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Geometric Representation of the
Mean-Variance-Skewness Portfolio Frontier Based

upon the Shortage Function∗
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November 17, 2008

Abstract

The literature suggests that investors prefer portfolios based on mean, variance
and skewness rather than portfolios based on mean-variance (MV) criteria solely.
Furthermore, a small variety of methods have been proposed to determine mean-
variance-skewness (MVS) optimal portfolios. Recently, the shortage function has
been introduced as a measure of efficiency, allowing to characterize MVS optimal
portfolios using non-parametric mathematical programming tools. While tracing
the MV portfolio frontier has become trivial, the geometric representation of the
MVS frontier is an open challenge. A hitherto unnoticed advantage of the shortage
function is that it allows to geometrically represent the MVS portfolio frontier. The
purpose of this contribution is to systematically develop geometric representations
of the MVS portfolio frontier using the shortage function and related approaches.

Keywords: shortage function, efficient frontier, mean-variance-skewness efficiency

Warning: Please print the figures in color for evaluation purposes.

1 Introduction

Mean-Variance (MV) portfolio theory (Markowitz (1952)) has been known to possess
many theoretical difficulties. Indeed, as stated by numerous authors, this work is not
consistent with the Von Neumann-Morgenstern axioms of expected utility theory unless
either (i) asset prices follow normal probability distributions, or (ii) utility functions rep-
resenting investor preferences are quadratic. However, starting from at least Mandelbrot
(1963), empirical studies have repeatedly shown that asset returns and portfolio returns

∗We thank two referees, the editor and W. Briec for providing most constructive comments.
†IESEG School of Management, Lille, France, k.kerstens@ieseg.fr
‡Hogeschool Universiteit Brussel, Brussels, Belgium, amine.mounir@hubrussel.be
§Hogeschool Universiteit Brussel, Brussels, Belgium, ignace.vandewoestyne@hubrussel.be

1

IÉSEG Working Paper Series 2008-ECO-17



distributions are widely non-normal (see Campbell, Lo and McKinlay (1997)). Further-
more, starting from Arditti (1975), Kraus and Litzenberger (1976), Kane (1982), among
others, a multitude of studies has shown that investors reveal a preference for positive
skewness by their willingness to pay a risk premium for positively skewed assets. Large
scale studies using individual investor accounts indeed confirm that portfolio returns of
underdiversified investors are substantially more positively skewed than those of diversi-
fied investors and that apparent mean-variance inefficiency of underdiversified investors
is mainly explained by their willingness to sacrifice mean-variance efficiency for higher
skewness exposure (see, e.g., Mitton and Vorkink (2007)). Traditional measures used to
gauge portfolio performances (for instance, Sharpe (1966), Treynor (1965), and Jensen
(1968) to name but the most well-known) are based on the Capital Asset Pricing Model
(CAPM), which itself is a simplification of the MV model. Consequently, these measures
all suffer from the aforementioned theoretical difficulties.

Despite these well-known limitations, financial theory, and especially portfolio theory as
an important subject for applications, seems to remain somewhat reluctant to incorporate
higher order moments in its development. While a variety of alternative criteria for higher
order moments portfolio selection have been around in the literature (see Wang and Xia
(2002)), there does not seem to emerge a universally accepted procedure so far. Follow-
ing Briec et al. (2007), it is possible to distinguish between primal and dual methods to
characterize Mean-Variance-Skewness (MVS) optimal portfolios.1 For instance, Lai (1991)
proposed a primal approach determining MVS portfolios via multi-objective programming
that enjoyed quite some popularity in empirical studies (see, e.g., Chunhachinda et al.
(1997), Prakash et al. (2003), and Sun and Yan (2003)). More recently, Yu et al. (2008)
develop an alternative MVS method based upon neural networks which converge rela-
tively more quickly compared with similar multi-objective optimization techniques. As
just another example, Ryoo (2007) sets up a model minimizing semi-variance, while fix-
ing a return target and a measure of skewness defined as a ratio of positive semi-variance
to negative semi-variance. In face of the above difficulties, the quadratic approximation of
expected utility being obsolete, many studies have attempted to approximate investor’s
utility by adding higher moments. One example is Jondeau and Rockinger (2006) who
used a dual approach starting from a specification of the indirect MVS utility function
determining optimal portfolios via its parameters reflecting preferences for return, risk
and skewness. In addition to these attempts to break away from the MV model via some
type of generic multi-moment approach, it is important to stress that a multitude of mod-
els is available that substitute another risk measure (e.g., semi-variance (or a variety of
other lower partial moments), mean absolute deviation, quantile shortfall risk, Gini mean
difference, etc.) into the traditional Markowitz bi-criteria model creating an entire family
of mean-risk models.2

Based upon Briec et al. (2004) who were the first to connect the primal and dual ap-
proaches in the MV case, Briec et al. (2007) demonstrated that the shortage function can
project any (in)efficient portfolio exactly on the three dimensional MVS portfolio frontier

1We limit ourselves here to the first three moments, though this taxonomy also applies to higher order
moments.

2Quite a few of these proposals are motivated by the desire to linearize the portfolio optimization prob-
lem. In real-life financial decisions where portfolios must meet numerous additional constraints (minimum
transaction lots, transaction costs, mutual funds characteristics, etc.) LP solvability is of obvious impor-
tance (see Mansini et al (2003) or Krzemienowski and Ogryczak (2005)).
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and that this function is connected via duality to an indirect MVS utility function. In
particular, starting from a given portfolio, this shortage function is an efficiency measure
that looks for improvements in both mean and skewness and decreases in variance, con-
curring with general investor preferences. Thus, a given portfolio can either turn out to
be efficient and part of the MVS frontier, or it may be inefficient and then the shortage
function bridges the distance to the efficient frontier and provides an indication about its
degree of inefficiency. This characteristic of the shortage function also makes it the per-
fect basis for visually representing portfolios and their frontier projections. However, the
strengths and weaknesses of this new shortage function approach remain to be assessed
in practice.

In a closely related, but less general approach, Joro and Na (2006) stressed the need for
tools allowing for geometric representations of these MVS portfolio frontiers.3 Indeed,
an investor can only develop a clear idea about the position of certain MVS efficient
portfolios and their relative desirability when he/she can see these efficient points in
a three dimensional MVS space. Otherwise stated, investors can only formulate their
preferences and the associated risk parameters if they can visualize the portfolio frontier
set. It seems to have gone almost unnoticed so far that the shortage function has the
added advantage of being capable to geometrically represent the MVS portfolio frontier.

To the best of our knowledge, this contribution is the first to systematically develop how
the Briec et al. (2007) approach can be employed for visualization purposes. The idea of
visualization is partially inspired by methods of reconstructing production frontiers (e.g.,
Hackman, Passy and Platzman (1994)). However, it is important to note that production
possibility sets are convex polyhedra while portfolio frontier sets are not, which implies
a fundamentally different approach. Our method consists of generating a sufficient num-
ber of points on the portfolio frontier to allow constructing a point cloud representation.
Obviously, the quality of the resulting geometric representation depends on the number
of reconstructed points, but also on the degree of homogeneity of the point distribu-
tion. Compared with the MV portfolio frontier, the representation of the MVS portfolio
frontier is also computationally non-trivial since we transit from a curve in the two dimen-
sional MV plane to a frontier surface in the three dimensional MVS space. Moreover, this
transition implies moving from convex to non-convex optimization modeling. Jurczenko,
Maillet and Merlin (2006) are the only contribution we are aware of that geometrically
reconstructs MVS-Kurtosis portfolio frontiers using the shortage function, but these au-
thors do not discuss any methodological issues underlying their geometric reconstruction.
The main aim of this contribution is exactly to systematically explore the technical issues
underlying the geometric reconstruction of MVS portfolio frontiers.

The remainder of the paper is organized as follows. Section 2 presents the models and
the conceptual framework developed in Briec et al. (2007) as well as some extensions to
visualize the MVS surface in three dimensions. Section 3 elaborates feasible strategies for
the geometric representation of MVS portfolio sets. Furthermore, it illustrates some of the
key differences between the MV and MVS frontiers, and in this sense it is complementary
to results reported in Briec et al. (2007). Section 4 concludes the paper.

3Indeed, the general direction of improvement selected by Briec et al. (2007) can be interpreted as a
generalization of the article by Joro and Na (2006) who only seek for improvements in variance.
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2 Analyzing MVS Portfolios: Theoretical Framework

and Basic Illustrations

In this section, we lay out the foundations for the programs used to compute the pro-
jections composing the MVS frontiers. Basically, we follow the non-parametric approach
initiated for the MV case by Briec et al. (2004). This seminal contribution opened up new
perspectives for portfolio performance measurement that have been extended in Briec et
al. (2007) into MVS space. These authors have defined the shortage function as a measure
of distance between the portfolios (or assets) under evaluation and the MVS Pareto fron-
tier. This shortage function measures the maximum proportional reduction in risk, while
return and skewness dimensions are increased in the same proportion to the initial assets.
This section essentially summarizes the theoretical framework developed in Briec et al.
(2007), except that we now allow for projections from observed and fictitious portfolios
in MVS space.

2.1 Basic Definitions

We first develop some basic definitions. Assume the basic problem is to select a portfolio
(or fund of funds) from n financial assets (or funds). A portfolio x = (x1, . . . , xn) is a
vector of proportions in each of these n financial assets with

∑n
i=1 xi = 1. Excluding short

sales, one must impose the condition xi ≥ 0 for all i ∈ {1, . . . n}. In general, the set of
admissible portfolios is written as follows:

= =

{
x ∈ Rn;

n∑
i=1

xi = 1, x ≥ 0

}
. (1)

Assets are characterized by an expected return E[Ri] for i ∈ {1, . . . , n}, by a covariance
matrix Ω with

Ωij = Cov[Ri, Rj] = E[(Ri − E[Ri])(Ej − E[Rj])],

for i, j ∈ {1, . . . , n} and by a co-skewness tensor of rank three Λ with:

Λijk = E[(Ri − E[Ri])(Rj − E[Rj])(Rk − E[Rk])],

for i, j, k ∈ {1, . . . , n}.
The return of portfolio x is defined by R(x) =

∑n
i=1 xiRi. The expected return of this

portfolio x, its variance and its skewness are straightforwardly computed as follows:

E[R(x)] =
n∑

i=1

xiE[Ri], (2)

Var[R(x)] = E[(R(x)− E[R(x)])2] =
n∑

i,j=1

xixjΩij, (3)

Sk[R(x)] = E[(R(x)− E[R(x)])3] =
n∑

i,j,k=1

xixjxkΛijk. (4)
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To condense notation, the function Φ : = −→ R3 defined by:

Φ(x) = (E[R(x)], Var[R(x)], Sk[R(x)])

is introduced to represent the expected return, variance and skewness of a given portfolio
x. In the remainder, an element of R3 is called a MVS point. Thus, a MVS point can be
the image by Φ of a portfolio, or any arbitrary point in this three-dimensional space. It
is useful to define the MVS image of = as the image Φ(=), with

Φ(=) = {Φ(x); x ∈ =}.
This set can be extended by defining a MVS disposal representation set via:

DR = Φ(=) + (R− × R+ × R−). (5)

For the purpose of gauging portfolio efficiency, we must define a subset of this represen-
tation set known as the weakly efficient frontier :

Definition 2.1. In the MVS space, the weakly efficient frontier, also called the theoretical
frontier, is defined as:

∂W (=) = {(M, V, S) ∈ DR; (−M ′, V ′,−S ′) < (−M, V,−S) ⇒ (M ′, V ′, S ′) 6∈ DR}.

In brief, the weakly efficient frontier is the set of all MVS points that are not weakly domi-
nated in this three dimensional space. This frontier is part of the boundary of the disposal
representation set. This disposal representation set is itself an extension of the MVS im-
age. Consequently, the theoretical frontier can contain points that are not attainable by
an admissible portfolio (hence, the moniker “theoretical” frontier).

Of course, it is also possible to define a strongly efficient frontier as follows:

Definition 2.2. In the MVS space, the strongly efficient frontier, also shortened to effi-
cient frontier, is defined as:

∂S(=) = {(M,V, S) ∈ DR; (−M ′, V ′,−S ′) ≤ (−M, V,−S) and

(−M ′, V ′,−S ′) 6= (−M, V,−S) ⇒ (M ′, V ′, S ′) 6∈ DR}.

The latter subset contains all MVS points that are not strictly dominated in this three
dimensional space.

2.2 Shortage and Färe-Lovell Functions: Definitions, Basic Prop-
erties and Computational Issues

We now turn to an extended definition of the shortage function.

Definition 2.3. Let g = (gM , gV , gS) ∈ R+ ×R− ×R+ and g 6= 0. The shortage function
Sg in the direction of vector g is the function Sg : R3 → R+ ∪ {−∞, +∞}, with

Sg(y) = sup
δ∈R+

{δ; y + δg ∈ DR}.
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The relationship between this extended shortage function Sg and the shortage function
Sg introduced by Briec et al. (2004, 2007) is depicted in the following diagram:

= R3

R+ ∪ {−∞, +∞}

-Φ

@
@

@
@

@@R

Sg

?

Sg

Thus, for a given portfolio x ∈ =, it follows that Sg(x) = Sg(Φ(x)). Therefore, Sg can
indeed be seen as an extension since it allows to map arbitrary MVS points (including
those not obtained from a portfolio). In the remainder, the extended shortage function is
merely addressed as the shortage function.

The shortage function seeks simultaneously to improve return and skewness and to re-
duce the variance of a given MVS point in the direction of the vector g. Of key impor-
tance is that the shortage function respects sufficient conditions for a global optimum on
non-convex MVS sets. Furthermore, the interpretation of the shortage function depends
on the choice of direction vector. For instance, if the direction vector is chosen to be
g = (|yM |,−|yV |, |yS|) for the evaluated unit y = (yM , yV , yS), then this function has a
proportional interpretation, which is convenient.

However, the use of this shortage function only guarantees that a projected MVS point is
part of the weakly efficient subset. To ensure that the projection of a MVS point is part
of the strongly efficient subset, one can make use of the recently introduced directional
Färe-Lovell efficiency measure (see Briec (2000) for its general definition).4

Definition 2.4. Let g = (gM , gV , gS) ∈ (R+ \ {0}) × (R− \ {0}) × (R+ \ {0}). The
directional Färe-Lovell function DFLg in the direction of vector g is the function DFLg :
R3 → R+ ∪ {−∞, +∞}, with

DFLg(y) = sup
β∈R3

+

{
1

3

∑
i

βi; y + β ¯ g ∈ DR
}

.

Here, ¯ denotes the Hadamard product of two vectors (i.e., the element by element prod-
uct). This function is an extension of the Färe and Lovell (1978) efficiency measure. If the
direction vector g = (|yM |,−|yV |, |yS|) for the evaluated unit y = (yM , yV , yS), then this
Färe-Lovell directional efficiency measure indicates the arithmetic average proportional
change in all dimensions, making its interpretation slightly more complex in practice.

Given its key importance in this contribution, we clearly phrase the properties of the
shortage and directional Färe-Lovell functions with respect to their projection onto the
efficient frontiers.

Proposition 2.1. The shortage function and the directional Färe-Lovell function project
onto the weakly resp. the strongly efficient frontier:

4He labels this the Russell proportional distance function.
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1. Sg(y) = 0 ⇔ y ∈ ∂W (=);

2. DFLg(y) = 0 ⇔ y ∈ ∂S(=).

Proof. For 1., see Briec et al. (2007: Proposition 3.2 (a), page 139). For 2., analogous to
Briec (2000: page 196).

It remains an open question to which extent the divergence between the weakly and the
strongly efficient frontier, when using the shortage function, is empirically important when
reconstructing portfolio frontiers. In the context of production frontiers, it is well-known
that the shortage function leads to substantial amounts of deviations from the strongly
efficient frontier (see, e.g., Ferrier, Kerstens and Vanden Eeckaut (1994) for an empirical
illustration).

Following Briec et al. (2007), the computation of the shortage function in MVS space in
the direction of the vector g = (gM , gV , gS) as specified in Definition 2.3 for a MVS point
y = (yM , yV , yS) under evaluation, can be obtained through solving the following cubic
non-linear programming model:

max
x,δ

δ (P1)

s. t.
n∑

i=1

xi = 1,

E[R(x)] ≥ yM + δgM ,

Var[R(x)] ≤ yV + δgV ,

Sk[R(x)] ≥ yS + δgS,

δ ≥ 0, 0 ≤ xi ≤ 1 for i ∈ {1, . . . , n}.

For clearness, we now introduce the notions of efficient and theoretical projected points :

Definition 2.5. For a given MVS point y = (yM , yV , yS) under evaluation,

• the efficient projected point in the direction of vector g is the point in MVS space
with coordinates determined by the left-hand sides of the inequality constraints of
model (P1) evaluated at the optimal solution (i.e., (E[R(x∗)], Var[R(x∗)], Sk[R(x∗)]));

• the theoretical projected point in the direction of vector g is the point in MVS space
with coordinates determined by the right-hand sides of the inequality constraints of
model (P1) evaluated at the optimal solution (i.e., (yM +δ∗gM , yV +δ∗gV , yS+δ∗gS)).

We can easily see that the efficient projected point is merely the MVS point of the optimal
portfolio obtained from model (P1).

If the shortage function equals zero, then the MVS point is part of the weakly efficient
frontier. Otherwise, as can be seen from the right-hand sides of the inequality constraints
of (P1), the optimal δ indicates a change in return, variance and skewness that results in
a projection of the evaluated MVS point onto the weakly efficient frontier.

The efficient projected point may differ from the theoretical projected point determined
by the application of the shortage function to the MVS point under evaluation, because

7
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of the existence of slack and surplus variables at the optimum. To be explicit, if slack
and surplus variables occur at the optimum, this signifies that the shortage function
resulting in the theoretical projected point underestimates the potential gains in return
and skewness and the reduction in risk relative to the efficient projected point. Thus,
the shortage function is potentially a downward biased efficiency measure in that it may
underestimate the proportional gains in return and skew and the reduction in risk that
are achievable at the efficient projected point. The upshot is that one should distinguish
between a theoretical frontier, created by theoretical projected points, and the efficient
frontier, that is feasible in practice and that is generated by efficient projected points.
This divergence is due to the assumption of free disposal, which serves the sole purpose
of facilitating the optimization process (see Briec et al. (2004)).

In a similar way, to compute the Färe-Lovell function in MVS space into the direction
of vector g = (gM , gV , gS) as in Definition 2.4 for a MVS point y = (yM , yV , yS) being
evaluated, one can proceed as follows:

max
x,β

1

3

3∑
i=1

βi (P2)

s. t.
n∑

i=1

xi = 1,

E[R(x)] ≥ yM + β1gM ,

Var[R(x)] ≤ yV + β2gV ,

Sk[R(x)] ≥ yS + β3gS,

βi ≥ 0, 0 ≤ xi ≤ 1 for i ∈ {1, . . . , n}.

If the Färe-Lovell function equals zero, then the MVS point is part of the strongly efficient
frontier. If it is nonzero, then the optimal βi indicate the proportional change per return,
variance and skewness dimension that guarantees a projection of the evaluated MVS point
onto the strongly efficient frontier.

Because of the higher flexibility of the Färe-Lovell function in choosing the projection
direction, the slack and surplus variables are always zero at the optimum.5 Consequently,
the efficient and theoretical projected point of a MVS point under evaluation always

5In a portfolio context, let δ, γ2 and γ3 be real numbers such that β1 = δ, β2 = δγ2 and β3 = δγ3 in
model (P2). Then, this model can be rewritten as

max
x,δ,γ2,γ3

δ
1
3
(1 + γ2 + γ3)

s. t.
n∑

i=1

xi = 1,

E[R(x)] ≥ yM + δgM ,

Var[R(x)] ≤ yV + δγ2gV ,

Sk[R(x)] ≥ yS + δγ3gS ,

0 ≤ xi ≤ 1 for i ∈ {1, . . . , n}.

If γ2 and γ3 are fixed, then this model is equivalent to model (P1) but with the vector (gM , γ2gV , γ3gS)
as projection direction. However, since γ2 and γ3 are not fixed, the Färe-Lovell function clearly has more
flexibility in choosing the projection direction in comparison to the shortage function.
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coincide. It is well-known that the Färe-Lovell function is always larger than or equal to
the shortage function (i.e., Sg(y) ≤ DFLg(y): see, e.g., Färe and Lovell (1978)).

Notice that the shortage function approach encompasses three special cases that could
also potentially be employed to reconstruct the MVS frontier: (i) a return maximization
model, (ii) a risk minimization model, and (iii) a skewness maximization model. These
models result from setting two coordinates of the direction vector g equal to zero (see
Remark 3.4 in Briec et al. (2007: page 141)).

2.3 Illustration: Weakly and Strongly Efficient Subsets of the
MVS Frontier

Figures 1a to 1d illustrate the proposed approach geometrically with artificial MVS points
considered from four viewpoints. In each of these four figures, one three dimensional and
three two dimensional, initial MVS points are represented by points À and Ã, while their
efficient projected points using the shortage function are points Á, Â and Ä. The short-
age function projects an arbitrary MVS point under evaluation onto the efficient frontier
in the direction of an increased return, a reduced risk, and an increased skewness. This
is illustrated in three dimensions in Figure 1a. This figure itself is projected orthogo-
nally into its three natural two dimensional subspaces to clarify matters: Figures 1b, 1c,
and 1d represent respectively the mean-variance, skewness-mean and skewness-variance
dimensions.

The optimization process, situated in MVS space, is probably easiest to grasp on the
latter three two dimensional figures. In Figure 1b, one observes that MVS points are
projected to the upper left which indicates an improvement of return and a reduction of
risk. In Figure 1c, one notices that initial MVS points are projected in the upper right
direction resulting in an enhancement of both return and skewness. Finally, in Figure 1d,
one observes that MVS points are again projected to the upper left, since skewness is
improved upon while risk is being reduced.

Focusing now in more detail on a single MVS point, point À is projected onto the efficient
MVS point Â, while point Á is the theoretical projected point. Both points Á and Â are
generated by model (P1). The differences between these points Á and Â reflect the possible
slack and surplus variables at the optimum. Such difference between the efficient and the
theoretical projected point can be avoided by employing the Färe-Lovell function rather
than the shortage function.

2.4 MVS Utility Function and Efficiency Decomposition

Of course, there are a multitude of points on the weakly or strongly efficient subset. In
case the investor can articulate his preferences with respect to the first three moments into
a MVS utility function, then normally a single element from the strong efficient subset
maximizes this direct MVS utility function (though multiple optimal solutions cannot be
excluded). This direct MVS utility function for a given portfolio x ∈ = can be written as
follows:

U(x; µ, ρ, κ) = µ E[R(x)]− ρ Var[R(x)] + κ Sk[R(x)], (6)

9
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where the parameters are positive (i.e., (µ, ρ, κ) > 0).

Maximizing this direct mean-variance-skewness utility function U(x; µ, ρ, κ) over all pos-
sible portfolios x ∈ = yields the indirect MVS utility function U∗(µ, ρ, κ):

max
x

µ E[R(x)]− ρ Var[R(x)] + κ Sk[R(x)] (P3)

s. t.
n∑

i=1

xi = 1,

0 ≤ xi ≤ 1 for i ∈ {1, . . . , n}.
Notice that traditionally φ = ρ

µ
≥ 0 represents the degree of absolute risk aversion and

ψ = κ
ρ
≥ 0 is known as prudence.

The standard numerical methods used for maximizing this objective function do not
guarantee to attain the global optimum, since this problem is non-convex. This difficulty
leads Briec et al. (2007) to convexify the disposal representation set by imposing tangent
iso-utility surfaces compatible with the set of admissible MVS portfolios. Furthermore,
they define another shortage function computed on this convex representation set known
as the hyper-shortage function. We denote this function here by S̄g. We refer the reader
to Briec et al. (2007) for technical details.

However, it is important to stress that the shortage function to some extent dispenses the
researcher from specifying detailed investor preferences. The traditional utility approach
to select optimal portfolios becomes almost redundant, especially since one could wonder
how investors could eventually formulate their preferences and the associated risk param-
eters if they cannot visualize the MVS frontier in the first place. Whence, the importance
of proper visual reconstructions of the underlying MVS frontier.

Following Briec et al. (2007), it is useful to distinguish between the Overall, Allocative,
Convexity and Portfolio Efficiency when evaluating the scope for improvements in port-
folio management. We have the following definition:

Definition 2.6. With given investor preferences µ, ρ and κ, the overall efficiency (OE)
index for a given portfolio x ∈ = is defined as the quantity:

OEg(x; µ, ρ, κ) =
U∗(µ, ρ, κ)− U(x; µ, ρ, κ)

µgM − ρgV + κgS

;

Allocative efficiency (AE) is the quantity:

AEg(x; µ, ρ, κ) = OEg(x; µ, ρ, κ)− Sg(Φ(x));

Convexity efficiency (CE) is the quantity:

CEg(x) = S̄g(Φ(x))− Sg(Φ(x));

Portfolio efficiency (PE) is given by the quantity:

PEg(x) = Sg(Φ(x)).

Portfolio Efficiency only guarantees reaching a point on the non-convex primal portfo-
lio frontier, not necessarily a point on the frontier maximizing the investor’s indirect
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MVS utility function. Convexity Efficiency measures the difference between the short-
age functions computed on both the convex representation set and the initial non-convex
representation set DR. Allocative Efficiency measures the portfolio adjustment along the
convexified portfolio frontier to achieve the maximum of the indirect MVS utility function.
This may imply reshuffling an eventual Portfolio Efficient and Convexity Efficient portfo-
lio in function of the parameters of the MVS utility function. Finally, Overall Efficiency
ensures that all these ideals are achieved simultaneously. In particular, OEg(x; µ, ρ, κ) is
the ratio of (i) the difference between optimal (indirect) and actual MVS utility, and (ii)
the inner product of the direction vector g with the vector (µ,−ρ, κ) normal to the MVS
utility function.

Overall Efficiency is the strongest requirement, since it is simply defined as the sum of
those component measures:

OEg(x; µ, ρ, κ) = AEg(x; µ, ρ, κ) + CEg(x) + PEg(x).

It ensures projections of assets that maximize the indirect MVS utility for given param-
eters of risk aversion and prudence, corresponding to an investor’s preferences (see Briec
et al. (2007) for more details).

2.5 Illustration: Efficiency Decomposition

While so far, illustrations were based on arbitrary examples, from here onwards we aim
at illustrating the key elements of MVS frontiers and the more traditional MV portfolio
frontiers using a small sample of 29 assets being part of the Dow Jones index.6

Figure 2 illustrates in three dimensions the aforementioned efficiency taxonomy. Figure 2a
shows a frontal view, while Figure 2b takes a perspective from the back. In Figure 2a the
oblique plane on the left represents the investor’s utility for arbitrarily fixed parameters
of risk aversion and prudence, while the theoretical frontier stretches out to the bottom
and to the right. Obviously, from the reverse perspective, Figure 2b is composed of the
same utility plane to the right and the theoretical frontier moving out to the bottom and
to the left.

For any given set of risk aversion and prudence parameters, one normally finds at least one
tangency point between the indirect utility function and the MVS frontier (point Ã). If an
investor would hold a portfolio coinciding with point Ã, then he would be perfectly efficient
in all respects. However, a more typical case is an inefficient portfolio (for instance leading
to point À) that is situated in the interior of the MVS image. This inefficient point À is
projected onto the theoretical frontier at point Á. The distance between the points À and
Á represents the portfolio efficiency. Allocative efficiency measures the distance between
the frontier point Á and its projection guaranteeing the maximum of the indirect MVS
utility function at point Â. In this case, the overall efficiency is represented by the total
distance between the point under evaluation À and its projection on the utility surface Â.
Thus, the overall efficiency is simply defined as the sum of the portfolio and the allocative
efficiencies. Note that the issue of convexity efficiency is treated in detail below, while

6The computations are based on daily returns observed between 15 December 2000 and 1 October
2002.
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the eventual convexity efficiency in Figure 2 is subsumed under the heading allocative
efficiency.

Since it is plausible that investors can only formulate their preferences and the associated
risk parameters if they can visualize the MVS frontier, the remainder of this contribution
ignores the Overall and Allocative efficiencies and concentrates instead on the Portfolio
efficiency in an effort to reconstruct the MVS frontier.

The Briec et al. (2007) article demonstrates that the shortage function applied to a MV
model yields higher returns and lower risks than the same function applied to a MVS
model, but the latter attempts to improve skewness while the former ignores the skewness
altogether. Thus, while inefficiencies in the MV framework are higher than in the MVS
model, this more powerful result of the MV model must be weighted against its complete
negligence of the skewness dimension. In other words, the benefit of the MVS model is
that it allows for a contraction of risk and improvement of return that is only slightly
below the enhancements obtained by the use of the traditional MV model, while in the
same time a substantial improvement in term of skewness can be realized. To develop
some intuition, Table 1 illustrates the differences between the two aforementioned models
at the individual and the sample level for these 29 assets of the Dow Jones index.

A remark on the choice of a direction vector when computing (P1) and (P2) is necessary.
For a given unit y = (yM , yV , yS) under evaluation, we opt for g = (|yM |,−|yV |, |yS|) as
direction vector. In so doing, we turn the shortage function into a proportional shortage
function: return and skewness are proportionally increased, while variance is proportion-
ally reduced. Since negative values, in particular for return and skewness, cannot be
precluded, it is in fact necessary to use absolute values. The same choice is made for the
Färe-Lovell function.

Table 1 reports some statistics for the return, variance and skewness of the 29 assets
and their projections onto the efficient MV and MVS frontiers (columns 2 to 10). The
projections with the MVS model clearly yield a higher skewness on average than the
projections computed with the MV model. By contrast, average return and variance are
clearly lower in case of the MVS model compared with the MV model. Notice that for 12
observations the results for MV and MVS models are identical.

To summarize this relative performance between MV and MVS models, we propose a new
percentage difference-based indicator SkG (skewness gain) that represents a measure of
trade-off between the gain/loss in terms of skewness relative to the minimal gain/loss in
terms of either return or risk:

SkG = 3
√

%∆ Sk[R(x)]−min
(
|%∆R[x]|,

√
|%∆ Var[R(x)]|

)
.

The percentage differences in this indicator are measured w.r.t. the corresponding values
obtained by the MV model. We believe this dimensionless indicator offers a useful tool to
gauge the benefit of using the MVS versus the MV models: when this difference is positive
(negative), the gain in skewness compensates (is overruled by) the common loss in return
and/or risk.7 The empirical results in Table 1 (column 11) indicate that on average this
gain in skewness is 78.50%.

7By taking the minimum over the unit return and risk dimensions, this definition is compatible with
minimal assumption by expressing a common loss. Of course, alternative definitions based on other
operations are conceivable.
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Furthermore, Table 1 reports the value of the shortage function for both MV and MVS
models (columns 12 and 13). To formally test for the difference between the densities of
both these shortage function in MVS versus MV models, we employ a test-statistic devel-
oped by Li (1996) and refined by Fan and Ullah (1999) that is valid for both dependent and
independent variables and that asymptotically follows a standard normal-distribution.8

The null hypothesis is simply that both distributions are identical; the alternative hy-
pothesis is that they are different. This test statistic amounts to 2.93: thus, the null
hypothesis can be rejected at the 1% significance level at least (2.33 is the critical value).
Thus, comparing the shortage function between MVS and MV models, we conclude that
these efficiency measures follow a different distribution. In other words, the increase in
skewness indeed seems to be significant. The latter conclusion can also be inferred from
the difference (∆) between the shortage function in MV and MVS models in Table 1
(column 14) that measures the net impact of adding the skewness dimension to the basic
MV model (see Briec et al. (2007)).

For a more detailed explanation, we propose to focus on the differences between these
two models starting from the underperforming asset American International Group from
the same data set (asset number 5 in Table 1). Table 1 reports the return, variance and
skewness (columns 2 to 4) and its projections according to the MV and MVS models
(columns 5 to 10). The percent change in return, variance and skewness is presented
in Table 2. The MV model allows an important contraction in risk of 72.58% and an
enhancement in return by 88.46% compared with the variance and return parameters
of the initial asset. However, this MV projected portfolio has decreased the skewness
by 114.49% compared with the initial situation. In fact, the original positive skewness
of 1.5169 is replaced by a negative portfolio skewness of −0.2198 as can be seen from
Table 1. By contrast, the MVS model has improved both return and skewness by 70.77%
respectively 46.39%, and furthermore it manages to decrease risk by 46.39%. Applied to
the asset American International Group the percentage difference-based indicator (SkG)
yields a value of 125.37%.

As yet another detailed example, we illustrate the use of the direction vector for the
underperforming asset Boeing Corp (asset number 10 in Table 1) characterized by an
initial negative return and skewness. In the MV model, starting from a return of −0.0100
and a variance of 2.7803, the shortage function yields a value of 0.5778 which results in a
theoretical projected point with a return of −0.0042 (= −0.0100 + 0.5778× 0.0100) and
a variance of 1.1739 (= 2.7803 − 0.5778 × 2.7803). Notice that the return direction has
switched sign in view of the initial negative sign of the return. A similar reasoning could
be developed for explaining its projection into the MVS case.

3 Geometric Representations of MVS Frontiers

3.1 Technical Aspects of Geometric Representations

This section is the first attempt to represent MV and MVS optimization results within
a common framework using geometric representations. This common three dimensional

8For small samples, a bootstrap approximation can be employed.
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representation should allow investors to judge whether the optimization of skewness, com-
bined with the traditional optimization of mean and variance, yields more desirable results
than the MV model on its own.

3.1.1 Basic Setup

Briefly commenting on the technicalities of these three dimensional reconstructions, the
non-linear models (P1), (P2) and (P3) needed to generate the Figures 1 to 4 below are
solved by means of sequential quadratic programming routines identical to the subroutine
NPSOL described in Gill et al. (1986). MVS points are projected using the shortage
function or the Färe-Lovell function onto the MVS frontier. The resulting point cloud
is then scaled to fit into a fixed size cube (which is visible in each of these images)
and visualized using OpenGL rendering techniques. An advantage of OpenGL is that it is
possible to add additional geometrical objects like spheres, planes and cubes. For instance,
a plane can be used to slice the surface, as is done in Figure 4.

Turning to strategies to develop three dimensional reconstructions of the potentially highly
non-convex MVS frontiers introduced in Section 2, we distinguish between the use of three
dimensional versus two dimensional grids. An initial strategy is to focus visualization on
developing a three dimensional grid of MVS points contained within the empirical range
of the return, risk and skewness dimensions of the basic set of observed portfolios. Condi-
tional on this choice of a three dimensional grid, since the difference between weakly and
strongly efficient frontiers is potentially important and has – to the best of our knowledge
– never been investigated in a portfolio context, we explore the relative performance of
the shortage function versus the Färe-Lovell function in this respect.

Figure 3a illustrates the MVS frontier obtained by projecting by means of the shortage
function a three dimensional grid of 50 × 50 × 50 MVS points into a favorable direction
(i.e., the standard direction vector that improves both return and skewness and reduces
variance) determined by the relative position of the individual points in the grid. This
projection approach results in a point cloud consisting of 125,000 three dimensional points.
The combination of region À and Á represents the theoretical MVS frontier. The geometric
representation of this theoretical frontier is possible by the computation of the right-hand
side of the cubic program (P1). The theoretical frontier can be subdivided into region
À, which consists of the right-hand side values with nonzero slack, and region Á, which
contains the right-hand side values with zero slack.

Consequently, region À consists of extreme values that actually cannot be reached by
a feasible combination of assets, because of the nonzero slack in the inequalities. While
this area is instrumental in computing the shortage (or similar) functions, it is obviously
of no interest to an investor. By contrast, region Á represents optimal solutions with
all zero slacks, which means that these portfolios can actually be reached in reality. Put
differently, region Á can be seen as the left-hand side values of the inequalities in model
(P1) at the optimum, since left- and right-hand side values are equal for this region.
Therefore, this region represents the efficient MVS frontier. The boundary of this MVS
frontier corresponds to the region Â, where the zero slack state of region Á transgresses
into the nonzero slack state of region À.

Another way of obtaining the efficient MVS frontier is by using the Färe-Lovell function.
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Practically, this means that model (P2) is solved rather than model (P1). Because the
direction in which the projection is performed is more flexible, model (P2) always leads to
zero slack solutions on the strongly efficient frontier. For this model, the theoretical frontier
and the efficient MVS frontier always coincide. In Figure 3b the darker colored points
represent the efficient MVS frontier based on the Färe-Lovell function. Obviously, this
region corresponds to the strongly efficient frontier obtained using the shortage function
in region Á of Figure 3a. For reasons of comparison, this same frontier is also represented
in Figure 3b as the lighter colored region. Obviously, both techniques essentially lead to
the same MVS frontier.

3.1.2 Shortage and Färe-Lovell Functions: Slacks, Li-test and Differences in
Projection Points

However, to verify in detail the differences between projections using the shortage versus
the Färe-Lovell function, it is necessary to dig into the question of the prevalence of slacks
and surplus variables when employing the shortage function. The difference between the
efficient projected points and the theoretical projected points in the cubic program (P1)
have so far never been empirically explored. Statistics on the shortage versus the Färe-
Lovell function in Table 1 reveal that these measures of efficiency only coincide for the
efficient observations (7 out of 29), but that these are different for all others. In particular,
the number of observations that is experiencing slacks in the return, variance and skewness
dimensions amounts to 18, 11 respectively 18 (not reported in Table 1). We also formally
test for the difference between both densities of the shortage and the Färe-Lovell function
used within the same MVS model. The Li (1996) and Fan and Ullah (1999) test statistic
has the value 3.87. Again, the null hypothesis of identical distributions can be rejected
at at least the 1% significance level (critical value is 2.33). Finally, we report the mean
absolute deviation (MAD), minimal, maximal and the range between the differences of
the projection points of shortage and Färe-Lovell functions in Table 3. Notice first that
the total number of feasible projected MVS points amounts to 70,639. One observes large
differences between both functions in terms of these dispersion criteria. MAD for the
return, variance and skewness is respectively 0.0485, 1.9514 and 3.0771. The minimal
difference, maximal difference, and the range between the differences of these projection
points of both functions confirm the same dispersion.

To explore matters more systematically, Table 4 reports counts on the various possible
combinations of slack and surplus variables in a single and in two dimensions in the
optimal solution of the shortage function for the projections of the three dimensional grid
of 125,000 points mentioned earlier. Notice that the actual number of points reported is
smaller than the maximal number of 125,000 because some of these lead to infeasibilities.
Indeed, in total 76.67% of all 71,484 feasible projections based on the three dimensional
grid reveal some form of slack. Given the doubt on the global optimality of the resulting
solution, we consider it little informative to report further details on the amount of slack
and surplus variables.

Concluding, the prevalence of slack and surplus variables in portfolio analysis seems to
be important enough to maintain that the shortage function has the disadvantage as
an efficiency measure that it underestimates the potential gains in return and skew and
the reduction in risk achievable at the efficient projected point. The Färe-Lovell function
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yields an unbiased estimate of portfolio performance and leads to substantially different
projection points compared to the shortage function, but as stated earlier it has a more
complicated interpretation.

3.1.3 Shortage and Färe-Lovell Functions: Differences in Visualizations

Furthermore, noticeable differences can be observed in the respective visualizations result-
ing from the shortage versus the Färe-Lovell functions. First, as can be seen in Figure 3b,
the shortage function yields a more homogeneously distributed cloud of projection points
compared to the Färe-Lovell function, which typically seems to generate more clustered
results. This clustering appears around a series of individual points as observed through-
out the surface. Examples are, for instance, found in region À; on the surface curves found
in region Á; or in more condensed regions like Â. This phenomenon can intuitively be
explained by the fact that the optimization performed by the Färe-Lovell function is more
flexible in determining the direction in which to optimally project.

This flexibility is apparently important in practice, as can be illustrated in Table 5. This
table provides some statistics w.r.t. the angles of the actual projection directions in MVS
space of the previously mentioned three dimensional grid consisting of 125,000 points
(from which some are infeasible), but measured in the MV-, SM- and SV-subspaces.
Clearly, the variation in the real projection direction is much higher for the Färe-Lovell
compared to the shortage function. This shows that the Färe-Lovel function actually
exploits its extra flexibility over the shortage function. Moreover, one notices that the
Färe-Lovell function more often leads to projection directions parallel to one of the coor-
dinate axes. Both of these phenomena may well explain the clustering observed in Figure
3b.

Second, being more flexible in the projection direction also seems to have the advantage
that areas of the efficient MVS frontier that are “less accessible” for the shortage function
have a higher chance of being detected. For example, this effect can be observed in region
À in Figure 3b. This characteristic is clearly in favor of the method based on the Färe-
Lovell function.

Having explored the differences between the shortage and the Färe-Lovell function, we
conclude that if visualization is the ultimate goal of the exercise the shortage function
performs better, since it produces a more homogeneously distributed point cloud. We
remark that all these effects regarding the Färe-Lovell versus the shortage function are
equally observed on other data sets, both real and artificial.

3.1.4 Grid Choice: 2D versus 3D

Turning to the issue of selecting a starting grid, a different strategy in the visualization
process is to start from a series of two dimensional grids rather than a single three dimen-
sional network of grid points as hitherto employed. The detailed geometric representations
of the MVS frontier, as seen for instance in Figures 4 and 5, are generated from planar
two dimensional regular grids of MVS points, each with their initial return, variance and
skewness. All MVS points in this grid, located parallel to one of the coordinate planes
(either the MV-, MS-, or VS-plane), are then projected orthogonal to these grids using
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one of the three corresponding special cases of the shortage function (see above) with an
appropriate chosen direction vector (i.e., only one component is non-zero) resulting in a
point cloud in MVS space. In fact, for the figures in this article three two dimensional
grids consisting of 100× 100 points, parallel to each of the three coordinate planes, were
projected in a direction orthogonal to the respective grids (e.g., for the MV grid, we
project with a shortage function that maximizes the skewness solely by having a direction
vector with the mean and variance directions set equal to zero). Thus, 30,000 points (three
times 10,000 points) have been projected orthogonal to the grid in the MV-, MS-, and
VS-planes.

We remark that only the shortage function is used as a projection model for these two
dimensional grids. This is not only because of its superiority for visualization, as already
mentioned, but also because the Färe-Lovell function in the current definition cannot be
used for initial projection directions parallel to one of the coordinate axes. As can easily be
seen from model (P2), in such cases the objective function may well become unbounded,
indicating an ill-conceived mathematical program.9

Moreover, the computational time required to obtain the visualizations is roughly speak-
ing proportional to the number of points being generated. Since the two dimensional grid
approach leads to less, but more homogeneously distributed points compared with the
three dimensional grid approach, one can also expect a positive effect on the CPU-time.
Table 6 gives an overview of the time required to produce the frontiers visible in Fig-
ures 3, 5 and 4, used in this article.10 Obviously, these expectations are confirmed: two
dimensional grids save considerable CPU-time.

3.1.5 Concluding Comments

Wrapping up the developments in this section, we have shown by means of the prevalence
of slack and surplus variables in portfolio analysis that the shortage function has the
disadvantage to underestimate existing inefficiencies. By contrast, the Färe-Lovell func-
tion yields an unbiased estimate of portfolio performance, but has a more complicated
interpretation. Nevertheless, the shortage function has its merits because it tends to yield
more homogeneous geometric representations, despite its lack of flexibility to adjust the
direction vector compared to the Färe-Lovell function. The latter can reveal certain minor
parts hidden for the shortage function, but otherwise leads to a clustered representation.
These observations are reinforced by the fact that three dimensional grids do not seem to
work as well as a series of complementary two dimensional grids combined with orthogonal
projections using a shortage function with suitably selected direction vectors (whereas the
Färe-Lovell function cannot be applied in this context). Overall, we think the shortage
function remains a very attractive tool both to gauge the performance of portfolios (de-
spite its bias) and to represent the choices open to investors. This simply illustrates that
theoretically superior solutions like the Färe-Lovell function need not always contribute
to a specific practical goal (i.e., geometric representations).

9Briec (2000) proposes a refined definition of this the Färe-Lovell function allowing for zero components
in the direction vector. In the case of a single projection dimension, shortage and Färe-Lovell functions
would then coincide.

10These tests were performed on a Dell D810 Notebook equipped with an Intel Pentium M 770 Centrino
2.13 GHz CPU and 1 GB of RAM memory.
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3.2 MVS Frontiers: Further Explorations and Relation to MV
Frontier

3.2.1 Non-Convexities in the MVS Strongly Efficient Subset

Since the shortage function allows to geometrically represent the MVS frontier, the il-
lustration of other aspects of the efficiency decomposition developed in section 2 be-
comes trivial. Indeed, to circumvent the non-convexity of the efficient MVS frontier, Briec
et al. (2007) convexified the disposal representation set by imposing iso-utility surfaces
compatible with the set of admissible MVS portfolios. However, the computation of the
hyper-shortage function defined relative to this non-convex efficient frontier is currently
impossible. Therefore, one must content oneself to include the convexity efficiency measure
into the allocative efficiency component. However, thanks to the geometric representation
of the MVS frontier, it becomes possible to empirically illustrate the occurrence of a
convexity efficiency component.

Figure 4 demonstrates the potential non-convexity of the efficient MVS frontier. In this
figure, region À represents the theoretical frontier. All projections reaching the global
optimum are situated in the region Á. The straight line Â represents the tangent iso-
utility surface connecting two global optima from the MVS frontier and the convexity
efficiency is simply the measure of the distance between the portfolios laying on the non-
convex part and their projections onto this tangent line. Parts (a) and (b) illustrate a
section parallel to the mean-skewness plane respectively the MV plane. Both parts of this
figure also show in the zoomed box a 2-dimensional projection of this same straight line in
the mean-skewness plane respectively the MV plane. It illustrates the potential danger of
utility-based approaches to portfolio selection to get stuck with non-feasible solutions for
the optimal portfolio vector. The extent to which this phenomenon could manifest itself
is an empirical matter that remains to be explored.

3.2.2 MVS versus MV Strongly Efficient Subset

Figure 5a illustrates the efficient MVS frontier (region Á) contrasted with the efficient
MV frontier (region Â). It is now trivial to observe that the MV frontier overlaid on top
of the efficient MVS frontier forms a kind of lower bound along the skewness dimension.
Indeed, all MVS points projected onto the efficient MVS frontier, are dominated by the
efficient MV frontier in terms of the return and variance dimensions. However, the MVS
model allows higher skewness for projections slightly different from the MV portfolios in
terms of the same characteristics.

In the same figure, the theoretical frontier (i.e., region À) is clearly visible. Compared with
the visualization of this frontier in Figure 3a, we observe that visualization results improve
if the reconstruction is based on two dimensional grids instead of three dimensional grids.

3.2.3 MVS Strongly Efficient Subset: Concentration and Diversification

During the optimization process, additional data such as the proportions in the optimal
portfolio and the values of the left-hand and right-hand sides of the constraints is com-
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puted and stored. This data is then converted when needed to a proper form. For instance,
the number of nonzero proportions in the optimal portfolio can be converted to a color
hue between blue (low value) and red (high value) to obtain the result in Figure 5b.

Figure 5b represents the same efficient MVS frontier, but this time colored according to
the number of (nonzero) assets actually contained in the optimal portfolios. We can mainly
distinguish between three areas. Region À is rather small and contains portfolios composed
of the highest number of nonzero assets. This area simply illustrates the statistical fact
that portfolios with a small variance must contain a large number of assets in an effort to
diversify away risk. By contrast, region Â constitutes by far the largest area and solely
consists of portfolios containing “few” assets (3 to 4 at the most). Region Á, situated in
between these regions (À and Â), is rather small and consists of all solutions in between
in terms of the number of assets in the optimal solution. In fact, this figure illustrates that
moving beyond the MV frontier almost inevitably implies a drastic change in investment
strategy. Instead of seeking diversification over a wide set of assets (which only leads
to the relatively small regions À and Á), investors should try to carefully pick a rather
small set of assets delivering superior performance in terms of skewness (the whole of
region Â). Thus, to explore the whole of the MVS frontier one should unlearn the main
lesson of Markowitz, namely diversification. The relative small area of diversified portfolios
relative to the size of the MVS frontier could also contribute to explaining the widespread
phenomenon of underdiversified portfolios (which in the literature has been linked to
investor preferences for positive skewness (e.g., Kraus and Litzenberger (1976))).

3.2.4 MVS Strongly Efficient Subset: Cases with Shorting and Risk-Free
Rate

As an illustration of the generality of the proposed approach, we finally present examples
of portfolio frontiers that are of practical value to the investment community, namely the
case of shorting and the case when a risk-free asset is available.

Figure 6 represents the results of MV and MVS efficient frontiers without shorting with the
same frontiers allowing to sell short. In part (a), the MVS frontier resulting from a shorting
strategy is represented by region Á, while the MVS frontier without shorting generates
region À. Shorting allows for a more dispersed frontier, yielding gains in terms of return,
variance and skewness in the projected portfolios. Thus, for a given level of variance, both
return and skewness of a projected portfolio with shorting are higher than the ones of
an MVS portfolio without shorting. Indeed, shorting consists of weighting negatively the
rather non-desirable assets according to the MVS criteria, which allows leverage power
to positively overweight the more desirable assets into the efficient portfolios. Figure 6b
projects both MVS frontiers onto the MV plane. Here, shapes À and Á represent the
MV efficient frontiers with shorting respectively without shorting, whereby the former
obviously dominates the latter.

Finally, Figure 7 contrasts efficient projected portfolios for MV and MVS models with
and without a risk-free rate (RFR) of 2%. In part (a), the MVS frontier including the
RFR is represented by the region Á and the same frontier without RFR constitutes the
region À. Notice that the MVS frontier with RFR extends MVS without RFR into the
direction of the RFR (point Â). As in the MV case, including the RFR enlarges the set of
efficient portfolio possibilities within certain ranges into the direction of a reduced variance
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for given return and skewness, and into the direction of an increased skewness for given
return and variance. Since the MV frontier is a lower bound to the MVS efficient frontier
along the skewness dimension, the same interpretation remains valid when including the
RFR. Indeed, Figure 7b shows a projection onto the MV plane, region À and Á represent
the MV frontier without respectively with RFR. The difference in both frontiers results
solely from including the RFR, whereby the MV frontier with RFR offers for a given
return level lower variance compared to the MV case without RFR.

3.2.5 Concluding Comments

Furthermore, the figures shown in this empirical illustration as well as numerous other runs
we have made on both real and artificial data sets reveal that there does not seem to be
such a thing as a typical shape for the efficient MVS frontier. Thus, it seems impossible
for now to predict its shape purely on the basis of the initial statistical information
contained in the data. We can however reconstruct the MVS frontier using computer-
intensive optimization strategies using well-chosen grids.

Finally, we remark that special care must be taken because of the non-convex nature of
these non-linear portfolio models. If a local optimum is not the global optimum, this often
seems to lead to certain artifacts in the figures. In Figures 3a and 3b, for instance, this
phenomenon can be observed near the upper part of the frontier at Ã. In fact, there is
a small part of the frontier missing since the optimization process fails to find the global
optimum in that neighborhood. One strategy to reduce this phenomenon is to use different
starting points for the numerical optimization process, but success in this venture is not
guaranteed. From several empirical experiments both on real and artificially generated
data sets, we conclude that in most cases the local optima obtained are in fact also global
optima, especially in the regions of interest to an investor.

4 Conclusions

This paper has introduced a geometric representation of the MVS frontier related to a new
tool introduced in the literature by Briec et al. (2007). This proposal could render great
services to practitioners in portfolio management. This three dimensional representation of
the efficient MVS frontier allows investors to just pick up a portfolio that matches suitably
their needs in term of absolute risk aversion and absolute prudence. This contribution is
based upon the shortage function introduced in the investment framework as a measure of
performance. Our choice of this method as a tool for geometric representation is motivated
by the fact that it approximates the true frontier via a non-parametric measurement
through the risk contraction and the expansion of return and skewness. Furthermore, this
shortage function has the advantage of presenting a general framework compatible with
general investor preferences, while there is a plethora of alternative approaches (e.g., the
multi-objective programming method of Lai (1991), the closely related MVS approach of
Joro and Na (2006) focusing on variance reduction solely, . . . ) attempting to solve the
MVS portfolio by privileging one or two parameters at the cost of the other dimension(s).

In the third section, different strategies to geometrically represent efficient MVS frontiers
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are elaborated. In particular, both shortage and Färe-Lovell functions as well as the use
of three- versus two-dimensional grids have been explored. The prevalence of slack and
surplus variables in portfolio analysis reveals that the shortage function underestimates
inefficiencies, while the Färe-Lovell function generates no such bias. On the other hand,
when the direction vector is determined by the evaluated unit, the proportional interpreta-
tion of the shortage function is relatively easier than the arithmetic average interpretation
of the Färe-Lovell function. In addition, the shortage function is meriting in developing
geometric representations because of their homogeneity. The Färe-Lovell function leads
to a clustered representation, though it can reveal parts of the MVS frontier that remain
hidden for the shortage function. Furthermore, visualization using several two dimen-
sional grids based on a shortage function with suitably selected direction vectors (the
Färe-Lovell function is not applicable in this context) yields better results compared to a
three dimensional grid. Moreover, this combination has the most favorable CPU-time. In
conclusion, we think that the shortage function has advantages both when gauging the
performance of portfolios (despite its bias) and when representing the MVS frontier from
which investors may choose.

Furthermore, key differences between the MVS and MV frontiers have been illustrated.
Portfolio efficiency in a MV framework is always greater than efficiency in the MVS
framework, because one simply adds another (i.e., skewness) constraint. Geometrically,
this result appears markedly, since the MV frontier represents a lower bound frontier on
the efficient MVS frontier in terms of the skewness dimension. Furthermore, it is striking
that large parts of the MVS frontier require only a small combination of assets rather
than a diversification strategy.

We hope that the geometric representation of MVS portfolios may offer a tool to academics
to explore a variety of additional questions related to portfolio choice (for instance, it may
help to estimate the risk-aversion and prudence characterising investor preferences (e.g.,
Eisenhauer and Ventura (2003))). Equally so, this new development may well contribute
to the dissemination of MVS optimization tools among practitioners (whom at least partly
seem to be using large scale MV models (e.g., Perold (1984)). For instance, one may con-
jecture that the transaction and management costs of such portfolios are lower than in the
traditional MV model. Of course, we do not pretend that this MVS model would provide
an answer to all objections formulated by financial analysts to the standard MV model
(for example, to maximize the estimation errors in the returns and variances, unstable op-
timal solutions, etc. (see, e.g., Michaud (1989))). These and many other questions remain
to be tackled in future work.
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Figure 1: Projections onto the MVS frontier
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Table 2: MV vs. MVS Model: Percent Changes for American International Group

∆ Return (%) ∆ Variance (%) ∆ Skewness (%)
MV Efficiency 88.46 −72.58 −114.49
MVS Efficiency 70.77 −46.39 46.39

Table 3: Differences Between Projection Points of Shortage vs. Färe-Lovell Functions:
Descriptive Statistics

Return Variance Skewness
MAD 0.0485 1.9514 3.0771
Max 0.0718 15.3371 25.4645
Min -0.1508 1.1722 -1.6547

Range 0.2226 14.1649 27.1192
# of valid points : 70639.

Table 4: Shortage Function: Slacks and Surplus Variables

Slack in the direction of . . . Total with
Slack

Total No
Slack TotalM V S MV SM SV

# 7417 2346 21259 168 18736 4876 54802 16682 71484
% 10.38 3.28 29.74 0.24 26.21 6.82 76.66 23.34 100.00

Table 5: Angles of Projection: Shortage vs. Färe-Lovell Functions

Angle in MV-plane Angle in SM-plane Angle in SV-plane
Shortage Färe-Lovell Shortage Färe-Lovell Shortage Färe-Lovell

# angles 71484 71761 71484 71797 71484 71776
Average angle (◦) 1.299 13.339 88.029 74.634 44.623 54.365
Standard deviation (◦) 3.620 30.325 6.179 33.596 24.258 31.641
# 90◦ angles 0 9381 878 8978 0 11051
# 0◦ angles 877 7369 60 11430 60 10703
% 90◦ angles 0.00 13.07 1.23 12.50 0.00 15.40
% 0◦ angles 1.23 10.27 0.08 15.92 0.08 14.91

Table 6: Time Required to Generate Efficient Frontiers

Type of frontier Type of grid Nr of points Time Seconds per point
MVS with shortage function 2d-grid 30000 6m23s 0.013
MVS with shortage function 3d-grid 125000 20m14s 0.010
MVS with Färe-Lovell function 3d-grid 125000 24m13s 0.012
MV with shortage function no grid 2900 10s 0.003
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