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Abstract 

 

 

Assuming that the variance of daily price changes and trading volume are 

both driven by the same latent variable measuring the number of price-relevant 

information arriving on the market, the Mixture of Distribution Hypothesis (MDH) 

represents an intuitive and appealing explanation for the empirically observed 

correlation between volume and volatility of speculative assets.  

This paper investigates to which extent the temporal dependence of volatility 

and volume is compatible with a MDH model through a systematic analysis of the 

long memory properties of power transformations of both series. 

It is found that the fractional differencing parameter of the volatility series 

reaches its maximum for a power transformation around  and then decreases for 

other order moments while the differencing parameter of the trading volume 

remains remarkably unchanged. The volatility process thus exhibits a high degree of 

intermittence whereas the volume dynamic appears much smoother. The results 

suggest that volatility and volume may share common short-term movements but 

that their long-run behavior is fundamentally different. 
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1. Introduction 

 

 The relations among trading volume, stock returns and price volatility, the 

subject of empirical and theoretical studies over many years, have recently received 

renewed attention with the increased availability of high frequency data. A vast 

amount of the empirical research has documented what is now known as the 

“stylized facts” about asset returns and trading volume. In particular, speculative 

asset returns are found to be leptokurtic relative to the normal distribution and 

exhibit a high degree of volatility persistence. The same abnormality is found for the 

trading volume which also happens to be is positively correlated with squared or 

absolute returns.  

A meaningful approach for rationalizing the strong contemporaneous 

correlation between trading volume and volatility – as measured by absolute or 

squared returns – is provided by the so-called Mixture of Distribution Hypothesis 

(MDH) introduced by Clark (1973). In this model, the variance of daily price changes 

and trading volume are both driven by the same latent variable measuring the 

number of price-relevant information arriving on the market. The arrival of 

unexpected “good news” results in a price increase whereas “bad news” produces a 

price decrease. Both events are accompanied by above-average trading activity in the 

market as it adjusts to a new equilibrium. The absolute return (volatility) and trading 

volume will thus exhibit a positive correlation due to their common dependence on 

the latent information flow process. 

Another successful specification for characterizing the dynamic behavior of 

asset price volatility is based on the AutoRegressive Conditionally Heteroskedastic 

(ARCH) model of Engle (1982) and the Generalized ARCH (GARCH) of Bollerslev 

(1986). In this class of models, the conditional variance of price changes is a simple 

function of past information contained in previous price changes. The autoregressive 

structure in the variance specification allows for the persistence of volatility shocks, 

enabling the model to capture the frequently observed clustering of similar-sized 

price changes, the so-called GARCH effects.  
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These univariate time series models, however, are rather silent about the 

sources of the persistence in the volatility process. In the search of the origin of these 

GARCH effects, Lamoureux and Lastrapes (1990) analyze whether they can be 

attributed to a corresponding time series behavior of the information arrival process 

in Clark’s mixture model. Inserting the contemporaneous trading volume in the 

conditional variance specification shows that this variable has significant explanatory 

power and that previous price changes contain negligible additional information 

when volume is included in the variance equation. 

This inference, however, is based on the assumption that trading volume is 

weakly exogenous, which is not adequate if price changes and trading volume are 

jointly determined. As explained by Andersen (1996) it seems to be necessary to 

analyze the origin of GARCH effects in a setting where trading volume is treated as 

an endogenous variable. Tauchen and Pitts (1983) refined Clark’s univariate mixture 

specification by including the trading volume as an endogenous variable and 

proposed a Bivariate Mixture Model (BMM) in which volatility and trading volume 

are jointly directed by the latent number of information arrivals. This implies that the 

dynamics of both variables are restricted to depend only on the time series behavior 

of the information arrival process. Hence, if the bivariate mixture models are the 

correct specification, the time series of trading volume provides information about 

the factor which generates the persistence in the volatility process. 

Unfortunately, recent empirical studies reveal some shortcomings in the 

bivariate mixture models. Lamoureux and Lastrapes (1994) show that the estimated 

series of latent information arrival process does not fully account for the persistence 

of stock price volatility. Similar results were obtained by Andersen (1996) and 

Liesenfeld (1998) even in a context where an autoregressive structure is put on the 

latent information arrival process. In order for the BMM to be able to successfully 

explain the observed features of the price changes and volume series, Liesenfeld 

(2001) even presents a generalized mixture model where the latent process includes 

two components (the number of information arrivals and the traders’ sensitivity to 

new information), both endowed with their own dynamic behavior. 
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Although from a market microstructure perspective, the BMM representation 

is intuitively appealing, the absence of strong empirical support for the model seems 

to suggest that volatility and trading volume have too different dynamics to be 

directed by the same latent process as suggested by the BMM. It also appears that the 

fundamental differences of behavior, making the BMM untenable, should be looked 

for in the structure of temporal dependencies of both series. 

To this respect, an extensive empirical literature has developed over the past 

decade for modeling the temporal dependencies in financial markets volatility. A 

common finding to emerge from most of the studies concerns the extremely high 

degree of own serial dependencies in the series of absolute or squared returns. 

However, the available empirical evidence regarding the dynamic dependencies in 

financial market trading volume is more limited. Lobato and Velasco (2000) analyze 

the long memory property for the trading volume and volatility (as measured by 

squared or absolute returns) of 30 stocks composing the Dow Jones Industrial 

Average index. They conclude that return volatility (  or 2
tR tR ) and trading volume 

(V ) possess the same long memory parameter, lending some support to Bollerslev 

and Jubinski’s (1999) mixture model where a common latent process exhibiting long 

memory is used. 

t

In an investigation of the long-run dependencies in stock returns, Ding 

Granger and Engle (1993) explain, however, that power transformations other than 

unity or square have to be considered to fully characterize the long-run property of a 

financial series. Considering the temporal properties of the functions q
tR  for 

positive values of , they show that the power transformations of returns do exhibit 

long memory with quite high autocorrelations for long lags and that this property is 

strongest for  or near 1 compared to both smaller and larger positive values. 

q

1=q

The main contribution of this paper is to find out to which extent the temporal 

dependence of volatility and volume of speculative assets is compatible with a MDH 

model through a systematic analysis of the long memory properties of power 

transformations of order  of both the return and the trading volume series (i.e., q
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q
tR  and V ). To this end we follow the methodology introduced in Ding, Granger 

and Engle (1993) and Ding and Granger (1996): the analysis of long memory is 

tantamount to studying the decay rate of the autocorrelation function. The output of 

such an analysis yields the fractional integration parameter commonly denoted by . 

In this paper, it is obtained through the semiparametric techniques developed by 

Robinson (1994, 1995a and 1995b). The results obtained are quite surprising: whereas 

the fractional differencing parameter, , reaches its maximum for   and then 

decreases for higher order moments in the case of the volatility, the same 

differencing parameter remains remarkably unchanged in the case of the trading 

volume. Hence, the volatility process appears to be more complex than the volume 

process and exhibits a higher degree of intermittence

q
t

d

d 75.0=q

1.  

α

 

Restating the results in the very simple and intuitive framework developed by 

Lamoureux and Lastrapes (1990), we observe that the inclusion of trading volume in 

the conditional variance equation of these stocks does not change the degree of 

temporal dependence. That is, it leaves the level of volatility persistence, as measured 

by the sum β+ ,  virtually unchanged and the volume coefficient is not significant. 

Trading volume is only able to explain the volatility persistence of stocks with the 

lower degree of intermittence. In this situation, we recover the appealing result of 

Lamoureux and Lastrapes (1990), namely the fact that volume becomes highly 

significant and the volatility persistence measured by βα +  decreases to zero. Our 

results suggest that volatility and volume may share common short-term movements 

but that their long-run behavior is fundamentally different.  

In the search for improvements of the BMM framework that enable to account 

for the asymmetric behavior of volume and volatility on the short- and long-run, two 

competing models were recently presented in the literature. On the one hand, 

Bollerslev and Jubinski (1999) find that the long-run dependencies of volume and 

volatility are common but that the short-run responses to certain types of “news” are 

not necessarily the same across the two variables. With a different specification, 

Liesenfeld (2001) explains that the short-run volatility dynamics are directed by the 
                                                 
1 Broadly speaking, what we mean by intermittence is brutal movements in the volatility series. 
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information arrival process, whereas the long-run dynamics are associated with the 

sensitivity to new information. On the contrary, the variation of the sensitivity to 

news is largely irrelevant for the behavior of trading volume which is mainly 

determined by the variation of the number of information arrivals. Our results 

obtained using semiparametric methods outside this BMM framework thus lend 

support to Liesenfeld’s specification in the sense that it differenciates volume and 

volatility for their long-run behavior. 

 

The remainder of this paper is organized as follows. Section 2 briefly reviews 

the methodology of the Ding, Granger and Engle test. The data, the empirical 

estimations and the results are presented in Section 3. An intuitive correspondence 

with the MDH framework of Lamoureux and Lastrapes (1990) is discussed in Section 

4 while the last section concludes. 

 

2. Long-Run Dependencies in Volatility and Volume 

 

In agreement with the efficient market theory, empirical studies have shown 

that although stock market returns are uncorrelated at lags larger than a few 

minutes, where some microstructure effects might apply, absolute and squared 

returns - common measures of volatility - do exhibit long-range dependencies in 

their autocorrelation function.  In order to better define the notion of long memory, 

we follow Robinson (1994) among others. A stationary process presents long 

memory if its autocorrelation function )( jρ  has asymptotically the following rate of 

decay: 
12)()( −≈ djjLjρ  as ∞→j ,    (1) 

where  is a slowly varying function)( jL 2 and )2/1,0(∈d  is the parameter governing 

the slow rate of decay of the autocorrelation function. This parameter  measures 

the degree of long-range dependence of the series. In this context, the long memory 

property of the absolute returns should be written as: 

d

                                                 
2 Such that 0,1)(/)(lim >∀=

∞→
λλ jLjL

j
. 
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12)(),( −≈ d
t jjLjRρ  as ∞→j .     (2) 

Studying a large variety of speculative assets, Taylor (1986) first highlighted the 

existence of such an empirical regularity in the autocorrelation of the absolute 

returns.  

Applying the Granger & Newbold (1977) techniques for power transforms of 

Normal distributions, Andersen & Bollerslev (1997) push the analysis one step 

further and theoretically show that, in this context, any power transformation of the 

absolute returns,  q
tR , possesses this long memory property. Namely, that:  

12),( −≈ dq
t jjRρ      (3) 

where j  is large and denotes the jth  information arrival process and  the 

hyperbolic rate of decay or the fractional differencing parameter ( 0 ). From 

an empirical viewpoint, Ding, Granger and Engle (1993) use the S&P 500 stock index 

to study the decay rate of the autocorrelation function when different power 

transformations of the absolute returns are analyzed (i.e., 

d

2/1<< d

q
tR for ). 

They indeed conclude to the existence of a long memory property regardless the 

value for the parameter  and also show that the slowest decay rate for the 

autocorrelation function is obtained for values of q  close to 1. 

2...,,5.0,25.0=q

q

 

 Whatever its form, the MDH framework does not mean a causal relationship 

between the variance of daily price changes and trading volume. Both variables are 

assumed to be driven by the same latent process measuring the number of price-

relevant information arriving in the market. As such, it implies a common long-range 

dependence in the volatility and the volume processes. If the MDH represents a 

correct specification of the contemporaneous behavior of volatility and volume, the 

autocorrelation function of the latter process should exhibit the same rate of decay as 

the autocorrelation function of volatility as represented by tR . Hence one should 

observe the following: 
12),( −≈ d

t jjVρ  as ∞→j  and 2/10 << d ,  (4) 

with V  being the trading volume.  t
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Moreover, under some specific distributional assumptions (see Bollerslev and 

Jubinski (1999)), the cross-correlations between the volatility and the trading volume 

may also present the same hyperbolic decay:  
12),(),( −

−− ≈≈ d
jttjtt jRVcorrVRcorr .   (5) 

 One way of testing the adequacy of the MDH models is thus through an 

analysis of the long memory behavior of the volatility and volume processes as well 

as the rate of decay of their cross-correlations functions. In this direction, we apply 

the Ding, Granger and Engle (1993) approach and do not restrict our analysis to a 

single power transformation of both series. Rather, we investigate the rate of decay of 

the autocorrelation functions ),( jR q
tρ

4...,,5.

 and  for different values of the 

power term (i.e., for q ). In addition to representing a new method for 

testing the simultaneous behavior of volatility and volume, our approach offers the 

interesting property of providing a test for the MDH that does not rely on any 

parametric specification of the latent process.  

),( jV q
tρ

0,25.0=

  

In this paper, we use a semiparametric framework to estimate the degree of 

fractional differencing . Although this type of approach necessarily results in an 

efficiency loss compared to parametric methods (like MLE or GMM), it allows 

avoiding problems resulting from model misspecifications in the parametric case 

(Bollerslev and Jubinski (1999)).  The approach relies on the spectrum 

d

)(ωf  of a 

covariance stationary process , at frequency tX ω , defined by: 

∫
−

=
π

π

ωτωωτ difX t )exp()(),cov( ,   (6) 

with ...,1,0 ±=τ . If the series is fractionally integrated, then, for frequencies ω  close 

to 0 , 
dCf 2)( −≈ ωω  as ,    (7) +→ 0ω

where C  is a strictly positive constant. Nevertheless, the spectrum of a long memory 

process has a singular feature at frequency zero as ∞=
+→

)(lim
0

ω
ω

f . Hence, instead of 

assuming the knowledge of this process at all frequencies, one only establishes some 

hypothesis concerning the behavior of the spectral density in the neighborhood of 
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the origin (around the low frequencies). As there is no parametric assumption about 

the spectrum outside the neighborhood of the origin, the approach is called 

semiparametric. 

 

 

Let the process for the absolute returns or the trading volume  be:  tX

tt
d XL η=− )1(  ,     (8) 

with  being the lag operator and L tη  representing a stationary and ergodic process 

with a bounded spectrum, )(ωηf , at all frequencies ω . Then, the spectrum for the 

process  will be:  tX

[ ] )()exp(1)(
2

ωωω ηfif d−−−= ,    (9) 

 with )(ωηf  being positive, even, continuous and bounded away from zero and from 

infinity. In this framework,  controls for the long memory characteristics whereas d

)(ωηf  integrates the short term behavior. The only thing that we need to specify 

concerning the form of the function )(ωηf  is that in the neighborhood of the origin, 

i.e. 0→ω ,  

)0()( 2
ηωω ff d−= .      (10) 

We then have:  

[ ] )ln(2)0(ln)(ln ωω η dff −≈ ,    (11) 

and the spectrum is approximately log-linear for the long-run frequencies. 

A widely known and commonly used semiparametric estimator for  based 

directly on this relation is the so-called GPH log-periodogram regression estimator 

introduced by Geweke and Porter-Hudak (1983)) and denoted by . It is obtained 

by running the following regression:  

d

GPHd̂

[ ] jjj eidI +−−−= )exp(1ln2)(ln 0 ωβω ,   (12) 
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where T  denotes the sample size and )( jI ω  is the series periodogram3 at the  

Fourrier frequency, 

jth

),0(/2 ππω ∈= Tjj . Hence, the logarithm of the sample 

periodogram ordinates is regressed on a constant and the (lowest) Fourrier 

frequencies. The GPH regression estimator  is then simply calculated as being 

 times the estimated slope of this regression.  

GPHd̂

2/1−

As )0()( 2
ηωω ff d−=  only works for jω  close to zero, we must restrict the 

regression to the Fourrier frequencies in the neighborhood of the origin. This is why 

the regression is run by using only the first  Fourrier frequencies close to zero (i.e. , 

), where l  and  are the trimming and truncation parameters.   

m

m...,,2+llj ,1+= m

 

The consistency of this estimator is provided by Robinson (1995a and 1995b) 

under regularity conditions (namely, ∞→m , ∞→l  but  0→
m
l  and 0→

T
m

()/1 ∗m

) as well 

as the assumption of normality of the analyzed series. In this situation, the estimator 

itself is asymptotically Gaussian, having a variance equal to ( . 

However, the absolute returns 

)24/2π

tR  and the trading volume V , like most financial 

series, violate the Gaussian assumption and invalidate the asymptotic theory for the 

 estimator. In order to overcome this difficulty, we thus introduce the less 

restrictive estimator adopted by Andersen and Bollerslev (1997). Denoted by , 

this most robust estimator is based on the average periodogram ratio for two 

frequencies close to zero as shown below:  

t

GPHd̂

APd̂

[ ]
)ln(2

)(ˆ/)(ˆln
2
1ˆ

τ
ωωτ mm

AP
FF

d −= ,     (13) 

where  is the average periodogram, )(ˆ ωF ∑
=

=
m

j
jI

T
F

1
)(2)(ˆ ωπω  for frequencies 

 (m  but m...,j ,2,1= ∞→ 0→
T
m ) and 0 1<< τ . By construction, the estimated 

                                                 

3 
2

1

1 )exp()2()( ∑
=

−=
T

t
jtj tiXTI ωπω . 
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parameter4  is in the stationary range since it is below 1 . Moreover, Lobato and 

Robinson (1997) prove that  is asymptotically Gaussian for  and non 

normally distributed for 1 . 

APd̂

AP
ˆ

25.0=

2/

APd̂

≤ d

4/10 << d

2/14/ <

%

In the following empirical analysis, we thus use the Andersen and Bollerslev 

estimator  to measure the long-run dependencies in the absolute moments of 

order q  ( q ) of both the return and the trading volume series.  

d

4...,,5.0,

 

3. Breaking Out the Conventional Viewpoint 
 

The data set used for our empirical work consists in daily prices and trading 

volume for 50 London Stock Exchange “blue chips” quoted between January 1990 

and May 2001. All series were collected from Datastream and include  

observations. To save space and to ease the presentation, results are only provided 

for six stocks: Allied Domecq, Hilton GP, British Land, Barclays, Reuters GP and 

Dixons GP. They are representative, however, of what is obtained for the whole 

sample. Returns are calculated as differences of price logarithms and the trading 

volume is also used in logarithm

2874

5. 

Table 1 presents the usual descriptive statistics both for the return and volume 

series of each of the six stocks. The sample moments for all return series indicate 

empirical distributions with heavy tails relative to the normal. The return series also 

exhibit a positive asymmetry except for Dixons GP returns that happen to be 

negatively skewed. Not surprisingly, the Jarque-Bera statistic rejects normality for 

each of the return series at the 5  level of significance, a level that is used 

throughout this paper. Trading volume also appears to be non-normally distributed 

although the leptokurtosis and the asymmetry are less pronounced. 

 

Insert about here Table 1 

 

                                                 
4 In our estimations we use  and the scalar 2/1Tm = 25.0=τ . 
5 The tests were also done on the trading volume expressed by the number of shares and the results 
are qualitatively the same. 

 12



Since the early work of Harris (1986 and 1987), several papers have presented 

tests of the mixture of distribution hypothesis using different speculative assets and 

data frequencies. However, although Harris’ tests only rely on simple predictions 

emanating from the assumption that prices and volume evolve at uniform rates in 

transaction times (namely, basic tests on the correlation of volume or number of 

trades with prices and squared prices or else on the autocorrelation functions of these 

variables), the following studies rely on specific distributional assumptions or 

parameterizations for the directing process. 

Indeed, in the univariate setting, returns are modeled by a subordinated 

process with the traded volume regarded as a proxy for the directing process and 

tests are then performed relative to specific distributional assumptions for this 

variable (see Clark (1973) or Richardson and Smith (1994)). In the bivariate setting, 

both returns and volume are assumed to be directed by a latent process and 

empirical tests crucially depends on the selected dynamic for this variable (see 

Andersen (1996) Watanabe (2000) or Liesenfeld (2001)). 

In this study we try to build our tests for the MDH in a nonparametric 

framework to recover the generality of Harris’ first investigations of the model. As 

explained in the previous section, the MDH framework does not imply at all a causal 

relationship between the variance of daily price changes and trading volume. Since 

both variables are assumed to be driven by the same latent process, they must exhibit 

the same long-range dependence. Hence, if the MDH represents a correct 

specification of the contemporaneous behavior of volatility and volume, the 

autocorrelation function of the latter process should exhibit the same rate of decay as 

the autocorrelation function of volatility. The same hyperbolic decay may also be 

found for the cross-correlations between the volatility and the trading. 

Our tests for the adequacy of the MDH models will thus be carried out  

through an analysis of the long memory behavior of the volatility and volume 

processes as well as the rate of decay of their cross-correlation functions. This 

approach thus provides new tests for the MDH that do not rely on any parametric 

specification of the latent process. 
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Insert about here Figure 1 

 

Figure 1 starts this analysis by a representation of the autocorrelograms 

obtained for the absolute returns – our measure of volatility – and the trading 

volume of six LSE stocks. Consistent with Ding and Granger (1996), the 

autocorrelations present the slow, hyperbolic decay, typically found in long memory 

processes. Moreover, most of these autocorrelations are positive and statistically 

significant, as lying outside the Gaussian confidence bandwidths. 

 We already observe, however, some important differences in the behavior of 

the autocorrelation function for the trading volume relative to that of the absolute 

returns. The autocorrelation of absolute returns seems to die away much faster in the 

case of British Land, Hilton GP, and to some extents Barclays, than it does for the 

trading volume series, implying the possibility of a different long-run behavior. 

 

 Given the importance of the existence or non-existence of a common long-run 

behavior of volatility and volume for the MDH model, a formal test of the presence 

of long-run dependencies in both series is required. To this end, we use the so called 

Lo’s R/S long-term dependence test. Lo’s (1991) modified R/S statistic for long-range 

dependence in a financial series X  may be defined as follows:  









−−−= ∑∑

=
≤≤

=
≤≤

)(min)(max
ˆ
1),(

1111
,

XXXX
s

tmQ
k

j
jTk

k

j
jTk

mT

,   (14) 

where is a truncature parameter, m X  is the sample mean (i.e. ∑
=

=
T

j
jXT

X
1

1 ) and the 

quantity  represents an estimator of 2
,ˆ mTs ∑= j j XX ),cov( 0

2σ  defined by  

∑∑
==

+−=
T

j
jj

T

j
jmT mXX

T
s

11

22
, ˆ)(2)(1ˆ γω , with 

1
1)(

+
−=
m
jmjω  and  

∑
−

=
+ −−=

jT

i
jiij XXXX

T 1
))((1γ̂ , Tj <≤0 . Lo computed confidence intervals for the 

statistic ),()/1( TmQT , namely he uses the interval [  as the 95  

acceptance region for the null hypothesis of no long-range dependence.  

]862.1,809.0 %
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To better understand the link between the R/S statistic and the fractional 

integration parameter d , let us recall that when 0=m , the R/S statistic amounts to 

estimating the limit of  called Hurst coefficient. This coefficient, 

usually denoted by 

TTQ log/),0(log

H  is related to the fractional integration parameter by 

. 2/1−= dH

The results for Lo’s long-term dependence test are provided in Table 2. In 

agreement with Lobato and Velasco (2000), for all stocks, both the absolute returns 

and the trading volume series exhibit long-run dependence (i.e., 0 ) as the 

statistics remain outside the 95  confidence interval. Hence one cannot reject the 

MDH when tests of a similar long memory property for volatility and trading 

volume are carried out with a power transformation of unity (i.e., using 

2/1<< d

%

q
tR  and 

 with ). q
tV 1=q

 

Insert about here Table 2 

 

Although the existence of the same long-run dependence in the cross-

correlations of volatility and volume (equation (5)) requires more stringent 

assumptions and thus not represent in itself a way of rejecting all possible versions of 

the MDH, it remains an interesting feature to study. For our sample of six stocks, 

Figure 2 shows these cross-correlation functions. We observe the same hyperbolic 

decay as for the autocorrelation function of the absolute returns or the trading 

volume series in the case of four stocks, lending more support to the assumption that 

these series may be driven by the same latent process. For Barclays and British Land, 

however, the cross-correlations are not significant since they stay inside the 

confidence interval. If this cannot be regarded as such as a sufficient feature to reject 

the MDH for these stocks, we may expect, if it still holds, the relation between 

volatility and volume to be much weaker. 

 

Insert about here Figure 2 
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 To fully compare the long-run behavior of volatility and volume, we follow 

Ding, Granger and Engle (1993) and do not restrict the analysis to a single power 

transformation of both series. Indeed, we now investigate the rate of decay of the 

autocorrelation functions ),( jR q
tρ

4...,

d

 and  for different values of the power 

term (i.e., for ). Instead of giving all the corresponding graphs, we 

summarize the results through a parameter measuring the level of long memory for 

each series and each value of the power transformation . This parameter is the 

degree of fractional differencing . As explained in the previous section we use the 

Andersen and Bollerslev (1997) semiparametric estimator, ,  based on the average 

periodogram ratio for two frequencies close to zero and defined in equation (13). 

Figure 3 shows the obtained parameters both for the absolute returns and the trading 

volume series as a function of the power transformation  while Table 3 provides the 

corresponding values. 

),( jV q
tρ

,5.0,25.0=q

q

APd̂

q

 

Insert about here Figure 3 and Table 3 

 

First of all, being always in the interval , the estimated  reveals the 

presence of the long memory in almost all the power transformations of both the 

absolute returns and the trading volume series. However, a striking feature appears: 

whereas the fractional differencing parameter takes almost the same values for the 

trading volume regardless of the power transformation , the results are rather 

different for the volatility –measured by the absolute returns -. For the latter, the rate 

of decay of the autocorrelation function has its maximum around  and then 

decreases, more or less rapidly, to significantly smaller values. This result was 

obtained for the  LSE stocks used in this study. Indeed, the rate of decay of the 

autocorrelation function of the power transformation of the absolute returns always 

presents a maximum for an exponent  in the range [  and decreases 

significantly for larger values while the same estimator  remains remarkably 

insensitive to the power transformation  for the trading volume series. 

)2/1,0( APd̂

75.0=

q

d̂

q

]1

50

q ,5.0

AP

q

 16



Moreover, we observe that the difference of behavior of the degree of 

fractional differencing is strongest in the case of stocks that exhibit no long-run 

dependence in the cross-correlations. Indeed, the fractional integration parameter 

 of the volatility process decreases from  to 0  for Barclays and even 

from  to  for British Land while the estimators for the volume series remain 

virtually at the same level. These stocks clearly present a very different long-term 

behavior for the volatility and volume processes. Overall, the simultaneous analysis 

of the fractional differencing parameter for the volatility and the trading volume 

series at different power transformations clearly shows that both processes present 

fundamentally different behaviors in the long-run. 

APd̂ 3745.0 1705.

3048.0 0

  

To fully understand the difference in behavior, it seems interesting to link the 

analysis of the fractional differencing parameter to the so-called intermittency of a 

process. Indeed, the usual tool to analyze the local smoothness of a process X  is by 

computing its structure functions, namely the sample moments of its increments 

(that is ( ) ),( qTttXE +  where ),( TttX +  is the increment of  X  between time t  

and and ). The resulting scaling law may either be a linear function of , 

namely 

T 0≥q

( )

t + q

qHT≈qTttXE + ),(  where H  is again the Hurst exponent (and 

), or a nonlinear function of , i.e. 2/1−d=H q ( ) )),( qTttXE ≈+ (qT ζ .  In the former 

situation, X  exhibits smooth trajectories while, in the latter situation, the process 

presents a very unsmooth local structure and is said to be intermittent. 

The presence of very different values for the fractional differencing parameter 

 when different power transformations of the absolute returns are used is thus 

clearly a sign of intermittence in the volatility process. On the contrary, the trading 

volume seems to be a much smoother process that might be associated with a linear 

scaling law. This underlines once more the different time behavior between volatility 

and volume. From the time dependency and the time aggregation viewpoints, the 

volatility process appears to be much more complex than the trading volume 

process. 

d
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4. Volume Versus GARCH Effects Revisited 

 

 Many empirical studies have shown that the GARCH model of Bollerslev 

(1986) is particularly successful in its ability to capture the clustering of similar-sized 

price changes through a conditional variance that depends on the past squared 

residuals of the process. In its GARCH (1,1) form, the model corresponds to the 

following equations: 

     tttR εµ += −1 ,       (15) 

    ,     (16) ),0(~...,,/ 2
21 tttt N σεεε −−

         2 =t ωσ ,     (17) 2
1

2
1 −− ++ tt σβεα

where tε  is the conditionally Gaussian residual and 1−tµ  represents the conditional 

mean. Since the focus of this section is strictly on the impact of the trading volume in 

the variance equation, we simply assume an autoregressive process of order 1 for all 

stocks. The degree of persistence in the volatility is measured by the sum of the 

coefficients α  and β . 

Using the MDH framework, Lamoureux and Lastrapes (1990) argue that the 

observed GARCH effects in financial time series may be explained as a manifestation 

of time dependence in the rate of evolution of intraday equilibrium returns. They 

suggest that the daily number of information arrivals directing the price process may 

be proxied by the trading volume. Then, the focus of their analysis is to assess the 

degree of volatility persistence that remains in a GARCH (1,1) model conditional on 

the knowledge of the mixing variable (i.e., the trading volume). To do this, they use 

the previous GARCH (1,1) model where the conditional variance equation is 

replaced by the following: 

         t ωσ =2 .    (18) ttt Vγσβεα +++ −−
2

1
2

1

Equation (18) now models the conditional variance of returns as a GARCH (1,1) 

process with the trading volume V  as explanatory variable. The mixture model 

predicts that 

t

γ  should be positive and significant. Moreover, the persistence of 

variance as measured by  βα +  should become negligible if accounting for the 
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uneven flow of information with the trading volume explains the presence of 

GARCH effects in the data. 

 Their empirical analysis based on  actively traded stocks strongly supports 

the MDH framework. The sample period used for their study is very small, however, 

and does not include financial crises. Using different data and time periods, many 

studies (see for instance Kamath, Chatrath and Chaudhry (1993) or Sharma, 

Mougoue and Kamath (1996)) strongly question the informational power of trading 

volume in the GARCH setting.  Using the  LSE stocks, we re-estimate the GARCH 

(1,1) model without and with volume as described respectively by equations (17) and 

(18). Results are summarized in Tables 4 and 5. 

20

50

 

Insert about here Table 4 and Table 5 

 

 The estimated GARCH (1,1) models without volume all support the existence 

of a strong persistence in the volatility process with a sum of coefficients α  and β   

always above . Results of the inclusion of volume as an explanatory variable in 

the variance equation, however, provide mitigated conclusions, not entirely rejecting 

the Lamoureux and Lastrapes (1990) findings nor giving them an unconditional 

support. Indeed, for two stocks, namely Allied Domecq and Hilton GP, the trading 

volume has an important explanatory power. When included in the conditional 

variance equation, the coefficient 

9.0

γ  is significantly positive and the persistence in 

volatility as measured by βα +  is much smaller. For two other stocks, namely 

Reuters GP and Dixons GP, the trading volume has a limited explanatory power: 

even if the volume coefficient is significantly positive, GARCH effects are almost the 

same and the persistence in volatility does not change significantly6. Finally, for the 

last two stocks, namely British Land and Barclays, the trading volume does not 

explain the volatility at all: the coefficient γ  is not statistically significant and the 

persistence in volatility is not affected by the inclusion of volume in the equation. 

 

                                                 
6 This is the most common result that we had on the whole sample of the 50 LSE stocks. 
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 An interesting way of understanding why, in some situations, the volume is 

able to capture GARCH effects while most of the time is does not allow explaining 

the fluctuations of volatility is by linking the results obtained in the simple 

Lamoureux and Lastrapes (1990) framework with our findings on the behavior of the 

fractional differencing parameter. Indeed, the informational content of the trading 

volume happens to be relevant to understanding the dynamics of volatility only in 

situations where the difference of behavior in the parameter  is small for the 

volume and volatility series. On the contrary, when the volatility process presents a 

high level of intermittence (typically, the case of British Land and Barclays) while the 

volume process remains very smooth, their structures become too different to be 

driven by the same latent process. In this situation, the MDH does not hold and the 

Lamoureux and Lastrapes approach fails to capture the GARCH effects of the 

volatility through the inclusion of the trading volume in the variance equation. 

d

 

5. Conclusion 

 

 The systematic presence of leptokurtosicity in asset returns as well as the 

documented positive correlation between trading volume and squared or absolute 

returns have found their most convincing theoretical explanation in the so-called 

Mixture of Distribution Hypothesis (MDH). The model assumes that volatility and 

volume are directed by the latent number of information arrivals. Far from being 

neutral, this framework of analysis implies a strong probabilistic relation between 

both variables, and in particular the existence of a common temporal dependence. 

 Focusing on the long memory properties of power transformations of absolute 

returns and trading volume, this paper investigates, in a non parametric setting, to 

which extent the temporal dependence of volatility and volume of speculative assets 

is compatible with the MDH model. We apply the methodology introduced in Ding, 

Granger and Engle (1993) and Ding and Granger (1996) and compute the fractional 

integration parameter of both series (that is, we study the rate of decay of their 

autocorrelation functions).   
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The results obtained are quite surprising: whereas the fractional differencing 

parameter reaches its maximum for power transformations around q  and then 

decreases for higher order moments in the case of the volatility, the same 

differencing parameter remains remarkably unchanged in the case of the trading 

volume. The volatility process thus exhibits a high degree of intermittence whereas 

the volume dynamic appears much smoother.  

75.0=

Reformulating the results in the very intuitive framework introduced by 

Lamoureux and Lastrapes (1990), we obtain that stocks for which the trading volume 

has virtually no explanatory power relative to the GARCH effects also correspond to 

those for which the difference in the fractional parameters of volume and volatility is 

the strongest.   

The results suggest that volatility and volume may share common short-term 

movements but that their long-run behavior is fundamentally different. This leaves 

an open window for researchers willing to re-discuss the volatility-volume 

relationship. 
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Figure 1 

Autocorrelograms for the Absolute Returns - Volatility - and Traded Volume. 

 

We plot the autocorrelations of the absolute returns – as a measure of volatility – and 

the trading volume of six stocks traded on the London Stock Exchange Market, for 

lag 1 to lag . For all stocks we see the slow hyperbolic decay, which characterises 

long memory processes, i.e.  

200
12),( −≈ d

t jjRρ and  as  and 

. The autocorrelations remain above the  confidence interval 

(

12),( −≈ d
t jjVρ

%95

∞→j

2/10 << d

T/961± .  ) for long lags (even as long as  for some stocks). However, the 

autocorrelation of absolute returns seems to die out much faster in the case of British 

Land, Hilton GP and even Barclays compared to the trading volume series. 

200
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Figure 2 

Cross-correlations of the Absolute Returns - Volatility - and Traded Volume. 

 

We analyze the cross-correlations functions of volatility and traded volume for the 

six stocks. The straight line corresponds to ),( jtt VRcorr −  and the dotted one to 

),( jtt RVcorr − . The graphs show the same hyperbolic decay as for the 

autocorrelation functions of the absolute returns and volume, i.e. 
12),(),( −

−− ≈≈ d
jttjtt jRVcorrVRcorr . Nevertheless, for Barclays and British Land 

the cross-correlations are not significant, as they lie inside the 95  Gaussian 

confidence interval. 

%
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Figure 3 

Fractional Differencing Parameter  and Power Transformation q . d

 

Figure 3 investigates the rate of decay of the autocorrelation functions ),( jR q
tρ  and 

 for different values of the power term (i.e., for ),( jV q
tρ 2...,,5.0,25.0=q ). The fractional 

differencing parameter is calculated using the semiparameter estimator of Andersen and 

Bollerslev (1997) based on the average periodogram ratio for two frequencies close to zero, 

. The fractional differencing parameter d  takes almost the same values for the 

trading volume regardless of the power transformation q  for the volume (linear dotted 

line) whereas the graph shows a humped shape for the volatility. For the latter, after a 

maximum value around , the fractional differencing parameter decreases to 

significantly smaller values for superior values of the power transform. The decrease is 

very substantial in the case of British Land and Barclays. 

APd̂ AP
ˆ

75.0=q
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Table 1 

Descriptive Statistics for Daily Stock Returns and Traded Volume. 

 

Descriptive statistics of six stocks traded on the London Stock Exchange over the 

period January 1990 to May 2001 are presented in Table II. For our analysis, we use 

both returns measured as )/ln(100 1−×= ttt PPR  and traded volumes expressed in 

logarithm. The number of observations for the period of analysis is T .  The 

 confidence interval for a test of normality is given by 

2874=

%95 T/6*96.1±  for the sample 

skewness and T/24*96.1±3  for the sample kurtosis. We also provide the Jarque-

Bera test for normality. We use * to indicate significance at the 5  percent level.  

Mean 0.0583 Mean 9.5956 Mean 0.0101 Mean 6.6278

Variance 3.8507 Variance 0.3666 Variance 3.3366 Variance 1.3652

Skewness 0.1994* Skewness -0.0022 Skewness 0.5253* Skewness -0.9393*

Kurtosis 6.0121* Kurtosis 4.4811* Kurtosis 10.4855* Kurtosis 4.5546*

Jarque-Bera 1105.50* Jarque-Bera 262.70* Jarque-Bera 6842.22* Jarque-Bera 712.04*

Mean 0.0683 Mean 8.7848 Mean 0.0147 Mean 8.1345

Variance 5.9235 Variance 0.7891 Variance 2.8547 Variance 0.4683

Skewness -0.2449* Skewness -0.9453* Skewness 0.3021* Skewness -0.1714*

Kurtosis 11.3915* Kurtosis 5.8394* Kurtosis 10.6184* Kurtosis 4.5383*

Jarque-Bera 8461.31* Jarque-Bera 1393.59* Jarque-Bera 6994.08* Jarque-Bera 297.47*

Mean -0.0097 Mean 8.1169 Mean 0.0514 Mean 8.2072

Variance 5.3381 Variance 0.5798 Variance 5.6882 Variance 0.4961

Skewness 0.3372* Skewness 0.0893 Skewness 0.1004* Skewness -0.2285*

Kurtosis 8.8465* Kurtosis 3.7208* Kurtosis 11.1163* Kurtosis 3.8169*

Jarque-Bera 4147.77* Jarque-Bera 66.05 Jarque-Bera 7893.42* Jarque-Bera 104.94*

Returns Volume

Returns Volume

Returns Volume

Hilton GP Reuters GP

Returns Volume

Descriptive Statistics

Barclays British Land

Allied DomecqDixons GP

Returns VolumeReturns Volume
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Table 2 

Lo’s Long Term Dependence Test for Absolute Returns and Traded Volume. 

 

Lo’s (1991) modified R/S statistic for long-range dependence is presented in Table 2 to formally test the presence of long-term 

dependence in absolute returns and trading volume. In agreement with Lobato and Velasco (2000), for all stocks, both the absolute 

returns and the trading volume series exhibit long-run dependence (i.e., 2/10 << d ) as the statistics remain outside the  

confidence interval. 

%95

 

m Q(m,T) m Q(m,T) m Q(m,T) m Q(m,T) m Q(m,T) m Q(m,T)

2 5.4030* 2 4.4180* 2 5.6072* 2 5.3139* 2 4.0261* 2 7.0982*

5 4.5412* 5 3.8087* 5 4.8528* 5 4.6051* 5 3.5078* 5 5.8891*

8 4.0459* 8 3.4737* 8 4.3695* 6 4.4541* 8 3.1843* 10 4.8485*

10 3.7990* 10 3.3175* 10 4.1191* 10 4.0039* 10 3.0232* 12 4,5691*

m Q(m,T) m Q(m,T) m Q(m,T) m Q(m,T) m Q(m,T) m Q(m,T)

12 3.1361* 12 5.5628* 10 4.0667* 10 4.3217* 12 3.6933* 15 4.1161*

15 2.9444* 15 5.1158* 12 3.8808* 12 4.1165* 15 3.4313* 17 3.9697*

19 2.7485* 20 4.5749* 13 3.8003* 16 3.8049* 19 3.1700* 21 3.7207*

22 2.6268* 22 4.4050* 15 3.6546* 18 3.6789* 22 3.0151* 24 3.5685*

Hilton GP Reuters GP

Barclays British Land Dixons GP Allied Domecq

Barclays British Land Dixons GP Allied Domecq

Absolute Returns

Trading Volume

Lo's Long Term Dependence Test 

Hilton GP Reuters GP
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Table 3 

Decay Rate of the Autocorrelation Functions of Absolute Power Transformations for Returns and Volume. 

 

 To gauge the influence of the power transformation  on the decay rate of the autocorrelation functions q ),( jR q
tρ

APd̂

 and , 

Table 3 presents the values of the obtained Andersen and Bollerslev (1997) fractional differencing parameters   both for power 

transformations of the absolute returns (volatility) and the trading volume when 

),( jV q
tρ

4...,,5.0,25.0=q . 

 

q Volatility Volume Volatility Volume Volatility Volume Volatility Volume Volatility Volume Volatility

0.25 0.3745 0.3507 0.3048 0.4476 0.3996 0.3353 0.2927 0.3807 0.3465 0.3489 0.4122
0.5 0.3883 0.3504 0.3111 0.4485 0.4253 0.3346 0.3327 0.3824 0.3579 0.3495 0.4177
0.75 0.3872 0.3499 0.3129 0.4491 0.4292 0.3336 0.3404 0.3840 0.3581 0.3500 0.4184
1 0.3813 0.3494 0.3089 0.4496 0.4273 0.3324 0.3392 0.3855 0.3543 0.3504 0.4168
1.25 0.3725 0.3488 0.2987 0.4500 0.4226 0.3311 0.3331 0.3868 0.3478 0.3507 0.4134
1.5 0.3616 0.3482 0.2814 0.4503 0.4161 0.3296 0.3236 0.3881 0.3393 0.3509 0.4084
1.75 0.3492 0.3476 0.2568 0.4505 0.4079 0.3280 0.3116 0.3893 0.3291 0.3510 0.4021
2 0.3355 0.3469 0.2257 0.4506 0.3983 0.3263 0.2975 0.3904 0.3176 0.3510 0.3945
2.25 0.3203 0.3461 0.1903 0.4506 0.3875 0.3244 0.2820 0.3914 0.3055 0.3510 0.3857
2.5 0.3038 0.3453 0.1533 0.4505 0.3755 0.3225 0.2659 0.3924 0.2931 0.3509 0.3755
2.75 0.2857 0.3444 0.1176 0.4504 0.3626 0.3205 0.2495 0.3933 0.2812 0.3507 0.3640
3 0.2659 0.3435 0.0851 0.4502 0.3490 0.3184 0.2334 0.3942 0.2700 0.3505 0.3513
3.25 0.2442 0.3425 0.0571 0.4500 0.3347 0.3163 0.2180 0.3950 0.2597 0.3502 0.3374
3.5 0.2208 0.3414 0.0338 0.4497 0.3201 0.3141 0.2034 0.3957 0.2505 0.3499 0.3225
3.75 0.1959 0.3404 0.0149 0.4494 0.3053 0.3118 0.1897 0.3965 0.2424 0.3496 0.3070
4 0.1703 0.3392 0.0000 0.4490 0.2906 0.3095 0.1770 0.3971 0.2353 0.3493 0.2911

Reute

Rate of Decay for Absolute Power Transformations of Returns and Traded Volume

Barclays British Land Dixons GP Allied Domencq Hilton GP
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Table 4 

GARCH (1,1) Parameter Estimates without Trading Volume. 

 

We use the LSE “blue chips” stocks over the period January 1990 to May 2001 to 

estimate by maximum likelihood the parameters of a GARCH (1,1) model without 

volume. Results for the six stocks discussed in this paper are presented in Table 4 

where heteroskedastic-consistent t-values are also provided in parenthesis. All stocks 

exhibit a high level of volatility persistence as measured by the sum βα + . 

 

ω α β α  + β

Barclays 0.0482* 0.0805* 0.9085* 0.9889

(3.297) (6.542) (64.38)

British Land 0.0678* 0.0986* 0.8875*  0.9860

(3.955) (7.64) (61.67)

Dixons GP 0.1109*  0.0867* 0.8988* 0.9853

(3.949) (6.68) (59.97)

Allied Domecq 0.0897* 0.0861* 0.8830*  0.9690

(4.241) (6.569) (49.24)

Hilton GP 0.0572* 0.0596* 0.9318* 0.9912

(3.529) (7.373) (106.5)

Reuters GP 0.0440* 0.0826* 0.9135* 0.9960

(3.338) (6.501) (71.69)

GARCH ( 1, 1 ) Model without Trading Volume
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Table 5 

GARCH (1,1) Parameter Estimates with Trading Volume. 

 

 Table 5 follows the work of Lamoureux and Lastrapes (1990) and presents the 

parameter estimates of a GARCH (1,1) model that includes the trading volume as 

explanatory variable in the variance equation. Again, the study was done on 50 LSE 

“blue chips” stocks even though results are only presented for six stocks. Significance 

of the parameters is measured by the heteroskedastic-consistent t-values. The last 

column gives the level of volatility persistence by the sum βα +  when volume has 

been included in the equation. 

 

 

ω α β γ α + β

Barclays -0.5591 0.0962* 0.8825* 0.0676 0.97853

(-1.780) (5.952) (40.31) (1.903)

British Land 0.0284 0.0999*  0.8849*  0.0066 0.98467

(0.5027) (7.429) (56.55) (0.7127)

Dixons GP -1.0955* 0.1237*  0.8364* 0.1557*  0.95996

(-4.411) (6.624) (31.59) (4.515)

Allied Domecq -2.8069* 0.1920* 0.5828*     0.4213*   0.7746

(-10.98) (8.710) (16.03) (11.13)

Hilton GP -7.4209* 0.2121* 0.2183* 1.2577* 0.43022

(-26.99) (8.326) (9.618) (26.92)

Reuters GP -1.4614* 0.1200* 0.8462* 0.2023* 0.96593

(-4.562) (7.591) (37.94) (4.519)

GARCH ( 1, 1 ) Model with Trading Volume
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