYGT1 in levels and the first differences of the log of FSNCOM),
on one hand, and the growth rate of the common coincident indicator, on the
other hand, is relatively high at leads 4-5. It is also very important that the
series are sufficiently highly correlated among each other, thus permitting to
postulate existence of a latent common factor standing behind their common
evolution.

Three model combinations were estimated: (0,0), (1,1), and (2,2), that is,
the cases when common and idiosyncratic factors follow AR(0), AR(1), and
AR(2) processes, respectively. For each of these combinations different leads
between the common leading and coincident factor were tried, starting from the
"zero lead” (no Granger causality) and ending with a lead of six months. The
results of these experiments are displayed in Table 5. The first conclusion is
that introducing a Granger causality between the leading and coincident factor
seems to be a meaningful exercise - there is a significant increase in the likelihood
function value when a cross-regressive term is included. Secondly, even larger
positive effect is achieved when the AR(2) dynamics are allowed compared to
the AR(1). Finally, in the first case (autoregression of the zero order, that
is, static factor model) the ”optimal lead”, i.e. the lead which delivers the
maximum likelihood function value, is five months, while in the other two cases
(autoregression of first and second orders) the ”optimal lead” is three months.
The estimates of the linear two-factor model with (1,1) specification with lead
equal 3 months are presented in Table 6.

The common leading and coincident factors estimated with a linear model are
depicted on the two left panels of Figure 2. On the upper left panel two common
factors - each estimated separately in a single-factor model - are displayed. The
common factors are constructed by summing up their first differences. Thus,
they are represented as random walks without drift. This is done to render
the cyclical movements more visible. If we were to introduce a nonzero drift
as it is done normally (e.g., by Stock and Watson (1988)), it would mask the
cyclical fluctuations. The common factors estimated independently have the



following specifications: leading factor is (1,1), that is, both common and specific
factors are AR(1), and the coincident factor is (1,1). In the case of simultaneous
estimation of the two common factors, when the coincident factor depends on
the leading one, the specification is also (1,1). We can observe that in terms of
the turning points the two models (with and without Granger causality between
the factors) are similar, differing mainly in their ”vertical profile”. The latter
is not surprising given that the common factors were reconstructed as random
walks.

The next exercise was to incorporate the Markovian dynamics into the mul-
tifactor model. This was done through the regime-dependent itercept of the
leading common factor. Since in the two-factor model the coincident factor
depends on the leading one, the Markov-switching dynamics of the latter is
transferred to the former. The parameter estimates of the Markov-switching
two-factors model are contained in Table 7. The common leading factor is spec-
ified as AR(0), the common coincident factor follows AR(2). The lead is set
equal to 3 months.

The common factors estimated assuming the regime-switching dynamics are
displayed on the two right panels of Figure 2. The specification of common lead-
ing and coincident factors computed in a single-factor model are (0,0) and (1,1),
respectively. In the two-factor case the leading common factor and correspond-
ing idiosyncratic components were modeled as AR(0), while the common coin-
cident factor and corresponding specific factors were supposed to follow AR(2)
processes. Visual inspection of all four graphs depicted on Figure 2 shows that
their turning points are basically the same. One important difference is that
the linear models treat the recession of the early 1990s as deeper than that of
the beginning of 1980s, while the nonlinear models reverse the order.

Figure 3 compares the recession probabilities (filtered and smoothed) of the
leading and coincident common factors. In the first case the probabilities are
computed from the two-factor model, while in the second case the recession
probabilities from the single (coincident) factor model are used. One can easily
see that the recession probabilities calculated for the leading factor signal the
arrival of the recession phase several periods later than the coincident factor
recession probabilities do. The coincident factor model suggests that there were
six recessions during the January 1959 - December 1998 period, while the two-
factors model uncovers five recessions. The only recession which is missing is
the one in the very beginning of the sample. However, given the leading nature
of the recession probabilities obtained from the 2-factors model, one can assume
that this recession simply ”does not fit the sample”. In other words, it would
be found, had we the had data starting a little bit earlier.

Next, we compare the leading and coincident recession probabilities to the
National Bureau of Economic Research (NBER) chronology. This is done in
Figure 4. It is evident that there is very close correspondence between the NBER
dating and the coincident factor recessions. The leading factor recessions, as it
is to be expected, anticipate the NBER turning points.

Finally, we calculate the cross-correlations between the leading and coinci-
dent common factors at different lags and leads. These cross-correlations are



displayed on Figure 5. The data used to plot the picture were the same as those
which are displayed on Figure 2. The cross-correlations were computed for the
first differences of the common factors, not their levels. The reason is that the
common factors in levels are not stationary, while their growth rates are. We
can see that the maximum correlation approaches 0.5 and that it is achieved at
lead 4-5 months, although being pretty high in the neighborhood of this point.

6 Summary

In the paper we have introduced a dynamic factor model with two common
factors: leading and coincident. Each of them represents the common dynamics
of a corresponding subset of the observed time series which are classified as being
leading or coincident with respect to some hypothetical ”state of the economy”.
The common leading factor Granger-causes the common coincident factor, thus
allowing to use the former in the predictions of the future values of the latter.
This permits to improve the forecasting of the coincident factor because of the
additional information coming from the leading variables. In addition, different
leads with respect to the common coincident indicator for the individual leading
time series are allowed, which makes the model more flexible and realistic, since
in the real life the leading time series rarely lead the coincident factor for the
same periods of time.

We consider two models: a model with the linear dynamics and a model
with the regime switching. The first model captures the cyclical comovements of
different macroeconomic time series. The second model allows also to take care
of the asymmetries which may characterize different phases of the business cycle
and therefore is more complete from the standpoint of the Burns and Mitchell’s
definition of the business cycle as interpreted by Diebold and Rudebusch (1996).

Both models are illustrated using four artificial examples (two with the iden-
tical lead time for all the observed leading series and two with the different lead
times), which show a high enough fitting ability of these models, provided that
they correspond to the true data-generating process.

Quite interesting results were obtained when the model was applied to the
US monthly macroeconomic data stretching from January 1959 to December
1998. A linear and a Markov-switching 2-factor models were estimated. The
common coincident factor is sufficiently closely related to the common leading
factor, the lead time being 3-5 months. This lead is also apparent when the
recession probabilities are considered: the peaks of the low state probabilities
calculated for the leading factor precede those computed for the coincident fac-
tor. Moreover, there is a tight correspondence between our estimated recession
dates and those provided by the NBER. The conclusion is that we can use the
two-factor model to predict the evolution of the US Post-War coincident eco-
nomic indicator and the business cycle turning points in the near (up to five
months) future.
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7 Appendix

Table 1. True and estimated parameters of the linear two-factor model
(case 1: identical lead time)

| Parameter | True | Estimated | St. error | p-value |

71 1 - - B
Yo 0.9 0.91 0.03 0.0
73 1 - - }
Y4 2 2.06 0.03 0.0
Vs 1.7 1.71 0.02 0.0
?r 0.8 0.79 0.03 0.0
Do 0.7 0.70 0.03 0.0
bcr,3 0.5 0.48 0.05 0.0
Py -0.3 -0.36 0.05 0.0
Pq -0.7 -0.67 0.04 0.0
V3 -0.5 -0.47 0.05 0.0
Py -0.2 -0.22 0.07 0.0
Y5 -0.8 -0.79 0.03 0.0
o? 0.25 0.26 0.03 0.0
o3 0.36 0.36 0.03 0.0
o3 0.16 0.16 0.01 0.0
o3 0.49 0.48 0.05 0.0
o2 0.81 0.81 0.06 0.0
o2 0.25 0.24 0.03 0.0
o2, 0.36 0.36 0.03 0.0
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Table 2. True and estimated parameters of the linear two-factor model
(case 2: different lead time)

| Parameter | True | Estimated | St. error | p-value |

71 1 - - B
Yo 0.9 0.86 0.03 0.0
Y3 1.5 1.43 0.04 0.0
V4 1 - - B
Vs 2 2.03 0.05 0.0
Y6 1.7 1.72 0.04 0.0
or 0.8 0.79 0.03 0.0
bc 0.7 0.67 0.02 0.0
bcr,3 0.5 0.58 0.04 0.0
(N -0.3 -0.35 0.05 0.0
Py -0.7 -0.72 0.03 0.0
V3 -0.5 -0.51 0.06 0.0
Uy -0.2 -0.16 0.05 0.0
Vs -0.8 -0.82 0.03 0.0
Vg -0.3 -0.36 0.05 0.0
o? 0.25 0.25 0.02 0.0
o3 0.36 0.36 0.02 0.0
o2 0.16 0.16 0.02 0.0
o2 0.49 0.50 0.03 0.0
o2 0.81 0.79 0.08 0.0
o2 0.64 0.64 0.05 0.0
o2 0.25 0.23 0.02 0.0
o2, 0.36 0.33 0.03 0.0
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Table 3. True and estimated parameters of the nonlinear two-factor model
(case 3: identical lead time)

| Parameter | True | Estimated | St. error | p-value |

P11 0.95 0.97 0.01 0.0
D22 0.84 0.84 0.05 0.0
1 0.4 0.40 0.04 0.0
1o -0.6 -0.70 0.06 0.0
71 1 - - B
Yo 0.9 0.90 0.01 0.0
V3 1 - - B
Y4 2 1.99 0.01 0.0
Y5 1.7 1.69 0.01 0.0
or 0.8 0.78 0.02 0.0
bc 0.7 0.70 0.02 0.0
(T 0.5 0.51 0.03 0.0
U, -0.3 -0.29 0.05 0.0
Yy -0.7 -0.69 0.03 0.0
Y3 -0.5 -0.50 0.05 0.0
Py -0.2 -0.09 0.07 0.0
Vs -0.8 -0.82 0.03 0.0
o2 0.25 0.26 0.02 0.0
o3 0.36 0.35 0.03 0.0
o3 0.16 0.16 0.01 0.0
o2 0.49 0.47 0.05 0.0
o2 0.81 0.81 0.06 0.0
o2 0.16 0.18 0.03 0.0
o2, 0.36 0.37 0.03 0.0
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Table 4. True and estimated parameters of the nonlinear two-factor model
(case 4: different lead time)

| Parameter | True | Estimated | St. error | p-value |

P11 0.95 0.95 0.01 0.0
D22 0.84 0.86 0.03 0.0
M 0.4 0.39 0.03 0.0
Ko -0.6 -0.58 0.05 0.0
71 1 - - B
Yo 0.9 0.91 0.01 0.0
Y3 1.5 1.51 0.02 0.0
Va4 1 - - }
s 2 2.00 0.02 0.0
Y6 1.7 1.70 0.02 0.0
?r 0.8 0.79 0.02 0.0
Do 0.7 0.71 0.02 0.0
bcr,s 0.5 0.49 0.03 0.0
Py -0.3 -0.27 0.05 0.0
Py -0.7 -0.73 0.03 0.0
V3 -0.5 -0.46 0.06 0.0
Py -0.2 -0.22 0.05 0.0
Py -0.8 -0.83 0.03 0.0
Vg -0.5 -0.49 0.05 0.0
o? 0.25 0.25 0.02 0.0
o3 0.36 0.36 0.02 0.0
o3 0.16 0.17 0.02 0.0
o3 0.49 0.49 0.03 0.0
o2 0.81 0.64 0.07 0.0
o2 0.36 0.42 0.04 0.0
o2 0.16 0.17 0.02 0.0
o2, 0.36 0.36 0.03 0.0

Table 5. Optimal lead determination. Likelihood function values
corresponding to different AR order combinations and different leads

Lead Combinations
00 [ @) | (22)
0 -4236.80 | -3268.76 | -3199.57
1 -4205.03 | -3252.69 | -3181.53
2 -4199.68 | -3251.89 | -3181.87
3 -4194.62 | -3249.97 | -3181.26
4 -4191.24 | -3250.69 | -3183.28
5 -4190.94 | -3253.93 | -3186.92
6 -4196.21 | -3257.28 | -3190.40
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Table 6. Estimated parameters of the linear two-factor model
(US macroeconomic monthly data, 1959:1-1998:12)

| Parameter | Estimated | St. error | p-value |

12 5.96 2.08 0.0
Vi3 4.70 1.70 0.0
Yos 0.86 0.06 0.0
Yo 0.99 0.06 0.0
Yor 0.67 0.05 0.0
br 0.92 0.02 0.0
bo 0.49 0.05 0.0
b3 1.30 0.50 0.01
¥, 0.24 0.04 0.0
by 0.65 0.08 0.0
s 0.97 0.01 0.0
Uy 0.09 0.08 0.13
s -0.06 0.06 0.19
g -0.002 0.03 0.47
e -0.33 0.05 0.0
o? 0.91 0.06 0.0
o2 0.08 0.01 0.0
o2 0.02 0.01 0.0
o2 0.35 0.03 0.0
o2 0.53 0.04 0.0
o2 0.37 0.04 0.0
o2 0.61 0.04 0.0
o2 0.004 0.002 0.08
o2, 0.37 0.04 0.0
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Table 7. Estimated parameters of the regime-switching two-factor model
(US macroeconomic monthly data, 1959:1-1998:12)

| Parameter | Estimated | St. error | p-value |

P11 0.99 0.01 0.0
D22 0.93 0.03 0.0
[ 0.06 0.02 0.0
[iro -0.39 0.10 0.0
Y1 4.73 1.22 0.0
Y13 4.57 1.18 0.0
Yos 0.92 0.08 0.0
Yog 1.15 0.08 0.0
Yor 0.78 0.06 0.0
bon 0.43 0.08 0.0
boo 0.02 0.10 0.41
boLs 1.05 0.33 0.0
Ua 0.10 0.05 0.01
Vo 0.45 0.05 0.0
Vs, -0.02 0.09 0.42
Vo 0.04 0.05 0.24
Vo1 -0.06 0.10 0.29
Voo -0.09 0.07 0.11
Yoy 0.42 0.05 0.0
. -0.21 0.05 0.0
o2 0.96 0.06 0.0
o2 0.22 0.03 0.0
o3 0.27 0.03 0.0
o2 0.31 0.03 0.0
o2 0.56 0.04 0.0
o2 0.32 0.03 0.0
o2 0.55 0.04 0.0
o2 0.01 0.01 0.03
o2, 0.32 0.04 0.0
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Cross-correlation of common coincident factor and observed variable
US monthly data 1959:1-1998:12
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Common leading and coincident indicators

Linear single factor model
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Recession probabilities

Filtered probabilities
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Leading probabilities vs. NBER chronology
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Cross-correlation of common leading and coincident factor
US monthly data 1959:1-1998:12
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