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Abstract 

In a recent article, Briec, Kerstens and Vanden Eeckaut (2004) develop a series of nonparametric, 

deterministic non-convex technologies integrating traditional returns to scale assumptions into the 

non-convex FDH model. They show, among other things, how the traditional technical input 

efficiency measure can be analytically derived for these technology specifications. In this paper, we 

develop a similar approach to calculate output and graph measures of technical efficiency and 

indicate the general advantage of such solution strategy via enumeration. Furthermore, several 

analytical formulas are established and some algorithms are proposed relating the three 

measurement orientations to one another. 
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1 Introduction 

Efficiency and productivity measurement serve an important role in benchmarking firms and public 

sector organisations using frontier analysis. The boundary of technology or a corresponding 

economic value (e.g., cost) function can be estimated via econometric and mathematical 

programming methodologies (see Lovell (1993)). Non-parametric technology models, known under 

the name Data Envelopment Analysis (DEA), have become standard tools for efficiency 

measurement ever since Charnes, Cooper and Rhodes (1978) showed that efficiency measures can 

be computed for each Decision Making Unit (DMU) using linear programming. Starting from the 

first operational procedure to measure technical and allocative efficiency (Farrell (1957)), extensive 

efficiency and productivity decompositions have been developed (e.g., Banker, Charnes and Cooper 

(1984), Färe, Grosskopf and Lovell (1983)). These refined measurement schemes reveal possible 

causes of inferior or superior performance, which is valuable for both policy-oriented and academic 

purposes.  

 While the development of these DEA production models initially imposed convexity, 

Deprins, Simar and Tulkens (1984) proposed a simple monotone hull (known as the Free Disposal 

Hull (FDH)) as an estimator of technology. This monotone hull is the closest inner approximation of 

technology (Färe and Li (1998)), since it is normally contained in the convex monotone hull (e.g., 

Banker, Charnes and Cooper (1984)). Apart from the time divisibility of technologies, very few 

arguments exist to maintain convexity apart from the convenience of deriving duality results 

between technology and value functions (e.g., the cost function). The main argument against 

convexity is probably related to indivisibilities. For instance, Scarf (1981a,b, 1986a,b, 1994) is 

among the authors stressing the importance of indivisibilities in choosing among technological 

options. This general argument has been used to plea in favour of using non-convex FDH 

technologies by Tone and Sahoo (2003). Furthermore, Briec, Kerstens and Vanden Eeckaut (2004) 

stress that our ignorance about available technological choices is especially important when 

analysing public sector activities, calling for a prudent formulation of technology. Furthermore, 

FDH has attractive statistical properties: it is a consistent estimator for any monotone boundary, 

though its rate of convergence is small (Simar and Wilson (2000)). 

 FDH has gained quite some popularity in empirical applications in a variety of sectors. 

Public sector studies include, among others, Drake and Simper (2003) analysing police force 

efficiency in the UK and Mairesse and Vanden Eeckaut (2002) assessing the performance of 
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museums. Turning to private sector activities, Alam and Sickles (2000) estimate FDH efficiency 

scores to assess the dynamics of deregulation in the US airline industry and their convergence tests 

find less dispersion in firm performance over time, Bauer and Hancock (1993) measure the 

efficiency and productivity of check processing offices of the Federal Reserve System, Cummins 

and Zi (1998) compare the relative performance of U.S. life insurance companies, Ruiz-Torres and 

López (2005) use FDH to evaluate heuristics for job scheduling problems on parallel machines when 

there are multiple criteria, among others. 

 Kerstens and Vanden Eeckaut (1999) and Briec et al (2000) proposed the integration of 

traditional returns to scale assumptions into this non-convex FDH model to create the closest inner 

approximations of technologies allowing for various scaling laws (see, e.g., Destefanis and Storti 

(2002) and Destefanis (2003) for empirical applications). This allows, among others, to 

distinguish between technical and scale efficiency on non-convex technologies too. Initially, the 

computation of efficiency measures relative to these models implied the solution of nonlinear, 

mixed integer mathematical programs. However, Podinovski (2004) showed that these problems 

can be linearised yielding a series of equivalent standard MIP problems. Leleu (2005) took this 

analysis one step further and showed how the same models can be transformed into linear 

programming models. But, Briec, Kerstens and Vanden Eeckaut (2004) indicate that these 

non-convex production frontiers need not create any computational problem in empirical 

applications, since simple closed-form expressions characterize the technical efficiency measures 

making use of implicit enumeration algorithms based upon vector comparisons. In fact, these 

enumeration algorithms require by far the smallest number of arithmetic operations (see also below). 

 In this paper, we extend this latter work and focus on output and graph oriented measures of 

technical efficiency. Paralleling the input case, we derive simple closed-form expressions to 

calculate the radial output measure of technical efficiency as well as the hyperbolic measure (see 

Färe, Grosskopf and Lovell (1985)) that evaluates technical efficiency in the full input-output space. 

This is again done by making use of implicit enumeration algorithms based upon vector 

comparisons. Briec, Kerstens and Vanden Eeckaut (2004) also establish dual relations between these 

non-convex technologies allowing for various scaling laws and the corresponding cost functions. 

Corresponding to output and graph oriented measures of technical efficiency, one could analogously 

develop the non-convex revenue respectively return to the dollar profit function (see Färe, Grosskopf 
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and Zaim (2002) for the latter profit function).1 However, due to space limitations this is beyond the 

scope of the current contribution. 

 To be more precise, the paper develops the following topics. First, traditional 

mathematical programming models are presented to solve for efficiency measures relative to 

convex technologies. Also a link is established between these traditional formulations and the 

generalised formulation developed in Briec, Kerstens and Vanden Eeckaut (2004). Second, the 

implicit enumeration algorithms for FDH and the other non-convex technologies are systematically 

treated. In addition to the input oriented efficiency measures, we propose output-and graph-oriented 

efficiency measures. The latter efficiency measure simultaneously looks for reductions in inputs 

and expansions in outputs. This extensive discussion ends with an explicit algorithm and a simple 

numerical example. Third, we develop some new results regarding the relationships between 

these three traditional orientations of measurement. In particular, we link the optimal values of the 

efficiency measures and their corresponding scaling parameters under the different orientations of 

measurement for the non-convex technologies by developing three lemmas. 

 

2 Technologies and Efficiency Measures 

2.1 Axioms and definitions of non-convex and convex technologies2 

Drawing upon activity analysis (Koopmans (1951)), deterministic, nonparametric technologies are 

based on k observations using a vector of inputs x ∈ ℜ+
n to produce a vector of outputs y ∈ ℜ+

m. 

Technology is represented by its production possibility set T = {(x,y): x can produce y}, i.e., the set 

of all feasible input-output vectors. This work needs the following assumptions on technology: 

(A.1) No free lunch (if (x,y) ∈ T ∧ x = 0 ⇒ y = 0) and inaction is feasible ((0,0) ∈ T). 

(A.2) T is closed. 

(A.3) Free disposal of inputs and outputs (if (x,y) ∈ T ∧ (x,-y) (x,-y) ⇒ (x,-y) ∈ T). 

(A.4) T exhibits: 

(i) Constant Returns to Scale (CRS) (δT ⊆ T, ∀δ > 0); 
(ii)  Non-Increasing Returns to Scale (NIRS) (δT ⊆ T, ∀δ ∈[0,1]); 

                                                           
1 Notice that long-run profit functions are independent of convexity assumptions on technology. But, a restricted 
profit function (e.g., due to short-run fixed inputs or the presence of an expenditure-constraint) is not lower when 
tangent to a convex compared to a non-convex technology. This would imply focusing on sub-vector graph 
efficiency measures rather than full dimensional ones, leading to additional notational complexity. 
2 This subsection draws heavily upon Briec, Kerstens and Vanden Eeckaut (2004). 
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(iii)  Non-Decreasing Returns to Scale (NDRS) (δT  ⊆ T, ∀δ ≥ 1); 
(iv) Variable Returns to Scale (VRS) (when (i), (ii) and (iii) do not hold). 

(A.5) T is convex. 

Assumptions (A.1-A.2) impose weak mathematical regularities. Free (strong) disposability of inputs 

(outputs) means that inputs (outputs) can be wasted without opportunity costs. Axiom (A.4) 

describes specific assumptions regarding the returns to scale of technologies, i.e., the scaling of 

production processes. The convexity assumption (A.5) is traditional, but not indispensable. Various 

non-parametric technologies have been derived from these axioms: e.g., the non-convex FDH 

(Tulkens (1993)) satisfies (A.1) to (A.3) and (A.4–iv), while the initial model of Charnes, Cooper 

and Rhodes (1978) satisfies (A.1) to (A.3), (A.4–i) and (A.5).  

 We start off from the production possibilities sets associated with a single observation and 

then build the technology of the sample as a union of sets. Consider a set of production units 

( ) ( ){ }KK yxyxW ,,...,, 11=  containing the null input-output vector. Individual production 

possibilities sets are based upon one production unit (xk,yk) and different maintained hypotheses 

of returns to scale: 

{ }
{ }

{ }
{ }
{ }
{ }.1:)iv(

;10:)iii(

;0:)ii(
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Γyyxxyx yxS kkkk
ΓSD

   (1) 

The simplest non-convex technology imposes strong disposability (A.3) and no specific scaling 

(i.e., variable returns to scale are imposed (δ = 1)). Other technologies add a specific assumption 

regarding returns to scale for each single observation, whereby the scaling parameter δ follows the 

definitions in (A.4). Taking non-convex and convex unions of these individual production 

possibilities sets generates the different FDH-based technologies on the one hand and the more 

classic convex technologies on the other hand: 

,)(and)( ,

1

,,

1

,  ,yxS =CoT,yxS =T kk
ΓSD

K

k

ΓC
kk

ΓSD
K

k

ΓNC
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
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


∪∪
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  (2) 

where NC and C represent non-convexity respectively convexity, Γ is as defined in (1) and Co(A) 

denotes the convex hull of a set A.  
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 Alternatively, a unified algebraic representation of non-convex and convex technologies 

under different returns to scale assumptions can be written as follows: 

{ }

,0and1:)ii(

,}1,0{and1:)i(with
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   (3) 

where Γ is again as defined before. There is one activity vector (z) operating subject to a 

non-convexity or convexity constraint and a scaling parameter (δ) allowing for a particular scaling 

of observations spanning the frontier. 

 

2.2 Definitions of technical efficiency measures 

We now introduce the definitions of the input-, output- and graph-oriented measures of technical 

efficiency (see Färe, Grosskopf and Lovell (1985)). First, consider a radial input efficiency 

measure defined relative to a general non-parametric technology: 

( ) ( ){ }.T,yxλ,λ:λT,yxDF ΓΓ

i
,, 0min ΛΛ ∈°°≥=°°    (4) 

It is situated between zero and unity, indicates the minimal proportional reduction of all inputs 

while remaining within the technology, and it has a cost interpretation.  

Second, a radial output-oriented efficiency measure specifically defined to such 

technology is: 

( ) { }.)(:max ,, Ty,θxθT,yxDF ΓΓ

o
ΛΛ ∈°°=°°     (5) 

This radial measure is larger than unity, points out the maximal proportional expansions in all 

output dimensions producible from given outputs, and it has a revenue interpretation. 

Third, a radial graph-oriented efficiency measure defined relative to such technology is: 

( ) .)
1

,(:min,DF ,,
GR







 ∈°°=°° ΓΛΓΛ TyxTyx

λ
λλ    (6) 

This hyperbolic efficiency measure indicates the minimal equiproportionate reduction in all inputs 

and expansion in all outputs compatible with the technology, and it has a return to the dollar profit 

interpretation (Färe, Grosskopf and Zaim (2002)). 
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 Efficiency computations on convex models require solving linear programming (LP) 

problems for each observation being evaluated (e.g., Färe, Grosskopf and Lovell (1994)). Focusing 

for the moment on the radial input efficiency measure relative to Γ,CT  requires solving for each 

evaluated observation (x°,y°) the following non-linear problem (P.1) based upon the convex part of 

the technology formulation (3):3 

,,

,...,1

,...,1

min)(
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whereby Γ and NC follows the definitions in expressions (1) and (3). This mathematical 

programming problem can be transformed into a traditional LP as follows (P.2): 
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The new formulation (P.1) and the traditional formulation (P.2) are linked by the following lemma. 

 

                                                           
3
 Analogous programming problems can be defined to solve for output and graph technical efficiency measures. 

7



IÉSEG Working Paper Series 2005-ECO-4 

 

Lemma 1. Computing DFi(x,y) on convex technologies using (P.2) is equivalent to (P.1). 

Proof. Substitute wk = δzk in (P.1), rewrite the sum constraint on the activity vector, and realise that 

the constraints on the scaling factor δ are in fact integrated into the latter constraint.   �  

 

 Turning to non-convex technologies, radial input efficiency is computed relative to Γ,NCT  by 

solving for each observation (x°,y°) a mixed integer, non-linear programming problem (P.3): 

NC,Γ,zδ

,M,,M,yzδy

,N,,n,xλzδxtosubject

λ,yxDF

m

K

k
kkm

n

K

k
kkn

λ,z,δ
i

∈∈

=≥

=≤

=

°

=

°

=

°°

∑

∑

...1

...1

min)(

1

1  

whereby Γ and NC follows the definitions in expressions (1) and (3). 

 Since FDH involves no scaling, the scaling parameter (δ) is fixed at 1 in (P.3) yielding the 

traditional binary MIP problem. As shown in Tulkens (1993) (see also De Borger, Ferrier and 

Kerstens (1998), Fried, Lovell and Vanden Eeckaut (1995), among others), this problem can be 

solved in two steps using an implicit enumeration algorithm (Garfinkel and Nemhauser (1972), § 

4.5). In the first step vector dominance procedures determine for each observation its set of 

dominating observations (independent of the selected orientation of efficiency measurement). In the 

second step the efficiency measure is computed by directly applying its definition.  

 The algorithms developed to solve for radial efficiency measures on the new non-convex 

technologies are very similar in structure to the ones proposed for FDH.4 Again, one can distinguish 

between two steps: the first is common to all orientations; the second is specific for each orientation 

of measurement. First, for each of these three orientations of measurement the set of dominating 

observations refers to the “scaled better set” and depends on one of the four possible returns to scale 

assumptions. Second, once membership of the “scaled better set” is verified, the optimal values of 

the scaling parameter must be substituted in the algorithms to compute the technical efficiency 

measure in the selected orientation. 

                                                           
4 These have also been outlined in Bogetoft (1996: 464). 
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 In general, a virtue of using an enumeration approach in FDH-based models is the ability to 

provide algorithms requiring a relatively small number of arithmetic operations. The maximum 

(minimum) of a vector, whose number of components is n, can be calculated in the worst case in 

)( 2nO  arithmetic operations. Hence, enumerating on the data set (where the number of firms is K) 

the number of arithmetic operations is about ))(( 2NMLKO + , where L is a measure of data 

storage for a given precision. By contrast, a standard linear program of a convex DEA model has a 

)( 3LKO  polynomial time complexity linked to the number of observed firms K. Since in general 

K>M+N,  the time complexity of enumerative FDH models is thus better than that of DEA models. 

Furthermore, it is well known that binary MIP problems are computationally hard. While binary 

MIP models provide good empirical results in a technical efficiency analysis context due to the 

specific structure of the problem, their use provides certainly not the most economical way to 

measure firm performances. Hence, enumeration is advantageous compared to the recent proposals 

of Leleu (2005) and Podinovski (2004). 

 

3 Efficiency Measures on FDH-Based Models Based upon Implicit Enumeration5 

3.1 Scaled vector dominance 

In the first step a modified index set of better observations is defined allowing for a rescaling of the 

observations in the sample according to the specific returns to scale assumption postulated. The 

vector dominance comparison thus accounts for the possibility that observations may be rescaled 

within certain parameter bounds. The “scaled better set” of the evaluated observation (x°,y°) is 

therefore conditional on one of the four returns to scale assumptions: 

{ },:)()( Γδ,yyδ,xxδ,yx,Γ,yxB kkkk ∈°≥°≤=°°  

where Γ characterises returns to scale following (1). It is now obvious that we have the relationship: 

)()()()( kk
SD-Γ

kk ,yxS,yx,Γ,yxB,yx ∈°°⇔°°∈ , 

where )( kk
SD-Γ ,yxS  refers to the individual production possibilities sets with different returns to 

scale assumptions (Γ) (i.e., expression (1)). Clearly, the construction of FDH technologies as non-

                                                           
5 To simplify notation, we assume that all observations are strictly positive (i.e., x > 0 and y > 0). To extend results to 

the complete non-negative Euclidean orthant, it suffices to introduce the sets: ( ) { }{ }01 >∈= mx:N,...,nxI  and 

( ) { }{ }01 >∈= my:M,...,myJ  (see Briec, Kerstens and Vanden Eeckaut (2004)). 
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convex unions of these individual subsets (expression (2)) makes implicit enumeration a possible 

solution strategy. Equivalently, this “scaled better set” can be defined by imposing lower and upper 

limits on the scaling parameter depending on the specific returns to scale assumption.  

 Thus, to obtain an enumerative process for measuring efficiency, we need to state under 

which conditions (xk,yk) “dominates” (x°,y°) given Γ.6 To this end, the following result is needed: 

 

Lemma 2. For k = 1,...,K, we have the following condition: 
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Proof. See Briec, Kerstens and Vanden Eeckaut (2004: page 168).     �  
 

 Depending on the specific returns to scale assumption, this scaled dominance condition 

can be expressed as follows: 
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6
 Cherchye, Post and Kuosmanen (2001) do not need vector dominance, but instead use complete enumeration on 

FDH given their choice of a particular efficiency measure, known as the gauge function. 
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iv) { }1: ==≡ δδΓ VRS : (xk,yk) “dominates” (x°,y°) if 
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 which amounts to traditional FDH dominance: °≥°≤ yyxx kk , . 

Vector dominance has been defined in terms of input and output ratios over all dimensions. Clearly, 

the set of dominating observations in FDH is a special case where scaling is not allowed (δ = 1). 

 

3.2 Computing efficiency measures using scaled vector dominance 

In the second step efficiency measures in the input, the output or the graph orientation can be 

computed given some knowledge about the scaling parameter. It is not necessary to test for all 

possible values of the scaling parameter (δ). Instead, for each observation being evaluated one 

only needs to find optimal values for this scaling parameter depending on the selected orientation 

of measurement and the assumption made regarding returns to scale. We treat sequentially the 

case of the input, the output and the graph orientation of measurement. We provide a simple 

formula for each selected orientation. 

 

3.2.1 Input-oriented radial efficiency measure: 

From the enumerative principle and the above definition (4) of the input-oriented radial 

efficiency measure, the minimum of the union set is the smallest minimum achieved over each of 

the separate sets. Thus, we have the following property: 

( ) ( ){ }.)()(:)(min ,Γ,yxB,yx,yxS,yxDFT,yxDF kkkk
SD-Γ

i
NC-Γ

i °°∈°°=°°  

From this property, it is straightforward to state the following result: 

Lemma 3.   (1) Under CRS or NIRS, we have: 
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

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


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=
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(2) Under NDRS, we have: 

( ) ( ) ( ) .:max1maxmaxmin
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
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
















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


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(3) Under VRS, we have: 

( ) .),,(B),(:maxmin,DF
n

kn

N1,...,n

-NC
i













°°∈













=°°

°=
ΓΓ yxyx

x

x
Tyx kk  

Proof. See Briec, Kerstens and Vanden Eeckaut (2004: pages 185-186).     �  

 

3.2.2 Output-oriented radial efficiency measure:7 

As in the previous subsection, by using the enumerative principle and the above definition (5) of 

the output-oriented radial efficiency measure, the maximum over the union set is the greatest 

maximum achieved over each of the separate sets. Thus, we again obtain the property: 

( ) ( ){ }.)()(:)(max ,Γ,yxB,yx,yxS,yxDFT,yxDF kkkk
SD-Γ

o
NC-Γ

o °°∈°°=°°  

From this property, it is straightforward to state the following result with a method of proof 

similar to the previous one. 

 

Lemma 4.   (1) Under CRS or NDRS, we have: 

( ) .)()(:minminmax
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

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°°∈
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
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



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




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(2) Under NIRS, we have: 

( ) .)()(:min1minminmax
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
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
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


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⋅




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




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(3) Under VRS, we have: 

( ) .)()(:minmax
1 



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


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



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



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Proof. See the Appendix. 

 

                                                           
7
 To obtain output-orientated efficiency measures contained in the unit interval, the ratios in the output dimensions in the 

second step of each formula must basically be reversed. 
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3.2.3 Graph-oriented radial efficiency measure: 

Again the enumerative principle and the above definition (6) of the graph-oriented radial 

efficiency measure guarantee that the minimum over the union set is the smallest minimum 

achieved over each of the separate sets, yielding the property: 

( ) ( ){ }.),,(B),(:),(S,DFmin,DF -SD
GR

-NC
GR Γ°°∈°°=°° ΓΓ yxyxyxyxTyx kkkk  

The following result again follows suit. 

Lemma 5.   (1) Under CRS, we have: 

( ) .)()(:minmaxmin
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
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(2) Under NIRS or NDRS, we have: 
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(3) Under VRS, we have: 

( ) ( ) ( )( )
}.,Γ,yxB,yx

:,yxS,yxDF,,yxS,yxDFT,yxDF

kk

kk
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okk
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1

°°∈










 °°°°=°°
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Proof. See the Appendix. 

 

3.3 Conclusions 

This section has shown the possibility to develop closed-form expression for the three basic 

orientations in efficiency measurement. Apart from the input orientation (reported in Briec, Kerstens 

and Vanden Eeckaut (2004) and repeated for the sake of completeness), these results are new. Briec, 

Kerstens and Vanden Eeckaut (2004) also develop closed-form expressions for the dual cost 
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function, the ray-average cost function and the marginal cost function corresponding to the above 

input efficiency measure. In principle, corresponding to output- and graph-oriented technical 

efficiency measures, one could analogously develop the non-convex revenue respectively return to 

the dollar profit function, as well as their ray-average and marginal counterparts. We refrain from 

doing so for reasons of space. 

 Note that it is equally well possible to compute in an analogous way nonradial efficiency 

measures in the three orientations of measurement that allow to accommodate for the massive 

presence of slacks in FDH-type technologies (see De Borger, Ferrier and Kerstens (1998) and 

Portela, Borges and Thanassoulis (2003) for the traditional FDH case). Furthermore, it is in principle 

feasible to derive similar expressions for the directional distance function that is dual to the 

traditional profit function (Chambers, Chung and Färe (1998)). This directional distance function 

can be related to the traditional Shephardian distance functions (thus, to the input- and output-

oriented efficiency measures, though not to the graph-oriented technical efficiency measure). 

Cherchye, Post and Kuosmanen (2001) have developed a simplified enumeration algorithm for the 

gauge function, another specific type of efficiency measure looking for simultaneous improvements 

in both inputs and outputs. (see also footnote 5).  

 Mairesse and Vanden Eeckaut (2002) show that enumeration remains possible when 

defining a more restricted returns to scale (RRS) notion (hence, FDH-RRS), based upon an interval 

setting a lower and upper bound defining the range within which an observation can be scaled 

downwards or upwards. Apart from these modifications in returns to scale, enumeration remains 

feasible when additional constraints are added to the standard production problems treated here. For 

instance, one can think of the model of Färe, Grosskopf and Lee (1990) on profit maximisation 

subject to an expenditure constraint. 

 In the end, the only inconvenience one could think of is that for each type of objective 

function (some type of efficiency measure or value function), one must come up with a specific 

closed-form expression. However, notice that the first step of scaled vector dominance is only 

depending on the returns to scale assumption and not on any specific objective function. 
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4 Algorithm and Numerical Example 

We are now able to outline a simple algorithm to compute the three orientations of the above 

efficiency measure on FDH technologies. Concentrating on the radial input efficiency measure, the 

following algorithm computes the input efficiency of observation (x°,y°) on FDH-based models: 

[1] Choose Γ and (x°,y°). Let D=1 (initialisation). 

[2] For CRS and NIRS, at step k compute 




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


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


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If k = K, then stop; otherwise k := k+1. 
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If k=K, then stop. Note: when the algorithm stops: ( )T,yxDFD NC-Γ
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:= k+1 . 

For NDRS, at step k compute 
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If k = K, then stop. Note: see above. Otherwise, k := k+1. 
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For VRS, at step k compute 

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If k = K, then stop; otherwise k := k+1. 
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If k = K, then stop. Note: see above. Otherwise, k := k+1. 

The computation of output- and graph-oriented efficiency measures proceeds along similar lines. 

 Figure 1 illustrates this algorithm using a simple numerical example with one input 

producing a single output. First, we clarify the role of the optimal values of the scaling parameter. 

Then, we indicate the computation of efficiency.  

< Figure 1 about here > 

 Observation a is not dominated in the traditional sense (B(xa,ya, Γ)=∅), since no observation 

uses less inputs to produce more outputs (is situated in the region to the north-west of a). When CRS 

is assumed, then observation a is dominated by a rescaling of observations b and c (the line segments 

b′b″ and c′c″). When NIRS (NDRS) are postulated, then observation a is dominated by a rescaling of 

observation c (b). Dividing the figure in four quadrants originating in DMU a, this observation can 

clearly never be dominated by rescaling any observation (like e) in the south-east region. For the 

other three quadrants, only observations located above the ray from the origin to DMU a are 

potential members of B(xa,ya, Γ). For instance, observation a is not dominated by any rescaling of 

observation d. 

 Observe that the input optimal value is equivalent to a projection in the output orientation. 

Assume observation a is evaluated imposing CRS, then the outputs of observation b (c) have to be 

adjusted upwards (downward) to b' (c') before it starts dominating DMU a. The scaling parameter 

for b is 3/2 and for c it is 3/5.5. The co-ordinates of b' =(xb',yb') are (3/2·3/2,3/2·2)=(9/4,2) and those 
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of c' =(xc',yc') are (3/(5.5)·5,3/(5.5)·(5.5))=(15/(5.5),3). In case NIRS (NDRS) would be imposed the 

scaling parameter of b (c) would exceed (fall short of) the upper (lower) bound of 1. Therefore, b (c) 

would not be part of B(xa,ya,NIRS) (B(xa,ya,NDRS)). 

 Once the optimal value of the scaling parameter satisfies the bounds, the efficiency measures 

can be straightforwardly computed by direct application of the algorithm in expression (12) in the 

main text. Taking ratios of rescaled inputs for b and c over inputs of a, one directly sees that the 

ratios with respect to b yield the minimum ([(9/4)/3]<[(15/(5.5))/3]). Hence, DMU a is projected 

onto point b' on the CRS frontier. Similar reasoning applies for the other returns to scale frontiers. 

 

5 Relations between Different Measurement Orientations 

Note that in the proof of part (3) of the previous lemma, we have stated for an individual 

technology that: 

( )( ) ( ) ( )( ){ }.)()(max
1−

°°°°=°° kk
SD

okk
SD

ikk
SD

GR ,yxS,yxDF,,yxS,yxDF,yxS,yxDF  

For a general production technology, however, only an inequality holds. In particular, Färe, 

Grosskopf and Lovell (1985: 136-137) were the first to prove that under a free disposal assumption 

the following relation holds between the three measurement orientations: 

( ) ( ) ( )( ){ }.max
1−°°°°≥°° T,yxDF,T,yxDFT,yxDF oiGR  

An obvious question of interest is whether any relation can be established between the optimal 

values of the efficiency measures and their corresponding scaling parameters under the different 

orientations of measurement. We answer this question by developing three more lemmas. 

 

Lemma 6. For all technologies satisfying strong disposability assumptions, we have: 

(a) ( ) ( ) ( )( ) 1−°°≤°°≤°° T,yxDFT,yxDFT,yxDF iGRi ; 

(b) ( )( ) ( ) ( )T,yxDFT,yxDFT,yxDF oGRo °°≤°°≤°° −1
. 

Proof. See the Appendix. 

 

Lemma 7. Efficiency measures on the FDH-type of technologies can be rewritten as follows: 

(a) ( ) { }.)(0:min ,,
Γδ,Tδ,yxλ,λλT,yxDF VRSNCΓNC

i ∈∈°°≥=°°  

(b) ( ) { }.)(:max ,,
Γδ,Tδθy,xθT,yxDF VRSNCΓNC

o ∈∈°°=°°  
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(c) ( ) .)
1

(:min ,,







 ∈∈°°=°° Γδ,Tδy

λ
,xλλT,yxDF VRSNCΓNC

GR  

Proof. This is a consequence of the definition of the scaling laws (A.4).    �  

 

This result basically serves to simplify the formulation of the following lemma. For the three 

measurement orientations, this lemma establishes the relation between optimal values of 

efficiency measures on the one hand and the optimal values of the scaling parameters on the other 

hand. 

 

Lemma 8. Denoting: 
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the following relations hold true: 

(a) *
o

*
GR

*
i θλλ ≤≤  ; 

(b) *
o

*
GR

*
i δδδ ≤≤ . 

Proof. See the Appendix. 

 

While the result for the efficiency measures (part (a)) simply confirms the results valid for 

general strongly disposable technologies (see Lemma 6), the results on the optimal scaling 

parameters are new. They indicate that the optimal scaling needed to be dominated in terms of 

scaled vector dominance depends on the selected orientation of measurement and the presumed 

objectives pursued by the DMU’s, a choice made by the modeller. This is also of some relevance 

for practitioners in view of recent discussions on the need to impose limitations on the scaling of 

DMU’s in view of the supposedly unrealistic nature of the traditional scaling laws (see Mairesse 

and Vanden Eeckaut (2002) and the discussion supra, or Bouhnik et al. (2001), Petersen (2001), 

Thore (1996), amongst others). 

 It is useful to clarify the role of the optimal values of the scaling parameter by reference to 

Figure 2 that is similar in structure to Figure 1. The input optimal value is equivalent to a projection 
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in the output orientation, since the outputs of observation b have to be adjusted before it starts 

dominating the evaluated observation a. Similarly, the output optimal value is equivalent to the 

projection in the input orientation (inputs need adjustment), and the graph optimal value is 

equivalent to the projection in the graph orientation (inputs and outputs need adjustment). Also these 

values are illustrated for observation b. 

< Figure 2 about here > 

 

6 Conclusions 

This contribution has extended the current literature on computing efficiency measures relative to 

nonparametric, non-convex technologies presented in Kerstens and Vanden Eeckaut (1999) and 

Briec et al (2000). Rather than solving the original nonlinear, mixed integer mathematical 

programs, linearised MIP programs (as in Podinovski (2004)), or standard linear programming 

models (as in Leleu (2005)), we have argued that algorithms based upon implicit enumeration can 

in principle do the job for each efficiency measures in any type of measurement orientation. 

Closed-form expressions have been developed for radial input, output and graph efficiency 

measures and an algorithm has been designed. Furthermore, some relations between efficiency 

measures and scaling parameters under the three measurement orientations have been established. 

This should contribute to give the empirical researcher a wider choice of computing options. 

 

Appendix 

Proof of Lemma 4. First, assuming that ),,(B),( Γ°°∈ yxyx kk , compute 

( ))( kk
SD-Γ

o ,yxS,yxDF °° . We have Γδδ ∈°≤ ,k xx . This implies Γδ,
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This directly yields:  
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One must distinguish between two cases: (1) Under CRS or NDRS, the upper bound of the set 

Γ
x

x
,

y

y

kn

n

,...,Nn
km

m

,...,Mm
∩



























 °

=

°

= 11
minmax  is necessarily 










=

°

=
kn

n

,...,Nn x

x
1

sup minδ . Consequently, we obtain 

( ) 









⋅









=°° °=

°

=

Γ

m

km

,...,Mm
kn

n

,...,Nn
kk

-SD
o

y

y

x

x
yxSyxDF

11
minmin),(,  and from the enumerative principle, 

this terminates the proof. (2) Under NIRS, the upper bound is 
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the enumerative principle. (3) Under VRS, similar arguments lead to the result that 
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Proof of Lemma 5. To prove (1), assume that ),,(B),( Γ°°∈ yxyx kk  and calculate 

( ))( kk
SD-Γ

GR ,yxS,yxDF °° . From the definition of the graph efficiency measure, one can deduce 
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Combining inequalities (1) and (2), we obtain 
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straightforward to deduce the solutions of the optimisation program: 
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To prove (2), we first consider the NIRS case with constraints: 
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There are now two possibilities. 

i) 1maxmin
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Then, we treat the NDRS case with constraints: 
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Again we have to consider two cases: 

i) 1maxmin
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By synthesising the NIRS and NDRS results, we then obtain (2).  

Finally, to prove (3), assume that ),(),( Γ°°∈ ,yxByx kk  and compute 
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These can be rewritten as: 
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Proof of Lemma 6. (a) We show the second inequality. For any 1≤λ , by free disposal, it is clear 
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Proof of Lemma 8. (a) follows from lemma 6. Let us show (b). First, assume that 
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Note in particular that *
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Since (i) and (ii) hold, there does not exist *
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Figure 1: Efficiency on Non-Convex Technologies: Intuition behind the Algorithm 
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Figure 2: The Better Set, the Scaled Better Set and Optimal Values of the Scaling Parameter 
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