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Abstract

This paper analyses the portfolio problem of an investor who wants to
maximize the expected utility of his terminal real wealth in an incomplete
financial market. The investor must cope with a set of stochastic invest-
ment opportunities and inflation risk following a jump-diffusion process.
We investigate how the inflation risk affects the optimal portfolio compo-
sition and, at this aim, we present an approximated analytical solution
to the portfolio choice problem based on the Feynman-Kac representation
theorem. Finally, we compare our approximated solution with some exact
solutions available in the literature and we find that the main qualitative
results are maintained.
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1 Introduction
This work analyses the issue of optimal portfolio policy in a multi-period model
where investors maximize expected utility of their terminal real wealth facing,
in particular, an inflation risk outside the financial market. Furthermore, our
work offers a contribution to the investment problem in the rather general case
where the value of assets depends on the stochastic behaviour of a set of state
variables.
The vector of state variables contains all the stochastic variables directly

affecting the asset prices but indirectly affecting the investors’ wealth. For a
review of all variables which can affect the asset prices readers are referred to
Campbell (2000) who offers a survey of the most important contributions in this
field.
Beside these state variables, we consider a kind of ”background risk” rep-

resented by inflation. In the literature there exist some examples where the
background risk is given by the investors’ wages (see for instance Franke, Peter-
son and Stapleton, 2001).
This framework makes our model quite general because it can be applied,

for example, to pension funds (see for instance Blake, 1998, Blake, Cairns and
Dowd, 1998, and Boulier, Huang and Taillard, 2001) or to insurance companies
(see Young and Zariphopoulou, 2000). The inflation is described by a jump-
diffusion process where the jump component accounts for sudden changes in the
inflation rate.
In this paper we follow the traditional route to use the stochastic dynamic

programming technique (Merton, 1969,1971) leading to the Hamilton-Jacobi-
Bellman (HJB) equation.1 For the method called ”martingale approach” the
reader is referred to Cox and Huang (1989,1991), and Lioui and Poncet (2000).
We find that the optimal portfolio is formed by three components: (i) a prefer-
ence free component minimizing the investor’s wealth volatility and immunizing
the investor’s portfolio against the inflation risk, (ii) a speculative part propor-
tional to both the Sharpe ratio of investor’s portfolio and the inverse of the
Arrow-Pratt relative risk aversion index, and (iii) a component depending on
the derivatives of the value function (indirect utility function) with respect to
the state and inflation variables. The last component is the only one depending
on the investor’s time horizon.
We outline the simple solution to the maximization problem if the investor

has a log-utility function and we show that, if the investor has a power utility
function, then the only optimal portfolio component depending on the form of
the value function is the third one. The same kind of property is found in Merton
(1990, Chapter 5.9) but under the hypotheses that: (i) the riskless interest rate
is constant, (ii) the only state variables are the asset prices, and (iii) there are
no background risks.
In order to find the explicit solution to this value function, it is necessary to

solve the HJB equation. Unfortunately, solving this highly non-linear PDE is
1Øksendal (2000) and Björk (1998) offer a complete derivation of the HJB equation.
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the most difficult task of the stochastic optimal control approach. In fact, some
algebraic solutions can only be obtained in very special cases. In particular, we
refer to the works of Kim and Omberg (1996), Wachter (1998), Boulier, Huang
and Taillard (2001), and Deelstra, Grasselli and Koehl (2001).
In the present work we propose a general approximated solution to the HJB

equation. Even if our solution is exact under particular conditions that must
hold on the value function, we find that it stays valid as an approximated
solution under conditions which are not very restrictive. We compare our result
both with the above-mentioned exact solutions and with another approximated
solution offered by Kogan and Uppal (1999) and based on the work of Chacko
and Viceira (1999). We find that the gain in computational simplicity does not
generate a great error in our approximated solutions with respect to the exact
ones. Furthermore, with respect to the approximation of Kogan and Uppal, our
model offers a richer solution in describing the behaviour of optimal portfolio
as function of the problem parameters. Moreover, all the qualitative results are
maintained.
We underline that the exact solutions presented in Kim and Omberg (1996),

Boulier, Huang and Taillard (2001), and Deelstra, Grasselli and Koehl (2001),
consider only one state variable and do not take into account any background
risk. Instead, our model is able to determine an approximated solution when
there exists a set of generic state variables and the background risk is given by
the inflation rate. Thus, our framework seems to be very general and able to be
applied to many particular cases.
Through this work we consider agents trading continuously in a frictionless,

arbitrage-free but incomplete market until time H which is the horizon of the
economy.
The paper is structured as follows. Section 2 details the general economic

framework and exposes the stochastic differential equations describing the be-
haviour of asset prices, state variables and the inflation process. In Section 3
the optimal portfolio composition is computed. This section presents our main
results: the behaviour of optimal portfolio with respect to the inflation risk and
the approximated algebraic solution of the HJB equation. Section 4 presents
the comparisons between our solution and other exact and approximated solu-
tions of the HJB equation in different frameworks. Section 5 concludes. All the
computations relative to Section 4 can be found in the Appendix.

2 The market structure
We suppose that asset prices are affected by a set of state variables representing
all the risk sources asset prices are linked to. For a review of all variables which
can affect the asset prices readers are referred to Campbell (2000) who offers a
survey of the most important contributions in this field.
In this paper we suppose that these risk sources follow the stochastic differ-
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ential equation:

dX
s×1

= f (X, t)
s×1

dt+ g (X, t)0
s×k

dW
k×1

, (1)

X (t0) = X0,

where s is the number of state variables and dW is the differential of a k−dimensional
Wiener process whose components are independent.2

Given these variables we can write the process describing the behaviour of
asset returns like the following stochastic differential equation:

dS
n×1

= IS
n×n

"
µ (t,X, S)

n×1
dt+Σ (t,X, S)0

n×k
dW
k×1

#
, (2)

S (t0) = S0,

where IS is a diagonal matrix containing asset prices (in nominal terms).
The set of risk sources is the same for the state variables and for the asset

prices. This hypothesis is not restrictive because thanks to the matrices g and
Σ we can model a lot of different situations. For instance, if we consider dW =£
dW1 dW2

¤
, g0 =

£
g1 0

¤
and Σ0 =

£
0 σ2

¤
then the processes of X

and S are not correlated.
Finally, we add the assumption that on financial market there exists a riskless

asset whose price (G) follows the differential equation:

dG = r (X, t)Gdt,

G (t0) = G0,

where r (X, t) is the nominal risk-free interest rate which is supposed to depend
on the state variables X.
If we define as {S (t,X)}t∈[t0,H] the market where there are n risky assets

and one riskless asset (G) we say that the market {S (t,X)}t∈[t0,H] is normalized
if G ≡ 1. This hypothesis means that the riskless asset is the numeraire of
the economy. Any market can always be normalized by putting S (t,X) =
G (t,X)

−1
S (t,X).

We present the main results concerning completeness and arbitrage in this
kind of market (for the proofs of the two following theorems see Øksendal, 2000).

Theorem 1 A market {S (t,X)}t∈[t0,H] is arbitrage free if and only if there
exists a k−dimensional vector u (t,X) such that:

Σ (t,X)0 u (t,X) = µ (t,X)− r (t,X)S (t,X) ,
and such that:

E
h
e
1
2

R H
t0
ku(t,X)k2dti

<∞.
2This condition can be imposed without loss of generality because a set of independent

Wiener processes can always be transformed into a set of correlated Wiener processes thanks
to the Cholesky decomposition. For an application see Appendices A.3 and A.4.
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Theorem 2 A market {S (t,X)}t∈[t0,H] is complete if and only if there exists
a unique k−dimensional vector u (t,X) such that:

Σ (t,X)0 u (t,X) = µ (t,X)− r (t,X)S (t,X) ,
and such that:

E
h
e
1
2

R H
t0
ku(t,X)k2dti

<∞.

If on the market there are less assets than risk sources (n < k), then the
market cannot be complete even if it is arbitrage free. In this work we assume
that n < k and that the rank of matrix Σ is maximum (i.e. it equals n).
Thus, the results we obtain in this work are valid for a financial market which
is incomplete and stay valid for a complete market (n = k).

2.1 The inflation risk

We suppose that the investor is subject to the inflation risk and he wants to
maximize the expected value of his real welath. In particular, we suppose that
the stochastic part of the inflation process can be described by two components:
a Wiener process and a Poisson process. The first one is able to describe the
continuous changes in the level of prices while the second one can explain the
sudden changes occurring at certain times.
Thus, the inflation risk process can be represented in the following way:

dL = L

"
αL (t, L, S,X) dt+ Λ (t, L, S,X)

0
1×k

dW
k×1

+ η (t, L, S,X)0
1×p

dP
p×1

#
, (3)

L (t0) = L0,

where L is the level of prices, dW is the same set of risk sources we have for the
asset prices and the state variables, and P (t+ τ) − P (t) is a p−dimensional
Poisson process whose elements are 0 when the inflation follows its ”normal”
behaviour, while they are 1 if there is a jump in its value. Define formally the
differential dP to be the limit of P (t+ τ)−P (t) as τ → dt. The parameter η is
a vector of random variables measuring the magnitude of reactions of variable
L to the jumps. The drift term αL indicates the deterministic component of
inflation while the variability around this trend is measured by the matrix of
diffusion terms Λ.
We suppose that dP is independent of the other stochastic differentials dW

and of the random variables contained in η. Furthermore, we suppose:

E [dP ] = φ (t,X) dt,

Cov [dP ] = Iφdt,

where Iφ ∈ Rp×p is a diagonal matrix containing the elements of vector φ ∈
Rp×1.

5



2.2 The investor’s wealth

After what we have presented in the previous subsections, the market structure
can be represented in the following way:

dX
s×1

= f (t,X)
s×1

dt+ g (t,X)0
s×k

dW
k×1

,

dS
n×1

= IS
n×n

"
µ (t,X, S)

n×1
dt+Σ (t,X, S)0

n×k
dW
k×1

#
,

dG = Gr (t,X) dt,

dL = L

"
αL (t, L, S,X) dt+ Λ (t, L, S,X)

0
1×k

dW
k×1

+ η (t, L, S,X)0
1×p

dP
p×1

#
.

(4)

If we indicate with w ∈ Rn×1 the vector containing the percentages of wealth
invested in each asset, then the growth rate of investor’s (real) wealth can be
represented as:

dR

R
= w0I−1S dS + (1− w01) dG

G
− dL
L
,

where 1 is a vector of 1s (of suitable dimension). Actually, the growth rate of
real wealth can be approximated by the difference between the growth rate of
nominal wealth and the growth rate of prices.
By substituting for the differentials from system (4) into the wealth differ-

ential equation, we have:

dR = R [(r − αL) + w
0 (µ− r1)] dt+R (w0Σ0 − Λ0) dW −Rη0dP. (5)

3 The optimal portfolio
Under the market structure (4) and the evolution of investor’s wealth given in
equation (5), the optimization problem can be written as follows:
max
w
Et0 [K (R (H))]

d

·
z
R

¸
=

·
µz

R [(r − αL) + w
0M ]

¸
dt+

·
Ω0

R (w0Σ0 − Λ0)
¸
dW +

·
E0

−Rη0
¸
dP,

z (t0) = z0, R (t0) = R0, ∀t0 ≤ t ≤ H,
(6)

where:

z
(s+n+1)×1

≡ £
X 0 S0 L

¤0
,

µz
(s+n+1)×1

≡ £
f 0 µ0 αL

¤0
,

Ω
k×(s+n+1)

≡ £
g Σ Λ

¤
,

E
p×(s+n+1)

≡ £
0 0 η

¤
,

M
n×1

≡ (µ− r1) ,
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and the function K (R) is increasing and concave. The vector z contains all the
state and background variables but the wealth. Hereafter, we indicate with 0 a
vector of zeros of suitable dimension.
From problem (6) we have the following Hamiltonian:

H = J 0zµz + JRR [(r − αL) + w
0M ] +

1

2
tr (Ω0ΩJzz) + (7)

+R (w0Σ0 − Λ0)ΩJzR + 1
2
R2JRR (w

0Σ0Σw − 2w0Σ0Λ+ Λ0Λ) ,

where J (R, z, t) is the value function solving the Hamilton-Jacobi-Bellman par-
tial differential equation (see Section 3.2), and verifying:

J (R, z, t) = sup
w
Et [K (R (H))] ,

here the subscripts indicate the partial derivative. The system of first order
conditions on H is:3

∂H
∂w

= JRRM +RΣ0ΩJzR +R2JRR (Σ0Σw − Σ0Λ) = 0,

from which we obtain the optimal portfolio composition:

w∗ = (Σ0Σ)−1Σ0Λ| {z }
w∗
(1)

− JR
JRRR

(Σ0Σ)−1M| {z }
w∗
(2)

− 1

JRRR
(Σ0Σ)−1Σ0ΩJzR| {z }
w∗
(3)

. (8)

We recall that in this framework the matrix Σ0Σ is invertible. In fact, Σ0Σ is
an n× n matrix and we suppose that Σ0 ∈ Rn×k has maximum rank. Because
we put n ≤ k, then Σ has rank n and, thus, Σ0Σ is invertible. This means that,
even in an incomplete market, there exists a unique optimal portfolio.
Thus, we can state the following result:

Proposition 1 Under market structure (4), the portfolio composition maximiz-
ing the investor’s terminal wealth (thus solving problem (6)) is formed by three
components: (i) a preference free part (w∗(1)) depending only on the diffusion
terms of assets and inflation process, (ii) a part (w∗(2)) proportional to both
the portfolio Sharpe ratio and the inverse of Arrow-Pratt relative risk aversion
index, and (iii) a part (w∗(3)) depending on the state variable parameters.

3The second order conditions hold if the Hessian matrix of H:
∂H

∂w0∂w
= R2JRRΣ

0Σ,

is negative definite. Because R2Σ0Σ is a quadratic form it is always positive definite and so
the second order conditions are satisfied if and only if JRR < 0 that is if the value function
is concave in R. The reader is referred to Stockey and Lucas (1989) for the assumptions that
must hold on the function K (R) for having a strictly concave value function.
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In the following subsection we analyze the role of the first preference free
portfolio component (w∗(1)). For the second part, we just outline that w

∗
(2) in-

creases if the risk premium increases and decreases if the risk aversion or the
asset variance increase. From this point of view, we can argue that this com-
ponent of the optimal portfolio has just a speculative role. The third part w∗(3)
is the only optimal portfolio component explicitly depending on the diffusion
terms of the state variables. Thus, while w∗(1) covers the investor from the infla-
tion risk, w∗(3) also covers the investor from the risk ”inside” the financial market
(given by variables X). We will investigate the precise role of this component
after computing the functional form of the value function.

3.1 The role of the preference free portfolio component

In the previous subsection we have derived the optimal portfolio composition
when the investor must cope with an inflation risk. One component of the
optimal portfolio is preference free. This means that this part (hereafter w∗(1))
does not depend on the value function J (R, z, t).
Furthermore, this component hedges the investor’s portfolio only against

the ”diffusion part” of the inflation risk, while the ”jump-part” is hedged by the
other two components and, in particular, by the third one (see Equation (8)).
It is quite intuitive that w∗(1) can hedge the optimal portfolio only against

the diffusion part of the inflation risk which is linked to the asset risks. For
showing this property, let us divide the matrices Σ and Λ into two sub-matrices
in the following way:

Σ0 =
£
Σ0S Σ0L

¤
,

Λ0 =
£
Λ0S Λ0L

¤
.

Thus, the asset prices and the inflation process can be represented as:

dS = ISµdt+ IS
£
Σ0S Σ0L

¤ · dWS

dWL

¸
,

dL = ILαLdt+ IL
£
Λ0S Λ0L

¤ · dWS

dWL

¸
+ ILη

0dP,

in this way the vector of Wiener differentials has been divided into two sets: the
asset set and the inflation set. Thus, the matrix ΣL contains the coefficients
linking the asset prices to the inflation risk set, while the elements in the matrix
ΛS measure the correlation between inflation and the risk sources of asset prices.
Accordingly, the preference-free component of optimal portfolio can be writ-

ten as follows:

w∗(1) = (Σ
0
SΣS + Σ

0
LΣL)

−1
(Σ0SΛS +Σ

0
LΛL) .

If the risk sets of asset prices and inflation are not correlated (i.e. ΣL =
ΛS = 0), then w∗(1) vanishes. So, we can state:
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Proposition 2 The preference-free component (w∗(1)) of optimal portfolio (solv-
ing problem (6)) hedges the investor’s portfolio against the diffusion part of in-
faltion process correlated with asset price risk sources.

The sign of this portfolio component depends on the elements of matrices
ΣL and ΛS because we suppose that both matrices ΣS and ΛL contain only
positive elements. In particular, if we consider the case in which the ifnlation
risk can affect the asset prices but the opposite relation is not true, then we
have ΛS = 0 and we can write:

sign
³
w∗(1)

´
= sign (Σ0L) ,

because the matrix (Σ0SΣS +Σ
0
LΣL) is positive definite. The hypothesis of

having ΛS = 0 is not very restrictive because the movements in the inflation
risk generally affect the asset prices on the stock exchange while the opposite
relation is less likely.
Accordingly, we can state:

Proposition 3 If the price level L does not contain any asset price risk source
(ΛS = 0), then, under structure (4), the preference-free component (w∗(1)) of
optimal portfolio (solving problem (6)) is directly correlated with the elements
of matrix ΣL.

Furthermore, if we consider the analogous case in which ΣL = 0, then we
obtain the following condition:

sign
³
w∗(1)

´
= sign (Λ0S) .

In this case the asset prices are not affected by the risk sources of the inflation
process and we can write:

Proposition 4 If variables S do not contain any inflation risk source (ΣL =
0), then, under structure (4), the preference-free component (w∗(1)) of optimal
portfolio (solving problem (6)) is directly correlated with the elements of matrix
ΛS.

The preference free portfolio component has another important characteris-
tic: it minimizes the instantaneous variance of investor’s wealth. In fact, from
Equation (5) we can see that the wealth variance depending on the control
vector w is given by:

R2 (w0Σ0Σw − 2w0Σ0Λ+ Λ0Λ) ,
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from which we immediately see that4:

Proposition 5 The preference-free component (w∗(1)) of optimal portfolio (solv-
ing problem (6)) minimizes the instantaneous variance of investor’s wealth.

3.2 The value function

For studying the role of the portfolio components we have called w∗(2) and w
∗
(3)

(see Equation (8)), we need to compute the value function J (R, z, t). By sub-
stituting the optimal value of w into the Hamiltonian (7) we have:

H∗ = J 0zµz + JRR
h
(r − αL) +M

0 (Σ0Σ)−1Σ0Λ
i
+

−RΛ0
h
I − Σ (Σ0Σ)−1Σ0

i
ΩJzR +

+
1

2
R2JRRΛ

0
h
I − Σ (Σ0Σ)−1Σ0

i
Λ+

+
1

2
tr (Ω0ΩJzz)− JR

JRR
M 0 (Σ0Σ)−1 Σ0ΩJzR +

−1
2

J2R
JRR

M 0 (Σ0Σ)−1M − 1
2

1

JRR
J 0zR

h
Ω0Σ (Σ0Σ)−1Σ0Ω

i
JzR,

from which we can formulate the PDE whose solution is the value function.
This PDE is called the Hamilton-Jacobi-Bellman equation (hereafter HJB) and
can be written as follows: Jt +H∗ +

pP
i=1

φiE [J (t, z +E0i, R (1− {η0}i))− J ] = 0,
J (H,R, z) = K (R (H)) ,

(9)

where {η0}i is the ith element of the vector η0 and E0i ∈ R(s+n+1)×1 is the ith
column of the matrix E0 ∈ R(s+n+1)×p.
Solving this PDE is the most difficult task of the stochastic optimal control

approach. There are no general analytic methods available for solving the HJB
equation, so the number of optimal control problems with an analytic solution
is very small indeed. In the following subsection we propose a system for solving
analytically the equation (9). Our method is based on a particular specification
of both the investor’s utility function and the value function.

4The first derivative of this term with respect to w is:

2R2
¡
Σ0Σw +Σ0Λu

¢
,

while the second derivative is:
2R2Σ0Σ,

which is always positive definite because Σ0Σ is a variance-covariance matrix.
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3.2.1 The case of separability by sum

Here, we study which form of the utility function allows us to obtain a value func-
tion separable by sum in wealth and in the other state variables: J (z,R, t) =
U (R) + F (z, t).
If we substitute this functional form into the HJB equation (9), we obtain:

Ft + F
0
zµz + URR

h
(r − αL) +M

0 (Σ0Σ)−1Σ0Λ
i
+

+1
2R

2URRΛ
0
h
I − Σ (Σ0Σ)−1Σ0

i
Λ+

+1
2 tr (Ω

0ΩFzz)− 1
2
U2
R

URR
M 0 (Σ0Σ)−1M+

+
pP
i=1

φiE [U (R (1− {η0}i))− U (R) + F (z +E0i, t)− F (z, t)] = 0.

The value function is separable by sum if and only if the terms URR, R2URR,
U2
R

URR
, and U (R (1− {η0}i)) − U (R) are constant with respect to R. The only

function satisfying these conditions is the log function: U (R) = α lnR under
the hypothesis that the vector parameter η, as we have supposed, is independent
of wealth: ∂η

∂R = 0. Without loss of generality we can put α = 1 because this
parameter does not affect the maximization problem.
After substituting for U (R) = lnR we can write (9) as: Ft + F

0
zµz +

1
2 tr (Ω

0ΩFzz) + c (z, t) +
pP
i=1

φiE [F (z +E0i, t)− F ] = 0,
lnR+ F (z,H) = K (R (H)) ,

(10)

where:

c (z, t) ≡ (r − αL) +M
0 (Σ0Σ)−1Σ0Λ+

−1
2
Λ0
h
I − Σ (Σ0Σ)−1Σ0

i
Λ+

1

2
M 0 (Σ0Σ)−1M +

+

pX
i=1

φiE [ln (1− {η0}i)] .

The boundary condition in system (10) holds if and only if the utility function
K has the form K (R (H)) = lnR. So, we can write the boundary condition as:
F (z,H) = 0, and we can argue that:

Proposition 6 The value function solving the HJB equation (9) is separable
by sum in wealth and in the other state variables if and only if the investor has
a log-utility function.

The same result is derived in Merton (1990, Chapter 5.9) but without con-
sidering any background risk, thus, this proposition can be considered as a
generalization of Merton’s result.
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In this case, because the cross derivative of the value function with respect
to investor’s wealth and to the other state variables is zero, then the optimal
portfolio is just given by its first two parts: the preference free component and
the speculative component. Any hedging part vanishes because of the log utility
function. In fact, the log-investor is said to be ”myopic” because he does not
care about hedging his portfolio against the state variable risks.
Thus, we can write:

w∗ = (Σ0Σ)−1Σ0Λ+ (Σ0Σ)−1M . (11)

This solution allows us to state:

Proposition 7 The optimal portfolio composition for an investor with log-
utility function is preference-free and depends on the inflation process only through
the coefficient of its diffusion component.

Thanks to this result the optimal composition (11) can be used as the base
for whatever kind of investor, this base needing to be adjusted for investors with
different degree of risk aversion.

3.2.2 The case of separability by product

Now, we study which form must have the value function J (z,R, t) for obtaining
the following separability result: J (z,R, t) = U (R)F (z, t). After substituting
functions U and F into the HJB equation (9) we obtain:

Ft + µ
0
zFz +

URR
U F

h
(r − αL) +M

0 (Σ0Σ)−1Σ0Λ
i
+

−URRU Λ0
h
I +Σ (Σ0Σ)−1Σ0

i
ΩFz+

+1
2
URRR

2

U FΛ0
h
I − Σ (Σ0Σ)−1Σ0

i
Λ+

+1
2 tr (Ω

0ΩFzz)− U2
R

URRU
M 0 (Σ0Σ)−1Σ0ΩFz+

−12 U2
R

URRU
FM 0 (Σ0Σ)−1M − 1

2
U2
R

URRUF
F 0z
h
Ω0Σ (Σ0Σ)−1Σ0Ω

i
Fz+

+
pP
i=1

φiE
·
U(R(1−{η0}

i
))

U F (z +E0i, t)− F
¸
= 0.

Because the model is consistent the ratios: URR/U , URRR2/U , U2R/ (URRU),
and U (R (1− {η0}i)) /U must be constant with respect to R. The only function
satisfying these properties has the form: U (R) = αRβ (α and β different from
zero) under the hypothesis that the vector parameter η, as we have supposed,
is independent of wealth: ∂η

∂R = 0.
Because we want that U (R) is an increasing and concave function, then the

coefficients α and β must be such that: αβ > 0, and β < 1.
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If we substitute for the function U (R) = αRβ into the HJB equation, we
have:

Ft + a (z, t)
0
Fz + b (z, t)F +

1
2 tr (Ω

0ΩFzz)− 1
2

β
β−1

1
F F

0
zC (z, t)Fz+

+
pP
i=1

φiE
h
(1− {η0}i)β F (z +E0i, t)− F

i
= 0,

αRβF (z,H) = K (R (H)) ,

(12)

where:

a (z, t)
0 ≡

·
µ0z − βΛ0

³
I − Σ (Σ0Σ)−1Σ0

´
Ω− β

β − 1M
0 (Σ0Σ)−1Σ0Ω

¸
,

b (z, t) ≡
·
β (r − αL) + βM 0 (Σ0Σ)−1 Σ0Λ− 1

2

β

β − 1M
0 (Σ0Σ)−1M

+
1

2
β (β − 1)Λ0

³
I − Σ (Σ0Σ)−1Σ0

´
Λ

¸
,

C (z, t) ≡
h
Ω0Σ (Σ0Σ)−1Σ0Ω

i
.

The boundary condition in the system (12) holds if and only if the investor’s
utility function has the form K (R (H)) = αRβ . Thus, we can state:

Proposition 8 The value function solving the HJB equation (9) is separable
by product in wealth and in the other state variables if and only if the investor
has a power-utility function.

A similar result is derived in Merton (1990) but under the hypotheses that
(i) the riskless interest rate is constant and (ii) the only state variables are the
asset prices. The author claims that when the utility function is a member of
the HARA family,5 then the value function is separable into a product of two
functions, the first one depending on R and t and the second one on t and the
other state variables.6

Thus, the choice of a power utility function implies that the optimal portfolio
has the following composition:

w∗ = (Σ0Σ)−1Σ0Λ+
1

1− β
(Σ0Σ)−1M +

1

1− β
(Σ0Σ)−1Σ0Ω

1

F
Fz.

5All members of the Hyperbolic Absolute Risk Aversion (HARA) family can be expressed
as:

K (C) = V (t)
1− γ

γ

µ
βC

1− γ
+ δ

¶γ
.

6Under the hypotheses of Merton (1990) the value function can be written as follows:

J (R, z, t) =
1− γ

γ
F (z, t)V (t)

µ
R

1− γ
+

δ

βr

³
1− e−r(H−t)

´¶γ
.
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Furthermore, for simplifying the computations, we can consider the following
equivalence:

F (z, t) = eh(z,t).

We underline that this transformation is just a tool for rewriting the system
(12) and eliminating the highly non linear component 1

F F
0
zCFz. In fact, after

this transformation, we can write (12) as:
ht + a (z, t)

0
hz + b (z, t) +

1
2 tr

h³
Ω0Ω− β

β−1C (z, t)
´
hzh

0
z +Ω

0Ωhzz
i
+

+
pP
i=1

φiE
h
(1− {η0}i)β eh(z+E

0
i,t)−h(z,t) − 1

i
= 0,

h (z,H) = 0,
(13)

and, accordingly, the optimal portfolio composition can be written as:

w∗ = (Σ0Σ)−1 Σ0Λ+
1

1− β
(Σ0Σ)−1M +

1

1− β
(Σ0Σ)−1Σ0Ωhz.

In order to find a closed form solution we have to specify the functional
form of h (z, t) for computing the derivative with respect to the state variables
in vector z. In the following subsections we will show how to find such a solu-
tion thanks to an approximation but now we study how to simplify the jump
component in system (13).

3.2.3 The jump component

The jump component of the inflation risk makes the solution of system (13) very
hard to compute in a closed form. Nevertheless, we can simplify the computa-
tions if we consider a Taylor series for the jump coefficients η tending to zero.
This approximation can be justified because even a jump close to zero can have
a great economic effect (we can imagine an inflation rate jumping from a value
of 0.03 to a value of 0.13!). Furthermore inflation is supposed to be affected by
more than one jump component (p > 1) and so we can consider that two or
more jumps occur at the same time.
We consider the following approximation around the value Ei → 0:

eh(z+E
0
i,t)−h(z,t) = 1 + h0zE

0
i +

1

2
Ei (hzh

0
z + hzz)E

0
i +O

³
kE0ik3

´
,

and, after substituting the first three terms in system (13) we obtain:
ht + a (z, t)

0 hz + b (z, t) + 1
2 tr

h³
Ω0Ω− β

β−1C (z, t)
´
hzh

0
z +Ω

0Ωhzz
i
+

+1
2 tr

·
pP
i=1

φiE
h
(1− {η0}i)β E0iEi

i
(hzh

0
z + hzz)

¸
= 0,

h (z,H) = 0,
(14)
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where:

a (z, t)
0 ≡ a (z, t)

0
+

pX
i=1

φiE
h
(1− {η0}i)β Ei

i
,

b (z, t) ≡ b (z, t) +

pX
i=1

φiE
h
(1− {η0}i)β − 1

i
.

After this simplification, we show in the next subsection how to find an
approximated algebraic solution for the system (14).

3.3 An analytic solution: the exact and the approximated
cases

In the previous subsection we have shown that if the investor has a log-utility
function, then we are able to compute the optimal portfolio composition in
closed form. Instead, when the investor has a power utility function then the
HJB equation does not depend on the investor’s wealth but, nevertheless, it still
depends on all the other state variables (in vector z).
Here, we consider system (14). Unfortunately, we cannot apply the Feynman-

Kac theorem7 because of the term hzh0z. In order to apply the theorem we should
have only the term hzz inside the trace operator. If we impose hz to be zero,
then also hzz must be zero and we have a trivial solution. Instead, we can search
for a function satisfying hzz = hzh0z. After solving this differential equation, we
find that h (z, t) must have the following form:

h (z, t) = A (t)− ln ¡B (t)0 z +D (t)¢ , (15)

where A (t) ,D (t) ∈ R, and B (t) ∈ R(s+n+1)×1 such that B (t)0 z +D (t) > 0.
In this case, in fact, we have:

hzz =
B (t)B (t)0£

B (t)0 z +D (t)
¤2 = hzh0z.

Thus, if the function h (z, t) has the form (15), then the HJB equation can
be simplified as follows:

ht + a (z, t)
0
hz + b (z, t) +

1
2 tr

h
Ω0
³
2I − β

β−1Σ (Σ
0Σ)−1Σ0

´
Ωhzz

i
+

+1
2 tr

·
2

pP
i=1

φiE
h
(1− {η0}i)β E0iEi

i
hzz

¸
= 0,

h (H, z) = 0.
7For a complete exposition of the Feynman-Kac theorem the reader is referred to Duffie

(1996), Björk (1998) and Øksendal (2000).
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Now, it is possible to use the Feynman-Kac representation theorem. Because
I − Σ (Σ0Σ)−1Σ0 is a symmetric, idempotent matrix, then, for applying the
Feynman-Kac theorem, we have to find two real numbers x1 and x2 such that:³

x1I − x2Σ (Σ0Σ)−1Σ0
´2
= 2I − β

β − 1Σ (Σ
0Σ)−1Σ0,

from which we have x1 =
√
2 and x2 =

√
2±

q
2−β
1−β . Thus, by putting:

eΩ0 ≡ Ω0 "√2I −Ã√2±s2− β

1− β

!
Σ (Σ0Σ)−1Σ0

#0
,

we can write the HJB equation in the following way:(
ht + a (z, t)

0 hz + b (z, t) + 1
2 tr

³eΩ0eΩhzz´+ 1
2 tr (N

0Nhzz) = 0,
h (H, z) = 0,

where, after defining N 0
i ∈ R(s+n+1)×(s+n+1) ∀i = 1, 2, ..., p such that:8

N 0
iNi = 2φiE

h
(1− {η0}i)β E0iEi

i
, ∀i = 1, 2, ..., p

we can define:

N 0
(s+n+1)×(s+n+1)p

≡ £ N 0
1 N 0

2 ... N 0
p

¤
.

Now, we are able to apply the Feynman-Kac theorem, and the solution of
the HJB equation is given by:

h (z, t) =

Z H

t

Et [b (Zs, s)] ds,

where the variables Zs follow:

dZs = a (Zs, t) ds+ eΩ (Zs, s)0 dW +N (Zs, s)
0 dWp,

Zt = z,

and dWp is the differential of a (s+ n+ 1)−dimensional Wiener process inde-
pendent of dW .
Finally, the optimal portfolio can be written as:

w∗ = (Σ0Σ)−1Σ0Λ+
1

1− β
(Σ0Σ)−1M + (16)

+
1

1− β
(Σ0Σ)−1Σ0Ω

Z H

t

∂

∂z
Et [b (Zs, s)] ds.

8The following decomposition is based on the hypothesis that the matrices:

φiE
h¡
1 +

©
u0η0

ª
i

¢β
E0iEi

i
, ∀i = 1, 2, ..., p

are positive semi-definite.
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We can see that the only component of optimal portfolio explicitly depending
on the investor’s horizon H is the third one which hedges the portfolio against
the state variable risks and the background risks.
Thus, our result, can be summarized as follows:

Proposition 9 Under market structure (4), the portfolio composition maximiz-
ing the investor’s terminal power utility function (K (R) = αRβ) is as follows:

w∗ = (Σ0Σ)−1Σ0Λ+
1

1− β
(Σ0Σ)−1M +

+
1

1− β
(Σ0Σ)−1Σ0Ω

Z H

t

∂

∂z
Et [b (Zs, s)] ds,

if and only if there exist functions A (t) ,D (t) ∈ R, and B (t) ∈ R(s+n+1)×1 such
that: Z H

t

Et [b (Zs, s)] ds = A (t)− ln
¡
B (t)

0
z +D (t)

¢
,

where:

dZs = a (Zs, t) ds+ eΩ (Zs, s)0 dW +N (Zs, s)
0
dWp,

Zt = z,

a (z, t)0 ≡
·
µ0z − βΛ0

³
I − Σ (Σ0Σ)−1Σ0

´
Ω− β

β − 1M
0 (Σ0Σ)−1Σ0Ω

¸
+

+

pX
i=1

φiE
h
(1− {η0}i)β Ei

i
,

b (z, t) ≡
h
β (r − αL) + βM 0 (Σ0Σ)−1 Σ0Λ+

+
1

2
β (β − 1)Λ0

³
I − Σ (Σ0Σ)−1Σ0

´
Λ+

−1
2

β

β − 1M
0 (Σ0Σ)−1M +

pX
i=1

φiE
h
(1− {η0}i)β − 1

i#
,

eΩ0 ≡ Ω0
"√
2I −

Ã√
2±

s
2− β

1− β

!
Σ (Σ0Σ)−1Σ0

#0
,

N 0N ≡ 2

pX
i=1

φiE
h
(1− {η0}i)β E0iEi

i
.

We underline that when we take the limit for β tending to zero we obtain
the result of the log-utility case analyzed in the previous subsections.
We have shown that, if the investor has a power utility function, then the

value function can be written as: J (R, z, t) = αRβeh(z,t). The closed form
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solution (16) is valid if and only if the function h (z, t) has the form: h (z, t) =
A (t)− ln ¡B (t)0 z +D (t)¢. If the function h cannot be written in this way, then
our previous result is incorrect.
Nevertheless, we can state that the result (16) is still valid as an approxima-

tion of the true result. If we develop in Taylor series the function h (z, t) around
a given value of z (called z0), then we obtain:

h (z, t) = A (t)− ln ¡B (t)0 z0 +D (t)¢+
− 1

B (t)0 z0 +D (t)
B (t)

0
(z − z0) + (17)

+
1

2
¡
B (t)0 z0 +D (t)

¢2 (z − z0)0B (t)0B (t) (z − z0) +O ³kz − z0k3´ .
Thus, if the function h (z, t) can be expressed in the form (17), that is as a

polynomial in z, then our result can approximate the real solution.
We will show in the next section that the exact solutions available in the

literature find that the function h (z, t) is a polynomial in z of degree one or two
and, accordingly, our solution stays valid as an approximation.

3.4 The third component of optimal portfolio and the ef-
fect of crises

As we have already underlined, the Poisson component of the background risk is
able to describe the economic crises. This component appears only in the third
part of optimal portfolio (w∗(3)). From Proposition 9 it can be seen that if the
parameters Σ,Λ,M, and η do not depend on state variables but depend only on
time, then the derivative term ∂

∂zEt [b (Zs, s)] vanishes (because
∂

∂Zs
b (Zs, s) =

0).
Thus, we can state:

Proposition 10 If the coefficients of the growth rate of the asset prices and
price level depend only on time, then the third component of the optimal portfolio
(16) vanishes.

It is evident that this proposition contains the case of geometric Brownian
motion as a special case. Furthermore, as a corollary, we can state:

Corollary 3 If the coefficients of the Poisson component of the growth rate of
price level depend only on time, then this jump part does not affect the optimal
portfolio composition.
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This means that the investor does not need to hedge against jumps in the
growth rate of price level if these jumps do not depend at least on one of the
other state variables.
This hypothesis is very restrictive indeed because, from an empirical point

of view, it is quite difficult to suppose that there are no links between the state
variables contained in the vector X and the jump component of the inflation
rate.
Here, we outline that the result stated in Corollary 3 is valid when the

investor has a power utility function in both exact and approximated solutions of
optimal stochastic control problem. In fact, we recall that the third component
of optimal portfolio can be obtained as follows:

w∗(3) =
1

1− β
(Σ0Σ)−1Σ0Ωhz (z, t) ,

from which we can see that if the coefficients of growth rates in the state variables
depend only on time, then these variables do not enter the optimal problem. In
fact, their growth rate can be substituted into the wealth growth equation and
we can forget about them in the passages which follow. Thus, in this case, the
function h (z, t) does not depend on z but only on t and hz = 0.
In the work by Lioui and Poncet (2000) it is shown that the third component

of the optimal portfolio is formed only by two parts, even though the number of
state variables is arbitrarily large. In particular, the first part is associated with
interest rate risk and the second one with the market price of risk. Even if Lioui
and Poncet use the martingale approach, here we underline that we obtain the
same result. Because the authors do not introduce any inflation risk,9 then we
have to put in our framework αL = 0, Λ = 0 and η = 0. Under this hypothesis
we can see from Proposition 9 that the function h (z, t) is formed only by two
terms and, more precisely, we have:

b (z, t) ≡ βr − 1
2

β

β − 1M
0 (Σ0Σ)−1M,

from which we can see that, independently of the number of state variables, if
there are no inflation risk, then, as in Lioui and Poncet, the third component
of optimal portfolio is formed by two parts. The first one is associated with
interest rate risk and the second one with the market price of risk. In fact, the
matrix M 0 (Σ0Σ)−1M is the square of the Sharpe ratio.

4 Some special cases
In this section we compare our approximated result with some exact solutions
which are available in the literature. In particular, we use the models of: (i)

9We outline that they define an investor who is endowed with a portfolio of discount bonds
that he chooses not to trade until his investment horizon (H). This hypothesis allows the
authors to have a non-zero first portfolio component w∗

(1)
.
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Boulier, Huang and Taillard (2001) who find the optimal portfolio composition
for an investor with power utility function under the Vasicek structure of interest
rates, (ii) Deelstra, Grasselli and Koehl (2001) in which, instead, the interest
rate structure has the Cox, Ingersoll and Ross (1985) form, and (iii) Kim and
Omberg (1996) who use a mean reversion process for describing the price of
risk.
Finally, we investigate how our approximated solution performs with respect

to another approximated solution computed by Kogan and Uppal (1999) on the
model presented in Chacko and Viceira (1999).
In the following subsections we analyze each of these models.

4.1 The comparison with Boulier, Huang and Taillard (2001)

Boulier, Huang and Taillard (2001) consider a market structure in which there
are one stock and one bond. The only state variable is the interest rate following
a Vasicek structure (Vasicek, 1977). The bond value depends only on the interest
rate risk while the stock value depends on both its own risk and the interest rate
risk. There are no background variables, thus in this model w∗(1) = 0 because
we have αL = 0, Λ = 0 and η = 0.
The market structure can be represented in the following way:

dr = ar (br − r) dt− σrdWr,
dS
S = (r + σ1λ1 + σ2λr) dt+ σ1dWS + σ2dWr,
dB
B = (r + λrg (H − t)σr) dt+ g (H − t)σrdWr,
dG
G = rdt,

(18)

where:
g (τ) =

1− earτ
ar

.

The authors solve the problem for an investor having a power utility function
of the form K (R) = 1

βR
β. By applying our solution we obtain the following

optimal portfolio:

w∗ =
1

1− β

"
λ1
σ1

λrσ1−σ2λ1
g(H−t)σrσ1

#
− 1

1− β

·
0
β

¸
.

This solution, detailed in Appendix A.1, is exactly the solution obtained by
the authors.
We underline that in this case the function h (z, t) is linear in z and thus,

our solution should be valid only as an approximation. Actually, our result is
identical to the result of Boulier, Huang and Taillard because their solution does
not involve any state variable but only the preference parameter β.
Thus, in this case, we have lost nothing with respect to the exact solution.
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4.2 The comparison with Deelstra, Grasselli and Koehl
(2001)

Deelstra, Grasselli and Koehl (2001) consider a market structure which is the
same as that one after Boulier, Huang and Taillard (2001) but in which the
interest rate (the only state variable) follows a Cox, Ingersoll and Ross (1985)
structure (so-called CIR). Their market structure is as follows:

dr = ar (br − r) dt− σr
√
rdWr,

dS
S = (r + σ1λ1 + σ2λrr) dt+ σ1dWS + σ2

√
rdWr,

dB
B = (r + rλrg (H − t)σr) dt+ g (H − t)σr√rdWr,
dG
G = rdt,

(19)

where:

g (τ) =
2
¡
eδτ − 1¢

2δ + (eδτ − 1) (δ + br − σrλr)
,

δ =

q
(br − σrλr)

2 + 2σ2r.

The authors solve the problem for an investor having a power utility function
of the form K (R) = 1

βR
β . As we show in Appendix A.2, the optimal portfolio

composition given by our approximated solution is:

w∗ =
1

1− β

"
λ1
σ1

λrσ1−σ2λ1
g(H−t)σrσ1

#
+

1

1− β

"
0

−
³
β + 1

2
β
1−βλ

2
r

´
1−e−fbr(H−t)ebrg(H−t)

#
,

where ebr = br − β
β−1λrσr, while the exact result obtained by Deelstra, Grasselli

and Koehl is the following one:

w∗DGK =
1

1− β

"
λ1
σ1

λrσ1−σ2λ1
g(H−t)σrσ1

#
+

1

1− β

"
0

k(H−t)
g(H−t)

#
,

where:

k (H − t) = −
2
³
β + 1

2
β
1−βλ

2
r

´ ¡
eα(H−t) − 1¢

2α+
¡
eα(H−t) − 1¢ ³α+ br + β

1−βλrσr
´ ,

α =

s
b2r − 2σ2r

β

1− β

µ
1 +

1

2
λ2r − brλr

1

σr

¶
.

Now, our aim is to study the difference between our solution and the correct
one for seeing when the difference can be considered negligible. Here, we do not
matter about the initial time t and we care only about the distance between
the present date and the time horizon: Ht ≡ H − t. In particular, we study
the behaviour of the ratio between the approximated and the exact value of
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the portfolio hedging component (previously called w∗(3)) because the two first
components are identical for the two solutions. If we call this ratio φ we obtain:

φDGK (β,λr,σr, br,Ht) =
1

2

µ
1− αebr 1 + e

αHt

1− eαHt

¶³
1− e− ebrHt

´
.

The simulation of index φDGK is based on the following starting values and
ranges for parameters:

Variables β λr σr br Ht
Starting values -9 0.0017 0.0189 0.0226 10
Simulation ranges [-30,0] [0,0.5] [0,0.5] [0,0.5] [0,100]

The starting values are consistently chosen with Campbell and Viceira (1999).
The simulations are shown in Figures 1, 2 and 3.

Figure 1: Approximation index φDGK as function of β and Ht
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In Figure 1 the behaviour of index φDGK with respect to both the preference
parameter β and the time horizon Ht is shown. We can see that the approxima-
tion error increases when the time horizon increases even if this error seems to
be negligible for values of Ht lower than 40. Because a period length between
30 and 40 years corresponds to the work life of a worker, then this model should
be able to be applied to the case of pension funds or life insurances.
If we exclude the lower values of the preference parameter β, we can see that

β does not affect the approximation in a determinant way. Thus, for instance,
the approximation made by Kogan and Uppal (1999) and based on a Taylor
expansion around the value β = 0, in this case could not be able to capture
some particular behaviours of the optimal solution that our model considers.
In Figure 2 we analyze the behaviour of index φDGK with respect to λr and

σr which are respectively the constant part of the bond market price of risk and
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Figure 2: Approximation index φDGK as function of λr and σr
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the constant part of the riskless interest rate volatility. We can see that these
parameters deeply affect the approximation but it is sufficient that only one of
them is very small in order to have a value of φDGK close to 1.

Figure 3: Approximation index φDGK as function of b and σr
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In Figure 3, the behaviour of index φDGK with respect to parameters b
and σr is represented. Another time σr seems to have a great importance in
determining the goodness of the approximated result. We recall that b is the
coefficient measuring the strength of the mean reversion effect in the differential
equation describing the behaviour of interest rate. From Figure 3 we see that it
is sufficient that σr has a very low value or b has a very high value for having
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a good approximation. In fact, if b is high enough, the mean reversion effect is
dominant and the interest rate follows its deterministic path very closely. The
same behaviour is reached when σr approaches zero.
All the results we have shown confirm the idea that closer the state variables

to their deterministic path, better the approximation.

4.3 The comparison with Kim and Omberg (1996)

The case analyzed by Kim and Omberg (1996) presents only one stock and one
state variable representing the risk premium. Thus, the market structure is as
follows: 

dx = −λ (x− x) dt+ σxdWx,
dS
S = (r + σSx) dt+ σSdWS ,
dG
G = rdt,

(20)

where the Wiener differentials of stock and risk premium are correlated:

E [dWxdWS ] = ρxS .

In the Appendix A.3 we show how to transform this setting into a frame-
work where the Wiener processes are independent and we compute the following
optimal portfolio:

w∗ =
1

1− β

x

σS
+

1

1− β

ρxSσx
σS

hx,

where:

hx = −1
2

β

1− β

Ãµ
1− e−(H−t)α

α

¶2
λx+

1− e−2(H−t)α
α

x

!
, (21)

α = λ+
β

β − 1ρxSσx.

In their model, Kim and Omberg, find the same solution w∗ but the function
hx has the following exact form:10

hx(KO) = −2 β

β − 1
2
³
1− e− 1

2π(H−t)
´2

π
£
2π − (π − 2α) ¡1− e−π(H−t)¢¤λx+

−2 β

β − 1
1− e−π(H−t)

2π − (π − 2α) ¡1− e−π(H−t)¢x,
where:

π = 2

s
(−α)2 + β

β − 1σ
2
x

µ
1− β

β − 1ρ
2
xS

¶
.

10Actually, they use a HARA utility function of the form U (R) = (R−R∗)
γ−1
γ . Thus,

here, we put R∗ = 0 and β = γ−1
γ
. The quality of result is unaffected.
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We underline that, while in the other cases our function h (z, t) was an
approximation of the exact function around the value z0 = 0, in this case the
approximation is made around a different value of z0. In particular, in this case,
it is necessary to solve the following system, in order to find the functions A (t),
B (t) and D (t) equating hx in (21) to the derivative of (17): −

1
2

β
β−1

³
1−e−(H−t)α

α

´2
λx = − B

Bx0+D
− x0

³
B

Bx0+D

´2
,

−12 β
β−1

1−e−2(H−t)α
α =

³
B

Bx0+D

´2
.

We can see that it is not possible to put x0 = 0. Instead, this system can be
solved for x0 and D/B which are uniquely determined. We obtain:

D

B
=

λx

α

1− e−α(H−t)
1 + e−α(H−t)

± 2
s
−β − 1

β

2α

1− e−2α(H−t) ,

x0 = −λx
α

1− e−α(H−t)
1 + e−α(H−t)

±
s
−β − 1

β

2α

1− e−2α(H−t) .

It is easy to see that our solution converges to the exact one when π → −2α.
In this case, in fact we have:

hx(KO) = −2 β

β − 1

Ã¡
1− eα(H−t)¢2
4α2e2α(H−t)

λx− 1− e
2α(H−t)

4αe2α(H−t)
x

!
.

The condition under which our function converges to the exact one can be
written as follows:

β

β − 1σ
2
x

µ
1− β

β − 1ρ
2
xS

¶
→ 0,

and this condition holds in three cases:

1. β → 0, actually this case is not interesting because if β tends to zero, then
the investor can be described with a log-utility function and the third
component w∗(3) of the optimal portfolio vanishes. Accordingly, in this
case, the function h (z, t) does not matter;

2. σ2x → 0, in this case the state variable x follows a deterministic trajectory
and the component w∗(3) of optimal portfolio vanishes another time;

3. ρ2xS → β−1
β , this case is the most interesting one because we see that,

under this hypothesis, the third component w∗(3) of optimal portfolio does
not vanish. This condition is equivalent to create a relation between the
investor’s preference parameter β and the asset correlation with the state
variable. We outline that higher the value of β, closer the value of ρxS to
1. This means that our solution converges to the exact one if we consider
a highly risk averse investor and a high correlation between stock price
and risk premium.

25



As in the previous section we analyze the behaviour of our solution with
respect to the exact one through the approximation index:

φKO (β,λ,σx, ρxS ,Ht, x, x) =
hx

hx(KO)
,

where, as before, Ht ≡ H − t. The numerical simulations show that the values
of x and x affect the result in a negligible way. Thus, the simulation we present
here only concerns the five other parameters.
The simulation of index φKO is based on the following starting values and

ranges for parameters:

Variables β λ σx ρxS Ht
Starting values -9 0.0017 0.0189 -0.000203 10
Simulation ranges [-30,0] [0,0.5] [0,0.5] [-1,1] [0,100]

The starting values are consistently chosen with Campbell and Viceira (1999).
The simulations are shown in Figures 4, 5 and 6.

Figure 4: Approximation index φKO as function of β and Ht
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In Figure 4 we can observe the same behaviour shown, for the same para-
meters, in the case analyzed by Deelstra, Grasselli and Koehl. Thus, we refer
to the previous subsection for the comments.
In Figure 5 the values of approximation index φKO with respect to λ and

σx are shown. These two parameters measure, respectively, the strength of the
mean reversion effect and the volatility of the state variable. As in the previous
section, stronger the mean reversion effect better the approximation because the
state variable tends to become closer to its deterministic path. Furthermore,
for the same reason, higher the volatility worst the approximation.
Finally, Figure 6 shows the approximation with respect to the volatility of

the state variable (σx) and the correlation between the state variable risk and
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Figure 5: Approximation index φKO as function of λ and σx
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Figure 6: Approximation index φKO as a function of ρxS and σx
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the asset price risk (ρxS). We can see that the most important problems arise
when the volatility σx is high and the correlation index ρxS is very low (close
to −1). A lot of empirical investigations (see for instance Barberis, 2000, and
Campbell and Viceira, 1999) show that this correlation index is negative and,
thus, our solution stays valid as a good approximation only if the volatility of
the risk premium is low enough.

4.4 The comparison with Kogan and Uppal (1999)

Here, we consider the case analyzed by Kogan and Uppal (1999) who follow
our same approach of finding an approximated solution with respect to the log-
linearization technique developed in Chacko and Viceira (1999). Nevertheless,
the authors linearize the function h (z, t) with respect to the preference para-
meter β. We outline that they take the Taylor series of h (z, t) around the value
β = 0. Nevertheless, in this case the third component of the optimal portfolio
composition (w∗(3)) tends to vanish and thus, their analysis stays valid only for
very few cases.
As in Kim and Omberg (1996) there are one stock and one state variable

whose volatility is not constant but proportional to the square root of the state
variable. The model studied by these two authors is as follows:

dx = −λ (x− x) dt+ σ
√
xdWx,

dS
S = µdt+ 1√

x
dWS ,

dG = Grdt,

(22)

where the riskless interest rate is a positive constant. Because Kogan and Uppal
consider the case of correlated Wiener processes, in Appendix A.4 we show how
to transform their framework in a framework with two independent Wiener
processes.
The authors solve the problem for an investor having a power utility func-

tion of the form K (R) = 1
βR

β. Our approximated solution is as follows (see
Appendix A.4):

w∗ =
1

1− β
(µ− r)x+ 1

1− β
σSxxhx,

where:

hx =
1

2

β

1− β
(µ− r)2 1− e

−(λ− β
1−β (µ−r)σSx)(H−t)

λ− β
1−β (µ− r)σSx

.

Kogan and Uppal consider an investment horizon tending to infinity, thus
the exponential term vanishes under the hypothesis that σSx is positive, or, if
negative, with an absolute value low enough for having λ+ β

β−1 (µ− r)σSx > 0.
Finally, we can write the following optimal portfolio composition:

w∗ =
1

1− β
(µ− r)x+ β

1− β
(µ− r)2 σSxx

2

1

(1− β)λ− β (µ− r)σSx ,
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while Kogan and Uppal obtain:

w∗KU =
1

1− β
(µ− r)x+ β

1− β
(µ− r)2 σSxx

2

1

λ
.

This result is consistent with the hypothesis of β small enough for being able
to approximate the function h through a Taylor polynomial around the value
β = 0. Here, we want to outline that this kind of procedure would imply that the
whole third portfolio component vanishes while our model is able to describe
the optimal portfolio composition for each degree of risk aversion, under the
hypothesis that the state variables stay around a given value.
The behaviour of the optimal portfolio with respect to the parameters σSx

and λ is qualitatively the same between w∗ and w∗KU . In fact, in both models it
is true that ∂w∗

∂σSx
> 0 and ∂w∗

∂λ < 0. With respect to the risk premium (µ− r),
Kogan and Uppal’s model presents a derivative of w∗KU with respect to (µ− r)
whose sign corresponds to the sign of σSx independently of (µ− r). Our model,
instead, presents a richer range of possibilities because we have the following
result (with β < 0):

∂w∗(3)
∂ (µ− r) R 0⇐⇒ (µ− r) R −2β − 1

β

λ

σSx
.

If the asset price and the state variable are positively correlated (σSx > 0)
then, because µ must be greater than r for trivial arbitrage considerations, the
third optimal portfolio component increases when the risk premium increases (as
in Kogan and Uppal). Instead, when σSx < 0 we can distinguish two different
cases:

1. if the absolute value of σSx is very high, then the optimal portfolio hedging
component (w∗(3)) is positively correlated with the risk premium. In fact,
if the correlation between the stock price and the state variable is high,
then the investor needs a stronger hedging. We underline that this case
must be rejected because if σSx is negative and its absolute value is high,
then the value of w∗(3) diverges when H tends to infinity;

2. if the absolute value of σSx is very low, then the optimal portfolio hedging
component (w∗(3)) is negatively correlated with the risk premium. In fact,
when the state variable is not strongly correlated with the stock price,
then, in order to hedge the portfolio, it is better to invest more money
in the riskless asset rather than in w∗(3) which is not able to cover the
non-correlated risk.

In Kogan and Uppal the derivative of w∗KU with respect to β has the following
sign:

∂w∗KU
∂β

¯̄̄̄
β=0

R 0⇐⇒ σSx R −2 λ

µ− r .
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In our framework, we obtain an identical result and, nevertheless, our model
is richer in describing the behaviour of optimal portfolio hedging component w∗(3)
with respect to the preference parameter β because we obtain, with β < −1:

∂w∗(3)
∂β

R 0⇐⇒


σSx ∈

i
−β2−1

β2
λ
µ−r , 0

h
,

σSx = −β2−1
β2

λ
µ−r , σSx = 0,

σSx /∈
h
−β2−1

β2
λ
µ−r , 0

i
.

This result means that when the absolute value of σSx is high, then the
hedging component of optimal portfolio increases if the risk aversion (1− β)
increases. In fact, the portfolio part w∗(3) can effectively hedge the investor from
the risk represented by the state variable x only if the asset price is strongly
correlated with this state variable. If not, it is better to decrease the hedging
portfolio component in order to increase the percentage of wealth invested in
the riskless asset.

5 Conclusion
In this paper we have analyzed the asset allocation problem for an investor max-
imizing the expected value of his terminal power utility function. The investor
faces an economic environment with stochastic investment opportunities and
incomplete financial markets. Furthermore, he must cope with an inflation risk
following a jump-diffusion proces.
The optimal portfolio is formed by three components: (i) a preference free

part depending only on the diffusion terms of assets and inlfation process, (ii) a
part proportional to both the portfolio Sharpe ratio and the inverse of Arrow-
Pratt relative risk aversion index, and (iii) a part depending on the state variable
parameters.
We show that the preference-free component hedges the portfolio against the

diffusion part of infaltion process correlated with asset prices risk sources. Fur-
thermore, this preference-free component minimizes the instantaneous variance
of investor’s wealth.
The third component of optimal portfolio vanishes when the investor has a

log-utility function or when, investor having a power utility function, the drift
and diffusion components of state variables and inflation depend only on time.
In particular, we find that the jump component of the price process affects
the optimal portfolio composition if and only if the coefficient of this jump
component depends at least on one of the state variables.
For understanding the role of the third component it is necessary to explic-

itly compute the value function. This computation is the most difficult part of
the stochastic dynamic programming technique. In this work we propose an ap-
proximated method for solving the PDE giving the value function. Our method
is based on the Feynman-Kac representation theorem. We compare our approx-
imated solution with some exact solutions available in the literature. We are
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able to find that all the qualitative results are maintained and the computations
are simplified.

A Derivation of the approximated solutions

A.1 The comparison with Boulier, Huang and Taillard
(2001)

Boulier, Huang and Taillard (2001) take the market structure (18). Thus, the
only state variable is the interest rate (r), and there are two assets: a stock (S)
and a bond (B). In their model there are no inflation risk and so we can put
αL = 0, Λ = 0 and η = 0.
We underline that the changes in prices of bond and stock are Itô processes

whose evolution does not depend on their own values. Thus, we can forget about
the state variables S and B. Accordingly, we can transform this problem in a
form suitable to compute the optimal portfolio composition in our framework:

w0 =
£
wS wB

¤0
,

z = r,

µz = ar (br − r) ,
Ω =

· −σr
0

¸
,

M =
£
σ1λ1 + σ2λr g (H − t)λrσr

¤0
,

Σ0 =

·
σ2 σ1

g (H − t)σr 0

¸
,

dW =
£
dWr dWS

¤0
.

The authors solve the problem for an investor having power utility function
of the form K (R) = 1

βR
β. By applying Formula (16) we have:

w∗ =
1

1− β

"
λ1
σ1

λrσ1−σ2λ1
g(H−t)σrσ1

#
+

1

1− β

·
0

− 1
g(H−t)hr

¸
.

Now, we have to compute the function h that in our case is:

h (z, t) =

Z H

t

E [b (Zs, s)] ds,

dZs = a (Zs, s) ds+

s
2− β

1− β
Ω0dW.
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In this special case we have:

a (z, t) = µz −
β

β − 1Ω
0Σ0−1M = ar (br − r) + β

β − 1λrσr,

b (z, t) = βr − 1
2

β

β − 1M
0 (Σ0Σ)−1M = βr − 1

2

β

β − 1
¡
λ21 + λ2r

¢
,

and, finally, we can write:

h (r, t) =

Z H

t

E
·
βrs − 1

2

β

β − 1
¡
λ2 + λ2r

¢¸
ds,

drs = ar

³ebr − rs´ ds+fσrdWr,

rt = r,

where:

ebr = br +
1

ar

β

β − 1λrσr,

fσr = σr

s
2− β

1− β
.

We can see that a component of h (r, t) does not depend on time and so we
can write:

h (r, t) = β

Z H

t

E [rs] ds− 1
2

β

β − 1
¡
λ21 + λ2r

¢
(H − t) .

If we compute the solution for the differential stochastic equation of rs we
obtain:11

rs = ebr − e−ar(s−t) ³ebr − rt´−fσr Z t

s

e−ar(s−τ)dWr (τ) ,

and, given rt = r, we have E [rs] = ebr − e−ar(s−t) ³ebr − r´. Thus, we can find
the function h (r, t):

h (r, t) = β

Z H

t

h ebr − e−ar(s−t) ³ebr − r´i ds− 1
2

β

β − 1
¡
λ21 + λ2r

¢
(H − t) ,

11Given the equation:

drs = ar
³ ebr − rs´ ds−fσrdWr,

we apply the Itô’s lemma to Y (s) = ears
³ ebr − rs´ and we have:

dY (s) =
h
are

ars
³ ebr − rs´ − arears ³ ebr − rs´i dt+ earsfσrdWr,

dY (s) = earsfσrdWr ,

from which, by integrating between t and s we have:

ears
³ ebr − rs´ − eart ³ ebr − rt´ = fσr R st earτdWr (τ) ,

rs = ebr − ear(t−s) ³ ebr − rt´ −fσr R ts ear(τ−s)dWr (τ) .
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from which we obtain:

hr = β

Z H

t

e−ar(s−t)ds = β
1− e−ar(H−t)

ar
.

We recall that g (H − t) = 1−e−ar(H−t)
ar

and so:

w∗ =
1

1− β

"
λ1
σ1

λrσ1−σ2λ1
g(H−t)σrσ1

#
− 1

1− β

·
0
β

¸
,

which is exactly the solution obtained by Boulier, Huang and Taillard (2001).

A.2 The comparison with Deelstra, Grasselli and Koehl
(2001)

Deelstra, Grasselli and Koehl (2001) consider the market structure (19) where
the changes in prices of bond and stock are Itô processes whose evolution does
not depend on the values themselves. Thus, we can forget about the state
variables S and B. Furthermore, there are no liabilities and so we have αL = 0,
Λ = 0 and η = 0.
Accordingly, we can transform this problem in a form suitable to compute

the optimal portfolio composition in our framework:

w0 =
£
wS wB

¤0
,

z = r,

µz = (ar − brr) ,
Ω =

· −σr√r
0

¸
,

M =
£
σ1λ1 + σ2λrr g (H − t)λrσrr

¤0
,

Σ0 =

·
σ2
√
r σ1

g (H − t)σr√r 0

¸
,

dW =
£
dWr dWS

¤0
.

The authors solve the problem for an investor having power utility function
of the form K (R) = 1

βR
β. By applying Formula (16) we have:

w∗ =
1

1− β

"
λ1
σ1

λrσ1−σ2λ1
g(H−t)σrσ1

#
+

1

1− β

·
0

− 1
g(H−t)hr

¸
.

Now, we have to compute the function h that in our case is:

h (z, t) =

Z H

t

E [b (Zs, s)] ds,

dZs = a (Zs, s) ds+

s
2− β

1− β
Ω0dW.
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In this special case we have:

a (z, t) = µz −
β

β − 1Ω
0Σ0−1M = (ar − brr) + β

β − 1λrσrr,

b (z, t) = βr − 1
2

β

β − 1M
0 (Σ0Σ)−1M = βr − 1

2

β

β − 1
¡
λ21 + λ2rr

¢
,

and, finally, we can write:

h (r, t) =

Z H

t

E
·µ

β − 1
2

β

β − 1λ
2
r

¶
rs − 1

2

β

β − 1λ
2
1

¸
ds,

drs =
³
ar − ebrrs´ ds+fσr√rsdWr,

rt = r,

where:

ebr = br − β

β − 1λrσr,

fσr = σr

s
2− β

1− β
.

We can see that a component of h (r, t) does not depend on time and so we
can write:

h (r, t) =

µ
β − 1

2

β

β − 1λ
2
r

¶Z H

t

E [rs] ds− 1
2

β

β − 1λ
2
1 (H − t) .

From Cox, Ingersoll and Ross (1985) we obtain the following solution for the
expected value of the stochastic differential equation:

E [rs] =
arebr − e− ebr(s−t)

µ
arebr − r

¶
.

By substituting this expected value into h (r, t) we have:

hr =

µ
β − 1

2

β

β − 1λ
2
r

¶Z H

t

∂

∂r
E [rs] =

=

µ
β − 1

2

β

β − 1λ
2
r

¶
1− e− ebr(H−t)ebr .

Thus, the optimal portfolio composition is given by the following approxi-
mated formula:

w∗ =
1

1− β

"
λ1
σ1

λrσ1−σ2λ1
g(H−t)σrσ1

#
+

1

1− β

"
0

−
³
β − 1

2
β

β−1λ
2
r

´
1−e−fbr(H−t)ebrg(H−t)

#
.

34



A.3 The comparison with Kim and Omberg (1996)

Kim and Omberg (1996) consider the market structure (20) where there are two
correlated Wiener processes: E [dWxdWS ] = ρxS . Thus, we can write:

Cov

µ
dx,

dS

S

¶
=

·
σ2x σSσxρxS

σSσxρxS σ2S

¸
.

We can lead this case back to our approach by using the Cholesky decom-
position. Because the variance and covariance matrix is always positive semi-
definite, we can write:·

σx 0

σSρxS σS
p
1− ρ2xS

¸ ·
σx σSρxS
0 σS

p
1− ρ2xS

¸
=

·
σ2x σSσxρxS

σSσxρxS σ2S

¸
.

Thus, the market structure (20) can be written in the following way:
dx = −λ (x− x) dt+ σxdgWx,
dS
S = (r + σSx) dt+ σSρxSdgWx + σS

p
1− ρ2xSd

gWS ,
dG
G = rdt,

where gWS and gWx are two independent Wiener processes.12 For leading this
kind of problem back to our approach we put:

w = wS ,

z = x,

µz = −λ (x− x) ,
Ω =

·
σx
0

¸
,

M = xσS ,

Σ0 =
£
σSρxS σS

p
1− ρ2xS

¤
,

dW =
h
dgWx dgWS

i0
.

12We underline that this transformation is equivalent to the following one:"
σx

q
1− ρ2xS σxρxS
0 σS

# "
σx

q
1− ρ2xS 0

σxρxS σS

#
=

·
σ2x σSσxρxS

σSσxρxS σ2S

¸
,

from which we obtain the system:
dx = −λ (x− x) dt+ σx

q
1− ρ2xSd

gWx + σxρxSd
gWS ,

dS
S
= (r + σSx) dt+ σSdgWS ,

dG
G
= rdt.

Here, we have decided to maintain a single risk source for the state variable x because this
representation is more intuitive from an economic point of view. In fact, the state variable
affects the stock price which also has its own risk source.
However, we outline another time that the final result is identical for both transformations.
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The authors use a HARA utility function of the form U (R) = (R−R∗) γ−1γ .
Thus, here, we put R∗ = 0 and β = γ−1

γ for having our form K (R) = Rβ. From
Formula (16), the optimal portfolio composition is:

w∗ =
1

1− β

x

σS
+

1

1− β

ρxSσx
σS

hx.

After computing the following functions:

a (x, t) = −λ (x− x)− β

1− β
ρxSσxx,

b (x, t) = βr − 1
2

β

1− β
x2,

the problem to solve is:

h (x, t) =

Z H

t

E
·
βr − 1

2

β

1− β
X2
s

¸
ds = βr (H − t)− 1

2

β

1− β

Z H

t

E
£
X2
s

¤
ds,

dXs =

·
λx−

µ
λ+

β

1− β
ρxSσx

¶
X

¸
ds+ σx

s
2− β

1− β
ρ2xSd

gWx,

Xt = x.

From the stochastic differential equation we can compute the behaviour of
Xs as in the previous appendix (see also Cox, Ingersoll and Ross, 1985) and we
obtain:

E
£
X2
s

¤
=

·
λx

α
− eα(t−s)

µ
λx

α
− x

¶¸2
+ σ2x

µ
2− β

1− β
ρ2xS

¶Z t

s

e2α(τ−t)dτ ,

where:

α = λ+
β

1− β
ρxSσx.

Thus, we can complete the solution:

hx = −1
2

β

1− β

Z H

t

∂

∂x
E
£
X2
s

¤
ds =

= − β

1− β

Z H

t

·
λx

α
eα(t−s) − e2α(t−s)

µ
λx

α
− x

¶¸
ds =

= −1
2

β

1− β

Ãµ
1− e−α(H−t)

α

¶2
λx+

1− e−2α(H−t)
α

x

!
.
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A.4 The comparison with Kogan and Uppal (1999)

Kogan and Uppal (1999) consider the market structure (22) of Chacko and
Viceira (1999) where there are two correlated Wiener processes such that:

Cov

µ
dx,

dS

S

¶
=

·
σ2x σSx
σSx

1
x

¸
.

We can lead this case back to our approach by using the Cholesky decom-
position. Because the variance and covariance matrix is always positive semi-
definite, we can write:"

σ
√
x 0

σSx
σ
√
x

1√
x

q
1− σ2Sx

σ2

#"
σ
√
x σSx

σ
√
x

0 1√
x

q
1− σ2Sx

σ2

#
=

·
σ2x σSx
σSx

1
x

¸
.

Thus, the previous problem can be written in the following way:
dx = −λ (x− x) dt+ σ

√
xdgWx,

dS
S = µdt+ σSx

σ
√
x
dgWx +

1√
x

q
1− σ2xS

σ2 d
gWS ,

dG
G = rdt,

wheregWS andgWx are two independent Wiener processes.13

Because the change in the stock price is an Itô process whose evolution does
not depend on the value itself, then we can forget about the state variable S.
Furthermore, there are no inflation risk and so we have αL = 0, Λ = 0 and
η = 0.
Accordingly, we can transform this problem in a form suitable to compute

13We underline that this transformation is equivalent to the following one: √
x
q
σ2 − σ2Sx σSx

√
x

0 1√
x

  √
x
q
σ2 − σ2Sx 0

σSx
√
x 1√

x

 = · σ2x σSx
σSx

1
x

¸
,

from which we obtain the system:
dx = −λ (x− x) dt+√x

q
σ2 − σ2Sxd

gWx + σSx
√
xdgWS ,

dS
S
= µdt+ 1√

x
dgWS ,

dG
G
= rdt.

Here, we have decided to maintain a single risk source for the state variable x because this
representation is more intuitive from an economic point of view. In fact, the state variable
affects the stock price which has also its own risk source.
However, we outline another time that the final result is identical for both transformations.
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the optimal portfolio composition in our framework:

w = wS ,

z = x,

µz = −λ (x− x) ,
Ω =

·
σ
√
x
0

¸
,

M = µ− r,
Σ0 =

h
σSx
σ
√
x

1√
x

q
1− σ2Sx

σ2

i
,

dW =
h
dgWx dgWS

i0
.

The authors solve the problem for an investor having power utility function
of the form K (R) = 1

βR
β. By applying Formula (16) we have:

w∗ =
1

1− β
(µ− r)x+ 1

1− β
σSxxhx.

Given the following values of functions a (x, t), b (x, t), and C (x, t):

a (x, t) = −λ (x− x) + β

1− β
(µ− r)σSxx,

b (x, t) = βr +
1

2

β

1− β
(µ− r)2 x,

we have to solve the problem:

dXs =

·
λx−

µ
λ− β

1− β
(µ− r)σSx

¶
Xs

¸
ds+

s
2σ2 +

β

1− β
σ2Sx

p
XsdgWx,

Xt = x.

By using the solution already exposed for the CIR model (see Cox, Ingersoll
and Ross, 1985), we have:

E [Xs] =
λx

λ− β
1−β (µ− r)σSx

+

−e−(λ− β
1−β (µ−r)σSx)(s−t)

Ã
λx

λ− β
1−β (µ− r)σSx

− x
!
,

and, accordingly, we can write:

h (x, t) =

Z H

t

E
·
βr +

1

2

β

1− β
(µ− r)2Xs

¸
ds =

= βr (H − t) + 1
2

β

1− β
(µ− r)2

Z H

t

E [Xs] ds.
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Because we are interested in the derivative of h with respect to x, then:

hx =
1

2

β

1− β
(µ− r)2

Z H

t

∂

∂x
E [Xs] =

=
1

2

β

1− β
(µ− r)2 1− e

−(λ− β
1−β (µ−r)σSx)(H−t)

λ− β
1−β (µ− r)σSx

.
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