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1 Introduction

Time and uncertainty have been long recognized as factors relevant for economic
phenomena. Theories that account for decision-making under uncertainty, and the
models supporting them, explain the wide use of dynamic optimization methods
in economic analysis. Among these, recursive methods provide economic theorists
with a set of powerful analysis tools and, in most cases, with an abstract algorithm
to approximate solutions when a closed form is not available (for an overview see
the first two chapters in Stokey and Lucas (1989)). Indeed, methods based on the
analysis of the optimality or Bellman equation allow practitioners to analyze their
models by studying elements easy to handle, instead of the entire original program.
Most existing results, however, rely on boundedness assumptions that happen to be
very restrictive in regard of potential applications.

In the classical approach to recursive dynamic programming the value function is
shown to solve the Bellman equation by proving first that the equation has indeed
a solution. In order to do so, a maximization operator is defined (see Denardo
(1967)) whose fixed points are solutions to the Bellman equation. This operator is
then proven to be a contraction on the space of bounded continuous functions, a
complete metric space in its supremum norm (in which case existence follows from
the Banach fixed point theorem). Observe that the domain of the maximization
operator can be seen as the class of admissible functions: candidates to solve the
Bellman equation and, ultimately, to be the value function. Alas, the value function
will only be bounded under assumptions strong in regard of the models economic
analysis deals with. In particular, the value function will be bounded when returns
(e.g. utility) to feasible choices (e.g. consumption) are bounded and future returns are
strictly discounted. Nevertheless, the literature on real business cycles or endogenous
growth provides numerous examples in which returns are not bounded. A random
technological shock can affect unboundedly the economy’s production possibilities
and therefore returns to feasible consumption choices. In models of endogenous
growth consumption and one period utility typically display sustainable growth so
that there is no upper bound to one period utility. The literature has relied so far
on partial proofs when required, but lacks a general approach to recursive dynamic
programming when returns are unbounded.

In the present paper we present a general stochastic recursive program in which
returns are not necessarily bounded. Rather, average (expected) long run growth is
required to be discounted. Returns are not assumed to be bounded but with respect
to some weight function: it is this function’s feasible growth that we require to be
strictly discounted. Following Wessels (1977) we shall exploit the fact that spaces of
weighted bounded functions are also complete. Hence, our maximization operator
will still be a contraction on a complete metric space but in a larger class of functions
(not necessarily bounded). As a result, a broad family of economic models can be
reduced to a Bellman equation whose analysis can be carried out without awkward
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boundedness assumptions. Since the early work of Wessels (1977) the deterministic
literature has shown an interest in functions that are only bounded with respect to
some weight function. See Boyd (1990) who applies this technique to prove existence
of a recursive utility function when the aggregator is not bounded or Dana and Le
Van (1991) or Duran (2000) for applications to the analysis of deterministic recursive
dynamic programs.

Our main accomplishment is the observation that, under a hypothesis easy to
check in applications, weighted bounded functions are integrable and their integral
continuous. Hence, admissible functions will be weighted bounded functions: with
well defined expectation and continuous as functions of the endogenous state of
the system, e.g., capital stock. If feasible growth of the weight function is strictly
discounted the maximization operator will be shown to be a contraction on the class
of weighted bounded functions. Further, once a solution to the Bellman equation has
been found, a dominated convergence argument will allow us to reproduce familiar
results in deterministic dynamic programming in order to ensure the connection
between the original program and the Bellman equation. With these results at hand,
our task in applications is to find a weight function and check whether its expectation
is well behaved and its expected growth along feasible paths is sufficiently discounted.
Our work partially generalizes Alvarez and Stokey (1998) on homogeneous dynamic
programming and is related to Streufert (1996) who analyzes a Ramsey model with
only asymptotic discounting of expected utility.

The main results are stated and proved in the next section. Section 3 describes
the original program and shows how optimal paths can be generated by the policy
correspondence. Our assumptions are discussed and our work examined in the con-
text of the literature in section 4 where some limitations of this strategy are also
discussed and future research suggested.

2 Discounting average growth

Some Borel subset Z C R?® acts as the exogenous state space: each period a ran-
dom shock (e.g., a technological shock) is drawn from Z according to some Borel
probability measure p. Another Borel subset X C R™ acts as the endogenous state
space (e.g., predetermined state variables as capital stock). Given some state (z, x),
feasible endogenous state choices are described by I'(z,z) where I' : Z x X — X
is a compact valued continuous correspondence.”> A current state (z,z) and a fea-
sible choice y € I'(z,z) determine feasible actions (e.g., consumption) described as

2 Hereafter the default topology in a product space is the product topology. Measurability will
always refer to measurability with respect to the corresponding Borel o algebra. Product spaces
will be endowed with the product o algebra unless otherwise stated. Many spaces involved in the
results below are separable: on Cartesian products of separable Borel spaces the Borel and product
o algebras coincide (Lindelsf theorem).



c € Q(z,z,y). Let H denote the graph of I', then 2 : H — R™ is compact valued and
continuous while Q(H) denotes its range. Following Lucas and Stokey (1984) the
objective function (e.g., utility) will be constructed from an aggregator W treated
as a primitive concept. Given an action ¢ and a future return A, current discounted
return is given by W(c, A). Becker and Boyd (1997, chapters 1 and 3) constitutes
an excellent motivation for the study of non additive objective functions.?

Example 1 Time additive objective functions are generated by the class of addi-
tive aggregators W (c, A) = u(c) + 6A where u is the one period reward function and
6 € (0,1) the discount factor. An example of non additive aggregator is Uzawa’s
Wi(e,\) = (—1 + N)e ™) where u is some increasing function with «(0) > 0. An
unbounded non additive aggregator is W (c, A) = log(n + ¢ + A) where n > 1.

The range of expected discounted returns is A C RU{—o0} assumed to be closed
and to contain zero. Assuming A 3 0 only precludes the uninteresting case in which
—oo is always the return to any action. W : Q(H) x A — A is assumed to be
continuous. Describing a stochastic recursive program in this paper means making
explicit the nature of I', 2, W, and p. Alternative versions of the linear Ramsey or
AK model shall be used throughout the paper to illustrate a number of points: see
McGrattan (1998) for an overview of modern interpretations of the model.

Example 2 Consider the AK model of growth with random marginal product of
capital. For stock of capital x > 0 and technological state z > 0, available choices
for gross investment are I'(z,z) = [0, zz| while Q(z,z,y) = [0, zz — y| are feasible
consumption choices. Constant elasticity of intertemporal substitution preferences
are generated by W (e, \) = ¢ + 6\ where § € (0,1) and 0 < 6 < 1.

From W we construct the total return function: the recursive program maximizes
this function over feasible contingent plans, described in terms of I and 2. We want
the value function v to solve the Bellman equation

v(z,x) = sup  sup W(c,/v(s,y) p(ds)). (1)

Vel (z,2) ceQz,2,y)

Observe that we do not obtain the expectation of the aggregation but aggregate
current actions with future expected returns. Kreps and Porteus (1978) show that
temporal consistency of the underlying preferences imply that the aggregator is de-
fined on expected future returns. Conversely, it is not difficult to see that having W
defined on expected returns (the integral inside W) generates an objective function
for which optimal plans are time-consistent. In order to prove that v verifies (1) we

3 The present paper was somehow motivated by the reading of Boyd (1990): an analysis of the
conditions under which an (unbounded) aggregator function uniquely determines a total recursive
utility function that is only bounded with respect to some weight.
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shall show first that the equation has at least a solution (proven afterwards to be
the value function). Define the maximization operator M as

(Mf)(z,z) = sup  sup W(c,/f(s,y) p(ds)). (2)
yel'(z,2) c€Q(z,z.,y)

where f is any candidate to be the value function. Solutions to the Bellman equation
are the fixed points of the maximization operator. Our first task is to look for a
class of admissible functions: candidates to be a solution to the Bellman equation
and, ultimately, to be the value function. The class of admissible functions will be
the domain of M. There are two reasonable requirements a function must meet in
order to be admissible:

(a) An admissible function f must be integrable in the sense that the integral in (2)
is well defined. We should be able to compute the expectation of the value of any
feasible choice.

(b) Even if the integral is well defined, in general it will only be upper semicontinuous
as a function of y (Fatou theorem). Berge theorem applied to the optimization
problem in (2), however, requires continuity. Alvarez and Stokey (1998) stand out
the lack of a version of this theorem for upper semicontinuous functions: without
continuity, existence of an optimal choice is not ensured.

Measurability will always be ensured by our continuity assumptions so that the
(potential) third problem is avoided in this paper.! In short, we have to look for a
class of functions for which expressions like [ f(s,y) 1(ds) make sense. This paper is
on finding (displaying) a function, rather than a constant, that will bound candidates
to solve the Bellman equation. Let g and ¢ be two continuous functions Q(H) — R
with ¢ > 0. We say that g is bounded with respect to ¢ when |[|g||, = [|g/¢[| < oo
where || .|| denotes the supremum norm.

Assumption 1 Exists ¢ : (H) — R continuous with |[W(.,0)[|, < oco.

Hence, there is a continuous function that absolutely bounds one period returns.
In general, however, actions are free variables that can display very irregular behavior
along feasible paths. We need to link this function to the state of the system; we
do so assuming existence of some function of the state 1) bounding ¢ from above at
feasible choices.

Assumption 2 Exists ¢ : Z x X — A continuous with ¢ > 0 such that ¢(c) <
¥(z,x) for all (z,2) € Z x X and ¢ € Q(z,z,y), some y € ['(z, x).

4 See Stokey and Lucas (1989, page 388) for Blackwell’s (1965) well known example illustrating the
measurability problem. Bertsekas and Shreve (1978) is a discussion on the problem of measurability
in dynamic programming. Most economic applications, however, meet our continuity assumptions.
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This function will link potential feasible growth rates of returns with discounting
and will bound admissible functions. The next assumption requires ¥ to meet the
two requirements (a) and (b) above; recall that in applications 1 is a displayed
object whose properties are open to direct verification.

Assumption 3 [ (s, y) (ds) is well defined and continuous in y.

Admissible functions will be chosen to be ¥ bounded functions because they share
this continuous expectation property with their weight (and hence meet require-
ments (a) and (b) above). Observe that the supremum norm is a particular case of
weighted norm when the weight function is chosen to be a constant. The bounded
case automatically verifies assumptions 1 to 3 choosing ¢ = 1) = 1. The Uzawa ag-
gregator is an example of this case. When W (., 0) is not bounded ¢ and 1 cannot
be chosen to be constant.

Example 3 In example 2, for all ¢ > 0 we can simply choose ¢(c) = ¢/. Then
let ¥ (z,2) = (2x)?. Assumptions 1 and 2 are verified by construction. Jensen’s
inequality implies 0 < [(zz)? u(dz) < (zz)? where z = [ z pu(dz). Continuity follows
from the Lebesgue dominated convergence theorem: assumption 3 holds.

Of course, other functions with these properties might exist but none can be
constant. The class of admissible functions will be that of 1) bounded functions;
if M is to be well defined on this set we should ensure that their expectation is
well defined and continuous. An adaption of the proof of the Lebesgue dominated
convergence theorem (Doob (1994, page 83)) allows us to prove an important result.

Lemma 1 Under assumption 3 every i) bounded continuous function f : Z x X —
R has the property that [ f(z,z) p(dz) is well defined and continuous as a function

of x.

Proof: Suppose that |f| < ¢, otherwise follow the argument below for ¢ + || f],,

instead of . Continuity ensures measurability of f(.,z) while | [ f(z,z) p(dz)| <
J1f(z,2)| p(dz) < [(z,2) p(dz) so that f(.,z) is integrable. To see continuity let
(z,,) C X with z,, — 2° € X. Since 0 < ¢ — f, Fatou theorem implies

liminf/w(z,a:n) B f(zvxn) N(d'z) 2 /LD(Z,CBO) B f(z,xo) N(dz)

n—oo

so that

lim inf — /f 2z, Ty) p(dz) /f z,2°) u(dz)
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because lim,,_,o [ (2, ) p = [(z,2°) p(dz) by hypothesis. Hence,

n—0od

lim sup / F(zy0) pldz) < / F(2,a%) (d2).

To end the proof note that |f| < ¢ implies —f < 1) as well. The above argument
applies to 0 < ¢ + f to obtain

/ F(2,2%) j(dz) < limint / F(z20) pld2)

n—oo

as was to be shown. m

The class of ¢ bounded continuous real valued functions Cy(Z x X) is complete
in its 1 norm.® In order to ensure that M is a contraction on the class of ) bounded
functions we need to ensure that 1 cannot be growing too fast (in regard to dis-
counting) along feasible paths.

Assumption 4 W is Lipschitz continuous of constant 6 < 1 and increasing in its
second argument. Further,

[ (s,) ulds)
e P B

(3)
for some 0 < a < 1 and uniformly over Z x X.

Under this assumption expected growth of ¢) along a feasible path cannot exceed
the factor a. More importantly, weighted bounded functions will be shown (next
section) not to grow on average at a factor bigger than « in the long run: they can
grow faster for short periods but not sustainably. In some cases expected growth
can always be discounted as in the following (homogeneous) program.

Example 4 Let ¢ be as in example 3. Given (z,z) feasible choices y verify
J(sy)? p(ds) <y [ s? u(ds) < (2x)?z° where we use Jensen’s inequality. Then

5 aup L) ()

< 677
o<y<er  (22)? T

% Indeed, let Cy(Z x X) is class of all continuous functions Z x X — A that are ¢ bounded (we
shall use this notational convention throughout the paper). When ¢ > 0 let B(Z x X)) be the class
of bounded continuous functions and define v on B(Z x X) as u(f) = f¢. Then u is a distance
preserving isomorphism between B(Z x X) and Cy(Z x X), the latter endowed with the ) norm.
As a consequence Cy(Z x X) inherits the completeness of B(Z x X). The assumption that ¢ > 0 is
often made but is not necessary: observe that 1) bounded functions vanish, by definition, at ker(¢);
then apply the argument above with the (closed) subset B’(Z x X) of functions that vanish where
¥ does so, instead of B(Z x X).
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Figure 1. A function f that is ¥ bounded

so that assumption 4 holds as soon as 6z° < 1: only expected feasible growth must
be discounted.

Nevertheless, there are many cases in which feasible paths might display transitory
high rates of growth of returns (and therefore value) while these are not sustain-
able in the long run. Streufert (1996) stands out that the literature on Lipschitz
discounting has often required to always (every period) discount maximum (instead
of expected) growth. Yet, weight functions allow, first, to discount only average
growth (as example 4 illustrates); second, to care only for long run growth. Indeed,
the weight function 1 acts as an intermediary between discounting and the admis-
sible function: the weight can verify (3) every period while it weights functions for
which this is only true in the long run (figure 1 is an illustration for functions of one
variable). As a consequence, with a careful choice of the weight, we can account for
non homogeneous programs in which average growth of returns is only discounted
in the long run.

Jones and Manuelli (1990) describe a deterministic model with these character-
istics. In their model the value function can be proven to exist, to solve Bellman
equation, and to be continuous finding a simple weight function: see Durdn (2000,
section 2.4). The following example constitutes further one possible extension of
this model to the stochastic case.

Example 5 Modify example 2 to consider I'(z,z) = [0, zx + 2] where p € (0, 1).
The graph of I' is not a cone: close to the origin the term x* allows for expected
growth factors that are not sustainable. Nevertheless, let 1(z,z) = (n + zx + x°)°
for some 1 > 0 and assumption 4 again requires 2’ < 1. Indeed, use the change of
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variable w = zx + x” to show that

p\6 d — o\ ¢
J(n+sy+y)" n(ds) <5sup<”“w+“’ )
n+w

0 ogysgligmﬂ (n+ zax + xr)? T 0<w
The quotient in brackets is a continuous function of w valued 1 at zero and Z when
w is taken to infinity. Somewhere in between there is a maximum value. When
67° < 1 we can always choose 1 big enough so as to make this maximum value less
than one in which case assumption 4 holds (when §z% > 1 we can always exceed one
choosing w big enough no matter how big n was chosen).

Observe that the non linear part of the production function could have been
affected by some other shock as well. Underlying this example is the fact that many
specifications induce feasible sets behaving asymptotically and in expectation as a
cone. Weighted bounded functions help us abstracting from temporary effects like
those induced by z” in the example.

Assumptions 1 to 3 together with lemma 1 ensure that M is well defined on the
class of ¥ bounded functions, our admissible functions. Assumption 4 will further
ensure that M is a contraction on this class of functions.

Proposition 1 Under assumptions 1 to 4 the maximization operator M has a fixed
point f*, unique up to elements in Cy(Z x X).

Proof: Under assumption 4 the maximizer operator has the Lipschitz property. Let
f,h € Cy(Z x X) and fix any (z,2) € Z x X. Then

(M)e.5) = Bz < 5 sup | / F5,0) = s, ) ()
|/ (s, Yl ¥(s,y)
< 5y€sF11£)$)/ e p(ds)y(z, x)
< 6 sup s)Ilf = nll, ¢ (z, )

yel'(z,xz) ¢Z$

< allf = hll,¥(z2),

where the first inequality follows from Lipschitz continuity of W in its second argu-
ment® and the last to assumption 4. Dividing both sides by 1(z,x) and taking the
supremum over Z X X yields |[Mf — Mh|,, < «||f — &[[,. Now note that for all

6 Blackwell’s (1965) sufficient conditions are not necessary if one notes that in general | max, p(z) —
max, ¢(z)| < max, [p(z)—g¢(x)|. This observation together with Lispschitz continuity of W directly
yield the Lipschitz property of M. There are versions of Blackwell’s sufficient conditions for
weighted norms (as in Boyd (1990)) but they are quite cumbersome. Further, this proof does not
require W to be non decreasing in its second argument (although we do not use this fact in this
paper because W will be increasing).



f e Cy(Z x X) it is true that

IMfll,, < al[fll, + 1MO0[l, < al[fll, +[W(.,0)], < oc,

by the triangular inequality and because assumptions 1 and 2 imply [|MO][, <
[W(.,0)|l,, legitimating the second inequality. Hence, Mf is bounded in the v
norm. Continuity follows from continuity of W, f, I' and €2, from the fact that both
[' and €2 take on compact values, from assumption 3, lemma 1, and Berge theorem.
Then M maps Cy(Z x X) into itself and is a contraction. The proposition follows
from the Banach fixed point theorem. m

This proposition establishes existence of a (¢ bounded) solution to the Bellman
equation. The task left is to prove that v exists and that v = f*. This is so under
assumptions 1 to 4, assumed to hold throughout the next section.

In short, given some recursive program described by I', 2, W, and p we have
to look for functions ¢ and 1 verifying assumptions 1 to 4. In such case (the
next section proves that) the value function exists, solves Bellman equation, and
is a continuous ¢ bounded function. Further, the policy correspondence generates
optimal plans and every optimal plan is almost everywhere equal to a generated
plan. The reader uninterested in the technical details can go directly to section
4 in which some additional examples serve as illustration of the advantages and
shortcomings of this strategy of proof.

3 The principle of optimality

In this section we will see that the total return function (defined below) is well
defined. In general recursive preferences ¢ acts as an upper bound to the implicit
discount factor. This is no surprise if one considers that (under our assumptions)
feasible growth of ¢ < 1 is strictly discounted by ¢ while actual returns are bounded
by these functions and discounted at a factor at most equal to 6.

We first describe the original program. We denote Z = Z X --- x Z (t times). A
contingent state plan is a sequence x = (24.1)°, of measurable functions x;,, : Z* —
X and is feasible from (zg, zo) when z,y1(2") € T'(2;, 24(2* 1)) for all 2 and ¢ > 0. For
any initial condition II(zg, () stands for the class of feasible plans. A contingent
actions’ plan is a sequence ¢ = (¢;)°, of measurable functions ¢; : Z* — X and
is feasible from (z,zo) when c¢;(2") € Q(z, z(2"7), x1(2")) for all 2t all ¢ > 0
and some x € II(zg, zg). We write X(zg,xo) for the class of feasible actions’ plans.
Recall that Z x X is a Borel set and I' compact valued and upper semicontinuous:
theorem 7.6 in Stokey and Lucas (1989) ensure existence of a measurable selection
from I" so that IT is non empty. Since I' has closed (and therefore Borel) graph an
analogous argument ensures that > is non empty. For all ¢ > 1 consider the family
of functions Z* — Q(H), each endowed with the distance of the maximum of one

9



and the supremum of the difference. The class C =, ,) X(z,z) is contained in the
Cartesian product of these spaces: endow it with the relative product topology. For
any pair (z,c) € Z x C the continuation of ¢ from z is a new contingent plan o(z, c)
the tth coordinate o¢(z, c) defined to be the restriction of the ¢ + 1st coordinate of
c to {z} x Z'"!. Since restrictions of measurable functions to measurable sets are
measurable we have o(z,c) € C.

The total return function is defined (in terms of W) as the pointwise limit of
partial sums of returns. The recursion operator R maps every continuous function
V : C — A to a new function RV defined as

(RV)(c) = W(?TQ/V(U(Z,C))M(dZ)) (4)

for all ¢ € C where 7 denotes the first coordinate projection function. A function
V' is recursive when V' = RV. The equation V = RV is sometimes referred to as
Koopmans equation. As in the case of the maximization operator, we will have to
describe a class of admissible functions: candidates to be a fixed point V* of R. The
total return function U is defined at every ¢ € C as

Ule) = lim (RY0)(c) (5)
where RY denotes the N times composition of R and 0 the constant function equal
to zero. The value function is therefore defined as v(z,z) = supgcy(, ,) Ulc) for all
(z,z). A plan c is optimal for (z,2) when ¢ € 3(z,x) and v(z,z) = U(c). Recall
that ¥(z, x) is not empty so that v will be well defined as soon as U is so.

Observe that ¢ is an upper bound to the implicit discount factor and that ¢ bounds
feasible returns. It is therefore reasonable to expect an additive function with less
discounting ¢ > 6 and immediate returns ¢ to weight the total return function.
Indeed, choose § < ¢ < 1 small enough so that 8 = ¢a/6 < 1 (this is always possible
under assumption 4). In such case (3) still holds with § and « substituted by ¢ and
[ respectively. Define ® on C as

i) =3¢ / o(er(21)) it (d2) (6)

where p! denotes the product ¢ measure on Z*. Under our assumptions this function
is well defined, continuous, and the expression [ ®(o(z,c)) p(dz) is well defined and
continuous as a function of ¢ (see lemmas 4 and 6 in appendix A).

Lemma 2 Fvery ® bounded continuous function V : C — R has the property that
[ V(o(z,¢)) u(dz) is well defined and continuous as a function of c.

The proof follows an argument analogous to that of the proof of lemma 1 and is
to be found in appendix A. This result is important because it implies that R is
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well defined on the class of ® bounded continuous functions, our class of admissible
functions. The total return function U happens to belong to this class: the following
is a stochastic version of Boyd’s (1990) continuous existence theorem where ® has
been displayed and its discounting checked.

Proposition 2 The total return function is well defined and the unique fixed point
of the recursion operator R in the space Cy(C).

Proof: By construction, for any ¢ € C it is true that

f@ pldz) J ®(o( p(dz) é
<I><c> =) +<f<1> noulds) =< @)

because ¢ > 0 and of the choice of ¢. Then let V| L € Cs(C) and fix c € C. We
have

()0 - (mpy) < o [T BN e

o
< SV - Ly 0()
where we have used Lipschitz continuity of W and (7). Divide by ®(c) and take
the supremum over C to obtain |RV — RL||; < 6¢71||V — L||s. Further, RV is
continuous whenever V' € Cg(C) because it is a composition of continuous functions,
by hypothesis and by lemma 2. Hence, R is a contraction of modulus 6¢=% < 1 so
that exists a unique V* with V* = RV* and HRNO — V*||4 — 0 (Banach fixed point
theorem). Convergence in the ® norm still implies pointwise convergence: it must
be the case that V* =U. m

In short, under our assumptions U is well defined and recursive with respect to
W. To prove that the value function does solve the Bellman equation we shall also
use an interesting property, pointed out informally in section 2, of weighted bounded
functions under assumption 4.

Lemma 3 Let f be i bounded and continuous, x feasible, and assumption 4 hold.
Then, we have

(a) the function f(z,xi(2""1)) is u' integrable, and
(b) the series &' [ f(z, z(2'71)) pt(dz") is absolutely summable.

Proof: Let f be ¢ bounded and continuous and x be feasible from some initial
condition (zg,xg). For any ¢t > 1 we have

0 < 6| / F a2 it (d2)] < |1, 6° / e, (21 ph(det)
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while the last term is finite. Indeed, under assumption 4 it is true that

5 / e () pldzr) < (o, T (72))

for all z'~1. Use this inequality and Fubini theorem to show that

5t/¢(2t7wt(zt_l))ut(dzt) < 045t_1/¢(zt—17wt—1(zt_2))Mt_l(dzt_l) < a'1)(z0, 7).

Hence, the expression f(.,z:(.)) is p* integrable because af)(zg, o) < co. More-
over, since « < 1 the series, both in terms of f and 1, converges to zero as t — oo
and is absolutely summable because af is so. m

This result, together with recursivity of U stated above, will prove that the so-
lution found to the Bellman equation is indeed the value function. Once the value
function is shown to be ¥ bounded this lemma will again be used to prove that plans
generated by the policy correspondence are optimal and viceversa. Summarizing:

Theorem 1 Let assumptions 1 to 4 hold. The value function is well defined, con-
tinuous, and v bounded. There is an optimal plan. If a plan (c,x) is feasible from
(20, z0) and verifies

vz, 2(271)) = W(a(z), / (21, 1 (2") pldzirn)) (8)

for all 2t and t > 0, then it is optimal. Conversely, if a plan is optimal, this equality
holds for pt almost every z* and all t > 0.

The proof of this theorem makes use of the policy correspondence associated to
the Bellman equation (1). The policy correspondence G : Z x X — X x Q(H) is
defined as

G(z,z) ={(y,c) : yel(z,x),ceQ(zzy) 9)
and v(z,z) = W(e, /1)(s,y) w(ds))}

for all (z,z). A plan (c,x) is said to be generated by the policy correspondence from
some initial condition (zq,zo) when (z;11(2%), ci(2)) € Gz, z:(2t71)) for all 2¢ and
t > 0. A generated plan is therefore a plan verifying (8). In appendix B corollary
2 proves that generated plans are optimal while corollary 3 shows that there is a
generated (and therefore optimal) contingent plan. Finally proposition 4 shows that
an optimal plan is equal to a generated plan u' almost everywhere.

Under the appropriate assumptions, v can be shown to possess other important
properties such as monotonicity, concavity, or differentiability. The related results
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presented in Stokey and Lucas (1989, chapters 4 and 9) go with no change once U
and v have been shown to be well defined, the first solving the Koopmans equation
and the second the Bellman equation.

4 Some comments

Describing the elements of our program we have done assumptions that deserve some
comment. The aggregator W is a function of actions and not of the state of the
system. This assumption was done for the sake of clarity of exposition and does no
harm. If we need the state variables to directly affect current returns we can always
define €2 so as to allow only one possible action, namely the required function of
the state. Note that the notion of recursive function is precisely based on weak
separability between current and future actions: modelling actions as we did does
not imply any further structure on the underlying preference order.

Example 6 An agent inherits some savings z > 0 rewarded by a constant gross
interest R > 0 and receives a random income z > 0, the remaining income being
automatically consumed. Feasible next period’s savings are described by I'(z,z) =
[0, Rx + z] while Q(z,z,y) = {Rz + z — y} instead of [0, Rz + z — y|. (If the agent
has additive preferences as in the AK model of section 2, then §R? < 1 is sufficient
for (3) to hold for ¥ (z,x) = (n + Rz + 2)?, some 1 > 0 big enough. Such condition
does not depend on the particular mean of income z.)

Not so inoquous is the assumption that the random shock is independently and
identically distributed (according to p). It makes the analysis simpler, although
at some cost of generality. Note, however, that many correlated cases can still be
accounted for by the analysis above. Indeed, most correlated programs are described
by an explicit stochastic law of motion in which some iid element is the ultimate
source of uncertainty.

Example 7 Consider a correlated version of example 2: given a marginal product
of capital @ > 0 and a state of nature z > 0 current marginal product of capital is
given by za” where v € (0,1) and z ~ p. The marginal product of capital is now an
endogenous state variable. Then I'(z,a,z) = {za”} x [0, za”x] while Q and W are
as before.

When facing a particular recursive program, the application of our results require
displaying the weight functions; each case requires a specific weight. There is, how-
ever, no systematic procedure to construct these functions. A wrong choice of the
weight functions can be misleading;:

Example 8 Suppose W(c,\) = log(y + ¢+ A), when v > 1 the aggregator is
Lipschitz continuous of constant v ! in its second argument. Let I' be as in the
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AK model. Assumption 1 holds for ¢(c) = v+ ¢ but ¢¥(z,2) = v + zz yields
y712% < 1 as a condition for ((3)) to hold. Choose instead ¢'(c) = n + log(y + ¢)
and ¢’ (z, ) = n + log(y + zz) for some n > 0. We have

1 n+ [log(y +sy) p(ds) _ 1n+log(y+ zzx)

— Ssu .
Y ocyere  n+log(y+zm) 4y n+log(y+ zx)

This quotient is a continuous function of zx valued one both at zero and at the limit
when zz — oco. An argument similar to that of example 5 shows that assumptions
1 to 4 hold as soon as 7 > 1 (just choose 1 big enough).

In this example, the first ¢ did weight returns but too much; the weighted norm
induced a topology much coarser than we needed. Indeed, first, the logarithm lin-
earizes any exponential growing path and, second, such aggregator implies a very
strong discounting pattern because as ¢ grows, the implicit discount factor becomes
smaller (zero in the limit). In other cases, the problem may be the reverse: some
weight function might not work, while there is indeed a weight for which all our
assumptions hold. In particular, the fact that some functions ¢ and 1 verify as-
sumptions 1 to 3 does not imply that either assumption 4 holds for this functions
or for no function at all.

Example 9 In example 7 above we have ¢/ < (za”z)? so one may conclude too
quickly that 1(z,a,7) = (za”z)? is a good weight because assumptions 1 to 3 hold.
Nevertheless, we have

5 [(shy)’ p(ds) _ (()) _ 5 (2.

sup z

(by)er(z,a,z) (Za7$)9 zalx
This does not mean that the problem is not well defined; it just means that we have
not chosen the correct weight.

In example 7, a certain factor productivity the previous period has two effects:
first, an immediate effect on output in that period and therefore in potential capital
stock today; second, a lagged effect on today’s factor productivity. In both cases,
a higher factor productivity the previous period increases current output. Never-
theless, while (za7z)? in the definition of ¢ in example 9 is able to account for the
first effect, it does not account for the second, and hence the unbounded expression
(za”)?? in maximum feasible growth. Yet, intuition says that §z%/(1=7) < 1 should be
sufficient to ensure that the program is well defined; because z%/(1=7) is the factor to
which the expectation of a; converges (and therefore the only long run sustainable
factor of growth of a pure accumulation path bounding other feasible paths from
above).

A shortcoming of the strategy developed above refers to returns unbounded from
below. When describing our recursive program, the range of possible values for
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returns was defined as A = RU {—oo}. This definition, however, can be misleading
as it can suggest that we can deal with programs with returns unbounded from below
while this is not true in general. When feasible actions allow for an immediate return
of —oo at any stage, it will not be possible to find a function like v in assumption
2.

Example 10 Consider the AK model of example 2 but with W (e, \) = log(c)+ .
In this case assumption 1 could hold with ¢(c¢) = 1 + |log(c)|. Nevertheless, 0 €
['(z,z) for all z,x > 0 so that ¢(0) = oo is always feasible. Hence, there is no real
valued function 1 with the property that ¢ < 1 for feasible choices.

Durdn (2000) further discusses this example in the deterministic setting: introduc-
ing uncertainty leaves the problem unchanged. Alvarez and Stokey (1998) propose
in the deterministic case an alternative interesting approach for homogeneous pro-
grams based on monotonicity.

Let us end this section recalling the flexibility of this approach to the analysis of
the Bellman equation. Many economic theories are supported by models amenable
to be formally expressed in terms of identical or analogous objects as the Bellman
equation analyzed in this paper. A seminal paper by Loury (1981) analyzes the
dynamics of inequality in an overlapping generations model economy with altruistic
educational investment. Dutta and Michel (1998) consider a similar model where
it is bequests rather than educational investment the mechanism of transmission
of inequality across generations. In both cases, if the offspring’s indirect utility
function enters an agent’s utility function, two consecutive generations’s preferences
are link by some Bellman-type functional equation.

Example 11 Consider a stochastic version of Loury’s (1981) economy. Any agent
is initially endowed with some stock of human capital h (also equal to income:
effective labor productivity is equal to one). The agent decides consumption ¢ > 0
and investment e > 0 in her children’s education subject to ¢ + e < h. Offspring
human capital is g(z,e) where z > 0 is some productivity shock with distribution
p. Given consumption ¢ and offspring utility A an agent derives utility W(e, A).
Assume g : R? — Ry and W : Ry x R — R are continuous. An indirect utility
function v is said to be consistent (across generations) when

o) = sup W~ / v(g(s,€)) pu(ds))

for all A > 0. Suppose that W is Lipschitz continuous of constant 6 < 1 in its second
argument and that there is some continuous ¢ : R, — R with [[W(.,0)|,, < co and

“1 J ¥(g(s,e)) p(ds)
50§e£h P(h)

<a<l
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for some o > 0. The argument in proposition 1 is readily adapted to prove (using
lemma 1) that a unique consistent indirect utility function v exists, that is continuous

and 1 bounded.

This literature requires fairly strong assumptions preventing the economy from
growing in the long run (human capital is just a device to generate inequality).
Those assumptions, however, in regard of our results, are unnecessary. Thus, such
these interesting models can be integrated in the model economies used to assess the
relationship between inequality and growth (see, for example, Aghion and Bolton
(1997)) or the short run dynamics of inequality in growing economies (see the mo-
tivating paper by Diaz-Giménez et al (1997)).

Appendix A The weight of total returns
Throughout the two appendixes, assumptions 1 to 4 are assumed to hold.

Lemma 4 Function ® described in (6) is well defined on C, takes on finite values,
and is continuous.

Proof: Let (c,x) be a feasible plan. For any ¢ > 0 the function ¢(c;(.)) is mea-
surable: it is a composition of a measurable and a continuous function. Under
assumption 2 we have ¢(ci(2')) < (2, x(2'71)) for all 2! and hence lemma 3(a)
ensures is p' integrable while

B(0) < Yo [ wlennl ) ut(d),

Since (3) holds with 6 and « replaced by ¢ and 3, follow the same steps as in the
proof of lemma 3(b) to prove that ®(c) is finite.

To see continuity let (¢”) C C with ¢” — ¢ € C coordinatewise. That is, ¢} — ¢?

uniformly for all ¢ > 0. By continuity ¢(c(2%)) — ¢(c?(2")) for all zt. Then

n—oo n—oo N—oo

0< lim [B(c") = @) < fim Jim 3t [ (e () el (0=

N—o0

< Jim 3¢ / Tim (e} (") — e(e)(2)] 1 (d=) = 0.

The exchange between the limit and the integral is legitimate: for all n € N assump-
tion 2 implies

(e () — oI < Wl 2 (2"7) + (2, 2i/(27))

<
< suptp(ar, 27 (27)) + ¥z, 2/ (271)
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and therefore
up [ (7 () — ()] < sup h(z, a7 (271)) + (2 (21).

If sup,, ¥ (2, 2 (2")) were u' integrable the Lebesgue dominated convergence the-
orem would applies. Indeed, from the proof of lemma 3 we have

/ o, 2P (251) pt(dat) < (a6 V)b 20, a0)

for all n € N. Hence, it must be the case that

/ sup (2, 22(211)) p(d2") < (a6™Y) (20, m0) < o

n

as was to be shown. m

The expected value of the continuation of a contigent plan is continuous in the
value of the shock considered, as stated in the following result.

Lemma 5 LetV : C — R be a continuous function, then V(o(z,c)) is measurable
as a function of z and continuous as a function of c.

Proof: Fix z € Z and let (¢*) C C with ¢" — ¢® € C. Coordinatewise convergence
implies

sup Jou(z, ") () — oz, ) ()|
Zt—lezt—l

= sup ez, 270 — ez, 27| < sup fea () — e (2)| — 0

Zt—leZt—l ztezt
so that o(z, .) is continuous and therefore V(o(z, .)) is the composition of contin-
uous functions. Now fix ¢ € C and consider a sequence of truncated plans: for all
integer k > 1 write o(z, ¢); for a sequence with o,(z,¢), = o¢(z,c) forall 0 <t < k
and o(z,¢)y = ¢ € Q(H) for all t > k. Clearly o(z,¢)y — o(z,c¢) in the prod-
uct topology as k — oco. Since V' is continuous V(o (z,¢c)x) — V(o(z,c)). Every
V(o(z,c)x) is a measurable function; V(o (z, c)) has been therefore shown to be the
pointwise limit of a sequence of measurable functions. m

Let Cs(C) be the class of functions C — A continuous with respect to the relative
product topology and bounded in norm .

Lemma 6 For all c € C the function ®(o(.,c)) is integrable. Further, the expres-
sion [ ®(o(z,c)) u(dz) is continuous as a function of c.

Proof: First note that lemma 4 establishes continuity of ® while lemma 5 ensures
measurability of ®(o(.,c)) as a function of z. Next observe that for any ¢ € C with
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x associated and z € Z we have

[ oo = [ { Jim, ic / so(ctH(z,zt)w(dzt)} p(dz)

where each partial sum inside the big brackets is a relative product measurable
function. Note also that

g / (i (2, 2) ph(d) < / (e, 2o (2, 2) i (d2) < Bob(z, )
and therefore

N Y(z, 1)
0 < lim th/go(ctﬂ(z,zt))ut(dzt) < lim Zﬁt@/f(%xl) = 1_’51 :
=0

N—oo N—oo
As a consequence for every ¢ € C and z € Z partial sums always converge (to a
finite real number). The limit function is measurable as it is the pointwise limit of
a sequence of measurable functions. It is p integrable because it is dominated my
(1 — B) (2, x1), an integrable function under assumption 3.

We now prove continuity: let (¢") C C with ¢” — ¢ € C and note that according
to the expression above

N—00 n—oo0 N—o00

lim [ ®(o(z,c¢"))pu(dz) = lim lim th//go(cfﬂ(z,zt))ut(dzt),u(dz)

N—oo

N
= lim <" lim [ op(cf () ptH(de )
t=0

where the first equality follows from Beppo-Levi theorem and the second from Fubini
theorem. Then it suffices to prove that [ (¢ (211)) '™ (dz"1) is converging to
J (e (z71h)) p' 1 (dz"1). An argument analogous to the end of the proof of lemma
4 will yield the result. m

With these results at hand we can prove lemma 2 ensuring that ® bounded func-
tions are reasonable admissible functions.

Proof of lemma 2: By lemma 5 we know that V(o(z,c)) is measurable as a
function of z and continuous as a function of c¢. Also V' is bounded in norm ® by
hypothesis so that

/ V(o) pldz) < [V, / B(0(z, ) u(d2),
integrable by lemma 6. It is therefore well defined.
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Let (c™) C C be such that ¢ — ¢ € C. Since V(o(z,c)) is continuous in ¢ we
know that V(o (z,c")) — V(o(z,c)) pointwise. Since V' is dominated by ® and this
last function has the property that [ ®(o(z,c)) p(dz) is continuous in c it follows,
from an argument analogous to the proof of lemma 1, that [ V(o(z,c¢)) p(dz) is also
continuous as a function of c. m

Appendix B The principle of optimality

The proofs of this appendix are adapted from those in chapters 4 and 9 in Stokey
and Lucas (1989) in order account for non additive aggregators and ¢ bounded value
functions. Once we have ensured that U and v are well defined we will exploit the
fact that RN0 — U pointwise to prove that v actually solves the Bellman equation.

Proposition 3 The value function v is well defined and the unique solution to the
Bellman equation in the space Cy(Z x X).

Proof: That is well defined follows from 3(z,z) # () for all (z,z) and from propo-
sition 2 ensuring that U is well defined. Let (zg,x¢) be any initial condition and
c € (20, z9) with x associated. Proposition 1 ensures existence of a solution f* to
the Bellman equation. Then

£ (zor0) > Wco. / F*(zam0) pldz)) > Weo, / W(er, / 1 (22 2) pld2)) pu(dz)).

Proceed recursively and use Lipschitz continuity of W to prove that

f*(20,w0) > (RY0)(e) —5N/If*(ZNafL‘N(ZN_l))IMN(dZN)-

Taking the limit as N — oo follows f*(zp,z9) > U(c) because the second term at
the right vanishes by lemma 3(b).

To see that f*(z9,z0) < U(c) + € for all £ > 0 for some feasible c recall that all
the steps above can be repeated with equality when we consider a plan generated
by the policy correspondence. Indeed, Berge theorem ensures that the policy corre-
spondence defined in (9) (with f* instead or v) is well defined, compact valued, and
upper semicontinuous. Then, theorem 7.6 in Stokey and Lucas (1989) ensures exis-
tence of a measurable selection from G. Using this selection it is easy to construct
a plan generated by G with f*(zg,z9) = U(c). m

Observe that f* has been proven to be the value function f* = v. Proving such

statement we have found a plan generated by G with v(zg, z¢) = U(c). Obviously
an optimal plan so that we have:
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Corollary 1 Let (z9,x0) be any initial condition and ¢ € X(zg, xg) with X associ-
ated. If (8) holds for all z' and t > 0 then it is an optimal plan.

While proposition 3 ensures that v is continuous, Berge theorem ensures that
the policy correspondence defined in (9) is well defined, compact valued, and upper
semicontinuous. Then two next corollaries follow from corollary 1, the definition of
the policy correspondence, and the proof of proposition 3.

Corollary 2 FEvery plan generated from G is optimal.

Corollary 3 There is an optimal plan.

One may wonder whether G characterizes every optimal plan. The answer in a
stochastic setting is that any optimal plan, if it is not generated by G, it is equal
to some generated plan but for zero probability states of nature. The following is
theorem 9.4 in Stokey and Lucas (1989) adapted to our case.

Proposition 4 Let (c,x) be feasible from (z9,x¢) € Z x X. If it is optimal then
(8) holds for pt almost every z* and all t.

Proof: First note that v(zy,zo) = U(c). By proposition 2

v(z0, To) = W(Co,/U(O'(Zl,C)) wu(dzy)).

Since c is optimal, U(c) > U(c’) for all ¢’ € 3(zg, z) and therefore

W%y/Wd%@MM@PﬂW%/ﬁMMm%mMM-

Let g be a measurable selection from G and construct a plan (c9,x9) from this
selection with ¢§ = ¢o and 2 = x;. Two observations: first, since ¢f = c¢o the
previous inequality implies that

/Wd%mmmmz/vw%@mmm;

second, for all z; € Z it is true that o(z;,¢9) € ¥(z1,2;1) but since from the first
stage on it is a G generated plan corollary 2 ensures that v(zy,z1) = U(c(21,¢?)) so
that

U(o(z1,¢)) <wv(z,21) =U(o(z1,c%))

for all 2y € Z and by definition of the value function. These two inequalities
together imply that v(zy,2;) = U(o(z1,¢)) for p almost every z, € Z which in
turn imply that both integrals with respect to p are equal. Since v(zg,zo) =
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W (co, [ U(o(z1,¢)) p(dz)) substitute the integral above by its value to conclude
that

v(20, To) = W(CO,/v(zl,xl)p(dzl)).

Hence (8) holds for t = 0.

To continue note that we have proved that v(z,z1) = U(o(z1,c)) for p almost
every z; € Z so that the recursive property of U again implies that v(z,21) =
W(er, [ U(0(22,¢)) p(dzs) for p almost every z; € Z where ¢ the composition two
times of the shift operator. Following an analogous reasoning to that the paragraph
above yields

v(z1, 1) = W(C1,/U(22,372) p(dz2))

for p almost every z; € Z. Hence, (8) holds for t = 1, and also v(zz, x9) = U(c(2?,¢))
for p? almost every 2% € Z? which would be used in the following step. The result
follows from proceeding this way recursively. m

Theorem 1 is proved in propositions 3 and 4 as well as in corollaries 1 and 3.
Corollary 2 provides us with a tool to display optimal plans while proposition 4
ensures that this tool fully characterizes optimal plans as non generated ones only
differ in null probability states of nature.
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