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1 Introduction
In this paper we consider the problem of an investor wanting to maximize the
expected utility of his terminal real wealth. The utility function is supposed to
belong to the HARA (Hyperbolic Absolute Risk Aversion) family. Thus, the
framework we develop in this work is very general indeed. In fact, the results
which can be obtained for a CRRA (Constant Relative Risk Aversion), a CARA
(Constant Absolute Risk Aversion), a log, or a quadratic utility function, come
out to be particular cases of our more general one.
Furthermore, the values of the financial assets are supposed to depend on a

set of stochastic state variables and a stochastic inflation risk is considered.
In the literature about the optimal portfolio rules two main fields of research

can be found. On the one hand some authors concentrate on establishing the ex-
istence (and uniqueness) of a viscosity solution for the Hamilton-Jacobi-Bellman
equation deriving from the stochastic optimal control approach (see for instance
Crandall et al., 1992; and Buckdahn and Ma, 2001a, 2001b). On the other, some
authors offer an algebraic closed form solution to the optimal portfolio compo-
sition. In particular, we refer to the works of Kim and Omberg (1996), Wachter
(1998), Chacko and Viceira (1999), Deelstra et al. (2000), Boulier et al. (2001),
Zariphopoulou (2001) and Menoncin (2002). The two last works use a solution
approach based on the Feynman-Kač theorem,1 in an incomplete market and in
a complete market with a background risk respectively.
Unfortunately, the former literature is not useful for an easy application of its

results since it is not able to explicitly derive the form of the optimal portfolio,
while the latter can be easily applied but lies on the assumption that the asset
values and the state variables behave in a very precise way.
Our work is aimed at finding a “third way” to the investment problem by

supplying, on a very general framework, an approximated closed form solution
for the optimal portfolio composition.
In all the works where a closed form solution is derived the market structure

is as follows: (i) there exists only one state variable (the riskless interest rate or
the risk premium) following the Vasiček (1977) model or the Cox et al. (1985)
model; (ii) there exists only one risky asset; and (iii) a bond may exist. Some
works consider a complete financial market (Wachter, 1998; Deelstra et al., 2000;
Boulier et al., 2001; and Menoncin 2002) while others deal with an incomplete
market (Kim and Omberg, 1996; Chacko and Viceira, 1999; and Zariphopoulou,
2001). Furthermore, all these works consider a CRRA utility function, with the
exception of Kim and Omberg (1996) who deal with a HARA utility function
and of Menoncin (2002) who considers a CARA utility function.
As we aim at providing a very general analysis, our framework considers a

(finite) set of assets, a (finite) set of state variables and a consumption price
process, all of them following general Itô processes. Furthermore, we do not
need the hypothesis of completeness for the financial market and we take into
account the most general form for the utility function (HARA).

1For a complete exposition of the Feynman-Kač theorem the reader is referred to Duffie
(1996), Björk (1998) and Øksendal (2000).
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In this paper, we follow the traditional stochastic dynamic programming
technique (Merton, 1969, 1971) leading to the Hamilton-Jacobi-Bellman (HJB)
equation (Øksendal, 2000; and Björk, 1998 offer a complete derivation of the
HJB equation). As regard the “martingale approach” the reader is referred to
Cox and Huang (1989, 1991), and Lioui and Poncet (2001).
We define some fundamental matrices which the optimal portfolio composi-

tion is based on. They are given by a combination of both preference parameters,
drift and diffusion terms for both assets and state variables. We approximate
the value of these matrices thanks to a Taylor series. After this approximation
the value function solving the HJB equation turns out to be log-linear in the
state variables. Thus, the solution for the optimal portfolio becomes very easy
to compute and we also present an easy way for checking the goodness of this
approximated solution.
In the literature there exists another example where an approximated so-

lution to the optimal portfolio composition is computed. We refer to Kogan
and Uppal (1999) who solve the HJB equation by approximating it near a given
value of the risk aversion index. Their work takes into account a CRRA utility
function and it is valid for a value of the Arrow-Pratt risk aversion index close
to zero. On the contrary, in our work, we allow for a more general pattern of
consumer preferences since we do not take into account any restriction on the
preference parameters of the HARA utility function. In fact, we compute the
Taylor approximation around given values of the state variables.
Through this work we consider agents trading continuously in a frictionless,

arbitrage-free, and incomplete market until time H, which is the horizon of the
economy.
The paper is structured as follows. Section 2 details the general economic

framework, exposes the stochastic differential equations describing the behav-
iour of asset prices, state variables, and consumpiton price index and derives the
dynamic behaviour of the investor’s real wealth. In Section 3, both the implicit
form of the optimal portfolio and the HJB equation are computed. Section 4
presents our main result, that is to say an algebraic approximated solution for
the optimal portfolio composition. This section ends by presenting an easy way
for computing the goodness of the approximation. Section 5 concludes.

2 The market structure
The financial market is supposed to have the following structure:

dX
s×1

= f (t,X)
s×1

dt+ g (t,X)0
s×k

dW
k×1

, X (t0) = X0,

dS
n×1

= µ (t,X, S)
n×1

dt+Σ (t,X, S)
0

n×k
dW
k×1

, S (t0) = S0,

dG = Gr (t,X) dt, G (t0) = G0,

(1)

where X is a vector containing all the state variables affecting the asset whose
values are contained in vector S. For a review of all variables which can affect
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the asset prices the reader is referred to Campbell (2000) who offers a survey
of the most important contributions in this field. We have indicated with G
the value of a riskless asset paying the instantaneous riskless interest rate r.
Hereafter, the prime denotes transposition.
All the functions f (t,X), g (t,X), µ (t,X, S), Σ (t,X, S), and r (t,X) are

supposed to be Ft−measurable. The σ−algebra F is defined on a set Θ where-
through the complete probability space (Θ,F ,P) is defined. Here, P can be
considered as the ”historical” probability measure.
The stochastic equations in System (1) are driven by a set of risks repre-

sented by dW which is the differential of a k−dimensional Wiener process whose
components are independent.2

The set of risk sources is the same for the state variables and for the asset
prices. This hypothesis is not restrictive because thanks to the elements of
matrices g and Σ we can model a lot of different frameworks. For instance, if
we consider dW =

£
dW1 dW2

¤
, g0 =

£
g1 0

¤
, and Σ0 =

£
0 σ2

¤
then

the processes of X and S are not correlated even if they formally have the same
risk sources.
We recall the main result concerning completeness and arbitrage in this kind

of market (for the proof of the following theorem see Øksendal, 2000).

Theorem 1 A market {S (t,X)}t∈[t0,H] is arbitrage free (complete) if and only
if there exists a (unique) k−dimensional vector u (t,X) such that

Σ (t,X)0 u (t,X) = µ (t,X)− r (t,X)S (t,X) ,
and such that

E
h
e
1
2

R H
t0
ku(t,X)k2dti

<∞.

If on the market there are less assets than risk sources (n < k), then the
market cannot be complete even if it is arbitrage free. In this work, we assume
that n ≤ k and that the rank of matrix Σ is maximum (i.e. it equals n).
Thus, the results we obtain in this work are valid for a financial market which
is incomplete as well as for a complete market (n = k).

2.1 The inflation and the real wealth

We suppose that the set of the state variables X in the market structure (1)
also contains the consumption price process (P ) that behaves according to the
following stochastic differential equation:

dP = Pµπ (X,P, t) dt+ Pσπ (X,P, t)
0

1×k
dW
k×1

,

P (t0) = 1.
2This condition can be imposed without loss of generality because a set of independent

Wiener processes can always be transformed into a set of correlated Wiener processes thanks
to the Cholesky decomposition.
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The initial value of the price consumption process is conventionally put equal
to 1 without loss of generality because prices can always be normalized. For the
sake of generality we do not specify any particular form for the drift and the
diffusion coefficients of this process. The reader is referred to Cox, Ingersoll, and
Ross (1985) for two particular functional forms which can be used for modeling
inflation.
If we indicate with θ (t) ∈ Rn×1 and θG (t) ∈ R the number of risky assets

held and the quantity of riskless asset held respectively, then the investor’s
nominal wealth can be written as

RN = θ (t)0 S + θG (t)G, (2)

After differentiating the budget constraint (2) and considering the self-financing
condition3 we obtain

dRN = θ (t)0 dS + θG (t) dG,

and, after substituting the differentials from System (1), we finally have

dRN =
¡
θ0µ+ θGGr

¢
dt+ θ0Σ0dW. (3)

This equation describes the dynamic behaviour of investor’s nominal wealth.
However, we consider that an investor should be more interested in maximizing
the expected utility of his terminal real wealth. The behaviour of the real wealth
can be obtain from Equation (3) by recalling that the real wealth level is defined
as the ratio between the nominal wealth and the price level. Accordingly, we
have to differentiate the following formula:

R =
RN
P
.

By applying the Itô’s lemma we obtain4

dR =

µ
1

P

¡
θ0µ− θ0Σ0σπ + θGGr

¢− RN
P
(µπ − σ0πσπ)

¶
dt

+

µ
1

P
θ0Σ0 − RN

P
σ0π

¶
dW,

3The self-financing condition can be written as

dθ0 (S + dS) + dθGG = 0.

4We recall that the Jacobian of the real wealth is:

∇RN ,PR =
"

1
P

−RN
P2

#
,

while its Hessian is:

∇2RN ,PR =
"

0 − 1
P2

− 1
P2

2RN
P3

#
.
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which can be written, after substituting for the value of RN given in Equation
(2), as

dR = w0Mdt+ w0Γ0dW, (4)

where

w
(n+1)×1

≡
·

θ
θG

¸
,

M
(n+1)×1

≡ 1

P

·
µ− S (µπ − σ0πσπ)− Σ0σπ
Gr −G (µπ − σ0πσπ)

¸
,

Γ0
(n+1)×k

≡ 1

P

·
Σ0 − Sσ0π
−Gσ0π

¸
.

Thus, during our analysis we will consider Equation (4) instead of Equation
(3). Thus, we will suppose that the aim of the investor is to maximize the
expected utility of his terminal real wealth. With respect to the usual approach,
in Equation (4) we lack the term containing the wealth level.5 This characteristic
comes from the following consideration: the investor is not interested in the level
of his nominal wealth RN , and furthermore, he cannot invest his real wealth R
because this is just a fictitious index (only nominal wealth can be actually
invested). We recall that inflation can be considered as the opportunity cost of
investing in financial (and not real) assets. Thus, in this work, by considering
inflation, we are able to take into account the investment opportunity in the
real market.
From Equation (4) we can immediately see that the riskless asset looses

its characteristic for becoming like a risky asset. In particular, it acquires a
diffusion coefficient corresponding to the opposite of the price diffusion term.
In fact, when the inflation rises, the real value of the riskless asset decreases
and vice versa. Accordingly, the diffusion matrix of the ”real market” (Γ) has
one more column with respect to the nominal one (Σ). Thus, hereafter, the
completeness will be defined on the real market, that is to say on the existence
of the inverse of matrix Γ, considering n+ 1 risky assets.
Finally, we outline that the matrix M containing the risk premium, does

not measure the difference between the asset returns and the riskless interest
rate as in the usual ”nominal” analysis. Instead, in our framework, it contains
the difference between the nominal asset return and the inflation drift term.
Furthermore, this difference is adjusted for the diffusion terms of assets and
inflation.

5Without inflation and under market structure (1), the wealth differential equation should
be written as follows:

dR =
¡
Rr + θ0 (µ− rS)¢ dt+ θ0Σ0dW,

where there exists a term proportional to the wealth level (Rr) which creates some problems
for solving the partial differential equation deriving from the stochastic dynamic programming
technique.
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3 The optimal portfolio
Under the market structure (1) and the evolution of investor’s real wealth given
in Equation (4), the optimization problem for an investor maximizing the ex-
pected HARA utility of his terminal real wealth, can be written as

max
w
Et0

h
(α+ γR (H))1−

β
γ

i
d

·
z
R

¸
=

·
µz
w0M

¸
dt+

·
Ω0

w0Γ0

¸
dW,

z (t0) = z0, R (t0) = R0, ∀t0 ≤ t ≤ H,
(5)

where

z
(s+n+1)×1

≡ £
X 0 S0 G

¤0
,

µz
(s+n+1)×1

≡ £
f 0 µ0 Gr

¤0
,

Ω
k×(s+n+1)

≡ £
g Σ 0

¤
,

andH is the investor’s time horizon. The vector z contains all the state variables
but the investor’s wealth. Hereafter, we will indicate with 0 a matrix of suitable
dimension containing only zeros.
The utility function we consider belongs to the HARA family since it has an

Hyperbolic Absolute Risk Aversion index

−
∂2

∂R2

³
(α+ γR)1−

β
γ

´
∂
∂R

³
(α+ γR)1−

β
γ

´ =
β

α+ γR
.

This kind of utility function is very general indeed since it contains the most
used utility functions as particular cases:

1. the CARA (Constant Absolute Risk Aversion) or exponential utility func-
tion when α = 1 and γ → 0 in the form

U (R) = lim
γ→0

(1 + γR)1−
β
γ = e−βR;

2. the CRRA (Constant Relative Risk Aversion) or power utility function
when α = 0;

3. the log-utility function when, after putting α = 0, γ = k−
1
k , and β =

k−
1
k (1− k), we consider the result for k tending to zero; in this case, in

fact, we have

U (R) =
1

k
Rk,

whose form is generally led back to the log utility when k tends to zero;
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4. the quadratic utility function when 1− β
γ = 2⇒ γ = −β.

We recall that the optimization problem is well defined if the objective func-
tion is increasing and concave in its argument R. This occurs when

0 <
β

γ
< 1.

The only restriction on parameter α comes from the condition

α+ γR > 0,

which must hold for having a well defined power function. Thus, nothing pre-
vents α from being negative. This means that we could write the HARA utility
function also as

(γR−R∗)1−β
γ ,

where R∗ can be considered as the lowest level of wealth the investor is willing
to accept. Nevertheless, in what follows we continue with the more general
framework, without considering any particular form for α.
From Problem (5) we have the Hamiltonian

H = µ0zJz + JRw
0M +

1

2
tr (Ω0ΩJzz) + w0Γ0ΩJzR +

1

2
JRRw

0Γ0Γw, (6)

where J (R, z, t) is the value function solving the Hamilton-Jacobi-Bellman par-
tial differential equation (see Section 3.1), verifying

J (R, z, t) = sup
w
Et [K (R (H))] ,

and the subscripts on J indicate the partial derivatives.
The system of the first order conditions on H is6

∂H
∂w

= JRM + Γ0ΩJzR + JRRΓ0Γw = 0,

from which we obtain the optimal portfolio composition

w∗ = − JR
JRR

(Γ0Γ)−1M| {z }
w∗
(1)

− 1

JRR
(Γ0Γ)−1 Γ0ΩJzR| {z }

w∗
(2)

. (7)

6The second order conditions hold if the Hessian matrix of H
∂H

∂w0∂w
= JRRΓ

0Γ

is negative definite. Because Γ0Γ is a quadratic form it is always positive definite and so the
second order conditions are satisfied if and only if JRR < 0, that is if the value function is
concave in R. The reader is referred to Stockey and Lucas (1989) for the assumptions that
must hold on the function K (R) for having a strictly concave value function.
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For having a unique solution to the optimal portfolio problem we must check
that the matrix Γ0Γ ∈ R(n+1)×(n+1) is invertible. This condition is satisfied if
Γ0 ∈ R(n+1)×k has rank equal to n+1 and n+1 ≤ k. Actually, due to the inflation
risk, the riskless asset becomes a risky asset, acquiring the price diffusion term.
Thus, the completeness must be defined on n+ 1 assets (including the riskless
one) and no more on n assets. In what follows we will define a complete market
as the market where the matrix Γ is invertible (that is to say it is a square
(n+ 1)× (n+ 1) matrix and its rank is maximum).
We just outline that w∗(1) increases if the real returns on assets (M) increase

and decreases if the risk aversion (−JRR/JR) or the asset variance (Γ0Γ) increase.
From this point of view, we can argue that this component of the optimal
portfolio has just a speculative role.
The second part w∗(2) is the only optimal portfolio component explicitly de-

pending on the diffusion terms of the state variables (Ω). We will investigate
the precise role of this component after computing the functional form of the
value function.
We recall that Kogan and Uppal (1999) call w∗(1) the ”myopic” component

and w∗(2) the ”hedging” component of the optimal portfolio. In fact, in the
next section we will see that w∗(2) is the only part of w

∗ depending on the
financial time horizon (H). From this point of view w∗(1) can be properly called
”myopic”. Instead, the hedging nature of w∗(2) depends on its charactersitic to
contain the volatility matrix of state variables. In this way, we can say that the
second portfolio component w∗(2) can hedge the optimal portfolio against the
risk represented by the state variables.

3.1 The value function

For studying the exact role of the portfolio components we have called w∗(1) and
w∗(2) (see Equation (7)), we need to compute the value function J (R, z, t). By
substituting the optimal value of w into the Hamiltonian (6) we have

H∗ = µ0zJz −
1

2

J2R
JRR

M 0 (Γ0Γ)−1M − JR
JRR

M 0 (Γ0Γ)−1 Γ0ΩJzR

+
1

2
tr (Ω0ΩJzz)− 1

2

1

JRR
J 0zRΩ

0Γ (Γ0Γ)−1 Γ0ΩJzR.

From this equation we can formulate the PDE whose solution is the value
function. This PDE is called the Hamilton-Jacobi-Bellman equation (hereafter
HJB) and it can be written as follows:½

Jt +H∗ = 0,
J (H,R, z) = K (R (H)) .

(8)

One of the most common way to solve this kind of PDE is to try a separa-
bility condition. In the literature (since Merton, 1969, 1971), a separability by
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product is generally found. Here, we suppose that the value function J (z,R, t)
is separable by product in wealth and in the other state variables according to
the following form: J (z,R, t) = U (R) eh(z,t). After substituting this functional
form into the HJB equation (8) and dividing by J we obtain

0 = ht + µ
0
zhz −

1

2

U2R
URRU

M 0 (Γ0Γ)−1M − U2R
URRU

M 0 (Γ0Γ)−1 Γ0Ωhz (9)

+
1

2
tr (Ω0Ω (hzz + hzh0z))−

1

2

U2R
URRU

h0zΩ
0Γ (Γ0Γ)−1 Γ0Ωhz,

where the boundary condition has become h (z,H) = 0. Now, since the utility
function belongs to the HARA family, we have

U2R
URRU

= 1− γ

β
,

and so the Equation (9) can finally be written as½
ht + a (z, t)

0 hz + b (z, t) + 1
2 tr (Ω

0Ωhzz) + 1
2h

0
zD (z, t)hz = 0,
h (z,H) = 0,

(10)

where

a (z, t)
0 ≡ µ0z −

µ
1− γ

β

¶
M 0 (Γ0Γ)−1 Γ0Ω,

b (z, t) ≡ −1
2

µ
1− γ

β

¶
M 0 (Γ0Γ)−1M,

D (z, t) ≡ Ω0
µ
I −

µ
1− γ

β

¶
Γ (Γ0Γ)−1 Γ0

¶
Ω.

We just underline that the matrix D (z, t) is positive semi-definite and b (z, t)
is a non negative scalar. The latter result can be immediately checked because,
in order to have a well defined maximization problem, we supposed γ/β to be
grater than one. The former result holds because the matrix D (z, t) can be
written as a quadratic form in the following way:

D (z, t) = Ω0
µ
I −

µ
1 +

r
γ

β

¶
Γ (Γ0Γ)−1 Γ0

¶0
×
µ
I −

µ
1 +

r
γ

β

¶
Γ (Γ0Γ)−1 Γ0

¶
Ω.

By using the HARA utility function and the separability condition, we can
write the optimal portfolio composition as in the following proposition.

Proposition 1 The optimal portfolio solving Problem (5) is given by

w∗ =
α+ γR

β
(Γ0Γ)−1M| {z }
w∗
(1)

+
α+ γR

β
(Γ0Γ)−1 Γ0Ω

∂h (z, t)

∂z| {z }
w∗
(2)

, (11)
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where h (z, t) solves the HJB equation (10).

Thus, for finding a closed form solution, we must compute the function
h (z, t) solving Equation (10). In the following section we present an approxi-
mated solution.
We just underline that the optimal portfolio composition (11) is an affine

transformation of wealth. This means that the percentage of wealth invested in
each asset does depend on the wealth level. We can immediately see that:

1. for a CARA utility function (α = 1, γ → 0) the number of asset held in
portfolio does not depend on the wealth level;

2. for both a CRRA and a log-utility function (α = 0) the percentage of
wealth invested in each asset (R−1w∗) does not depend on the wealth
level.

Menoncin (2002) takes into account a more general framework in which there
exists also a set of background risks. He shows that if a CARA utility function
is considered in a framework of a complete financial market for n+1 assets (i.e.
the matrix Γ−1 does exist) then D (z, t) = 0 and the HJB equation (10) can be
solved thanks to the Feynman-Kač theorem.7

In the following section we present a more general approximated solution
when the utility function belongs to the HARA family and the market is not
necessarily complete.

4 A general approximated solution
In order to find an approximated solution to the HJB equation (10) we propose
to develop in Taylor series the fundamental matrices a (z, t), b (z, t), Ω (z, t)0 Ω (z, t),
and D (z, t). In particular, our proposal relays on the literature showing a par-
ticular closed form solution to the optimal portfolio problem. In this literature
(see for instance Chacko and Viceira, 1999; Deelstra et al., 2000; and Boulier et
al., 2001) all the above-mentioned matrices are linear in z. We just underline
that in Kim and Omberg (1996) the scalar b (z, t) is a second order polynomial
in z but, on the other way, Ω0Ω and D (z, t) are both constant with respect to
time and to z.
Accordingly, we propose the following simplification, based on the expansion
7For a complete exposition of the Feynman-Kač theorem the reader is referred to Duffie

(1996), Björk (1998) and Øksendal (2000).
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in Taylor series around the values z0:

a (z, t) ≈ a (z0, t) +
∂a (z, t)

∂z

¯̄̄̄
z=z0

(z − z0) ≡ a0 (t) +A1 (t)0 z,

b (z, t) ≈ b (z0, t) +
∂b (z, t)

∂z0

¯̄̄̄
z=z0

(z − z0) ≡ b0 (t) + b1 (t)0 z,

Ω (z, t)
0
Ω (z, t) ≈ Ω (z0, t)

0
Ω (z0, t) ≡ C0 (t) ,

D (z, t) ≈ D (z0, t) ≡ D0 (t) .
The choice of approximating the matrices Ω0Ω and D (z, t) with a constant

rather than with a first order polynomial in z prevents us from having to solve
a Riccati matrix equation. Since we let all the matrices depend on time, then
we would not be able to solve this Riccati matrix equation without knowing a
particular solution to it, and this is not the case.
It is worthnoting that Boulier et al. (2001) take into account a financial

marke whose foundamental matrices a (z, t), b (z, t), Ω (z, t)0Ω (z, t), and D (z, t)
have exactly the form we use here as an approxiation (i.e. the two first functions
are linear in z while the last two are just constants).
Since, after the approximation, all the functions of z appearing in Equation

(10) are linear in z, then we can suppose also the function h (z, t) to be linear
in z having the following form:

h (z, t) = h0 (t) + h1 (t)
0
z.

After substituting these approximations into Equation (10) we have

∂h0
∂t

+ z0
µ
∂h1
∂t

¶
+
¡
a0 (t)

0 + z0A1 (t)
¢
h1 + b0 (t) + b1 (t)

0 z +
1

2
h01D0 (t)h1 = 0.

This equation can be split into two equations, by putting equal to zero the
constant terms (with respect to z) and the terms containing z. Thus, we can
write down the following system:½

∂h0
∂t + a0 (t)

0 h1 + b0 (t) + 1
2h

0
1D0 (t)h1 = 0,

∂h1
∂t +A1 (t)h1 + b1 (t) = 0,

(12)

and the original boundary condition on h (z, t) is now defined on the two new
functions h0 (t) and h1 (t) as follows:½

h0 (H) = 0,
h1 (H) = 0.

Since in the optimal portfolio component only the first derivative of h (z, t)
with respect to z plays a role, then we must care just about the function h1 (t),
whose value is completely defined by the second equation in System (12). Then,
we have to solve the matrix ODE½

∂h1
∂t +A1 (t)h1 + b1 (t) = 0,
h1 (H) = 0,

12



whose solution is given by

h1 (t) =

Z H

t

e
R s
t
A1(τ)dτb1 (s) ds, (13)

where the exponential matrix is computed, as usual, as8

e
R s
t
A1(τ)dτ =

∞X
n=0

1

n!

µZ s

t

A1 (τ) dτ

¶n
.

Finally, the approximated value of the optimal portfolio can be formulated
as in Proposition 2.

Proposition 2 The second component (w∗(2)) of the optimal portfolio solving
Problem (5) can be approximated as follows:

w∗(2) ≈
α+ γR

β
(Γ0Γ)−1 Γ0Ω

Z H

t

e
R s
t
A1(τ)dτb1 (s) ds, (14)

where

A1 (t) ≡ ∂

∂z

µ
µz −

µ
1− γ

β

¶
Ω0Γ (Γ0Γ)−1M

¶¯̄̄̄
z=z0

,

b1 (t) ≡ −1
2

µ
1− γ

β

¶
∂

∂z

³
M 0 (Γ0Γ)−1M

´¯̄̄̄
z=z0

.

We underline that, during our procedure, we have never used the inverted
matrix Γ−1. Since we do not need this matrix, then our result is valid also in
the very general case of an incomplete market.
The approximated solution for w∗(2) given in Equation (14) is very simple

to apply and to implement with a mathematical software. The weak point of
this approximated solution lies on the difference (z − z0). When this difference
increases the approximation becomes more and more inaccurate. Nevertheless,
the integrals in Formula (14) can be easily computed numerically, and so the
strategy of recomputing the optimal portfolio when z becomes farther off z0
does not seem to be too much expensive.

8Thus, for instance, if

A1 (t) =

·
1 2
2 1

¸
,

then Z s

t
A1 (τ) dτ =

·
1 2
2 1

¸
(s− t) ,

and

e
R s
t A1(τ)dτ = e(s−t)

·
cosh (2 (s− t)) sinh (2 (s− t))
sinh (2 (s− t)) cosh (2 (s− t))

¸
.
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Since the values a (z, t) and b (z, t) enter the Approximation (14), then it can
be useful to underline their role in our framework. For this purpose we begins
with the following definition.9

Definition 1 Given Problem (5), the market price of risk is

ξ ≡ Γ (Γ0Γ)−1M.

If the market is complete, i.e. if the matrix Γ−1 does exist, then we obtain
the usual result:

ξ ≡ Γ0−1M,
according to which the market price of risk is just given by the Sharpe ratio
(the ratio between the return exceeding the riskless interest rate and the volatil-
ity). We underline that in our framework where we consider the inflation risk,
the excess return is not defined as usual by the difference between an asset’s
return and the riskless interest rate. This excess return, instead, is the differ-
ence between an asset’s return and the inflation rate, corrected by the inflation
volatility and the correlation between inflation and asset volatility.
Accordingly, the functions a (z, t) and b (z, t) can be written as follows:

a (z, t)
0 ≡ µ0z −

µ
1− γ

β

¶
ξ0Ω,

b (z, t) ≡ −1
2

µ
1− γ

β

¶
ξ0ξ.

Thus, we can conclude that:

1. b (z, t) is the square of the market price of risk, weighted by a combination
of preference parameters;

2. a (z, t) contains the drift of all the state variables corrected by the product
between the price of state variable’s risk and a combination of preference
parameters.

From Proposition 2 we can easily check that if the market price of risk is
constant (with respect to the values of the state variables z) then the approx-
imated optimal portfolio shrinks to contain only one component, i.e. the first
one. This result is stated in the following corollary.

Corollary 1 The approximated second component (w∗(2)) of the optimal portfo-
lio solving Problem (5) vanishes when the market price of risk does not depend
on the values of the state variables ( ∂ξ∂z = 0).

In the following subsection we present a computation of the error implied in
the approximation presented in Proposition 2.

9For a similar approach see Dana and Jeanblanc-Picqué (1998).
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4.1 The maximum error

In the previous section we have presented an approximated solution for the
optimal portfolio composition solving Problem 5. Here, we recall that the ap-
proximation in Taylor series of the matrices a (z, t), b (z, t), Ω (z, t)0Ω (z, t), and
D (z, t) presents a maximum error (ε) which is respectively:10

εai (t, z) ≡ max
λ∈[0,1]

(
1

2
(z − z0)0

Ã
∂2ai (z, t)

∂z0∂z

¯̄̄̄
z=z0+λ(z−z0)

!
(z − z0)

)
,(15)

εb (t, z) ≡ max
λ∈[0,1]

(
1

2
(z − z0)0

Ã
∂2b (z, t)

∂z0∂z

¯̄̄̄
z=z0+λ(z−z0)

!
(z − z0)

)
, (16)

εC (t, z) ≡ max
λ∈[0,1]

(
∂

∂z
(Ω0 (z, t)Ω (z, t))

¯̄̄̄
z=z0+λ(z−z0)

(z − z0)
)
, (17)

εD (t, z) ≡ max
λ∈[0,1]

(
∂D (z, t)

∂z

¯̄̄̄
z=z0+λ(z−z0)

(z − z0)
)
, (18)

where we have indicated with ai the ith element (i ∈ [1, ..., s+ n+ 1]) of vector
a. Now, after putting

εa (z, t) = {εai (z, t)}i=1,...,s+n+1 , (19)

we can substitute the error values into the HJB equation and conclude what
follows.

Proposition 3 Let function h1 (t) be as in (13) and the error terms εa (z, t),
εb (z, t), and εD (z, t) be as in (15)-(19), then the closer

εa (z, t)
0 h1 (t) + εb (z, t) +

1

2
h1 (t)

0 εD (z, t)h1 (t) (20)

to zero, the better the approximated solution for the second optimal portfolio
component presented in Proposition 2.

Thus, after choosing an initial level z0 for approximating the matrices a (z, t),
b (z, t), Ω (z, t)0Ω (z, t), and D (z, t), the goodness of these approximations can
be easily checked by computing the absolute value of Expression (20).

10We consider here the so-called Lagrange’s error term.
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5 Conclusion
In this paper we have considered the problem of an investor maximizing the
expected HARA utility of his terminal real wealth. All the variables taken into
account are supposed to follow general Itô processes. In particular, we consider:
(i) a (finite) number of financial assets; (ii) a (finite) number of state variables;
and (iii) a consumption price process.
We compute the Hamilton-Jacobi-Bellman (HJB) equation solving our dy-

namic programming problem and we propose an approximated solution to it.
In particular, we define four fundamental matrices whose values are given by
combinations of preference parameters, drift and diffusion terms for both assets
and state variables.
We approximate the HJB equation by computing a Taylor series of the above-

mentioned matrices around a given level for state variables. Thus, the value
function, solving the HJB equation turns out to be a log-linear function of the
state variables.
Finally, we present an easy way for checking the goodness of this approxi-

mated solution.
With respect to the present literature, our model presents a higher degree of

generality in terms of both financial market structure and investor’s preferences
it deals with. In particular, while the literature is mainly concerned with the
problem of the existence of a solution without providing an actual form of it,
our model supplies an approximation which can be uselful for computing the
actual solution to the proposed problem.
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