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Abstract

This contribution points out a minor problem in the specification of technology when com-

puting the Luenberger productivity indicator that has been hitherto ignored in the literature.

The solution of this problem increases the likelihood that the directional distance functions

underlying this productivity indicator are ill-defined.
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1 Introduction

Total factor productivity (TFP ) growth measures traditionally the shifts in technology in a

residual way, namely in terms of output growth which remains unexplained by the input growth

(Hulten (2001)). Nishimizu and Page (1982) innovated by decomposing TFP growth into techni-

cal change and technical efficiency change using parametric production frontiers. They realised

that ignoring inefficiency may bias TFP measurement. Discrete time Malmquist input- and

output-oriented productivity indexes based upon Shephardian distance functions (see Caves,

Christensen and Diewert (1982)) have been made empirically tractable by Färe et al. (1995).
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perp.fr. Corresponding author.
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By exploiting the relation between distance functions and radial efficiency measures, these au-

thors suggest computing distance functions using deterministic, non-parametric technologies (as

inner bound approximations of the true but unknown technology). Furthermore, these same

authors integrate the two-part decomposition of TFP of Nishimizu and Page (1982) into this

Malmquist productivity index. Meanwhile, dozens of articles have employed this Malmquist

productivity index to study productivity change in a wide variety of empirical contexts.

Meanwhile, more general primal productivity indicators have been proposed.1 Indeed, in a

series of articles Chambers, Färe and Grosskopf (1996), Chambers and Pope (1996) and Cham-

bers (2002) define a Luenberger productivity indicator as a difference-based index of directional

distance functions. The latter functions generalize Shephardian distance functions by accounting

for both input reductions and output augmentations and they are dual to the profit function. It

is possible to define input- and output-oriented versions of this Luenberger indicator as special

cases. These indicators can then be interpreted as difference-based versions of their similarly

oriented Malmquist productivity indices. Though it is not yet as popular as the Malmquist

productivity index, the Luenberger productivity indicator has recently been used as a tool for

empirical analysis in a series of articles (e.g., Barros and Peypoch (2007), Boussemart et al.

(2003), Guironnet and Peypoch (2007), Managi (2003), Nakano and Managi (2008), among

others).

This contribution points out a basic problem in the computation of the Luenberger produc-

tivity indicator that has been hitherto ignored in the existing literature. The solution of this

problem increases the probability that the directional distance functions underlying this produc-

tivity indicator are ill-defined. The next section defines the basics to formulate the Luenberger

productivity indicator, points out the basic problem in its computation, and indicates a way

out.

2 Luenberger Productivity Indicator

Production technology transforms inputs x = (x1, · · · , xn) ∈ Rn
+ into outputs y = (y1, · · · , yp) ∈

Rp
+. For each time period t, the production possibility set T summarizes the set of all feasible

1“Indicators” denote productivity measures based on differences, while “indexes” indicate productivity mea-
sures defined as ratios (see Diewert (2005) for an overview).
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input and output vectors. This technology can be defined as follows:

T =
{

(x, y) ∈ Rn+p
+ ; x can produce y

}
. (2.1)

Throughout this note, technology satisfies the following standard assumptions: (T.1) (0, 0) ∈
T, (0, y) ∈ T ⇒ y = 0 i.e., no free lunch; (T.2) the set A(x) = {(u, y) ∈ T ; u 6 x} of

dominating observations is bounded ∀x ∈ Rn
+, i.e., infinite outputs are not allowed with a finite

input vector; (T.3) T is closed; (T.4) ∀(x, y) ∈ T, (u, v) ≥ 0 and (x,−y) 6 (u,−v) ⇒ (u, v) ∈
T , i.e., fewer outputs can always be produced with more inputs, and inversely (strong disposal

of inputs and outputs); and (T.5) T is convex. Notice that to simplify notation, technology has

no time superscript.

One way to characterize technology is the use of distance functions. In an effort to simplify

notation, we denote z = (x, y) ∈ T and g = (h , k) ∈ (−Rn
+) × Rp

+ which is partitioned in

an input and an output direction vector h respectively k. The directional distance function

involving a simultaneous input and output variation in the direction of a pre-assigned vector g

is defined as:2

Definition 2.1 The function DT : Rn+p
+ × (−Rn

+)× Rp
+ −→ R ∪ {−∞} ∪ {+∞} defined by

D(z; g) =





sup
δ
{δ ∈ R : z + δg ∈ T} if z + δg ∈ T for some δ ∈ R

−∞ otherwise

is called the directional distance function in the direction of g = (h , k).

Notice that distance functions are related to efficiency measures in that they measure deviations

from the boundary of technology. Notice furthermore that, following a tradition in defining this

distance function (e.g., Chambers (2002)), we distinguish between the standard case where the

distance is achieved and the case where there is no way to achieve the distance. This function

has proven to be a useful tool in applied production analysis. For instance, it allows Chavas

and Kim (2007) to shed new light on economies of scope from a primal viewpoint. Furthermore,

it provides the defining components of the Luenberger productivity indicator to which we now

turn.

To introduce the Luenberger productivity indicator, we now introduce a time superscript
2This directional distance function is a special case of the shortage function (Luenberger (1992)).

3

IÉSEG Working Paper Series 2008-ECO-9



into the directional distance function. Let (a, b) ∈ {t, t + 1} × {t, t + 1}, we denote:

Db(za; ga) = sup
δ
{δ ∈ R : za + δga ∈ T (b)} . (2.2)

The Luenberger productivity indicator L(zt, zt+1), initially proposed in Chambers, Färe and

Grosskopf (1996), Chambers and Pope (1996) and Chambers (2002), can now be defined as:

L(zt, zt+1; gt, gt+1) =
1
2

(
Dt(zt; gt)−Dt(zt+1; gt+1) + Dt+1(zt; gt)−Dt+1(zt+1; gt+1)

)
. (2.3)

An arithmetic mean of a Luenberger productivity indicator in base year t and t+1 is taken

to average out the effect of selecting an arbitrary base year. Productivity growth (decline) is

indicated by positive (negative) values. Chambers, Färe and Grosskopf (1996) also indicate that

the Luenberger indicator can be decomposed as follows:

L(zt, zt+1; gt, gt+1) =
[
Dt(zt; gt)−Dt+1(zt+1; gt+1)

]

+
1
2

[(
Dt+1(zt; gt)−Dt(zt; gt)

)
+

(
Dt+1(zt+1; gt+1)−Dt(zt+1; gt+1)

)]
. (2.4)

The expression in the first brackets represents the technical efficiency change (EC), while the

terms in the second brackets represents the technological change (TC).

Recently, Chambers, Färe and Grosskopf (1996) provide programs to compute the Luen-

berger productivity indicator (see below) using deterministic, non-parametric technologies (see

Varian (1984) and Banker and Maindiratta (1988)). Notice that while it is true that the vast

majority of empirical Luenberger productivity studies employ these technologies (e.g., Bousse-

mart et al. (2003) or Guironnet and Peypoch (2007)), this analysis carries immediately over to

parametric specifications of technology (see, e.g., Briec and Kerstens (2009)). A study based on

parametric technology specifications is Fuentes, Grifell-Tatjé and Perelman (2001). An example

of an empirical productivity study using both non-parametric and parametric technologies is

Atkinson, Cornwell and Honerkamp (2003).

Let J = {1, · · · , J} and consider the set of activities Ak = {zj : j ∈ J }. Suppose that

(0, 0) ∈ A and xj = 0 =⇒ yj = 0 in order to obey axioms T.1-T.5. The non-parametric estimate

T̂ of the unknown technology from the observed set of data A is:

T̂ =
{

z ∈ Rn+p
+ :∀(w, p) ∈ Rn+p

+ , ∃j ∈ J with p.y − w.x ≤ p.yj − w.xj
}

. (2.5)
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This can equivalently be rewritten as:

T̂ =
{

z ∈ Rn+p
+ :∀(w, p) ∈ Rn+p

+ , r.y − w.x ≤ max
j∈J

{p.yj − w.xj}
}

. (2.6)

From Varian (1984) and Banker and Maindiratta (1988), the primal formulation of this non-

parametric technology can be written:

T̂ =
{

z ∈ Rn+p
+ : x ≥ Xθ, y ≤ Y θ, 1m.θ = 1, θ ≥ 0

}
, (2.7)

where X is a n × m input matrix whose j-th row is xj ; Y is a p × m output matrix whose

j-th row is yj ; and 1m is the m-dimensional unit vector. The following program computes the

directional distance function with respect to technology T̂ :

D̄(z; g) = sup {δ ∈ R : x + δh ≥ Xθ, y + δk ≤ Y θ, 1m.θ = 1, θ ≥ 0} . (2.8)

Notice that to impose constant returns to scale (as proposed in Chambers, Färe and Grosskopf

(1996)), it suffices to drop the weight constraint (1m.θ = 1) on the activity vector (θ). However,

whether one assumes constant returns to scale or not, the above program may well not calculate

the directional distance function correctly if traditional economic definitions of non-negative out-

puts must be respected. In fact, it is easy to see that D̄(z; g) = sup
{

δ ∈ R : z + δg ∈ T̂ + K
}

,

where K = Rn
+ × (−Rp

+). Hence, the constraint z + δg ≥ 0 is missing. A similar approach

has been employed in all empirical studies known to us (see, e.g., Barros and Peypoch (2007),

Boussemart et al. (2003), Guironnet and Peypoch (2007), Managi (2003), Nakano and Managi

(2008), among others).

To calculate this function in a way that guarantees non-negative outputs, one should impose

the condition y+δk ≥ 0 explicitly. Since (x, y) may not be in T̂ (in this context when computing

the adjacent period distance functions Dt+1(zt; gt) or Dt(zt+1; gt+1)), in such a case DT̂ (z; g) < 0

which may occasionally lead to a projection point with a negative output. Thus, a formulation

for computing the directional distance function guaranteeing a traditional economic definition

of non-negative outputs is:

D̂(z; g) = sup {δ ∈ R : x + δh ≥ Xθ, y + δk ≤ Y θ, y + δk ≥ 0, 1m.θ = 1, θ ≥ 0} . (2.9)
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This reveals that the program in (2.8) may well generate non-economic outputs when (x, y) /∈ T̂ .

Notice that in some more pragmatic, managerially oriented benchmarking models where,

e.g., certain outputs are formulated in terms of growth rates, negative outputs resulting from a

projection using a directional distance function may well be relevant (see, for instance, Portela,

Thanassoulis and Simpson (2004)). In such a context, the program in (2.8) yields meaningful

results.

By contrast, in standard economic production applications negative outputs have little mean-

ing. Imposing the condition that the output translated by the directional distance function into

the direction of vector k must be positive (i.e., y + δk ≥ 0) solves economic meaningfulness, but

it may lead to infeasible solutions for the adjacent period directional distance functions.3 The

original Färe et al. (1995) paper on the the Malmquist productivity index attempts to avoid

this problem by choosing a technology with a restrictive returns to scale assumption. However,

Chambers and Pope (1996: 1364) rightly argue in favor of avoiding restrictive returns to scale

assumptions (e.g., constant returns to scale) that are only relevant for, e.g., a representative

firm supposedly to be in long-run equilibrium.

For illustration, we provide a small numerical example. Assume four units with a single

input producing a single output are observed in two time periods (see Table 1). The Luenberger

indicator as well as the underlying four proportional distance functions for each of these units

relative to the two frontiers in both years are summarised in Table 2. Looking at the representa-

tion of the graph of both technologies in Figure 1, the last three observations are clearly situated

on the variable returns to scale frontier in each time period (whence, the zeros in the first two

columns with distance functions), while the first observation is inefficient through time (whence,

the positive numbers in the first two columns with distance functions). The outward shift of

the technology explains the positive productivity growth revealed by the Luenberger indicator

for units 3 and 4. The inefficient observation 1 moving closer to the shifting frontier also enjoys

a positive productivity growth. However, the second unit illustrates the above mentioned issue:

while the projection of the first period observation to the second period frontier is feasible, the

reverse projection of the second period observation to the first period frontier is feasible under
3Interestingly, imposing non-negativity on the resulting output projection is not necessary when using tradi-

tional Shephardian distance functions in the context of the Malmquist productivity index. For instance, when
constructing the hyperbolic Malmquist productivity index (see Zofo and Lovell (2001)) using hyperbolic efficiency
measures these can eventually asymptotically generate a zero output, but these can never come up with a negative
output as a projection point. The additive nature of the directional distance function causes the peculiar result
described here.
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the standard specification, but infeasible otherwise. Indeed, the standard specification would

yield a projection on the vertical segment of the frontier in the negative orthant implying that

2.5 inputs could generate a -1 output level. Imposing non-negativity of the projection point

leads to an infeasibility in Dt(zt+1; gt+1) yielding an undefined Luenberger indicator.

The frequency of infeasible solutions depends, among others, on the data structure, the spec-

ification of technology and the choice of direction vector (see Briec and Kerstens (2009)). But,

Briec and Kerstens (2009) show convincingly that this problem of ill-defined productivity indica-

tors is unavoidable in general for both non-parametric and parametric technology specifications

alike and that therefore the property of well-determinateness in index theory may have to be

abandoned.4 One key result is that for a given technology with at least two output dimensions

and a given strictly positive direction vector, there always exists an input output vector such

that the directional distance function takes the value −∞ (see Proposition 3.1). Thus, imposing

the condition y + δk ≥ 0 may be just another cause of infeasibilities in empirical applications

of which empirical researchers should be aware. Unfortunately, there have been few empirical

studies explicitly reporting the prevalence of infeasibilities when computing, e.g., the Luenberger

productivity indicator or similar productivity indices. For instance, Mukherjee, Ray and Miller

(2001) as well as Ray and Desli (1997) are empirical studies using a Malmquist index that do

report on this problem. This lack of reporting is probably partially due to ignorance on the side

of empirical researchers.

These results have also practical implications for the development of estimation procedures

for technologies. For instance, attempts to correct the estimation bias in non-parametric estima-

tors using the bootstrap currently ignore the possibility of undefined distance functions in the

context of productivity indexes (see Simar and Wilson (1999) and Tortosa-Ausina et al. (2008)

for a recent empirical application), thereby introducing yet another bias in the estimates.

3 Concluding Comments

This contribution has clarified a problem with the traditional way of computing the Luenberger

productivity indicator. In fact, this traditional approach may lead to negative outputs when

computing adjacent time period directional distance functions. To avoid this outcome, one needs

to impose an additional constraint guaranteeing that the projected point yields a non-negative
4In a similar vein, Althin (2001) is one of the few authors explicitly acknowledging that both the variable and

fixed base Malmquist productivity indices may fail the determinateness test as an index.
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output. However, when it is binding, this additional constraint leads to infeasibilities. This is

yet another potential source of ill-defined productivity indicators.

It must be stressed that infeasibilities are neither specific to the Luenberger productivity

indicator nor specific to its use of the directional distance functions. As shown in Briec and

Kerstens (2009), infeasibilities can also occur in a variety of Malmquist productivity indices

based upon Shephardian distance functions as well. Furthermore, infeasibilities can equally

appear in a static efficiency setting when, for instance, evaluating the benefits from mergers (e.g.,

Bogetoft and Wang (2005)) or when measuring so-called super-efficiency models (e.g., Andersen

and Petersen (1993)) to rank efficient units or to assess stability of the solutions. However, it

is important that practitioners are aware of this infeasibility issue and why it may be logically

unavoidable under certain specifications of technology. Therefore, it is recommendable to simply

report any infeasibilities that happen to occur in empirical applications.
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Table 1: Numerical example with 1 input and 1 output in two time periods

Time Units Input Output
1 1 5.0 2.0
1 2 2.5 1.0
1 3 4.0 3.0
1 4 6.5 4.0
2 1 3.0 3.0
2 2 1.0 2.0
2 3 3.0 4.0
2 4 6.5 5.0

Table 2: Numerical example: Luenberger index and proportional distance functions

Units L(zt, zt+1;gt, gt+1) Dt(zt; gt) Dt+1(zt+1; gt+1) Dt(zt+1; gt+1) Dt+1(zt; gt)
Specification (2.8)
1 0.4322 0.2692 0.1667 -0.1905 0.5714
2 1.0500 0.0000 0.0000 -1.5000 0.6000
3 0.2887 0.0000 0.0000 -0.2917 0.2857
4 0.1854 0.0000 0.0000 -0.2000 0.1707
Specification (2.9)
1 0.4322 0.2692 0.1667 -0.1905 0.5714
2 −∞ 0.0000 0.0000 −∞ 0.6000
3 0.2887 0.0000 0.0000 -0.2917 0.2857
4 0.1854 0.0000 0.0000 -0.2000 0.1707
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Figure 1: Numerical example with 1 input and 1 output in two time periods 
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