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Abstract

This paper develops a general approach for the single period portfolio optimization prob-

lem in a multidimensional general and partial moment space. A shortage function is defined

that looks for possible increases in odd moments and decreases in even moments. A main

result is that this shortage function ensures sufficient conditions for global optimality. It

also forms a natural basis for developing tests on the influence of additional moments. Fur-

thermore, a link is made with an approximation of an arbitrary order of a general indirect

utility function. This nonparametric efficiency measurement framework permits to differen-

tiate mainly between portfolio efficiency and allocative efficiency. Finally, information can,

in principle, be inferred about the revealed risk aversion, prudence, temperance and other

higher-order risk characteristics of investors.

JEL: G11

Keywords: shortage function, efficient frontier, K-moment portfolios.

1 Introduction

Maintaining strong assumptions on probability distributions and von Neumann-Morgenstern

utility functions, Markowitz (1952) initiated modern portfolio theory by trading off risk and
∗We thank two referees as well as I. Van de Woestyne for their most constructive comments. The usual

disclaimer applies.
†University of Perpignan, GEREM, 52 avenue de Villeneuve, F-66000 Perpignan, France.
‡Corresponding author: CNRS-LEM (UMR 8179), IESEG School of Management, 3 rue de la Digue, F-59000

Lille, France.
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expected return of a portfolio. In a static context, he defines an efficient frontier of portfolios

whose expected return cannot improve unless one is willing to assume more risk. This parametric

approach where utility depends on the first two moments of a random variable’s distribution

is only consistent with the von Neumann-Morgenstern axioms of choice underlying expected

utility (EU) theory when (i) asset processes follow normal distributions, or (ii) investors have

quadratic utility functions (e.g., Samuelson (1967)). However, as further developed in detail

below, (i) many empirical studies cast doubt on the normality hypothesis of portfolio returns

and (ii) point out that investors may well care about higher moments. In particular, they seem to

prefer positive skewness and small kurtosis. Finally, Samuelson (1970) showed convincingly that

the mean-variance (MV) approach is only appropriate if (i) returns follow compact distributions

and (ii) portfolio decisions are recurrent, such that the risk parameter becomes sufficiently small.

Otherwise, higher moments are needed, since the quadratic approximation is not locally of high

contact.

Meanwhile a large empirical literature has convincingly shown that normality of asset returns

can be rejected. In particular, the distributional characteristics of a variety of financial and

other economic variables (assets, options, hedge funds, etc.) indicate skewness and extreme

kurtosis (see, e.g., Kim and White (2004)). This stylized fact pertains to developed as well as

emerging financial markets. Furthermore, it is also clear that traditional Markowitz portfolio

theory does not manage to diversify away this systematic skewness and kurtosis by increasing

portfolio size (e.g., Gibbons et al. (1989)). Hence, non-diversifiable skewness and kurtosis have

become important research topics in asset valuation research. For instance, within the framework

of the Capital Asset Pricing Model (CAPM) Rubinstein (1973) was the seminal contribution

on multi-moment asset pricing. More recently, one does find articles on three-moment (e.g.,

Kraus and Litzenberger (1976)) and four-moment (e.g., Dittmar (2002)) asset pricing models.

Higher expected returns compensate investors bearing systematic variance and kurtosis risks,

while investors forego return to benefit from increasing systematic skewness. Recent books

summarising the debate on this topic and the ensuing need for multi-moment portfolio theories

are Berényi (2003) and Jurczenko and Maillet (2006).

A positive preference for skewness and negative preference for kurtosis has been postulated

in explaining financial behavior since at least Scott and Horvath (1980). Skewness preference is

one potential explanation for investors holding imperfectly diversified portfolios, just like it can

contribute to explaining observed behavior in other areas (e.g., betting (see Golec and Tamarkin
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(1998)). However, general choice theoretic foundations for the signs of third, fourth and higher

derivatives of the von Neumann-Morgenstern utility function have only rather recently been

developed. While a positive third derivative of EU (known as prudence) is meanwhile widely

accepted (see Kimball (1990)), the sign of fourth and higher derivatives of EU is still typically

met with some skepticism. Recent work linking the sign of EU derivatives to behavior towards

risk firmly establishes a general preference for odd moments and an aversion to even moments.

As to kurtosis aversion, Menezes and Wang (2005) define outer risk in terms of a transfer of

actuarially neutral noise from the center of a distribution to its tail. They show that outer risk

aversion (i.e., investors disliking greater outer risk) presupposes a negative fourth derivative of

the von Neumann-Morgenstern utility function (known as temperance). Assuming that indi-

viduals dislike both (i) a certain reduction in wealth and (ii) adding a zero-mean independent

noise random variable to the wealth distribution, Eeckhoudt and Schlesinger (2006) manage to

define a set of preferences over simple lotteries (having equal likelihoods for all outcomes) that

offer a behavioral characterization of the general mathematical assumption that derivatives of

the EU function alternate in sign. This confirms the generality of the large class of mixed risk

aversion utility functions to characterize behavior towards risk, initially proposed in the semi-

nal articles of Brockett and Golden (1987) and Caballé and Pomansky (1996).1 Furthermore,

since the signs of derivatives of utility coincide with preferences for n-th degree stochastic dom-

inance, these lottery preference interpretations are also compatible with stochastic-dominance

preferences.

Taking these mixed risk aversion preference structures for granted, the question is now how

one can empirically conduct risk analysis in portfolio choice without imposing strong assump-

tions on either the return distribution or the investor preferences. Directly translating the

alternating signs of the derivatives of the EU function, stochastic dominance (SD) criteria com-

pare the expected utilities of the probability functions related to two risky prospects. While

the financial literature mainly focuses on the first, second, and third degree SD criteria (Levy

(2006)), generalizations to n-th degree SD exists since at least Thistle (1993). While the SD

criteria respect the necessary and sufficient conditions for EU maximisation, they suffer from
1In fact, Brockett and Golden (1987) refer to ”completely monotone” utility functions. Jondeau and Rockinger

(2006: 34) speak about strict consistency of moment preferences, whereby the direction of preference is indepen-
dent of wealth level. Notice that mixed risk aversion utility functions also help shedding light on various issues
in insurance (self-protection, willingness-to-pay, and background risk): see Dachraoui et al. (2004). Furthermore,
for multivariate decisions under risk, a similar class of simple lotteries allows to sign the cross derivatives of such
utility functions (see Eeckhoudt et al. (2007)), revealing the generality of this new approach.
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serious practical drawbacks in that pairwise comparisons between the alternative choices must

be carried out (which requires information on the entire return distribution) and this renders the

evaluation of diversification strategies extremely difficult.2 Empirical work up to fourth-order

and fifth-order SD seems to be available in the literature (e.g., Vinod (2004) and Tehranian

(1980)).

By contrast, the empirical appeal of the traditional MV approach is entirely due to its ability

to easily test and build diversification strategies that are efficient. The development of more

general procedures to include higher moments when constructing portfolios has been severely

hampered by computational problems (e.g., Markowitz (1991)). This contribution introduces a

general procedure allowing for general higher moments in portfolio choice following the mixed risk

aversion preference structures, even though it is well known that these moment orderings meet

the necessary, but not the sufficient, conditions for EU maximization under strong additional

assumptions on probability distributions and investor’s utility functions.3 This added generality

should be weighted against the cost of having a theoretical imperfect solution compared to the

SD approach.

Our approach reflects the basic conviction that a general procedure to describe the bound-

ary of a higher dimensional, possibly non-convex multi-moment portfolio set and to select a

boundary point in function of certain risk preferences necessitates employing a generalized dis-

tance function. Briec et al. (2004) integrate the shortage function (interpreted as an efficiency

measure) into the Markowitz model and develop a dual framework to assess the degree of satis-

faction of investors’ preferences (the latter idea mounts back to Farrar (1962)).4 They decompose

portfolio performance into portfolio and allocative efficiency. Moreover, via the shadow prices

associated with the efficiency measure, duality yields information about investors’ risk aversion.

The distance function is estimated using a non-parametric approach to approximate the true,

unknown portfolio frontier (see Varian (1983)).

This work has been extended in Briec et al. (2007) to the non-convex mean-variance-skewness

(MVS) space. Here, we generalize this shortage function to the multi-moment portfolio problem
2Recently, some progress has been made in terms of assessing efficient portfolio diversification according to SD

criteria (see, e.g., Kuosmanen (2004)).
3Brockett and Kahane (1992) provide examples invalidating this leap from derivatives of utility functions to

preferences for general moments of arbitrary distributions for the MV case as well as in general.
4In production theory, a generalized distance (shortage) function that simultaneously looks for reductions in

inputs and expansions in outputs and that is dual to the profit function has been introduced by Luenberger
(1995). The distance function is used in consumer theory to position consumption bundles relative to a reference
utility level and it is dual to the expenditure function (see, e.g., Luenberger (1992)).
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to account for a preference for odd moments in addition to an aversion to even moments. The

extension of the shortage function to the multi-moment space is straightforward, because a

distance (gauge) function offers a perfect representation of multidimensional choice sets and can

position any point relative to the boundary (frontier) of the set. However, it seems to have been

unnoticed in the literature that this shortage (distance) function respects sufficient conditions for

a global optimum on non-convex, multidimensional choice sets. The decomposition of portfolio

performance into portfolio and allocative efficiency dissociates a description of the boundary

of the portfolio choice set from the choice of an ideal point on this boundary according to

well-defined investor preferences. This allows one to break away from the dominant approach

in finance to postulate approximations of EU that necessitate relevant risk parameters, while

investors have no opportunity within these approaches to obtain a clear idea on the multitude of

efficient portfolios on the boundary of the choice set open to them, let alone that they know which

of these boundary points they would happen to prefer. This new approach clearly separates

both steps in portfolio analysis. Again, via the shadow prices associated with the efficiency

measure in multi-moment portfolio space, duality yields under certain conditions information

about investors’ higher order risk preferences.

In a portfolio context, the shortage function projects any (in)efficient portfolio exactly on

the possibly non-convex multidimensional moment portfolio frontier. In general, this shortage

function accomplishes several goals of both theoretical and practical importance. First, portfolio

performance is rated by measuring the distance between a portfolio and its optimal benchmark

projection onto the multidimensional moment efficient frontier. Apart from a rating tool, this

distance also reveals something about the goodness-of-fit of the maintained model (see Färe and

Grosskopf (1995)). Second, the shortage function is a nonparametric estimate of the inner bound

of the true, unknown portfolio frontier. Third, the shortage function evaluates odd moment

expansions and even moment contractions simultaneously. Finally, the shortage function has a

dual interpretation as a portfolio efficiency distance and could, in principle, reveal (shadow) risk

parameters minimizing portfolio inefficiency.

While we develop this approach based on nonlinear programming for the multidimensional

moment model with short sales excluded, it is good to stress that this offers a valid general

framework for any other traditional portfolio extension (e.g., short selling, risk-free asset, buy-

in thresholds for assets, cardinality constraints restricting the number of assets, transaction

round lot restrictions, etc.). This contribution therefore paves the way to any portfolio selection
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approach consistent with a higher order Taylor expansion of the EU function in terms of moment

preferences, as ideally dictated by the number of moments that turn out to count in statistically

explaining portfolio choice behavior.

We claim that no such general procedure has so far been described to handle multi-moment

portfolios. In the recent literature one can find various general approaches to estimating efficient

portfolios including higher moments (see Adler and Kritzman (2006), Gourieroux and Montfort

(2005), Harvey et al. (2004), Jondeau and Rockinger (2006), Sharpe (2007), amongst others).

But, until now not a single generally valid framework seems to have emerged to handle third-

order (accounting for skewness: see, for instance, Harvey and Siddique (2000)), fourth-order

(accounting for skew and kurtosis: see, for instance, Dittmar (2002)), or higher degree polyno-

mial forms for the EU function. Furthermore, all of the above approaches focus on selecting an

ideal boundary point in function of certain risk preferences using an approximation of the EU

function.

Apart from the few recent shortage function applications in the literature (e.g., Lozano and

Gutiérrez (2008) or Bacmann and Benedetti (2009)), we are unaware of any non-utility based

general procedure that moves beyond a three dimensional moment space in portfolio selection.

Lai (1991) determines MV skewness optimal portfolios via a multi-objective programming ap-

proach. Jana, Roy and Mazumder (2007) in a similar vein propose fuzzy programming to solve

similar multi-objective non-linear programming problems. For instance, Athayde and Flôres

(2003) come up with analytical solutions for the mean-skewness-kurtosis portfolio frontier un-

der restrictive assumptions, but at the cost of ignoring the variance dimension. Thus, general

non-utility based procedures for multi-moment portfolios do not seem to be currently available.

Another strand in the literature focuses on lower partial moments rather than general mo-

ments (see Bawa (1975) and Fishburn (1977)) to model the concern for deviations below a target

return. It is well-known that mean lower partial moments (LPM) models always satisfy the nec-

essary (though not the sufficient) conditions for EU theory under some strong assumptions on

investor preferences (but, in the absence of any assumptions on probability distributions). Basi-

cally, investor utility should only depend on the mean and the partial moment appearing in the

bi-criteria problem. For instance, while Fishburn (1977) proves this result only for second degree

partial moments (i.e., lower semi-variance), Gotoh and Konno (2000) prove the same result for

third degree partial moments (i.e., lower semi-skewness), and Ogryczak and Ruszczyński (2001)
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demonstrate the same for higher order partial moments.5 Notice that parallel arguments for de-

veloping an upper partial moment approach can also be found in the literature (see Holthausen

(1981)). Given the discussion on general moments, it must be clear that the shortage function

offers a way of comparing the goodness-of-fit of these various bi-criteria problems.

In addition, Konno et al. (1993) have been adding a lower semi-skewness to a given mean

lower semi-variance model. To the extent that this is useful and for the ease of the exposition in

parallel with the general moments, it is clear that the shortage function can also serve to assess

the eventual extensions of these bi-criteria problems by including further lower partial moments

of higher order compatible with more general investor preferences that are function of multiple

lower partial moments (instead of just one in the case of the bi-criteria approach).6

Thus, this work mainly responds to a practical need for portfolio selection and management

tools and develops a general theory for portfolio selection under multidimensional general and

lower partial moments, while acknowledging that the relation with EU maximization is at best

imperfect unless additional strong conditions are imposed. In addition, the case of upper partial

moments is added for reasons of symmetry and it may as well provide a complementary basis for

later developments seeking for a combination of lower and upper partial moments. Indeed, in line

with Holthausen (1981), Balzer (2001) pleads for combining lower and upper partial moments up

to the fourth order.7 In view of the arguments for mixed risk aversion utility functions developed

above, this plea of Balzer (2001) could eventually be extended up to the n-th moment. This

would resemble the work by Kahneman and Tversky (1979) on prospect theory and Gul (1991)

on disappointment aversion, both in the non-EU tradition, in that one treats losses and gains

asymmetrically and approximates the utility of losses and gains by their respective successive

partial moments. However, this development we leave for future work. Currently, it is good

to underscore that models based on general, lower partial, or upper partial moments assume

very different investor attitudes and that modelers should be aware of these differences when

selecting any of these models.

Section 2 introduces the basic building blocks for the analysis, introduces the shortage func-

tion, studies its axiomatic properties, and formulates a general principle for testing the impact
5As a matter of fact, Ogryczak and Ruszczyński (2001) demonstrate that sufficient conditions for EU theory

can be respected by limiting the weights on the relevant risk measure in these bi-criteria problems.
6Harlow and Rao (1989) mention an approximation argument similar to Samuelson (1970) to justify the use

of the traditional bi-criteria LPM models.
7Scherer and Martin (2005) also plea to combine lower and upper semi-variances into a single model. Another

similar proposal is found in Cumova et al. (2006).
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of moments on the approximation. The next section studies the link between the shortage func-

tion and the direct and indirect higher order moment utility functions. An empirical illustration

using a small sample of 30 assets from the London Stock Exchange is provided in Section 4.

Conclusions and issues for future work are summarized in the final section.

2 Efficient Portfolios in K-Moment Space

2.1 A General Class of Moments

To introduce some basic notation and definitions, consider the problem of selecting a portfolio

from n financial assets. Let R1, ..., Rn be random returns of assets 1, ..., n. Assets are character-

ized by a set of moments of an arbitrary order. A portfolio x = (x1, · · · , xn) is simply a vector

of weights specified over these n financial assets that sums to unity
( ∑

i=1...n
xi = 1

)
. If shorting

is impossible, then these weights must satisfy non-negativity conditions (xi ≥ 0). Therefore, the

set of admissible portfolios can be written in general as:8

= =
{

x ∈ Rn :
∑

i=1...n

xi = 1, x ≥ 0
}

. (2.1)

To be able to focus on higher moments and for notational convenience, we adopt the following

general formulation. The return of portfolio x is defined as R(x) =
∑

Rixi. Let K ⊂ N\{0} be

the index set of moments considered. We suppose that K is finite i.e., |K| < +∞, where |K|
stands for the cardinality of K. This section intends to construct a general class of moments

including as a special case, usual moments, lower partial moments and upper partial moments.

To do this we consider for all k ∈ K the functions ψ0 : R −→ R+ and ψ1 : R −→ R+ defined

respectively as:

ψ0(w) = min{0, w} and ψ1(w) = max{0, w}. (2.2)

To construct this generalized class of moments we also introduce the function ψλ that is defined

for all λ ∈ [0, 1] by

ψλ(w) =
1

max{(1− λ), λ} [(1− λ)ψ0(w) + λψ1(w)]. (2.3)

8This set of admissible portfolios can be easily adapted for additional constraints (e.g., transaction costs) that
can be written as linear functions of asset weights: see Briec et al. (2004).
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Obviously, we have max{(1−λ), λ} ≥ 1/2 for all λ ∈ [0, 1]. These notations are clearly coherent,

since we have

ψ 1
2
(w) =

1
1
2

[
1
2
ψ0(w) +

1
2
ψ1(w)

]
= ψ0(w) + ψ1(w) = w. (2.4)

This means that ψλ comes down to the identity for λ = 1
2 . Notice that (i) if λ = 0, then ψλ = ψ0

is concave; and (ii) if λ = 1, then ψλ = ψ1 is convex.

Using this notation, a moment of order k and level λ is defined by:

mk,λ(x) =





E[ψλ(R(x))] if k = 1

E
[

(ψλ ( R(x)−E[R(x)] ) )k
]

if k 6= 1,
(2.5)

for all λ ∈ [0, 1]. Notice that the return can also equal a target return (i.e., R(x)=Rτ ) as in,

e.g., Fishburn (1977).9 We then obtain three cases:

(a) If λ = 0, then the level is 0 and mk,0(x) represents a lower partial moment of order k.

(b) If λ = 1
2 , then the level is 1

2 and mk, 1
2
(x) represents the standard moment of order k.

(c) If λ = 1, then the level is 1 and mk,1(x) represents the upper partial moment of order k.

Obviously, m2, 1
2
(x) denotes the portfolio variance, m3, 1

2
(x) is the portfolio skewness, and so on.

In the remainder of the paper we denote N∗ = N\{0}. Moreover, for all K ⊂ N∗, let

BK =
⋃

k∈K{ek} be the canonical basis of RK .10 We consider the K-moment representation

function mK,λ : = −→ RK of level λ defined as:

mK,λ(x) =
∑

k∈K

mk,λ(x)ek. (2.6)

This function summarizes all moments k of level λ in the index set K characterizing a port-

folio. For instance, the MV lower partial moment model is represented by m{1,2},0(x) =
(
E[min{0, R(x)} ], V ar[ min{0, R(x)} ]

)
, where the notation for the portfolio semi-variance is

obvious. As another example, in the MVS ordinary moment case, we have m{1,2,3}, 1
2
(x) =

(
E[R(x)], V ar[R(x)], Sk[R(x)]

)
where Sk[R(x)] stands for the skewness.

It is useful to define the moment representation set of level λ for the set = of portfolios as
9In the empirical literature, this target return is often set at the risk-free return or a market return.

10RK is the |K|-dimensional vector space indexed on K.
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the range of mK,λ on =:

MK,λ = mK,λ(=) =
{

mK,λ(x) : x ∈ =
}

, (2.7)

where λ ∈ [0, 1]. This set can be extended by defining a moment (portfolio) disposal represen-

tation set of level λ:

DRK,λ = MK,λ − CK,+, (2.8)

where

CK,+ =
∏

k∈K

(−1)k−1R+ (2.9)

is called the free disposal cone. For example, in the mean-variance case, the free disposal cone

is C{1,2},+ = (−R+)× R+. One can rewrite this disposal representation set DRK,λ as follows:

DRK,λ =
{

m′ ∈ RK : ∃x ∈ = , m′ ∈ mK,λ(x)− CK,+

}
. (2.10)

Adding a cone defines a sort of “free disposal hull” of the moment representation of feasible

portfolios. We denote the interior of this free disposal cone as CK,++ =
∏

k∈K(−1)k−1.R++.

When evaluating portfolio efficiency, one must be able to identify a subset of weakly efficient

portfolios.

Definition 2.1 The set of weakly efficient portfolios is defined, in the simplex, as:

ΘK,λ (=) =
{

x ∈ = : (−1)k−1mk,λ(x) < (−1)k−1mk,λ(z)∀k ∈ K =⇒ z 6∈ =
}

.

The set of weakly efficient portfolios is the set of all portfolios that are not strictly dominated in

|K|-dimensional space. The power notation ensures that the even moments are as big as possible

and the odd moments as small as possible. The weakly efficient subset can also be expressed

with respect to the interior of the free disposal cone. Namely, we have ΘK,λ (=) =
{
x ∈ = :

mK,λ(z) ∈ mK,λ(x) + CK,++ =⇒ z 6∈ =}
=

{
x ∈ = : (mK,λ(x) + CK,++) ∩MK,λ = ∅}. This

definition suffices to define the set of weakly efficient portfolios.

One can also define a set of strongly efficient portfolios, but the weak formulation simplifies

to some extent the results. To simplify notation we define a standard partial order based upon

the dominance criterion defined above. We say that portfolio z is not dominated by portfolio x

10
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if (−1)k−1mk,λ(z) ≥ (−1)k−1mk,λ(x) for all k ∈ K and we denote z <K,λ x. Equivalently, this

means that mK,λ(x) ∈ mK,λ(z)− CK,+.

Along this line, x ∼K,λ x′ means that mK,λ(z) = mK,λ(x). If such a condition does not hold,

then we denote x �K,λ x′. In addition, we denote z ÂK,λ x if z <K,λ x and z �K,λ x. Using

these notations, the subset of strongly efficient portfolios is defined as follows:

Definition 2.2 The set of strongly efficient portfolios is defined, in the simplex, as:

ΞK,λ (=) =
{

x ∈ = : z ÂK,λ x =⇒ z 6∈ =
}

.

Obviously, ΞK,λ ⊂ ΘK,λ. All results in this contribution, except one, focus on weakly efficient

portfolios.11

Similar to its role in the MV approach (Briec et al. (2004)), the next subsection introduces

the shortage function (Luenberger (1995)) as a performance indicator for the K-moment portfolio

optimization problem.

2.2 Characterization of Efficient Portfolios Using the Shortage Function

This subsection introduces the shortage function and studies its properties in the context of

multidimensional moment portfolio theory, including lower partial and upper partial moments.

Basic properties of the subset DRK,λ on which the shortage function is defined have been

discussed in Briec et al. (2004) for the MV model. It is possible to extend their definition to

obtain an efficiency measure suitable for the general K-moment portfolio selection problem of

level λ.

Definition 2.3 For all λ ∈ [0, 1], the function SK,λ : =× (CK,+\{0}
) −→ R+ defined as:

SK,λ (x; g) = sup
{

δ : mK,λ(x) + δg ∈ DRK,λ

}

is the shortage function for portfolio x of level λ in the direction of vector g.

This shortage function is a perfectly suitable portfolio management efficiency indicator be-

cause of its elementary properties. Since these properties carry over from the MV into the
11Weak efficiency as a basic criterion in portfolio theory is introduced by analogy to the theoretical use of

shortage (distance) functions in developing basic duality relations in consumption and production theory (see
Cornes (1992)). Furthermore, it is a priori impossible to know to which extent portfolio applications using the
shortage function introduced below could benefit from using a strong rather than a weak notion of efficiency.

11

IESEG Working Paper Series 2009-ECO-08



K-moment space, we state them without extensive comments.

Proposition 2.4 For all λ ∈ [0, 1], SK,λ satisfies the following properties:

a) If g ∈ CK,++, then we have: SK,λ (x; g) = 0 ⇐⇒ x ∈ ΘK,λ(=) (weak efficiency).

b) SK,λ is weakly monotonic on =, i.e., z <K,λ x implies that: 0 ≤ SK,λ (z; g) ≤ SK,λ (x; g) .

c) If g ∈ CK,++, then SK,λ is continuous with respect to x.

All the proofs in this contribution are relegated in appendix. If the value of the shortage function

is zero, then the portfolio is situated on the weakly efficient K-moment frontier of level λ.12 A

positive value indicates its degree of portfolio inefficiency. This inefficiency interpretation of the

shortage function also leads to its use as a goodness-of-fit indicator that assesses the extent to

which a maintained model fits observed portfolio choice behavior (Färe and Grosskopf (1995)).

Secondly, a weakly dominated portfolio in terms of general or partial moment characteristics

is classified as weakly less efficient. Finally, this shortage function is continuous as long as the

direction vector does not contain any zero component.

The representation set DRK,λ, defined by expression (2.10), can be directly used to compute

the shortage function by nonlinear optimization methods. Assume a sample of m portfolios

x1, · · · , xm. The shortage function for a specific portfolio xj whose performance needs to be

gauged (SK,λ

(
xj ; g

)
) is computed by solving the following nonlinear program in K-moment

space of level λ:13

sup
δ,z

δ

s.t. (−1)k−1 mk,λ(xj) + δgk ≤ (−1)k−1 mk,λ(z), k ∈ K (PK,λ)
∑

i=1,...,n

zi = 1, zi ≥ 0, i = 1 · · ·n.

Thus, gauging the performance of a sample of m portfolios requires computing one mathematical

program for each portfolio in turn to determine its position with respect to the boundary of the

choice set.14 Combinations of moments of the portfolios in the sample constituting the portfolio

frontier are situated on the RHS of (PK,λ). The evaluated portfolio is represented on the LHS
12To guarantee strongly efficient solutions, it is possible to employ a different type of distance function (see, e.g.,

Briec (2000) for such a solution in a production context: this could be easily transposed to a portfolio context).
13To save space, from this point on the indication ‘of level λ’ is suppressed whenever possible, since it applies

in general.
14For example, in the MVS ordinary moment case (i.e., m{1,2,3}, 1

2
(x) =

(
E[R(x)], V ar[R(x)], Sk[R(x)]

)
this
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of (PK,λ). Maximizing δ attempts to augment its odd moments and reduce its even moments in

the direction of vector g. If δ = 0, then the evaluated portfolio is efficient and on the boundary

of the relevant portfolio frontier. If δ > 0, then there are combinations of portfolios that yield

higher odd moments and lower even moments. Hence, the evaluated portfolio is situated below

the boundary and inefficient.

Remark 2.5 The shortage function is always well-defined and an infeasibility of its correspond-

ing optimization problem (PK,λ) cannot occur as long as it is defined with respect to each portfolio

(xj). Since by definition mK,λ(x) ∈MK,λ for all x ∈ =, it follows that there is some δ ≥ 0 such

that mK,λ(x) + δg ∈ DRK,λ. Hence, the affine line spanned from mK,λ(x) in the direction of

g meets the disposal representation set DRK,λ which contains MK,λ. In the case where some

vector m ∈ RK does not lie in DRK,λ, then the direction of g may be infeasible at m if g contains

a zero component.15

Clearly, if λ = 0 (i.e., the case of lower partial moments), then mk,0 is a concave function.

This mathematical program can then be converted to a convex optimization program (see Luen-

berger (1984)). Moreover, if λ ∈ {1
2 , 1} (i.e., the case of standard or upper partial moments) and

K ⊂ {1} ∪ 2N∗ (i.e., portfolio models combining mean and even moments only), then this pro-

gram also involves convex constraints. To simplify the exposition in the remainder, we identify

two convexity conditions:

• C1: λ ∈ {1
2 , 1} and K ⊂ {1} ∪ 2N∗;

nonlinear program reads as follows:

sup
δ,z

δ

s.t. E[R(xj)] + δgE ≤ E[R(z)],

V ar[R(xj)] + δgV ≥ V ar[R(z)],

Sk[R(xj)] + δgS ≥ Sk[R(z)],
∑

i=1,...,n

zi = 1, zi ≥ 0, i = 1 · · ·n.

15Theoretical treatments of the distance function in developing duality relations in consumption and production
theory often ignore the possibility of infeasibilities (see Cornes (1992)). From Remark 2.5 infeasibilities never occur
in the context of our contribution. However, in situations where one focusses on, for instance, the multidimensional
reconstruction of the efficient frontier rather than the measurement of portfolio efficiency, this question may be
important. In such a context an extended shortage function can be defined on RK to compute the frontier points,
but in some circumstances this shortage function may well be ill-defined. In production theory Briec and Kerstens
(2009) have exhaustively explored the circumstances (e.g., the axioms of production) under which infeasibilities
may occur for the shortage function in both parametric and non-parametric production models alike. We are
unaware of other work focusing on eventual similar problems of the use of distance functions in consumption,
production or portfolio applications. Thus, given the novelty of this approach in portfolio theory, it is impossible
to currently say much more about this issue in general.
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• C2: λ = 0.

These properties are now summarized in the following proposition:

Proposition 2.6 For all K ⊂ N?, if either C1 or C2 holds, then DRK,λ is convex.

The next proposition shows convincingly how the shortage function guarantees a global optimal

solution for a large class of problems computed using the possibly non-convex, nonlinear program

(PK,λ) for all λ ∈ [0, 1] and for all K ⊂ N∗.

Proposition 2.7 Let (δ∗, z∗) be a local optimum of (PK,λ). If either C1 or C2 holds, then

(δ∗, z∗) is a global maximum of (PK,λ). In such cases, if the first order and second order Kuhn-

Tucker conditions hold at point (δ∗, z∗), then (δ∗, z∗) is a global maximum of (PK,λ).

One can slightly refine this result extending our analysis to the general case including odd

moments. Paralleling Briec et al. (2007), it is easy to establish a specific condition involving local

optimality of any portfolio model containing odd moments. Due to non-convexities, it is well-

known that in these cases it is not guaranteed that a local optimum is a global optimum. To the

best of our knowledge, the shortage function is the only tool providing a global optimal solution

for the K-moment portfolio approach, including partial moments, in the cases enumerated in

Proposition 2.7.

Remark 2.8 The shortage function can equally be applied in case of other sets of admissible

portfolios. Also the above Proposition 2.7 holds true for a wide range of variations on the set of

admissible portfolios. For reasons of space, we just focus on two cases:

(i) Availability of a risk-free asset: The results do not impose any particular structure on the

moment matrices and tensors.16 Hence, all statements also apply when there is a risk-free asset.

(ii) Possibility of short selling: The shortage function can be transposed to the case with short

sales by dropping the non-negativity constraint (x ≥ 0). However, in such a case the set of

feasible portfolios is not bounded. Hence, it is necessary to assume that the return of each asset

is positive to ensure that the optimal portfolio necessarily belongs to the simplex.

As stated in the introduction, this contribution offers a perfectly general framework for

analysing any other traditional extension of empirical portfolio models (e.g., buy-in thresholds,

cardinality constraints on the number of assets, transaction round lot restrictions, etc.) respond-

ing to specific investors’ needs.
16For instance, positive-definiteness of the variance-covariance matrix is not required.
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2.3 Selection Function and Strongly Efficient Portfolios

In this subsection we introduce a multivalued map whose values necessarily contain a strongly

efficient portfolio. Doing so, it is immediate to determine wether or not a given portfolio is

strongly efficient. To understand the basic idea it is useful to note that that one can equivalently

rewrite the shortage function as follows:

SK,λ(x; g) = sup
{

δ : mK,λ(x) + δg ≤ mK,λ(z), z ∈ =
}

. (2.11)

Definition 2.9 The multivalued map ζ : = −→ 2= defined by

ζK,λ(x) =
{

z ∈ = : mK,λ(x) + SK,λ(x; g)g ≤ mK,λ(z)
}

is called a portfolio selection function.

This function provides a useful tool to characterize strongly efficient portfolios. An immediate

implication is that for all z∗ ∈ ζK,λ(xj), the vector (SK,λ(xj ; g), z∗) is a solution of program

(PK,λ). We have the following statements.

Proposition 2.10 For all λ ∈ [0, 1], the following conditions hold true:

a) ζK,λ has nonempty values on = (i.e., for all x ∈ = we have ζK,λ(x) 6= ∅).
b) For all x ∈ =, ζK,λ(x) contains some strongly efficient portfolio (i.e., ζK,λ(x)∩ΞK,λ(=) 6= ∅).
c) If z ∈ ζK,λ(x), then it is weakly efficient (i.e., ζK,λ(x) ⊂ ΘK,λ(=)).

The above result has a corollary that establishes that program (PK,λ) yields a set of weakly

efficient portfolio solutions that contains at least a strongly efficient solution. Hence, if the

solution is unique, the solution is strongly efficient.

Corollary 2.11 For all λ ∈ [0, 1], if (δ∗, z∗) is a solution of (PK,λ), then z∗ is weakly efficient

(i.e., z∗ ∈ ΘK,λ(=)). Moreover, if there is a unique solution z∗, then z∗ is strongly efficient

(i.e., z∗ ∈ ΞK,λ(=)).

Thus, the optimal portfolio weights resulting from program (PK,λ) guarantee weak efficiency.

However, there is always also a strongly efficient solution.
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2.4 Testing the Impact of General and Partial Moments

This subsection provides procedures to determine the influence of changing the set of general

and partial moments considered in measuring portfolio performance. Using the goodness-of-fit

interpretation of the shortage function (see Färe and Grosskopf (1995)), the goal is to outline a

basis for the development of statistical tests about the relevance of including additional moments

when approximating the EU function based on finite data sets. It is well-known that the quality

of moment approximations of EU is an empirical issue (e.g., Hlawitschka (1994)). In the same

vein, one can expect that the approximation quality of a partial series of a Taylor expansion of

the shortage function needs to be empirically assessed.

The following definition measures in a straightforward manner the influence of the choice

between two different subsets of moments K and K ′ in measuring portfolio performance. To

simplify the statement, for all g ∈ CK∪K′,+, let gK =
∑

k∈K gkek and gK′ =
∑

k∈K′ gkek denote

the orthogonal projection of g onto RK and RK′
, respectively.

Definition 2.12 For all λ ∈ [0, 1], the measure ∆λ :
(
2N

∗\∅)×(
2N

∗\∅)×=×CK,+ −→ R defined

as ∆λ(K,K ′, x; g) = SK,λ(x; gK)− SK′,λ(x; gK′) is called a measure of moment impact.

For instance, suppose we compare two models m{1,2,3}, 1
2
(x) and m{1,2,4}, 1

2
(x). Both contain 3

moments, but differ in that the former adds the skewness to the MV model while the latter

adds kurtosis. Then, ∆λ({1, 2, 3}, {1, 2, 4}, x; g) measures the relative goodness-of-fit of both

models. In the case of lower partial moments, one could use the measure of moment impact

to test, for instance, whether a mean semi-variance model fits the data better or worse than a

mean semi-skewness model.

It is trivial to establish that the shortage function is decreasing when the set of moments

increases. This has the following immediate consequence for the measure of moment impact

when we consider two proper subsets of moments K and K ′:

Proposition 2.13 For all λ ∈ [0, 1], if K ⊂ K ′, then ∆λ(K, K ′, x; g) ≥ 0.

This proposition describes the effect of changing the set of moments (hence, constraints) on the

difference between maximal value functions when considering two proper subsets of moments.

E.g., the two models m{1,2,3}, 1
2
(x) and m{1,2,3,4}, 1

2
(x) differ only in that the latter adds kurtosis

to a basic MVS model. Then, ∆λ({1, 2, 3}, {1, 2, 3, 4}, x; g) must be semi-positive. It is only
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zero when both shortage functions obtain identical values, which would imply that adding the

kurtosis constraint would not have had an impact on the objective function.

This definition and proposition offer a starting point for developing tests for the relevance of

including specific additional moments in the approximation of the EU function. Indeed, a test

measuring the role played by a specific moment k′ in evaluating portfolio performance is now

straightforwardly defined as:

Definition 2.14 For all λ ∈ [0, 1], the measure Iλ : N∗ × (
2N

∗\∅) × = × CK,+ defined as

Iλ(k′,K, x; g) = ∆λ(K, K ∪ {k′}, x; g) is called a measure of moment k′ impact on K-moment

space.

For instance, assuming we start from a traditional MV model it is possible to test for the

impact of adding the skewness (i.e., Iλ({3}, {1, 2}, x; g)) and thereafter to check whether adding

the kurtosis adds any value (i.e., Iλ({4}, {1, 2, 3}, x; g)).

An open challenge is to transform these exact goodness-of-fit tests, capturing the economic

significance of deviations from rational behavior in portfolio decisions, into a statistical test

(Varian (1990)). Given the inherent downward bias of any boundary estimator due to the de-

pendency of the boundary on the portfolios in the sample, the small sample error and bias

of these nonparametric frontier estimators can be probably be improved upon using simulated

(bootstrapped) empirical distributions (see Simar and Wilson (2000) for a successful implemen-

tation of this strategy for monotone boundaries in a production context). However, a crucial

difference between the production and portfolio context is that perturbed observations are suf-

ficient to compute bootstrap efficiencies in the former context while the return observations in

the latter first need to be transformed into moment statistics (mean, variances and covariances,

etc.). The transposition of the successful bootstrapping framework of these authors in a portfolio

frontier framework is therefore not straightforward.

In the empirical application below we ignore this bias issue and we simply employ a test

statistic developed by Li (1996) and refined by Fan and Ullah (1999) for dependent and indepen-

dent observations alike to measure the difference between two densities of shortage functions.17

Under the null hypothesis that both distributions are identical and the alternative hypothesis

that they are different, this test statistic asymptotically follows a standard normal-distribution
17This test statistic was probably first used by Kumar and Russell (2002) in a production frontier context and

it has gained some popularity since then: see their Appendix (page 546) for technical details.
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(for small samples, a bootstrap approximation can be employed).

Clearly, much more research is needed to arrive at proper test statistics capable to tackle the

bias issue in the portfolio boundary estimation context. We end by noting that recently several

authors started contributing to the statistical analysis of the shortage function framework in a

portfolio context. For instance, Bacmann and Benedetti (2009) use Bayesian inference methods

to address estimation risk using multivariate skewed distributions. Jurczenko, Maillet and Merlin

(2008) replace the classical moments by the far more robust L-moments, while Jurczenko and

Yanou (2009) employ the even more robust trimmed L-moments. The next section studies the

shortage function from a duality standpoint.

3 Indirect Utility in K-Moment Space and Duality Result

3.1 Preferences and Approximations

Portfolio selection has always been conceived as a two-step procedure. In the MV world, tracing

the efficient set of portfolios is a first step to select an optimal portfolio on the boundary of the

set for a given preference structure. To provide a dual interpretation of the shortage function, a

corresponding general indirect utility function must be defined. Suppose that K = {1, · · · , k̄}.
The link between the k̄-th order derivatives of the utility function and the k̄-th order moments is

illustrated by taking a Taylor expansion of the EU of the final wealth wf of an investor around

his expected wealth w as follows:

u(wf ) = u(w) +
k̄∑

k=1

u(k)(w)
k!

(wf − w)k + · · · (3.1)

This can be rewritten as:

E [u(wf )] = E [u(w)] +
k̄∑

k=1

u(k)(w)
k!

E[(wf − w)k] + · · · (3.2)

Finally, this leads to the expression:

E [u(wf )] = u(w) +
k̄∑

k=2

u(k)(w)
k!

m
1
2
k (wf ) + · · · (3.3)

Clearly, one supposes negative (positive) even (odd) derivatives of the EU function for behavior
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representing mixed risk aversion (Caballé and Pomansky (1996)). Taylor series expansions of the

EU function have certain well-known limitations. Loistl (1976) already indicated that if a utility

function is polynomial of degree m, then its value can be expressed via a finite Taylor series

expansion; while if a utility function is not a polynomial function, then its value can be expressed

via an infinite Taylor series expansion. Since no polynomial utility function is part of the class

of mixed risk aversion utility functions (Brockett and Golden (1987: 956)), we know the second

case prevails. Hlawitschka (1994) expanded on two important points in this respect: (i) when

a Taylor series diverges, then the truncation at MV may provide good approximation, and (ii)

when a Taylor series converges, then adding more terms may actually worsen the approximation

(since the usefulness of Taylor series approximations is purely an empirical matter and one can

say very little about the behaviour of partial series).18

One can also extend this approach to the case of lower partial moments (λ = 0). This we do

considering the Taylor expansion:

u(wf − w̄) = u(0) +
k̄∑

k=1

u(k)(0)
k!

(wf − w)k + · · · (3.4)

We can then deduce that:

u (ψ(wf − w̄)) = u(0) +
k̄∑

k=1

u(k)(0)
k!

ψk(wf − w) + · · · (3.5)

Consequently

E [u (ψ(wf − w̄)] = u(0) +
k̄∑

k=1

u(k)(0)
k!

E[ψk
0 (wf − w)k] + · · · (3.6)

Finally, this leads to the expression:

E [u (ψ(wf − w̄)] = u(0) +
k̄∑

k=1

u(k)(0)
k!

m0
k(wf ) + · · · (3.7)

18Jondeau and Rockinger (2006: p. 34) formulate a condition for a smooth convergence of the Taylor series
expansion such that any additional moment improves the quality of the approximation: it boils down to imposing
that the preference weighted odd central moments should not be dominated by consecutive preference weighted
even central moments. Nothing is known about the plausibility of this condition in empirical distributions.
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Now, let us define the function u0 as:

u0(wf ) =





u (ψ(wf − w̄))− u(0) if wf − w̄ ≤ 0

0 if wf − w̄ ≥ 0.
(3.8)

Notice that we have u0(w̄) = 0. One can then deduce that:

E [u0 (wf )] =
k̄∑

k=1

u(k)(0)
k!

m0
k(wf ) + · · · (3.9)

Using a similar procedure one can establish a parallel result in the context of upper partial

moments (λ = 1). We have

E [u1 (wf )] =
k̄∑

k=1

u(k)(0)
k!

m1
k(wf ) + · · · (3.10)

where

u1(wf ) =





u (ψ(wf − w̄))− u(0) if wf − w̄ ≥ 0

0 if wf − w̄ ≤ 0.
(3.11)

3.2 Duality Result

Along these lines, we define a general K-moment utility function and a corresponding indirect

utility function. To simplify the notations, we first introduce a K-inner product 〈·, ·〉K : RK ×
RK −→ R defined as:

〈
µ,m

〉
K

=
∑

k∈K

(−1)k−1µkmk. (3.12)

for all (µ, m) ∈ RK × RK . As an example, in the mean-variance-skewness case, we have

〈µ,m〉{1,2,3} = µ1m1 − µ2m2 + µ3m3.

Definition 3.1 For all λ ∈ [0, 1], letting µ ∈ RK
+ , the function UK,λ,µ : = −→ R defined as:

UK,λ,µ(x) =
〈
µ,mK,λ(x)

〉
K

is called the general K-moment utility function of level λ. The function VK,λ : RK
+ −→ R defined

as:

VK,λ (µ) = sup
{

UK,λ,µ(x) :
∑

i=1...n

xi = 1, x ≥ 0
}
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is called the indirect general K-moment utility function of level λ.

For instance, the usual mean-variance utility function can then be written U{1,2}, 1
2
,µ(x) =

〈
µ,m{1,2}, 1

2
(x)

〉
{1,2} = µ1m1, 1

2
(x)− µ2m2, 1

2
(x) = µ1E[R(x)]− µ2V ar[R(x)].

Caballé and Pomansky (1996) defined the n-th order index of absolute risk aversion, a

generalization of the Arrow-Pratt absolute risk aversion index to higher orders, as follows:

Ak(w) = u(k+1)(w)

u(k)(w)
for k = 1, 2, · · · . In the context of the indirect general K-moment utility

function, the ratios A1(w) = µ2

µ1
≥ 0, A2(w) = µ3

µ2
≥ 0, and A3(w) = µ4

µ3
≥ 0 represent the degree

of absolute risk-aversion, prudence respectively temperance.19 Therefore, the maximum value

function for the decision maker is simply determined for a given vector of risk parameters µ > 0.

Knowledge of these parameters allows normally selecting a unique efficient portfolio among those

on the weakly efficient frontier maximizing the decision maker’s direct general K-moment utility

function.

The next result is useful to highlight the role of convexity in duality:

Lemma 3.2 For all K ⊂ N∗ and all µ ≥ 0, if either C1 or C2 holds, then UK,λ,µ is concave

and VK,λ is convex.

This is generally not the case whenever there is some uneven moment included (k ∈ 2N+ 1).

Before establishing duality relations in our framework, it is first useful to make a distinction

between overall, allocative, and portfolio efficiency when evaluating portfolio performance. Sim-

ilar to analogous distinctions in micro-economics (see Cornes (1992)), the next definition clearly

separates these concepts from one another.

Definition 3.3 For all λ ∈ [0, 1], the Overall Efficiency (OEK,λ) index is the quantity:

OEK,λ (x, µ; g) = sup
{

δ :
〈
µ,mK,λ(x) + δg

〉
K
≤ VK,λ (µ)

}
;

The Allocative Efficiency (AEK,λ) index is the quantity:

AEK,λ(x, µ; g) = OEK,λ(x, µ; g)− SK,λ(x; g);

19Notice that for k ∈ K and k ≥ 4, the ratio Ak(w) = µk
µk−1

≥ 0 sometimes continues to be labeled as the degree

of absolute temperance. Thus, ratios based on fifth and higher order moment parameters of this indirect utility
function are in general no longer further differentiated. Though, one should add that Eeckhoudt and Schlesinger
(2006) mention the notion of edginess related to the fifth derivative of the EU function.
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The Portfolio Efficiency (PEK,λ) index is the quantity: PEK,λ(x; g) = SK,λ(x; g).

Portfolio Efficiency ensures portfolios are situated on the possibly non-convex boundary of

the portfolio frontier. Such points need not maximize the indirect general K-moment utility

function. Allocative Efficiency indicates the necessary adjustment along the boundary of

efficient portfolios to achieve the point maximizing the indirect general K-moment utility func-

tion. Overall Efficiency requires the simultaneous achievement of both these objectives. More

precisely, OEK,λ is the ratio of (i) the difference between indirect general K-moment utility

function (Definition 3.1) and the value of the direct general K-moment utility function for the

evaluated portfolio, and (ii) the normalized value of the direction vector g for given parameter

vector µ:

OEK,λ (x, µ; g) =
VK,λ (µ)− UK,λ,µ (x)〈

µ, g
〉
K

. (3.13)

Obviously, these definitions lead to the following additive decomposition identity:

OEK,λ(x, µ; g) = AEK,λ(x, µ; g) + PEK,λ(x; g). (3.14)

Luenberger (1995) has proven a duality result between the expenditure function and the

shortage function. In an analogous way, the following result establishes that the shortage func-

tion can be computed over the dual of the K-moment space. Since the representation set DRK,λ

is generally non-convex when λ ∈ {1
2 , 1} and thereby incompatible with a dual representation,

we first consider the special case where the set K only contains mean and even moments to

ensure convexity of the disposal representation set. When K ⊂ {1} ∪ 2N∗ (i.e., portfolios com-

bining mean and even moments only), then clearly the support function of the representation

set DRK,λ is the indirect general K-moment utility function (VK,λ). If λ = 0, then the disposal

representation set is constructed from the lower partial moments and is convex. However, if

λ = 1, then the disposal representation set is constructed from upper partial moments and it is

not convex. These properties have already been summarized in Proposition 2.6 above. One can

then establish the following property:
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Proposition 3.4 If either C1 or C2 holds, then:

DRK,λ =
⋂

µ∈RK
+

{
m ∈ RK :

〈
µ,m

〉
K
≤ VK,λ(µ)

}
.

Now we can formulate a duality result between the shortage function and the indirect general

K-moment utility function. This shows that the shortage function is economically meaningful,

because it can represent behavior compatible with a general K-moment utility function.

Proposition 3.5 If either C1 or C2 holds and g 6= 0, then the shortage function SK,λ has the

following properties:

a) For all x ∈ =: SK,λ (x; g) = infµ≥0

{
VK,λ (µ)− UK,λ,µ (x) :

〈
µ, g

〉
K

= 1
}

.

b) For all µ ∈ RK
+ : VK,λ (µ) = supx∈=

{
UK,λ,µ (x)− SK,λ(x; g)

〈
µ, g

〉
K

}
.

The shortage function guarantees that any portfolio is projected onto the weakly efficient port-

folio frontier. A slightly weaker result is available in utility space in the convex case. For a given

weakly efficient portfolio x ∈ ΘK,λ(=) (i.e., SK,λ(x; g) = 0), the optimal value of the indirect

utility function can be achieved by a utility function with a proper choice of risk parameters

(µ). This corollary is a direct consequence of the preceding duality result.

Corollary 3.6 Assume that a portfolio x is weakly efficient, i.e., x ∈ ΘK,λ(=), if either C1 or

C2 holds, then there exists a general K-moment utility function of level λ (UK,λ,µ) such that

UK,λ,µ(x) = VK,λ(µ).

Next, to handle the general non-convex case, we introduce what we term the hyper-shortage

function.20 This is a kind of concave regularized version of the shortage function in K-moment

space.

Definition 3.7 The function S̄K,λ : =× (CK,+\{0}
) −→ R+ defined as:

S̄K,λ (x; g) = inf
µ≥0

{
VK,λ (µ)− UK,λ,µ (x) :

〈
µ, g

〉
K

= 1
}

.

is the hyper-shortage function for portfolio x of level λ in the direction of vector g.
20This parallels in a portfolio context the hyper-benefit function of Luenberger (1992) in consumer theory.

23

IESEG Working Paper Series 2009-ECO-08



Thus, by definition, this hyper-shortage function is dual to the indirect general K-moment utility

function. This complements the above duality result that is limited to the convex case only.

The preceding duality result (Proposition 3.5) combined with the above definition of the

hyper-shortage function have now the following immediate consequence:

Corollary 3.8 If either C1 or C2 holds, then: SK,λ = S̄K,λ.

Thus, when limiting attention to even moments only or to lower partial moments only, then the

shortage function equals the hyper-shortage function. However, in general the shortage function

does not equal the hyper-shortage function. For instance, if K is not a subset of {1}∪2N∗, then

SK,λ 6= S̄K,λ, because in such a case DRK,λ is not convex.

To measure the impact of convexity related to the inclusion of odd moments on portfolio

performance, we introduce the Convexity Efficiency (CEK,λ) index which is defined as the

quantity:

CEK,λ(x; g) = S̄K,λ(x; g)− SK,λ(x; g).

Convexity Efficiency measures the difference between the shortage functions computed on both

DRK,λ and its convex hull. In the decomposition specified above for the convex case solely, it

appears as a part of AEK,λ. Clearly, for cases with even moments only or lower partial moments

only this Convexity Efficiency component is zero: if either C1 or C2 holds, then CEK,λ(x; g) = 0.

But, in general, the above decomposition (3.14) can be extended by adding a non-zero Convexity

Efficiency component (that disappears in the convex case).

Figure 1 illustrates the basic OE decomposition for the MV model. The shortage function

seeks to improve a given portfolio in the direction of both an increased mean return and a

reduced risk. For example, let us focus on an inefficient portfolio denoted by point A. This

portfolio A is projected onto the weak efficient frontier at point B. However, this point is not

optimal in view of investor preferences, while point C does maximize the MV utility function.

Assuming for simplicity that ‖g‖ = ‖(gV ar, gE)‖ = 1 (where ‖.‖ is the usual Euclidean metric),

one can straightforwardly see that OEK,λ(.) = ‖CA‖, PEK,λ(.) = ‖BA‖ and AEK,λ(.) = ‖CB‖.
Notice that CEK,λ(.) = 0 in this convex MV case.

FIGURE 1 ABOUT HERE

Figure 2 illustrates another part of the OE decomposition for an MVS model. We use a

small sample of 35 assets that are part of the French CAC40 index observed between February
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1997 and October 1999 (see Briec et al. (2007) for details). For a skewness level of 2.49, we

have generated a section of the frontier in the MV subspace. The resulting dot plot is clearly

somewhat non-convex.21 A solid line has been added to convexify this empirically derived

frontier section. Let us now focus on a fictitious inefficient portfolio denoted by the point A

that is superimposed on this empirical frontier section derived from these 35 assets. It is easy

to observe that the shortage function and the hyper-shortage functions project point A onto 2

different boundaries (compare point B on the non-convex section and point C on the convexified

section). The difference between both projections reflects the existence of a positive Convexity

Efficiency component for this particular fictitious point A.

FIGURE 2 ABOUT HERE

We conclude this subsection with two remarks: one on the nature of the dual solutions; and

another one on the development of tests regarding the influence of additional moments.

First, computed solutions for the general K-moment utility function only guarantee local

optimality (in contrast to the shortage function approach). Under certain circumstances, it is

possible to infer the nature of the solution obtained for the general K-moment utility function

(see Briec et al. (2007) for details). Furthermore, we are unaware of a way to compute the hyper-

shortage function, which precludes netting out Convexity Efficiency from AEK,λ in general.

Under certain circumstances, it is possible to check whether the Convexity Efficiency equals

zero or is larger than zero, though its exact value remains unknown (see Briec et al. (2007)).

Second, in contrast to the primal approach based upon the shortage function, it is difficult

to assess the usefulness of additional moments in the approximation of the EU function using

the above indirect utility approach. The basic problem is that the successive maximum values

of the value function of the general K-moment utility function (hence, the values of the OEK,λ

components) cannot be a priori ordered when moments are added, since these value functions

depend on the specific risk parameters postulated for the added moments. Therefore, the short-

age function approach may well be a more promising way forward to develop proper statistical

test procedures.

Recently, utility maximization for portfolio choice has again become the focus of research via

the development of the method of Full-Scale Optimization (FSO) (see, e.g., Adler and Kritzman
21Notice that in principle, the shortage function approach can be used to reconstruct MVS portfolio frontiers

(and beyond) using either 2D or 3D grids based upon the empirical domain of mean, variance and skewness of the
basic set of observed portfolios (xj). Apart from Remark 2.5, technical issues surrounding such reconstruction
are topics of currently ongoing research.
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(2006), Gourieroux and Montfort (2005), Maringer and Parpas (2009), Sharpe (2007)). But,this

development also exemplifies the above mentioned problems. Empirical return distributions (or

theoretical distributions, or combinations of both) are used in their entirety, and the choice

of utility function is completely flexible (uncompromised by mathematical convenience, but in

practice limited up to at most four moments), portfolio allocations are then optimized to max-

imize a variety of utility functions and the best fitting utility maximizing portfolio is retained.

However, this absence of simplifying assumptions -which yields its theoretical appeal- implies

an enormous computational cost: since the optimization problem is non-convex, one needs a

gradient-based technique (assuming a single maximum exists) or a grid search. For larger prob-

lems with many assets (common in portfolio optimisation practice), heuristic search algorithms

(e.g., differential evolution (DE)) can offer a way out. However, because the objective function

is nonconcave, it is impossible to guarantee global optimality in such a dual approach and one

can at best only verify whether conditions of local optimality are satisfied.

3.3 Results Assuming Differentiability

This subsection studies properties of the shortage function that presume differentiability at the

point where the function is evaluated. For this purpose, the adjusted K-moment risk character-

istics correspondence of level λ, µK,λ : =× (CK,+\{0}
) −→ 2[RK ] is introduced for all λ ∈ [0, 1]:

µK,λ (x; g) = arg min
µ

{
VK,λ (µ)− UK,λ,µ (x) :

〈
µ, g

〉
K

= 1, µ ≥ 0
}

. (3.15)

Notice that 2[RK ] is the collection of all the subsets (power set) of RK . In the remainder,

µk,λ(x; g) denotes the k-th component of µK,λ (x; g). This function implicitly characterizes the

agent’s risk aversion, prudence, temperance, etc.22 The fact that, at least in principle, absolute

risk aversion, prudence, temperance, and other risk characteristics can be revealed using this

adjusted K-moment risk characteristics function expands the possibilities to directly optimize

the K-moment approximation of EU based on more realistic parameters.

The next result shows that the hyper-shortage function increases in the odd moments and

decreases in the even moments.

22This name is inspired by the adjusted price function in consumer theory (see Luenberger (1995)).
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Proposition 3.9 Let S̄K,λ be the hyper-shortage function defined on =. At the points where

S̄K,λ is differentiable in x, for all k ∈ K: ∂S̄K,λ(x; g)
mk,λ(x;g)

∣∣∣
mk′,λ(x;g)=Ct,k′ 6=k

= (−1)k−1µk (x; g) .

Unfortunately, we are unaware of a way to compute the hyper-shortage function and thus to

obtain these shadow prices. However, in the convex case (i.e., if either C1 or C2 holds), then

following Corollary 3.8 we have S̄K,λ = SK,λ, and consequently: ∂SK,λ(x; g)
mk,λ(x ,g)

∣∣∣
mk′,λ(x; g)=Ct,k′ 6=k

=

(−1)k−1µk,λ (x; g) . When limiting attention to even moments or to lower partial moments,

this result shows that changes of the shortage function with respect to x are identical to the

variation of the indirect utility function, computed with respect to the adjusted K-moment risk

characteristics function. Furthermore, this same variation can be linked to the moment matrices

of each asset.

In fact, under some regularity conditions and assuming that either C1 or C2 holds, the ad-

justed K-moment risk characteristics function can be obtained from the Kuhn-Tucker multipliers

of the mathematical program (PK,λ) computing the shortage function. This is demonstrated in

the next proposition.

Proposition 3.10 Assume that either C1 or C2 holds. Let j ∈ {1 · · ·m} such that that program

(PK,λ) has a regular optimal solution. For k ∈ K, let ηk ≥ 0 be the Kuhn-Tucker multipliers of

the first |K| constraints in (PK,λ). If the shortage function is differentiable at point xj, then:

a) We have:
∂SK,λ(x; g)
∂mk,λ(x)

∣∣∣∣ x=xj

mk′,λ(x; g)=mk′,λ(xj ; g)

k 6=k′

= (−1)k−1ηk,

b) The adjusted K-moment risk characteristics correspondence of level λ is single valued and

identical to the Kuhn-Tucker multipliers: µk,λ(x; g) = ηk.

In line with Corollary 3.6, in the convex case and assuming minimal regularity properties, it is

possible for any portfolio xj to achieve the indirect utility function using the optimal solution

(δ∗, x∗) of the program (PK,λ) and the optimal risk characteristics (µ(xj ; g)) determined by the

adjusted K-moment risk characteristics function.

Proposition 3.11 For a portfolio xj, j ∈ {1, · · · ,m} and under either C1 or C2, if (δ∗, x∗) is

a solution to program (PK,λ) and assuming the adjusted K-moment risk characteristics function

of level λ is single valued at xj, then: UK,λ,µ∗(x∗) = VK,λ (µ∗) , where µ∗ = µK,λ(xj ; g)
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It is also possible to link the adjusted K-moment risk characteristics function and some kind

of Marshalian demand for each asset. First, let us introduce the matrix of derivatives:

Bk,i(λ) =
[
∂mk,λ(x)

∂xi

]

k,i

. (3.16)

Moreover, assuming the maximum is unique and given a vector of risk characteristics we define

a ”Marshalian” demand for assets by:

xK,λ(µ) = arg max{UK,λ,µ(x) : x ∈ =}. (3.17)

At points where this Marshalian demand is single valued and differentiable in µ, one can then

define some kind of Slutsky substitution matrix:

Si,k(λ) =
[
∂xK,λ,i(µk)

∂µk

]

i,k

. (3.18)

As shown in the next proposition, this Slutsky matrix can be linked to the matrix B.

Proposition 3.12 Let S̄K,λ be the hyper-shortage function. Let D(K) be the |K|×|K| diagonal

matrix defined by Dk,k(K) = (−1)k−1. At the points where S̄K,λ is differentiable in x, we have:

a)

B(λ)S(λ) =
1〈

µ, g
〉
K

I − 1(〈
µ, g

〉
K

)2 µ× gD(K);

b)

B(λ)TS(λ)T =
1〈

µ, g
〉
K

I − 1(〈
µ, g

〉
K

)2D(K)g × µ;

c)

B(λ)B(λ)+ = I − 1(〈
µ, g

〉
K

)2D(K)g × gD(K).

Obviously, if either C1 or C2 holds, then the above result holds at points where SK,λ is differen-

tiable in x.

4 Empirical Illustration

To illustrate the feasibility of this new approach, we compute the decomposition of OEK, 1
2

for a

small sample of 30 ”blue chips” stocks quoted on the London Stock Exchange between January
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1990 and May 2001. The sample contains 2874 observations on continuously compounded total

rates of returns for all assets.

For reasons of space, the empirical analysis is limited to an empirical analysis focusing on

the first four centered moments. To show the flexibility of this new approach, we contrast two

basic models: a mean-variance (MV) model, and a mean-kurtosis (MK) model. To illustrate

approximating the indirect EU function to the 4-th order, we add to both these models the

skewness and kurtosis respectively the variance and skewness to test for the impact of including

additional moments in different sequences.

Summarizing the computational procedure, we start with solving the program (PK, 1
2
) to

obtain PEK, 1
2
.23 Then, solving the mathematical program corresponding to maximizing the

direct 4-th order moment EU function over the set DRK,λ with parameters µ1 = 1, µ2 = 1.5,

µ3 = 2, and µ4 = 2 yields the indirect general K-moment EU function in Definition 3.1. These

parameters fix absolute risk aversion (A1(w) = 1.5), prudence (A2(w) = 1.33) and temperance

(A3(w) = 1) around conventional values (though one should realize that little is known on

especially the latter parameters). Finally, applying the decomposition in Definition 3.3 and

using (3.13) leads to the decomposition results in Tables 1 and 2 for the MV respectively the

MK models.

TABLES 1 AND 2 ABOUT HERE

The first part of Table 1 summarises the basic MV results, while the second part describes the

impact of adding the third and fourth moments in various sequences. The first part of Table 2

starts from a MK model and the second part of this same table checks the contribution of second

and third moments in various orders. Comparing the sample averages for PEK, 1
2

in the lower

part of Tables 1 and 2 and recalling the goodness-of-fit interpretation of the shortage function,

one observes that the MV model fits the sample data better than the MK model. This could

indicate that a MK model as such would not be a good substitute for the traditional MV model.

Starting from these two models, it is clear that adding skewness respectively skewness and

variance makes a difference, while adding kurtosis to the first model has an ignorable impact.

The first line in Table 3 contains the results for the Li (1996) test statistic confirming these

conclusions for Tables 1 and 2. The lower part adds some additional transitions between models
23A technical issue when computing (PK, 1

2
) is the choice of direction vector. To obtain a proportional interpre-

tation, the direction vector equals the moments of the evaluated asset (i.e., g = ‖mk,λ(xj)‖).
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that have been tested for. For instance, adding an even moment to a portfolio model containing

first, third and another even moment does not seem to add much value.

TABLE 3 ABOUT HERE

Now focusing attention to OEK, 1
2
, it is clear that in both basic models PEK, 1

2
is the dominant

source of inefficiency, while AEK, 1
2

is secondary in importance for the postulated parameters.

Actually, quiet a few individual assets lead to portfolio projections rather close to the optimal

risk characteristics postulated, resulting in near-zero values for their AEK, 1
2

score.

TABLE 4 ABOUT HERE

The distribution of optimal portfolio weights in the shortage function approaches is reported

in Table 4 in a condensed format. For each model variation, one finds the number of average

non-zero weights, and the mean and standard deviation of these portfolio weights. Comparing

MV and MK results first, one observes that the former implies a higher diversification with

on average lower weights and less dispersion among weights. Adding the skewness dimensions

always leads to fewer non-zero weights, resulting in higher average and more dispersed weights.

Extending the MK model with a variance dimension increases the number of non-zero weights,

lowers average weights, but increases its dispersion.

While this analysis has so far been limited to average results at the sample level, we now

discuss some results at the individual level. In addition to the average results for the MV

and MK models and their sequentially added moments, Tables 1 and 2 equally list detailed

individual results for part of the sample (to save some space).24 To develop some intuition,

in the first example we briefly comment how the portfolio performance changes depend on the

added moments when the starting point of the portfolio optimisation is a single asset. This asset

can be arbitrary chosen or it may reflect certain moment characteristics valued particularly by

the investor. We also briefly comment on the OEK, 1
2

decomposition.

Example 4.1 In the MV model, the single asset ”Abbey National” obtains a PEK, 1
2

of 0.011

implying that mean return can be improved by 1.1% and its risk can be reduced by the same

amount. In the MK model, its PEK, 1
2

equals 0.009 meaning that mean return could only be

improved by 0.9% and kurtosis diminished by an equal percentage.
24The complete Tables 1 and 2 are in an Appendix available upon request.
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Extending the MV model with the skewness leads to an impact measure of I 1
2
({3}, {1, 2}, x; g)

= 0.011, meaning that the difference between PEK, 1
2

under MV and MVS models equals 0.011.

Thus, in the MVS model this asset must be efficient (I 1
2
({3}, {1, 2}, x; g) = 0.011 = 0.011 - 0).

Extending the same MV model with the kurtosis yields an impact measure of I 1
2
({4}, {1, 2}, x; g)

= 0.002. Applying the same reasoning one can infer that its PEK, 1
2

in the MV-kurtosis (MVK)

model must be around 0.009, which is only marginally below the MV efficiency score. Thus,

adding skewness to the MV model has a larger impact than adding kurtosis.

Adding now a fourth moment to the previous three dimensional models results in the following

impact measures: I 1
2
({4}{1, 2, 3}, x; g) = 0.000 for the MVS model, and I 1

2
({3}, {1, 2, 4}, x; g) =

0.009 for the MVK model. This means that adding kurtosis to a MVS model adds nothing (i.e.,

the asset remains efficient), while adding skewness to a MVK model makes the asset become

efficient. A similar reasoning can be applied starting from the MK model when interpreting the

last four columns in Table 2.

Looking at the efficiency decomposition for the MV model for the same asset, it is clear that

only about 1.1% of its poor performance is due to PEK, 1
2

(i.e., operating below the MV portfolio

frontier), while the remaining 79.3% of the performance gap is due to AEK, 1
2

(i.e., choosing a

wrong mix of return and risk given the postulated risk aversion parameters). This adds up to an

OEK, 1
2

performance gap of 80.4%. In the same vein, it is possible to interpret the decomposition

results for the MK model when interpreting the last four columns in Table 2. Of course, it is

useful to reiterate that OEK, 1
2

depends on the specification of risk characteristics about which

little is known.

For each of these portfolio models, one can of course obtain information on the optimal port-

folio return, risk, skewness and kurtosis at the frontier. To clarify this issue, the second example

mentions the frontier projections and their resulting moment characteristics for a selection of

different portfolio models.

Example 4.2 The asset ”Land Securities” has a return of 0.0177, a risk of 1.4653, a skewness

of 0.3046, and a kurtosis of 10.6128. Determining an optimal portfolio using this asset as a

starting point yields the results listed in Table 5. The MV model leads to an increase in return

and reduction in risk that is rather substantial. However, when we add the skewness, then it is

clear that the optimal results for the MVS model are less spectacular in terms of returns and

risk. But, this model manages to increase the skewness relative to the starting point. Thus, it
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becomes clear that the good performance of the MV model in both return and risk dimensions is

due to its neglect of the skewness which had substantially fallen compared to the initial situation.

When adding the kurtosis to the MV model, close to nothing happens: the results are almost

indistinguishable. Finally, when adding the kurtosis to the previous three dimensional models,

one ends up with an even less spectacular improvement in terms of return and risk compared to

the MV model, but now both the skewness and kurtosis improve compared to the initial situation.

By contrast, the MV model coincidentally ended up with a better kurtosis compared to the starting

point, but at the cost of a substantial loss in skewness. Notice furthermore that the number of

non-zero weights as well as the mean of these portfolio weights follow patterns close to the ones

described before. Obviously, these frontier projection are computed based on the optimal portfolio

weights. Details on the optimal portfolio weights are suppressed for reasons of space.

TABLE 5 ABOUT HERE

Of course, this is but one sample of financial data, replication studies on different asset

classes and markets are needed to verify whether any of these tentative conclusions about the

relative fit of the various portfolio models can be corroborated.

5 Conclusions

A general method for benchmarking portfolios in the non-convex K-moment space has been

proposed utilizing the shortage function (see Luenberger (1995)). In this higher-order moment

portfolio problem, portfolio efficiency is evaluated by simultaneously looking for reductions in

even moments and expansions in odd moments. In the finance literature, these moment pref-

erences are traditionally related to the general class of mixed risk aversion utility functions

proposed by Caballé and Pomansky (1996). In the convex case, this shortage function is linked

via a duality result to a multidimensional moment approximation of a general indirect utility

function. This duality result forms the basis to distinguish between portfolio efficiency and

allocative efficiency. Under non-convexity, a convexity efficiency component is defined that is

related to the difference between the shortage function and the hyper-shortage function, the

latter being defined relative to a convexified representation set. An empirical illustration illus-

trated the computational tractability of this new, general approach for both general and partial

moments.
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This shortage function framework projects portfolios relative to a nonparametric estimate

approximating the unknown true frontier. This shortage function always achieves global opti-

mality, has the interpretation of an efficiency measure gauging the performance of portfolios,

and forms a natural basis for testing the impact of additional higher moments in the approx-

imation. An additional virtue is that sound economic interpretations are available thanks to

duality with a general, higher order Taylor expansion of the EU function. In contrast, no global

optimal solution can be guaranteed for this more traditional indirect utility function approach,

that furthermore depends on risk parameters about which little practical knowledge is available.

These results indicate that future research should probably focus on developing portfolio

optimization methods using this shortage function framework. Of course, a wide range of po-

tential further improvements can be listed. A major limitation of the current analysis is that

lots of statistical issues are ignored. We sketch a few examples of open issues. For one, while it

is well-known that the estimation errors in means are more important than errors in variance-

covariance matrices, whereby errors in variances weight heavier than errors in covariances (see,

e.g., Chopra and Ziemba (1993)), little seems to be known about errors in the estimation of

higher order moment matrices. Second, Kim and White (2004) recently raise the issue of the

robustness of current ways of computing the higher moments, i.e., skewness and kurtosis, and

indicate that results on the skewness and kurtosis of stock market returns are heavily influenced

by outliers.
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A= (Var[R(x)], E[R(x)])

B

C projects A on MV util. function

Var[R]
0

E[R]

(-gVar, gE)

� 1 E[R(x)] – � 2 Var[R(x)]

C

D

,K λ
∂

D maximises MV util. function

B projects A on
Observed portfolio A

Legend:

,K λ
∂

MV Disposal Representation Set

Figure 1: Shortage function and OE decomposition in MV model

In this figure we illustrate the case where K = {1, 2} and λ = 1
2 . Inefficient portfolio

(point A) is projected onto the weak efficient frontier (denoted ∂K,λ) at point B. Point B is not
optimal for given investor preferences. Point D maximizes the MV utility function (point C
yields same level). Notice that the disposal representation set DRK,λ is convex.
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(-gVar, gE)

Legend:

Fictitious portfolio A

B projects A using shortage function
C projects A using hyper-shortage function

C

B MV Section of MVS 
Disposal Representation Set

Dot plot of empirical frontier section

Solid line convexifying the dot plot

,K λ
∂

Figure 2: MV Section of the MVS Disposal Representation Set: Shortage Function
and Hyper-Shortage Function

Sample of 35 assets (part of French CAC40 index): starting from a MVS model and
given a skewness level of 2.49, a section of the frontier in the MV subspace is generated. In this
case we have K = {1, 2, 3} and λ = 1

2 . One can see that the disposal representation set DRK,λ

is not convex. The solid line convexifies this MV section of the MVS disposal representation
set. A fictitious inefficient portfolio (point A) is superimposed on this frontier section. The
shortage and hyper-shortage functions project point A onto 2 different boundaries: point B
(C) on the non-convex (convexified) section. The difference between both projections reflects a
positive Convexity Efficiency for this point A.
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Table 1: Mean-Variance Model: Impact of Adding Up to Four Moments
Mean-Variance Impact Measures

OE AE PE I({3}, {1, 2})† I({4}, {1, 2}) I({4}, {1, 2, 3}) I({3}, {1, 2, 4})

1 Assd.Brit.Foods 0.782 0.032 0.750 0.750 0.000 0.000 0.750

2 Allied Domecq 0.780 0.000 0.780 0.780 0.000 0.000 0.780

3 Abbey National 0.804 0.793 0.011 0.011 0.002 0.000 0.009

4 Bae Systems 0.899 0.066 0.834 0.000 0.000 0.000 0.000

5 Baa 0.712 0.269 0.443 0.000 0.000 0.000 0.000

...
...

...
...

...
...

...
...

...

25 Imp.Chm.Inds. 0.819 0.005 0.813 0.060 0.000 0.000 0.060

26 Invensys 0.879 0.097 0.782 0.000 0.000 0.000 0.000

27 Kingfisher 0.815 0.235 0.580 0.013 0.000 0.000 0.013

28 Land Securities 0.571 0.002 0.569 0.109 0.000 0.002 0.110

29 Legal General 0.825 0.385 0.440 0.056 0.000 0.000 0.056

30 Marks Spencer Group 0.817 0.001 0.816 0.794 0.000 0.000 0.794

Mean 0.804 0.174 0.631 0.328 0.000 0.000 0.328

St. Dev. 0.067 0.251 0.252 0.367 0.000 0.000 0.367

Max 0.899 0.885 0.885 0.883 0.002 0.002 0.883

† Notation has been simplified to save space.
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Table 2: Mean-Kurtosis Model: Impact of Adding Up to Four Moments
Mean-Kurtosis Impact Measures

OE AE PE I({3}, {1, 4})† I({2}, {1, 4}) I({2}, {1, 3, 4}) I({3}, {1, 2, 4})

1 Assd.Brit.Foods 0.981 0.015 0.966 0.966 0.216 0.000 0.750

2 Allied Domecq 0.981 0.001 0.980 0.980 0.200 0.000 0.780

3 Abbey National 0.976 0.967 0.009 0.009 0.000 0.000 0.009

4 Bae Systems 1.000 0.002 0.998 0.000 0.164 0.164 0.000

5 Baa 0.981 0.304 0.678 0.000 0.235 0.235 0.000

...
...

...
...

...
...

...
...

...

25 Imp.Chm.Inds. 0.982 0.000 0.982 0.047 0.169 0.182 0.060

26 Invensys 0.999 0.007 0.992 0.000 0.209 0.209 0.000

27 Kingfisher 0.983 0.256 0.727 0.001 0.147 0.159 0.013

28 Land Securities 0.845 0.015 0.830 0.297 0.260 0.074 0.110

29 Legal General 0.983 0.489 0.493 0.051 0.053 0.057 0.056

30 Marks Spencer Group 0.987 0.000 0.987 0.965 0.171 0.000 0.794

Mean 0.978 0.194 0.784 0.406 0.154 0.075 0.328

St. Dev. 0.027 0.310 0.310 0.458 0.077 0.091 0.367

Max 1.000 0.996 0.998 0.993 0.266 0.266 0.883

† Notation has been simplified to save space.
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Table 3: Li (1996) Test Statistic for Various Portfolio Models: Results
From/To model MVS MVK MVSK From/To model MKS MKV MVSK

MV 6.695∗∗∗ -7.45E-06 6.694∗∗∗ MK 7.638∗∗∗ 10.272∗∗∗ 13.104∗∗∗

MVS 6.688∗∗∗ 0.000 MKS 9.757∗∗∗ 0.6735

MVK 6.687∗∗∗ MKV 6.687∗∗∗

∗∗∗ Test statistic significant at 1% level.

Table 4: Optimal Portfolio Weights
K # Non-0 Weights† Avg. Weight† St. Dev. Weight

{1, 2} 10.541 0.095 0.209

{1, 4} 7.550 0.132 0.217

{1, 2, 3} 3.118 0.321 0.428

{1, 2, 4} 10.541 0.095 0.404

{1, 3, 4} 2.628 0.380 0.404

{1, 2, 3, 4} 3.118 0.321 0.428

† Geometric mean.

Table 5: Optimal Portfolio Characteristics in Different Models for ”Land Securities”
Return Risk Skewness Kurtosis # Non-0 Weights Avg. Weight

Initial situation 0.0177 1.4653 0.3046 10.6128

MV 0.0278 0.6309 0.0380 1.7860 22.000 0.045

MVS 0.0272 0.7904 0.4449 6.1744 16.000 0.063

MVK 0.0278 0.6309 0.0380 1.7860 22.000 0.045

MVSK 0.0275 0.7926 0.4444 5.7410 16.000 0.062

43

IESEG Working Paper Series 2009-ECO-08



Proofs of Lemmas and Propositions

Proof of Proposition 2.4: a) If x 6∈ ΘK,λ(=), then there is some m′ ∈ DRK,λ such that

(−1)k−1m′ > (−1)k−1mk,λ(x) for all k ∈ K. Therefore, it is immediate to see that SK,λ(x; g) >

0. Conversely, if SK,λ(x; g) > 0, then mK,λ(x)+SK,λ(x; g).g ∈ DRK,λ. Therefore, x 6∈ ΘK,λ(=).

b) is an immediate consequence of the definition of DRK,λ. c) Since the function x 7→ mK,λ(x)

is continuous on =, using the argument developed in Luenberger (1992), the proof is immediate.

Q.E.D.

Proof of Proposition 2.6: Let us prove the first part of the result. Assume that m,m′ ∈
DRK,λ for λ ∈ {0, 1}. There exists x, x′ ∈ = such that m1 ≤ m1,λ(x), m′

1 ≤ m1,λ(x′) and mk ≥
mk,λ(x), m′

k ≥ mk,λ(x′) for all k ∈ K. Let θ, θ′ ∈ [0, 1] such that θ+θ′ = 1. Since K ⊂ {1}∪2N∗,

the functions mλ
k(·) are convex. Therefore, θm1 + θ′m′

1 ≤ θm1,λ(x)+ θ′m1,λ(x′) = m1(θx+ θ′x′)

and θmk + θ′m′
k ≥ θmk,λ(x) + θ′mk,λ(x′) ≥ mk,λ(θx + θ′x′). Hence, θm + θ′m′ ∈ DRK,λ. This

proves convexity of DRK,λ.

Let us prove the last part of the statement (λ = −1). Suppose that mK ,m′
K ∈ DRK,λ.

We need to prove that for all θ, θ′ ∈ [0, 1] with θ + θ′ = 1, we have θmK + θ′m′
K ∈ DRK,λ.

If mK ,m′
K ∈ DRK,λ, then there exists x, x′ ∈ = such that (−1)k−1mk,λ(x) ≥ (−1)k−1mk and

(−1)k−1m′
k,λ(x′) ≥ (−1)k−1m′

k for all k ∈ K. Moreover, for all k ∈ 2N∗, mk,λ(·) is convex.

Consequently,

(−1)k−1mk,λ(θx + θ′x′) ≥ (−1)k−1(θmk + θ′m′
k).

Since for all k ∈ 2N∗ + 1, mk,λ(·) is concave we deduce that

(−1)k−1mk,λ(θx + θ′x′) ≥ (−1)k−1(θmk + θ′m′
k).

Consequently, since θx + θ′x′ ∈ = we deduce that θmK + θ′m′
K ∈ DRK,λ which ends the proof.

Q.E.D

Proof of Proposition 2.7: Clearly, mk,0 is a convex function for all k ∈ 2N∗. Moreover, it is

-by construction- concave for all k ∈ {1} ∪ 2N∗. Since for all k ∈ {1} ∪ 2N∗, mk,λ is convex for
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λ ∈ {1/2, 1}, we deduce that, under the assumptions in C1 and C2, the domain:

DK =
{

(δ, z) ∈ Rn+1
+ : (−1)k−1 mk,λ(xj) + δgk ≤ (−1)k−1 mk,λ(z), k ∈ K, z ∈ =

}

is convex. We have SK,λ(xj ; g) = max{δ : (δ, z) ∈ D}. Hence, if (δ∗, z∗) is a local maximum,

then it is global maximum which ends the proof. Q.E.D.

Proof of Proposition 2.10: a) By construction, mK,λ(x) + SK,λg ∈ DK,λ. By definition

DK,λ = MK,λ −
∏

k∈K(−1)k−1R+. Consequently, there is some z ∈ = such that mK,λ(z) ≥
mK,λ(x)+SK,λg. Hence, ζK,λ(x) 6= ∅. b) Suppose that z∗ ∈ ζK,λ(x), this implies that mK,λ(z∗) ∈
DK,λ. Let us denote

A∗ = {z ∈ = : z <K,λ z∗, z �K,λ z∗}.

Since for all k ∈ K mk,λ(z) is continuous in z, it follows that A∗ is a closed subset of =. Moreover,

since = is bounded, A∗ is a compact subset of Rn. Let us consider the map z 7→ ∑
k∈K mk,λ(z)

defined on =. This map is continuous and, from the compactness of A∗, its achieves its maximum

at some z̄. By construction, its maximum is strongly efficient and, consequently, z̄ is strongly

efficient. However, since z̄ <K,λ z∗, it follows that mK,λ(z̄) ≥ mK,λ(z∗) = mK,λ(x)+SK,λ(x; g)g.

Consequently, z̄ ∈ ζK,λ(x), which ends the proof of b). c) Suppose that x∗ is not weakly effi-

cient and let us show a contradiction. If x∗ is not weakly efficient then, by hypothesis, there

exists some m′ ∈ DRK,λ such that (−1)k−1m′
k > (−1)k−1mk,λ(x∗) for all k ∈ K. Hence, there

exists some δ′ > 0 such that mK,λ(x∗) + δ′g ∈ DRK,λ ≤ m′. However, for j = 1 · · ·m and

for all k ∈ K, we have (−1)k−1mk,λ(xj) + δ∗gk ≤ (−1)k−1mk,λ(x∗). Hence, we deduce that

(−1)k−1mk,λ(xj) + (δ∗ + δ′)gk ≤ (−1)k−1mk,λ(x∗) + δ′gk. Since mk,λ(x∗) + δ′g ∈ DRK,λ and

δ∗ + δ′ > δ∗, this contradicts the fact that δ∗ is an optimal solution of (PK,λ). Q.E.D.

Proof of Proposition 2.13: Let DK be defined as in the proof of Proposition 2.7. We have

obviously DK′ ⊂ DK . Since SK,λ(x; gK) = max{δ : (δ, y) ∈ DK,λ}, we deduce the result.

Q.E.D.

Proof of Lemma 3.2: The proof is similar to that of Proposition 2.6. Therefore, it is omitted.

Q.E.D.
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Proof of Proposition 3.4: We have established that DRK,λ is convex. Since:

DRK,λ = DRK,λ −
∏

k∈K

(−1)k−1R+

we deduce that if µ /∈ RK
+ , then:

sup
{ ∑

k∈K

(−1)k−1µk.mk : m ∈ DRK,λ

}
= +∞.

Now clearly the function m → ∑
k∈K(−1)k−1µk.mk is linear on RK . Moreover, VK,λ(µ) =

sup{∑k∈K(−1)k−1µk.mk : m ∈ DRK,λ}. Therefore, from the convex separation theorem, we

deduce the result. Q.E.D.

Proof of Proposition 3.5: The proof is straightforward from Proposition 2.6 and Luenberger

(1992). Q.E.D.

Proof of Proposition 3.9: The proof is obtained by the standard envelope theorem. Q.E.D.

Proof of Proposition 3.10: The proof is similar to the one established in Briec, Kerstens and

Lesourd (2004). Therefore, it is omitted. Q.E.D.

Proof of Proposition 3.11: Since (δ∗, x∗) is solution of (PK,λ), we have:

(−1)k−1mk,λ(x∗) ≥ (−1)k−1(mk,λ(xj) + δ∗gk)

for all k ∈ K. Consequently,

∑

k∈K

µk,λ(xj)(−1)k−1mk,λ(x∗) ≥
∑

k∈K

µk,λ(xj)(−1)k−1(mk,λ(xj) + δ∗gk).

Since
∑

k∈K(−1)k−1µk,λ(xj)gk = 1, we obtain:

UK,λ,µ∗(x∗) ≥ UK,λ,µ∗(xj) + δ∗,
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where µ∗ = µK,λ(xj). However, since either C1 or C2 hold, we have δ∗ = VK,λ(µ∗)−UK,λ,µ∗(xj).

Hence, UK,λ,µ∗(x∗) ≥ VK,λ(µ∗). By definition, we have UK,λ,µ∗(x∗) ≤ VK,λ(µ∗) which ends the

proof. Q.E.D.

Proof of Proposition 3.12: a) Let µ̄ = µ∑
k∈K(−1)k−1µkgk

. We have:

∂µ̄k

∂µk
=

∑

i=1···n

∂µ̄k

∂xi

∂xi

∂µk
=

1∑
k∈K(−1)k−1µkgk

− µk(−1)k−1gk(∑
k∈K(−1)k−1µkgk

)2 .

Moreover, if k 6= k′:

∂µ̄k

∂µk′
=

∑

i=1···n

∂µ̄k

∂xi

∂xi

∂µk′
= − µk(−1)k′−1gk′(∑

k∈K(−1)k−1µkgk

)2 .

But:

[B(λ)S(λ)]k,k′ =

[ ∑

i=1···n

∂µ̄k

∂xi

∂xi

∂µk′

]

k,k′

and the result holds. b) is obtained by taking the transpose in a). c) This follows by combining

a) and b). Q.E.D.
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