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The Hicks-Moorsteen Productivity Index
Satisfies the Determinateness Axiom

Walter Briec∗ and Kristiaan Kerstens†

February, 2008

Abstract

There are two total factor productivity indices available in the liter-
ature based on a primal notion of the technology. In a ratio tradi-
tion, these are the Malmquist and the Hicks-Moorsteen productivity
indices. In a difference perspective, the Luenberger and Luenberger-
Hicks-Moorsteen productivity indicators are based upon a sightly dif-
ferent concept. The purpose of this note is to establish that -in con-
trast to the Malmquist index- the Hicks-Moorsteen type of productiv-
ity index (as well as its difference-based counterpart) is well-defined
and satisfies the determinateness property, since the underlying dis-
tance functions are always feasible.

Keywords: Malmquist productivity index, Hicks-Moorsteen productivity
index, determinateness.

JEL: C43, D21, D24

1 Introduction

Discrete time Malmquist input, output and productivity indexes based upon
distance functions as general technology representations (Caves, Christensen
and Diewert (1982)) have been made empirically tractable by Färe et al.
(1995). Exploiting the relation between distance functions and radial effi-
ciency measures, they propose computing the distance functions composing
the Malmquist index using deterministic, nonparametric technologies and,
following Nishimizu and Page (1981), they distinguish between technological
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change and technical efficiency change. This ratio-based primal productiv-
ity index has been employed in at least hundreds of empirical applications.1

An important problem that was already present in the original Färe et al.
(1995) contribution is that some of the distance functions constituting the
Malmquist productivity index may well be infeasible when estimated upon
general technologies. For instance, an output-oriented Malmquist index is
indeterminate when the adjacent period distance function comparing an ob-
servation in one period to the technology in the other period cannot be
computed since for that particular observation the corresponding linear pro-
gramming problem is infeasible (e.g., if there is one input in the evaluated
observation that is smaller than the smallest similar input dimension in the
technology). Unfortunately, few empirical studies explicitly report statistics
on the occurrence of this infeasibility problem in the Malmquist productiv-
ity index (e.g., Glass and McKillop (2000)), thereby masking the prevalence
of this problem and contributing to its neglect in the literature. Chambers
(2002) introduced a more general primal productivity indicator -known as
the Luenberger productivity indicator- in terms of differences between direc-
tional distance functions, the latter functions generalising the Shephardian
distance functions.2 Inevitably, infeasibilities can also occur for these direc-
tional distance functions and thus the more general Luenberger productivity
indicator does not satisfy the determinateness property in index theory as
well. The latter property -one of Fisher’s (1922) original axioms- can be
phrased as requiring that an index remains well-defined even when one or
more of its arguments become zero or infinity (see, e.g., Eichhorn (1976) and
Samuelson and Swamy (1974) for conflicting views on this determinateness
axiom).

Bjurek (1996) proposes an alternative Hicks-Moorsteen (or Malmquist
Total Factor Productivity (TFP)) index, as a ratio of Malmquist output
and input indices, partly to avoid this indeterminateness problem of the
Malmquist index (see his page 310).3 Empirical applications of this Hicks-
Moorsteen index have been relatively rare (e.g., Bjurek, Førsund and Hjal-
marsson (1998), Grifell-Tatjé and Lovell (1999) or Nemoto and Goto (2005)).
Bjurek (1996) states that this Hicks-Moorsteen productivity index has a TFP
interpretation and Grifell-Tatjé and Lovell (1999) illustrate this numerically.

1While most studies employ deterministic, nonparametric technologies to compute dis-
tance functions (probably because of their advantages: (i) no problem handling multiple
outputs, (ii) no functional form imposed on technology, and (iii) no restrictive assumptions
regarding input remuneration), this same index can be computed using distance function
estimates based on parametric technology specifications (e.g., Fuentes, Grifell-Tatjé and
Perelman (2001)).

2Diewert (2005) distinguishes between ”indicators” and ”indexes” to denote produc-
tivity measures based on differences respectively ratios.

3Bjurek (1996) reasons in terms of infeasibilities in linear programming based estimates,
thereby neglecting the general nature of the problem. Notice that Diewert (1992) already
mentioned this index and attributed its origin to Hicks (1961) and Moorsteen (1961), but
it was almost completely ignored in his analysis.
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The Luenberger-Hicks-Moorsteen indicator, defined by Briec and Kerstens
(2004), is a difference based version of this ratio-based Hicks-Moorsteen (or
Malmquist TFP) index that inherits its determinateness. However, the claim
by Bjurek (1996) that the Hicks-Moorsteen (or Malmquist TFP) index sat-
isfies the determinateness axiom has never been proven.

While this issue has received relatively little attention in the productivity
index literature, determinateness is potentially important when use is made
of productivity indices to formulate public and private policies. For instance,
the implementation of incentive regulatory mechanisms in a variety of net-
work industries (in the context of price cap regulation) would be seriously
hampered when productivity change cannot be measured for some of the
regulated firms (see, e.g., Estache, Perelman and Trujillo (2007) for a study
employing a Malmquist index in a regulatory context).

The sole purpose of this note is exactly to prove the claim that the Hicks-
Moorsteen (or Malmquist TFP) productivity index satisfies the determinate-
ness property, thereby elucidating the mechanism behind. To develop this
result, this contribution is structured in the following way. Section 2 pro-
vides the basic definitions of the various distance functions and the Hicks-
Moorsteen (or Malmquist TFP) productivity index. The next section shows
that the Hicks-Moorsteen productivity index is determinate by focusing on
defining a short-run version of this index.

2 Definitions of Technology and Hicks-Moor-

steen Productivity Index

We first introduce the assumptions on technology and the definitions of the
distance functions. The latter provide the components for computing pro-
ductivity indices.

2.1 Technology and Distance Functions

Production technology transforms inputs x = (x1, ..., xn) ∈ Rn
+ into outputs

y = (y1, ..., yp) ∈ Rp
+. For each time period t, the production possibility

set T (t) summarises the set of all feasible input and output vectors and is
defined as follows:

T t =
{
(xt, yt) ∈ Rn+p

+ : xt can produce yt
}

. (2.1)

Throughout the paper technology satisfies the following conventional as-
sumptions: (T.1) (0, 0) ∈ T t, (0, yt) ∈ T t ⇒ yt = 0, i.e., no free lunch;
(T.2) the set A(xt) = {(ut, yt) ∈ T t : ut ≤ xt} of dominating observations
is bounded ∀xt ∈ Rn

+, i.e., infinite outputs are not allowed with a finite in-
put vector; (T.3) T t is closed; and (T.4) ∀(xt, yt) ∈ T t, (ut, vt) ≥ 0 and
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(xt,−yt) ≤ (ut,−vt) ⇒ ( ut, vt) ∈ T t, i.e., fewer outputs can always be
produced with more inputs, and inversely (strong disposal of inputs and out-
puts). Remark that we do not need the traditional convexity assumption.

Efficiency is estimated relative to production frontiers using distance or
gauge functions. Distance functions are related to the efficiency measures of
Farrell (1957). The Farrell efficiency measure Et(x

t, yt) is the inverse of the
Shephard distance function. In the input-orientation, this measure Ei

t(x
t, yt)

indicates the minimum contraction of an input vector by a scalar λ still
remaining in the technology:

Ei
t(x

t, yt) = inf
λ

{
λ : (λxt, yt) ∈ T t, λ ≥ 0

}
. (2.2)

An output efficiency measure Eo
t (x

t, yt) searches for the maximum expansion
of an output vector by a scalar θ to the production frontier, i.e., Eo

t (x
t, yt) =

sup
θ
{θ : (xt, θyt) ∈ T t, θ ≥ 1} .

Under constant returns to scale, input and output efficiency measures are
linked: Eo

t (x
t, yt) = [Ei

t(x
t, yt)]

−1
(Färe and Lovell (1978)). For all (a, b) ∈

{t, t + 1}2, the time-related versions of the Farrell input efficiency measure
is given by

Ei
a(x

b, yb) = inf
λ

{
λ : (λxb, yb) ∈ T a

}
(2.3)

if there is some λ such that (λxb, yb) ∈ T a and Ei
a(x

b, yb) = +∞ otherwise.
Similarly, in the output case, Eo

a(x
b, yb) = sup

θ

{
θ : (xb, θyb) ∈ T a

}
if there is

some θ such that (xb, θyb) ∈ T a and Eo
a(x

b, yb) = −∞ otherwise.

2.2 The Hicks-Moorsteen (or Malmquist TFP) Index

Following Bjurek (1996), a Hicks-Moorsteen productivity (or Malmquist TFP)
index with base period t is defined as the ratio of a Malmquist output quan-
tity index at base period t and a Malmquist input quantity index at base
period t:

HMt(x
t,yt, xt+1,yt+1) =

MOt(x
t,yt, yt+1)

MIt(xt, xt+1,yt)
(2.4)

where
MOt(x

t,yt, yt+1) = Eo
t (x

t,yt)
/
Eo

t (x
t,yt+1)

and
MIt(x

t, xt+1,yt) = Ei
t(x

t,yt)
/
Ei

t(x
t+1,yt).

When the Hicks-Moorsteen productivity index is larger (smaller) than unity,
it indicates productivity gain (loss).

A base period t + 1 Hicks-Moorsteen productivity index is defined as
follows:

HMt+1(x
t,yt, xt+1,yt+1) =

MOt+1(x
t+1, yt+1,yt)

MIt+1(xt, xt+1,yt+1)
(2.5)
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where
MOt+1(x

t+1, yt+1,yt) = Eo
t+1(x

t+1, yt)
/
Eo

t+1(x
t+1,yt+1)

and
MIt+1(x

t, xt+1,yt+1) = Ei
t+1(x

t,yt+1)
/
Ei

t+1(x
t+1,yt+1).

A geometric mean of these two Hicks-Moorsteen productivity indexes is
(Bjurek (1996: 310)):

HMt,t+1 = [HMt.HMt+1]
1/2, (2.6)

where the arguments of the functions have been suppressed for reasons of
space.

Notice that the denominator (numerator) of both the Malmquist output
and input quantity index in base period t (t+1) compares a ”hypothetical” or
pseudo-observation consisting of inputs and outputs observed from different
periods to a technology in period t (t+1). In Bjurek’s (1996: 310) words, the
feasibility of this index is due to the fact that ”all input efficiency measures
included meet the condition that the period of the technology is equal to the
period of the observed output quantities” and ”all output efficiency measures
included meet the condition that the period of the technology is equal to the
period of the observed input quantities”.

Also note that the same index can be defined in a static context to mea-
sure relative productivity between production units (see Caves, Christensen
and Diewert (1982)). This simply requires substituting the above time su-
perscripts with a unit superscript.

The relations between this ratio-based Hicks-Moorsteen and the more
popular Malmquist productivity indexes have been established in Färe, Gross-
kopf and Roos (1996): both indices coincide under (i) inverse homotheticity
of technology; and (ii) constant returns to scale. Similar conditions have
been proven to relate the Luenberger-Hicks-Moorsteen and the Luenberger
indicators in an additive setting (Briec and Kerstens (2004)).

3 The Hicks-Moorsteen Index is Determinate:

Proof and Illustration by Means of a Short-

Run Hicks-Moorsteen Index

3.1 Construction of Feasible Farrell Technical Efficiency
Measures with Fixed Input and Output Subvectors

Ouellette and Vierstraete (2004) define a short-run input-oriented Malmquist
productivity index and are among the few studies reporting infeasibilities.
By focusing on the definition of a short-run (or sub-vector) Hicks-Moorsteen

5

IÉSEG Working Paper Series 2008-ECO-10



productivity index, it is possible to show the mechanism guaranteeing the
well-definedness of the underlying efficiency measures.

Inspired from the construction of the Hicks-Moorsteen productivity index,
we provide a general method for defining a feasible adjacent-time period
Farrell measure of technical efficiency when some inputs or outputs are fixed
at their current levels in the short run.

Introducing notation, we denote xt = (xf,t, xv,t) so that xt
i = xf,t

i for i =
1...nf and xt

i = xv,t
i for i = nf + 1...n, where nf ∈ {0, 1, ..., n− 1}. Sim-

ilarly, we denote yt = (yf,t, yv,t) so that yt
j = yf,t

j for j = 1...pf and

yt
j = yv,t

j for j = pf + 1, ..., p, where pf ∈ {0, 1, ..., p− 1}. This notation
implies that there is always at least one variable input and one variable out-
put dimension. We define the time-related input subvector Farrell measure
of technical efficiency by:

Ei,f
a (xb, yb) = inf

λ

{
λ : (xf,b, λxv,b, yb) ∈ T a, λ ≥ 0

}
, (3.1)

if there is some λ such that (xf,b, λxv,b, yb) ∈ T a and Ei,f
a (xb, yb) = +∞

otherwise. The subvector Farrell output measure by:

Eo,f
a (xb, yb) = sup

θ

{
θ : (xb, yf,b, θyv,b) ∈ T a, θ ≥ 1

}
, (3.2)

if there is some θ such that (xb, yf,b, θyv,b) ∈ T a and Eo,f
a (xb, yb) = −∞

otherwise.
However, the above mentioned measures are sometimes undefined, i.e.,

they may not obtain a finite value. In such a case, one cannot compute a
productivity index involving adjacent period comparisons. Similar to the
Malmquist index, the resulting Hicks-Moorsteen productivity index is infea-
sible. The next example illustrates this problem.

Example 3.1 Assume that

T t =
{
(xt, yt) ∈ R2

+ × R+ : min{xt
1, x

t
2} ≥ (1 + t)yt

}

Assume that t = 0, 1, (x0, y0) = (1, 1, 1) and (x1, y1) = (2, 2, 1). Suppose
moreover that nf = 1. In such a case, we have Ei,f

1 (x0, y0) = +∞, while
Ei

1(x
0, y0) = 1/2.

Inspired by Bjurek’s approach, one can overcome this problem by con-
structing two other input and output time related versions of these short run
measures. In the input oriented case, we have:

Ei,f
a (xf,a, xv,b, ya) = inf

λ

{
λ : (xf,a, λxv,b, ya) ∈ T a

}
(3.3)

if there is some λ such that (xf,a, λxv,b, ya) ∈ T a and Ei,f
a (xf,a, xv,b, ya) = +∞

otherwise. On the output side, we have:

Eo,f
a (xa, yf,a, yv,b) = sup

θ

{
θ : (xa, yf,a, θyv,b) ∈ T a

}
(3.4)

6
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if there is some θ such that (xa, yf,a, θyv,b) ∈ T a and Eo,f
a (xa, yf,a, yv,b) = −∞

otherwise.
In the following, we say that input factors are essential if (xt, yt) ∈ T t

and yt 6= 0 implies that xt
i > 0 for i = 1...n.

Lemma 3.2 Assume that the production technology satisfies T.1-T.4 and
that the inputs are essential. For (a, b) ∈ {t, t + 1}2, if xv,b 6= 0, then

0 < Ei,f
a (xf,a, xv,b, ya) < +∞

Proof. Let us consider the vector (xf,a, λ∗xv,b, ya), where

λ∗ = max
i=nf+1...n

xv,b
i >0

{
xv,a

i

xv,b
i

}
.

Elementary calculus indicates that (xf,a, λ∗xv,b) ≥ (xf,a, xv,a) = xa. From the
strong disposability assumption, we deduce that (xf,a, λ∗xv,b) ∈ T a and con-
sequently Ei,f

a (xf,a, xv,b, ya) < +∞. Moreover, since the factors are essential
and xv,b 6= 0, the second inequality follows. Q.E.D.

Lemma 3.3 Assume that the production technology satisfies T.1-T.4. For
(a, b) ∈ {t, t + 1}2, if yv,a 6= 0 and yv,b 6= 0, then 0 < Eo,f

a (xa, yf,a, yv,b) <
+∞.

Proof. Let us consider the vector (xa, yf,a, θ∗yv,b), where

θ∗ = min
j=pf+1...p

yv,b
j >0

{
yv,a

j

yv,b
j

}
.

Thus, (yf,a, θ∗yv,b) ≤ (yf,a, yv,a) = ya and from the strong disposability
assumption we deduce that (yf,a, θ∗yv,b) ∈ T a and Eo,f

a (xa, yf,a, yv,b) < +∞.
Moreover, since yv,a 6= 0 and yv,b 6= 0, we deduce that Eo,f

a (xa, yf,a, yv,b) > 0.
Q.E.D.

These results immediately translate into our main result with respect to
the Hicks-Moorsteen productivity index.

Proposition 3.4 If for all (a, b) ∈ {t, t + 1}2, we have ya 6= 0 and yb 6= 0,
then the Hicks-Moorsteen productivity index (2.6) is well-defined.

Proof. Since there is no free lunch, the result follows directly from taking
nf = pf = 0 in Lemmas 3.2 and 3.3. Q.E.D.

Figure 1 shows an input isoquant from technology in period t and two
observations (xf,t, xv,t) and (xf,t+1, xv,t+1). It is clearly impossible to achieve
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the distance from (xf,t+1, xv,t+1) to the input isoquant in period t in the
direction of the variable input dimension. By contrast, when creating the
pseudo-observation (xf,t, xv,t+1) a distance can be measured relative to this
isoquant.
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Figure 1: Feasible Subvector Input Efficiency Measure

3.2 A Determinate Hicks-Moorsteen Productivity In-
dex with Subvectors

A base period t short-run Hicks-Moorsteen feasible productivity index is
defined as follows:

HM f
t (xt,yt, xt+1,yt+1) =

MOf
t (xt, yt, yt+1)

MIf
t (xt, xt+1, yt)

(3.5)

where

MOf
t (xt, yt, yt+1) = Eo,f

t (xt, yf,t, yv,t)
/

Eo,f
t (xt, yf,t, yv,t+1)

and
MIf

t (xt, xt+1, yt) = Ei,f
t (xf,t, xv,t, yt)

/
Ei,f

t (xf,t, xv,t+1, yt).

A base period t+1 short-run Hicks-Moorsteen feasible productivity index
is defined as follows:

HM f
t+1(x

t, yt, xt+1, yt+1) =
MOf

t+1(x
t+1, yt+1, yt)

MIf
t+1(x

t, xt+1, yt+1)
(3.6)

where

MOf
t+1(x

t+1, yt+1, yt) = Eo,f
t+1(x

t+1, yf,t+1, yv,t)
/

Eo,f
t+1(x

t+1, yf,t+1, yv,t+1),
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and

MIf
t+1(x

t, xt+1, yt+1) = Ei,f
t+1(x

f,t+1, xv,t, yt+1)
/

Ei,f
t+1(x

f,t+1, xv,t+1, yt+1).

A geometric mean of these two feasible short-run Hicks-Moorsteen pro-
ductivity indexes is:

HM f
t,t+1 = [HM f

t .HM f
t+1]

1/2, (3.7)

where the arguments of the functions have again been suppressed to save
space and the index remains determinate because it employs feasible effi-
ciency measures of the type (3.3) and (3.4).

By contrast, the following variation on this short-run Hicks-Moorsteen
productivity index is not well-defined. For reasons of space, we limit ourselves
to only developing the base period t case. A base period t short-run Hicks-
Moorsteen productivity index that is infeasible is defined as follows:

HM f ′
t (xt, yt, xt+1, yt+1) =

MOf ′
t (xt, yt, yt+1)

MIf ′
t (xt, xt+1, yt)

(3.8)

where

MOf ′
t (xt, yt, yt+1) = Eo,f

t (xt, yf,t, yv,t)
/

Eo,f
t (xt, yf,t+1, yv,t+1)

and
MIf ′

t (xt, xt+1, yt) = Ei,f
t (xf,t, xv,t, yt)

/
Ei,f

t (xf,t+1, xv,t+1, yt).

The infeasibility results from employing efficiency measures of the type (3.1)
and (3.2).

A comparison with the previous version index shows that the feasibility
of the Malmquist output quantity index is achieved by comparing period t
inputs and outputs with period t inputs and fixed outputs and period t + 1
variable outputs. By contrast, the latter infeasible case compares period t
inputs and outputs with period t inputs and period t + 1 fixed and variable
outputs. Thus, by simply keeping the fixed outputs firmly in the previous
period, the output efficiency measures can be evaluated with respect to the
resulting pseudo-observation. This logic is clearly in line with the basic
intuitions cited above from Bjurek (1996).

4 Conclusions

This contribution has demonstrated that the Hicks-Moorsteen productivity
index satisfies the determinateness property. By contrast, the far more pop-
ular Malmquist productivity index does not meet this demand. The same
result obviously transposes to the difference based counterparts of both these
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indices (i.e., the Luenberger-Hicks-Moorsteen productivity indicator com-
pared to the Luenberger productivity indicator). These two types of produc-
tivity indices are thus clearly structurally different, even though empirical
differences have sometimes been found to be minor (e.g., Bjurek, Førsund
and Hjalmarsson (1998)).

One plausible consequence is that one may wonder whether it is meaning-
ful to mix up these two structurally different type of productivity indices, as
it has been done in certain methodological developments. For instance, some
decompositions of the Hicks-Moorsteen productivity index (e.g., Nemoto and
Goto (2005)) include components that are based on a Malmquist type of in-
dex and hence these could be infeasible, despite the fact that the overall
index is well-defined. This situation is potentially confusing. In a similar
vein, some decompositions of the Malmquist productivity index (e.g., the
input and output bias components in Färe et al (1997): see their fn. 5 on p.
123) include components that are based on a Hicks-Moorsteen type of index.
This situation probably requires some further reflection.

Because of this determinateness property, we expect the Hicks-Moorsteen
productivity index to gain in popularity in future empirical work, especially
when infeasible solutions are simply unacceptable from a policy point of
view (e.g., in incentive-based regulatory mechanisms where the efficiency
requirements of price caps must be determined under all circumstances to
avoid gaming the regulator).
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