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1. Introduction 

The main purpose of this article is the introduction of time into the analysis of technical 

efficiency and duality results. The suggested methodology looks at technical efficiency from 

the new angle of global performance, which means that we consider efficiency measurement 

over a given time period while ignoring the possibility of technological change altogether. 

The traditional efficiency analysis is static and evaluates the performance of decision-making 

units (DMU) at a given date. In our framework, which builds upon rigorous axioms and 

non-parametric methods, we show that the global performance over time corresponds to the 

concept of average performance. This notion of average performance will be made more 

precise in the contribution. 

While economics as a discipline has always devoted much attention to technical 

change, it has only fairly recently been recognised that ignoring inefficiencies may well bias 

the measurement of total factor productivity (e.g., Nishimizu and Page (1982)). This is due to 

the recent interest in efficiency benchmarking based upon parametric and non-parametric 

production and value frontiers (see Lovell (1993) for a survey). This contribution can be 

interpreted as thinking this efficiency literature into its extreme consequences: we investigate 

efficiency over time while completely ignoring the possibility of frontier changes. We do not 

claim that technological change is of no importance. Rather, we maintain that it may be useful 

to abstract from frontier changes to obtain a more precise idea of efficiency over time. 

Thinking these issues through fills a gap in the literature and adds a new empirical tool to the 

analysis of industries where the role of technological changes is a priori very limited (e.g., due 

to investments in large indivisible infrastructures embodying technological change) and the 

main focus is on managing the performance over time with respect to a given technology. 

The inspirations for this work are the books by Färe (1988), Färe and Grosskopf 

(1996), and Sengupta (1995, 2003), which extends the concept of efficiency into an 

intertemporal context. Jaenicke (2000) is one of the first empirical applications of this model, 

while also integrating the use of intermediate production factors in agriculture. Silva and 

Spirou (2003) extend in a dynamic way the traditional framework while taking into account 

the fixity of inputs and the investment decision. Indeed, they recover technological 

information from dynamic cost minimizing behavior without imposing a parametric 

functional form on technology and while accounting for adjustment-costs. 

In particular, we invoke the general assumption of temporal separability of 

technologies between successive time periods. While technologies in each time period may 

well be different from one another, we consider the Cartesian product of all technologies in all 
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time periods simultaneously. Notice that we distinguish conceptually between these 

technologies per time period, but we do not focus on shifts in these successive frontiers, but 

rather on the relative efficiency of units with respect to these successive frontiers. Clearly, 

since we do not allow for linkages between optimal decisions between time periods, our 

models are only dynamic in a limiting sense. Therefore, given our focus on the relative 

efficiency of units compared to successive frontiers over time, we propose to use the 

terminology “temporal efficiency measure”.1 By contrast, the books by Färe (1988), Färe and 

Grosskopf (1996), and Sengupta (1995, 2003) do allow for time substitution, i.e., the timing 

of inputs utilisation. In addition, it is worthwhile mentioning that various other dynamic 

phenomenon, like adjustment costs (i.e., adjustment of short run input decisions to attain the 

optimal temporal trajectory in response to, e.g., output and input price fluctuations as a model of 

learning behaviour), have been studied in Sengupta (1992, 1999, 2003), among others. 

While modern duality theory goes back to Shephard (1953, 1970), McFadden (1978) 

and Diewert (1982), it is the recent introduction of the shortage function defined on the graph 

of technology that enabled defining a duality in terms of the profit function (see Chambers, 

Chung and Färe (1998) or Färe and Grosskopf (2000) for proofs of duality between shortage 

and profit functions). Our contribution focuses on the most general value function, namely the 

profit function. The use of these recent tools in the temporal analysis of efficiency over time is 

–to the best of our knowledge- an original contribution to the literature on applied production 

theory.  

In particular, this contribution innovates on the following points. First, we integrate a 

temporal dimension in the recently proposed efficiency measures of Luenberger (1992, 1995) 

and Chambers, Chung and Färe (1996, 1998). Then, we develop a duality result relating a 

temporal profit function and this temporal efficiency measure. To this purpose, we define a 

technological path in terms of prices. Starting from this technological path and the temporal 

profit function, we recover the temporal production technology. Then, we show that we can 

obtain a path of shadow prices. Finally, this contribution treats the possibilities and limits of 

the aggregation of efficiency measures over time, in accordance with some recent articles on 

the aggregation over firms within a given sector.  

                                                 
1 Tulkens and Vanden Eeckaut (1995) introduced the notion of an intertemporal technology. However, this implies 
ignoring the time dimension of technologies altogether and amalgamating all observations irrespective of their time 
dimensions in the construction of a single production frontier. We maintain the time dimension of technologies, 
because we focus on efficiency measurement relative to each technology over time. Thus, our focus is on the time 
path of efficiency. However, since we maintain temporal separability throughout, we avoid the use of the word 
dynamic or even intertemporal. 
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The next section defines the temporal graph of technology and exposes the axioms 

underlying this same temporal technology. In section 3 a temporal efficiency measure is build 

starting from the static shortage function. In a fourth section, we establish duality between the 

temporal profit function and the temporal shortage function. Next, we develop some 

aggregation results over time. Finally, section 6 concludes and suggests some plausible 

extensions. 

 

2. A Temporal Technology Defined as a Temporal Product of Technologies 

In a discrete time framework, the input-output space is denoted ( ) ( )TMNMN
T

t
RR +
+

+
+=

=×
1

. It 

consists of all sequences of dated inputs and outputs of the form: 

 ( ) ( ) ( ) ( )Ttt
M

tt
N

tT
t

tttt
T

t
yyxxyxyxYX 11111

,,,,,,,, ===
=== × LL , 

Since the assumption of temporal separability is maintained throughout the paper, this 

amounts to working on a multidimensional technology raised to the Cartesian product of all 

time periods. This work is very similar to the work of Färe (1988: sections 8.1-8.2) and Färe 

and Grosskopf (1996: section 6.1). 

 

2.1. Temporal Graph of Technology 

The temporal graph of technology involves all possible inputs and outputs at each date and is 

defined by: t
T

t
GR

1=
×=GR . In fact, this simply boils down to the product of a series of graphs 

of technology in the static case. 

 
Definition 1: A technological path is any vector ( ) ( ) GR∈== YXyx T

t
tt ,, 1 . The trajectory 

( ) GR∈YX ,  represents all input and output vectors such that tx  can produce ty  at date t. 

 
Figure 1 (similar to Färe (1988: Figure 8.1)) illustrates a possible configuration of the 

temporal graph of technology on an interval { }T,.....,1  for n=m=1. It shows the evolution of a 

single input and output technology over time, where time is represented on a third axis. 

Clearly, the technologies in each time period can be different from one another, but they are 

unrelated to one another due to the temporal separability assumption. By contrast, Färe 

(1988), Färe and Grosskopf (1996) and Sengupta (2003) explicitly study time substitution of 

inputs, i.e., the utilization of inputs over time. 
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<Figure 1 ABOUT HERE> 

 

2.2 Axioms of the Temporal Production Technology 

The axioms imposed on the temporal set of production possibilities are the following: 

GR1: ( ) ( ) 0000 =⇒∈∈ Y,Y, , GRGR . 

GR2: ( ) ( ){ } ( )TMRYYYYXY +∈∀≤′∈′= boundedis, GRGR . 

GR3: If ( )Tλλλλ ,.....,, 21= , if ( ) ( ) TYXYX 1,,, ≥∀∈∈ λλ GRGR . 

GR4: ( ) ( ) ( ) ( ) GRGR ∈⇒≥∈∀ YXYXYXYX ,ˆ,,ˆif,, . 

GR5: GR  is closed. 

GR6: If ( )Tθθθθ ,.....,, 21= , if ( ) ( ) [ ]TYXX,Y 1,0,,then, ∈∀∈∈ θθ GRGR . 

GR7: ( ) ( ) ( ) ( ) GR∈⇒≤∈∀ YXYXYXYX ˆ,,ˆ,if,, GR . 

GR8: GR  is convex. 

By analogy to the static production axioms, we impose traditional regularity 

conditions such as possibility of inaction and no free lunch (GR1), as well as boundedness 

(GR2), closedness (GR5), and convexity of the technology (GR8). Furthermore, we allow for 

strong input (GR4) or output (GR7) disposability. Alternatively, it is possible to impose weak 

input (GR3) or output (GR6) disposability.2 A rather similar axiomatic structure is discussed 

in Färe (1988: 119-120). 

 

3. Temporal Technical Efficiency Measured by the Temporal Shortage Function: 

Definition, Properties and Estimation 

In this section, we first define the shortage function introduced by Luenberger (1992, 1995).3 

Before presenting the traditional static as well as the new temporal version of the shortage 

function, we establish a lemma that proves useful in the remainder of this section. 

 
Lemma 1: If TAAA ,.....,, 21  are T subsets of MNR +

+ , and if Tfff ,.....,, 21  are T  functions 

such that { }Tt ,.....,1∈∀ , tf  is defined on tA  in MNR +
+ , then the following property holds: 

                                                 
2 Notice that it is possible to formulate an axiom of strong (weak) disposability in the input and output 
dimensions simultaneously by combining axioms GR4 and GR7 (GR3 and GR6). However, we refrain from 
doing so, because it is also possible to combine strong input disposability with weak output disposability, or the 
reverse. Therefore, this way of structuring the axioms opens up more general specifications of the temporal 
production technology. 
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MNtt
t RAandRAft +

+⊂→∀ :,  

 ( ) ( )








∈ ××∑
=

TT
T

t

t
t AAxxxf ......,......,,inf 11

1

= ( ){ }∑
=

∈
T

t

ttt
t Axxf

1

,inf . 

Proof: The function ( ) ( )∑
=

=
T

t

t
t

T xfxxf
1

1 ,......,  is separable, since is defined on a Cartesian 

product. Since it is optimised on the Cartesian product t
T

t
A

1=
× , it follows immediately that the 

inf of the sum of the functions is the sum of the inf of the functions.  Q.E.D. 

 

3.1 Temporal Shortage Function: A Definition 

To define the static shortage function introduced by Luenberger (1992, 1995) and Chambers, 

Chung and Färe (1996, 1998), note that the vector ( ) MN RRg ++ ×−∈  and that ( )t
o

t
i

t ggg ,−= , 

the vector tg  representing a direction in the input-output space at date t .  

 
Definition 2: If tGR  is a technology at t  satisfying GR1-GR8 and ( ) ttt GRyx ∈,  is a vector 

of inputs and outputs, then the static shortage function is defined as: 

  ( ) =ttt gyxS ,, ( ){ }tttttt GRgyx
t

∈+δδ
δ

,max . 

 
Notice that the static shortage function projects each input-output vector in the direction of g 

onto the boundary of the technology. The value of the function tδ  is positive or null 

depending on whether the vector is situated in the interior or on the boundary of technology.  

Building upon this definition, we seek to define a temporal measure of technical 

efficiency that summarises the sequence of distances between the technological path of a 

production unit and the temporal production technology for a given a path of direction. This 

directional path is denoted ( ) ( )[ ] ( )[ ]TMNMN
T

t

T RRRRggG ++++=
×−=×−∈= ×

1

1 ,,L , i.e., a 

direction used by the decision maker to improve efficiency. From an economic point of view, 

this directional path G and each of its vector elements g  can be interpreted as reference 

directions for the producer over time. Thus, the producer seeks to adjust its actual production 

path over time according to a direction that also moves over time. In brief, G provides the 

                                                                                                                                                         
3 Chambers, Chung and Färe (1998) rename it a directional distance function. 
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directions for evaluating the technical efficiency index measuring the distance between the 

observed technological path ( )YX ,  and the efficient path. 

 
Definition 3: If GR  is a temporal production technology satisfying GR1-GR8, ( )YX ,  is an 

input-output path in GR , and ( )Tδδδδ ,.....,, 21= , then the temporal shortage function is 

defined as follows: 

( )GYXS ,,  ( )








∈+= ∑
=

T

t

t

GYX
T1

,max GRδδ

δ
. 

 
This amounts to looking for an arithmetic mean of simultaneous reductions in inputs and 

expansions in outputs into a path of direction G such that an observed input-output path 

( )YX ,  is projected onto the boundary of the temporal production technology.  

We can immediately proof the following proposition regarding this temporal shortage 

function. 

 
Proposition 1: If GR  is a temporal production technology satisfying GR1-GR8, ( )YX ,  is 

an input-output path in GR , and ( )Tδδδδ ,.....,, 21= , then the temporal shortage function 

( )GYXS ,,  can be written as follows: 

( )GYXS ,, ( )








∈+= ∑
=

T

t

t

GYX
T1

,max GRδδ

δ
( )









∈+= ∑
=

T

t

ttttt
t

GRgyx
T1

,max δδ

δ
 

( ){ }tttttt
T

t

GRgyx
T t

∈+= ∑
=

δδ
δ

,max1
1

( )∑
=

=
T

t

ttt gyxS
T 1

,,1 . 

Proof: Follows directly from the application of Lemma 1.  Q.E.D. 

 
Thus, the temporal shortage function is easily calculated, because it simply corresponds to the 

arithmetic mean of the static shortage functions over the whole time horizon. The value of the 

components of the vector δ  is again positive or zero depending on whether the evaluated 

point is in the interior or on the boundary of technology in any given time period. Figure 2 

illustrates the temporal shortage function for n=m=1 over the period { }T,.....,1 . The dashed 

line represents the observed path over time. In each time period, the observation is clearly 

situated below the frontier. The temporal shortage function is simply a vector of distances to 

each of the respective boundaries of the technologies evolving over time (represented by the 

dash dot line).  
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<Figure 2 ABOUT HERE> 

 

3.2 Properties of the Temporal Shortage Function 

The temporal shortage function, as a summary measure of efficiency over time, satisfies a 

number of attractive properties summarised in the following proposition: 

 

Proposition 2: Assume that GR  satisfies axioms GR1-GR8, then ( ) ( ) RRGYXS MN
T

t
→+

+=
×

1
:,,  

satisfies the following properties: 

1) If GR  is convex, then ( )GYXS ,,  is concave in relation to ( )YX , . 

2) ( )( ) ( ) ( )MN
T

t
RG,Y,XSG,GY,XS +
+

=
×∈∀−=+

1
ααα . 

3) ( ) ( ) 0,,, ≥⇒∈ GYXSYXIf GR . 

4) ( ) ( ) 0,,1,, ≥∀




= µµµ GYXSGYXS . 

5)  ( ) ( ) GR∈′′∀ YXYX ,,, , if ( ) ( ) ( ) ( )YXSYXSYXYX ,,,, ≤′′⇒−≥′′− . 

Proof: 1) Let ( ) ( ) GRGR ∈′′∈ YXYX ,and, . If GR  is convex, we have 

( ) ( )( ) GR∈′′−+ YXYX ,1, θθ  ⇒  ( ) ( )( ) ttttt GRyxyx ∈′′−+ ,1, θθ . So, tGRt,∀  is convex. 

⇒ ( ) ( )( )( ) ,,-1,, tt tttt gyxgyxS ′′+ θθ ≥ ( ) ( ) ( )tttttt gyxSgyxS ,,1,, ′′−+ θθ  

( ) ( )( )( ) ( ) ( ) ( )∑ ∑∑
= ==

′′−+≥′′−+⇒
T

t

T

t

tttttt
T

t

tttttt gyxS
T

gyxS
T

gyxgyxS
T 1 11

,,11,,1,,1,,1 θθθθ

( ) ( )( )( ) ( ) ( ) ( )GYXSGYXSGYXGYXS ,,1,,,,1,, ′′−+≥′′−+⇒ θθθθ . 

Hence, ( )GYXS ,,  is concave in relation to ( )YX , . 

2) Let ( )Tαααα ,......,, 21=  and ( )TgggG ,......,, 21= . We denote ( )TT ggG ααα ,......,11= . 

( )( )GGYXS ,, α+  = ( )( )∑
=

+
T

t

ttttt ggyxS
T 1

,,1 α = ( )( )∑
=

−
T

t

tttt gyxS
T 1

,,1 α  

   ( ) ∑∑
==

−=
T

t

t
T

t

ttt

T
gyxS

T 11

1,,1 α  

   = ( ) α−GYXS ,, . 

Remark that if t∀ , αα =t , then we have αααα ===⇒ ∑
=

T
TT

T

t

t 11
1

 

( ) ( ) αα −=+⇒ GYXSGYGXS ,,,, . 
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3) Let ( ) ( ) tGRyxYX ttt ∀∈⇔∈ ,,, GR . According to Luenberger (1992) and Chambers, 

Chung and Färe (1996, 1998): ( ) 0,,, ≥∀ ttt gyxSt  ( ) 0,,1
1

≥⇒ ∑
=

T

t

ttt gyxS
T

 

( ) 0,, ≥⇒ GYXS . Then, if ( ) GR∈YX , ( ) 0,, ≥⇒ GYXS . 

4) Let tt ∀= ,µµ .  

( )GYXS µ,,  ( )∑
=

=
T

t

ttt gyxS
T 1

,,1 µ  

  = ( )ttt
T

t

gyxS
T

,,11
1
∑
= µ

= ( )






 ∑
=

T

t

ttt gyxS
T 1

,,11
µ

 

  = ( )GYXS ,,1
µ

. 

Thus, the shortage function is homogeneous of degree –1 in relation to G. 

5) Suppose that ( ) ( )YXYX ,, −≥′′− , this involves that ( ) ( )tttt yxyx ,, −≥′′− , Tt ,......,1=∀ . 

According to Chambers Chung and Färe (1996, 1998), we have: 

( ) ( )tttttt gyxSgyxS ,,,, ≤′′ ( ) ( )∑∑ ≤′′⇒ tttttt gyxS
T

gyxS
T

,,1,,1  

⇒ ( ) ( )GYXSGYXS ,,,, ≤′′ .  Q.E.D. 

 
These properties of the temporal shortage function can be briefly clarified as follows. If the 

temporal technology is convex, then the temporal shortage function is concave in relation to 

the evaluated technological path. The second property corresponds to the static translation 

homotheticity property and states that the value of the temporal shortage function of an 

observed technological path translated by Gα  equals the value of the shortage function of 

the technological path ( )YX ,  minus the mean value of α . Property 3 shows that the 

temporal shortage function provides a total description of the temporal technology. Moreover, 

according to property 4 it is homogeneous of degree -1 in relation to G. This implies that 

when the directional path is multiplied by a number, then the function is reduced in the 

opposite proportion. Finally, the temporal shortage function satisfies a weak monotonicity 

property, i.e., for any technological path that weakly dominates another path ( )YX , , the value 

of the function is weakly lower. Following Chambers, Chung and Färe (1996,1998), one can 

therefore interpret the temporal shortage function as an efficiency measure. 

After this theoretical analysis of the temporal shortage function, we now turn to its 

estimation using a non-parametric frontier methodology. 
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3.3 Non-Parametric Frontier Estimation of the Temporal Shortage Function 

It is well-known that technical efficiency measures can be calculated relative to 

non-parametric production frontiers providing piecewise linear approximations of the 

underlying true, but unknown technology. The resulting production boundary is simply an 

envelopment of observed data and any observation can be positioned relative to this boundary 

by computing a simple linear programming problem (e.g., Lovell (1993)). Assuming there are 

k DMU’s over the time period, an observed technological path for any observation is 

evaluated using the temporal shortage function by computing the following linear program: 

.,.....,1,,.....,1,,0

,.....,1,,......,1

,.....,1,,......,1..

1max

1

,,
,

,

1

,,
,

,

1

TtKkz

TtMmyzgy

TtNnxzgxts

T

tt

K

k

tk
m

tkt
no

ttj
m

K

k

tk
n

tkt
ni

ttj
n

T

t

t

o

o

==Γ∈≥

==≤+

==≥−

∑

∑

∑

=

=

=

δ

δ

δ

δ

 

where { }NDRSNIRSVRSCRS ΓΓΓΓ∈Γ ,,, , with: (i) KCRS R+=Γ , (ii) 








=∈=Γ ∑
=

+ 1;
1

K

k

kKVRS zRz , (iii) 









≤∈=Γ ∑
=

+ 1;
1

K

k

kKNIRS zRz , and (iv) 








≥∈=Γ ∑
=

+ 1;
1

K

k

kKNDRS zRz  representing respectively the 

following maintained returns to scale hypotheses (i) constant returns to scale; (ii) variable 

returns to scale; (iii) non-increasing returns to scale; and (iv) non-decreasing returns to scale. 

Notice that from a computational point of view, this block-diagonal LP for each 

technological path can be eventually decomposed into T sub-problems, since there are no 

temporal linkages between each of the estimated technologies in each sub-period.  

 

3.4 A Discounted Temporal Shortage Function 

When proposing the arithmetic mean of static measures as a global technical efficiency 

measure, it is implicitly assumed that the time dimension is neutral. But, for an economic 

agent the present is more valuable than the past. To formalize this idea of positive time 

preference in a production context, we adapt the temporal efficiency measure by attributing 

most weight to the most recent efficiency measures composing it. This is accomplished by 

weighting the component efficiency measures by a discount factor, denoted ξ . This 
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parameter is assumed to remain constant over time. The goal of this subsection is then to 

model a weighted or discounted global performance index. 

 
Definition 4: If GR  is a temporal production technology satisfying GR1-GR8, ( )YX ,  is an 

input-output path in GR , 10 << ξ , then the discounted temporal shortage function 

( )GYXS ,,ξ  is defined as follows: 

  ( )GYXS ,,ξ  ( )








∈+= ∑
=

−T

t

ttT

GYX
T1

,max GRδδξ

δ
. 

 
This definition proposes a weighted (discounted) temporal efficiency measure, 

whereby the weights are lower as one moves away from the present into the past. By analogy 

to the temporal efficiency measure, one can immediately proof the following proposition with 

respect to this discounted temporal shortage function. 

 
Proposition 3: If GR  is a temporal production technology satisfying GR1-GR8, ( )YX ,  is 

an input-output path in GR , and ( )Tδδδδ ,.....,, 21= , then the discounted temporal 

shortage function noted ξS  can be written as follows: 

  ( )GYXS ,,ξ  ( )








∈+= ∑
=

−T

t

ttT

GYX
T1

,max GRδδξ

δ
 

   ( )








∈+= ∑
=

−T

t

ttttt
ttT

GRgyx
T1

,max δδξ

δ
 

    ( ){ }tttttt
T

t

tT GRgyx
T t

∈+= ∑
=

− δδξ
δ

,max1
1

 

    ( )∑
=

−=
T

t

ttttT gyxS
T 1

,,1 ξ  

Proof: It is straightforward by Lemma 1.  Q.E.D. 

 
Thus, by analogy with the temporal shortage function, the discounted temporal shortage 

function corresponds to the average of discounted static shortage functions. It is 

straightforward to show that the properties of the temporal shortage function carry over to the 

discounted temporal shortage function. For reasons of space we refrain from summarising the 

main properties of this discounted temporal shortage function in a proposition entirely 

analogous to Proposition 2. 



 12

 

4. Duality between Temporal Profit and Temporal Shortage Functions 

In this section, the main focus is on establishing a duality result between the temporal 

shortage function and the temporal profit function. Obviously, temporal economic objective 

functions are not new in the economic literature. For instance, dynamic cost functions are 

discussed in Sengupta (2003), while dynamic revenue and short-run profit functions are 

treated in Färe and Grosskopf (1996). However, we are unaware of any duality results in this 

type of literature. Therefore, using the temporal shortage function, compatible with the most 

general behavioural assumption of profit maximisation, to establish a duality result may well 

come timely. Specialised duality results between an input-oriented (output-oriented) temporal 

shortage function and a temporal cost (revenue) function follow suit. 

The first subsection defines the temporal profit function and studies its properties. The 

next subsection first formulates the main duality result. Thereafter, it looks at the definition of 

shadow price paths and it proposes a temporal version of the overall efficiency decomposition 

into temporal allocative and temporal technical components. 

 

4.1 Temporal Profit Function 

The profit of a firm is described by the profit function ( ) wxpypw −=,π . By analogy, 

one can define the temporal profit function of a production unit by: 

∑
=

−=−
T

t

tttt xwypWXPY
1

, or in a more formal way by: ( ) ( )∑
=

=∏
T

t

tt pwPW
1

,, π . Assuming 

the economic objective of the firm is to maximise its profits, one derives the following 

proposition: 

 
Proposition 4: Let GR  be a temporal production technology satisfying GR1-GR8 and 

( )YX ,  an input-output path in GR . Let ( ) ( )TMNRPW +
+∈,  be the price path corresponding to 

this input-output path. Then, the temporal profit function is: 

  ( )PW ,∏  
( )

( ){ }GR∈−=
≥

YXWXPY
YX

,sup
0,

 

    
( )

( ){ }∑
= ≥

∈−=
T

t

ttttttt

yx
GRyxxwyp

tt1 0,
,sup . 

Proof: We have ( )PW ,∏  
( )

( ){ }GR∈−=
≥

YXWXPY
YX

,sup
0,
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( )
( )









∈−= ∑
=

T

t

TTtttt

YX
yxyxxwyp

1

11

,
,,.....,,sup GR . 

From lemma 1, one derives that: ( )PW ,∏  ( ){ }ttttttt
T

t yx
GRyxxwyp

tt
∈−=∑

=

,sup
1 ,

 

= ( )∑
=

T

t

tt pw
1

,π .  Q.E.D. 

 
Thus, the temporal profit function corresponds to the sum of the static profit functions defined 

over each time period. This result is somewhat similar to aggregation results over production 

units developed in the literature (see Färe and Grosskopf (2004) for a survey).  

 
Proposition 5: When GR  satisfies the axioms GR1-GR8, then the temporal profit function 

( ) ( ) +
+

+ →∏ RRPW TMN:,  satisfies the following properties: 

 1) ( ) ( )PWPW ,, ∏=∏ λλλ . 

 2) ( ) ( )PWPWYYandXX ,,, ∏≥′′∏≤′≥′∀ . 

 3) ( ) ( )PWPWWWandPP ,,, ∏≥′′∏≤′≥′∀ . 

 4) ( )PW ,∏  is continuous in ( )PW , . 

 5) ( )PW ,∏  is convex in ( )PW , . 

Proof: 1) Let tt ∀= λλ ,  

( ) ( ) ( ) ( ) ( )PWpw
T

pw
T

pw
T

PW
T

t

tt
T

t

tt
T

t

tt ,,1,1,1,
111

∏=







===∏ ∑∑∑

===

λλλλλλλ πππ . 

2) This follows from the definition of the profit function. 

3) According to Varian (1992), ( )tt pw ,π  is continuous t∀  following the maximum theorem. 

It follows that ( )tt
T

t
pw

T
,1

1
π∑

=

 is continuous. 

4) Let two price paths ( ) ( ) ( )TMNRPWPW +
+∈′′,,, . According to Varian (1992), we have: 

( ) ( )( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( )∑∑∑

===

′′−−+≥′−+′−+⇒

′′−+≥′−+′−+⇒
T

t

tt
T

t

tt
T

t

tttt

tttttttt

pw
T

pw
T

ppww
T

pwpwppww

111
,111,11,11

,1,1,1

πππ
πππ

θθθθθθθ

θθθθθθ

( ) ( )( ) ( ) ( ) ( )',1,1,1 PWPWPPWW ′∏−+∏≥′−+′−+∏⇒ θθθθθθ .  Q.E.D. 

 
Property 1 states that the temporal profit function is homogeneous of degree 1, i.e., it varies 

proportionally to the price path. Property 2 implies that it is non-decreasing in relation to the 



 14

output path and non-increasing in relation to the input path. The same also applies in terms of 

the price paths. Finally, the temporal profit function is continuous and convex with respect to 

the price path ( )PW , .  

 

4.2 Duality Relation between the Temporal Profit and Shortage Functions 

We first introduce some notations that are needed in the remainder of this subsection. Let 

( )TggG ,.....,1=  be a directional path and ( )TMNRG +
+∈ . Moreover, we have ( )t

o
t
i

t ggg ,−=  

for all Tt ,.....,1= . Let ( ) ( )TNMRPW +
+∈,  be the price path corresponding to the output-input 

path. We define the product ( ) GPW ×,  as follows: 

  ( )























+

+

+

=×

T
i

TT
o

T

t
i

tt
o

t

io

gwgp

gwgp

gwgp

GPW
M

M

1111

,  

Denote TT R+∈















=

1

1
1 M  the temporal unit vector. In the same way, one can define a temporal 

scalar 
















=
Tδ

δ
δ M

1

. 

 

Proposition 6: Let GR  be a temporal production technology and ( ) GR∈YX ,  an input-

output path of GR . Let ( )MN
T

t
RG +
+=

×∈
1

 be a directional path. Then, we have: 

  1) ( )
( )

( ) ( ){ }GPWGYXSTWXPYPW
YX

×+−=∏ ⋅⋅

≥
,,,sup,

0,
. 

  2) ( )
( )

( ) ( ) ( ){ }T

PW
GPWWXPYPW

T
GYXS 1,,min1,,

0,
=×−−∏=

≥
. 

Proof: 1) ( )PW ,∏  
( )

( ){ }GR∈−=
≥

YXWXPY
YX

,sup
0,

= ( )∑
=

T

t

tt pw
1

,π  

( )
( ) ( ){ }t

i
tt

o
tttttttt

T

t yx
gwgpgyxSxwyp

tt
++−= ⋅∑

= ≥
,,sup

1 0,
. 

According to lemma 1, this yields: 
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  ( ) ( ) ( )( )








++−= ∑ ∑
= =
















⋅

T

t

T

t

t
i

tt
o

tttttttt

yx

yx
gwgpgyxSxwyp

TT

1 1

,

,
,,sup

11

M

. 

Since ( )GYXS ,, ( )∑
=

=
T

t

ttt gyxS
T 1

,,1 , it is straightforward to obtain: 

  
( )

( ) ( ){ }GPWGYXSTWXPY
YX

×+−= ⋅⋅

≥
,,,sup

0,
. 

2) ( )GYXS ,,  ( )∑
=

=
T

t

ttt gyxS
T 1

,,1  

  ( ){ }tttttt
T

t
GRgyxR

T t
∈−∈= +

=
∑ δδ

δ
,sup1

1
 

  ( ) ( ) ( ){ }1,min1
1 ,

=+−−= ∑
=

t
i

tt
o

ttttttt
T

t pw
gwgpxwyppw

T tt
π . 

According to lemma 1, one obtains: 

  ( ) ( )( )








=∀=+−−= ∑
=
















Ttgwgpxwyppw

T

T

t

t
i

tt
o

ttttttt

pw

pw

TT

,......,1,1,min1
1

,

, 11
π

M

 

  
( )

( ) ( ) ( ){ }T

PW
GPWWXPYPW

T
1,,min1

,
=×−−∏= .  Q.E.D. 

 
The duality between the temporal profit and shortage functions can be summarised as follows. 

The first part of the proposition establishes that the temporal profit function corresponds to 

the maximum of the observed temporal profit increased by the temporal shortage function 

normalized over the time horizon. The second part indicates that the temporal shortage 

function corresponds to the average of the difference between the temporal profit function and 

the observed temporal profits.  

Figure 3 illustrates the above Proposition 6 when n=m=1. Along the time axis, one 

observes for each technology prevailing in a given time period how an eventually inefficient 

input-output path is projected onto the boundary of technology and how a profit hyperplane 

supports the same projection point for a specific price path. Both the observed and optimal 

technological paths are traced. 

<Figure 3 ABOUT HERE> 

Starting from the temporal profit function and the temporal shortage function, it is 

straightforward to find a shadow price path. Recall that the temporal shortage function 
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provides a complete primal representation of the temporal technology. Moreover, thanks to 

the envelope theorem, duality theory makes it possible to find the shadow prices supporting 

the frontier projections of each observed input-output path. Thus, the temporal shortage 

function allows deriving a shadow price path. This makes the temporal shortage function a 

powerful tool, similar to the traditional production function, especially in the dual price space 

because of its connection to the temporal profit function.  

 

Definition 5: Let GR  be a temporal production technology satisfying GR1-GR8. The point 

to set correspondence ( ) :~,~ PW  GR
( )TPNR +

+→ 2 defined as: 

( )
( )

( ) ( ) ( ){ }T

PW
GPWWXPYPWYXPW 1,,minarg,)~,~(

0,
=×−−∏=

≥
 

is called the temporal adjusted price correspondence. 

 
Following Definition 7, the temporal adjusted price correspondence establishes a link between 

an observed input-output path and the shadow price paths minimizing the average of the 

difference between the temporal profit function and the observed temporal profits (see 

Proposition 6). Along this line -assuming differentiability of the temporal shortage function- 

the following result is established. 

 

Proposition 7: Let GR  be a temporal production technology satisfying GR1-GR8 and 

( )YX ,  an input-output path in GR . For the entire path, whenever ( )PW ~,~  is single-valued, 

then the temporal shortage function is differentiable and we obtain: 

 ( ) ( ) ( )PW
y

gyxS
x

gyxS
T

t
t

ttt

t

ttt ~,~,,;,,

1

=








∂
∂

∂
∂

=

. 

Proof: If the temporal adjusted price correspondence is single valued, then the temporal 

shortage function is differentiable. Then, the result is a direct consequence of the envelope 

theorem, which is obtained by differentiating the temporal adjusted price correspondence.

  Q.E.D.  

 

This proposition indicates that –under some regularity conditions- the total derivative of the 

temporal shortage function allows finding the price path solution for the maximization of the 

temporal profit function, i.e., the shadow price path. Notice that the above proposition 
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guarantees uniqueness of the obtained shadow prices. An alternative way to obtain unique 

shadow prices is to impose a strict version of convexity on the temporal production 

technology (i.e., assuming a strict version of GR8). But this would exclude, for instance, 

imposing the hypothesis of constant returns to scale on the temporal technology. However, the 

above approach imposes slightly milder assumptions and is therefore to be preferred. 

A direct application of duality is the definition and decomposition of overall 

efficiency. Similar to the proposition in Farrell (1957), overall efficiency can be separated into 

technical and allocative efficiency. To see this, let us take up again proposition 6: 

  ( )
( )

( ) ( ){ }GPWGYXSTWXPYPW
YX

×+−=∏ ⋅⋅

≥
,,,sup,

0,
. 

Noticing that the temporal profit function is given for the maximum of the temporal profit 

function, one can write: 

  ( ) ( ) ( ) GPWGYXSTWXPYPW ×+−≥∏ ⋅⋅ ,,,, . 

After some rearranging, one obtains: 

  ( ) ( )
( ) ( ) ⋅≥

×
−−∏ GYXS

GPW
WXPYPW

T
,,

,
,1 . 

The term on the left-hand-side corresponds to the measure of the temporal overall efficiency, 

denoted ( )YXPWSOE ,,, . The term on the right-hand side corresponds to the temporal 

technical efficiency, denoted ( )YXSTE , . Notice that ( ) ( )GYXSYXSTE ,,, = . Finally, 

temporal allocative efficiency ( )YXPWSAE ,,,  is defined as the difference between these two 

efficiency components: 

  ( )YXPWSAE ,,, = ( )YXPWSOE ,,, - ( )YXSTE , . 

Finally, the decomposition of temporal profit efficiency can be summarised as follows: 

   ( )YXPWSOE ,,, = ( )YXSTE , + ( )YXPWSAE ,,, . 

 Remark that in line with subsection 3.4 it is possible to define a discounted temporal 

profit function where profits in the distant past receive less weight than those close to the 

present. Then, all properties and duality results developed in this section could be duplicated 

without any difficulty. Furthermore, it is also possible to separate out another type of 

technical inefficiency known as congestion. This would simply require evaluating temporal 

technical efficiency relative to both weakly (GR3 and GR6) and strongly (GR4 and GR7) 

disposable technologies (see Färe, Grosskopf and Lovell (1985) for this development using 

traditional radial efficiency measures that yield a multiplicative rather than an additive 

decomposition). 
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5. Aggregation of Production over Time 

Recently, there has been an active interest in investigating the conditions under which firm 

performance indicators can be aggregated across firms to evaluate the performance of an 

industry (see Färe and Grosskopf (2004) for a recent survey of these issues). In a similar vein, 

we ask here whether it is possible to aggregate the performance of a firm over time: how does 

the performance of the firm average over time relate to the average performance of the firm 

within a given time period. The performance of a firm average over time is somewhat related 

to the structural efficiency notion. The latter notion is essentially an efficiency index over an 

entire industry allowing for reallocation of inputs and outputs among the firms composing the 

industry. In the case of the performance of a firm average over time, one allows for 

reallocations of production over time within each firm. 

First, we specify more precisely what we mean by an efficiency index satisfying a 

temporal aggregation condition. 

 

Definition 6: Let GR  be a temporal production technology and ( ) GR∈YX ,  an input-

output path of GR . Assume that T
T

t
ggG ==

=
×

1
 where NMRg +

+∈ . Let us consider the 

aggregate shortage function defined by: 













∈+=









∑∑∑
=== Tt

t

Tt

tt

Tt

tt GR
T

gyx
T

gyx
T

AS
...1...1...1

1),(1:sup;),(1 δδ . 

We say that ( ) GR∈YX ,  satisfies the temporal aggregation condition if   

( )T

Tt

tt gYXSgyx
T

AS ,,,),(1

...1
=










∑
=

. 

 

In words, the temporal aggregation condition is satisfied when the aggregate shortage function 

(evaluating the performance of the firm average over time) equals the temporal shortage 

function. As the following proposition indicates, it turns out that this condition ensuring 

consistent aggregation over time is rather strong. 

 

Proposition 8: Let GR  be a temporal production technology and ( ) GR∈YX ,  an input-

output path of GR . We have: 
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( )T

Tt

tt gYXSgyx
T

AS ,,,),(1

...1
≥










∑
=

. 

Proof: By definition, we have the following relationship: 

( ) ∑∑∑
===

∈+
Tt

t

Tt

tt

Tt

tt GR
T

ggyxS
T

yx
T ...1...1...1

1.,,1),(1 . Therefore, we obtain the inequality 

( ) ( )T

Tt

tt

Tt

tt gYXSgyxS
T

gyx
T

AS ,,,,1,),(1

...1...1
=≥










∑∑
==

. This terminates the proof.  

 Q.E.D. 

 

Indeed, the aggregate shortage function is larger or equal to the temporal shortage function. 

This result is similar to one obtained for the aggregation over firms (see Färe, Grosskopf and 

Zelenyuk (2001), Briec, Dervaux and Leleu (2003)).  

Following Briec, Dervaux and Leleu (2003), this inequality allows defining a measure 

of aggregation bias over time between both performance measures. 

 

Definition 7: Let GR  be a temporal production technology and ( ) GR∈YX ,  an input-

output path of GR . The difference: 

( ) ( )T

Tt

ttT gYXSgyx
T

ASgYXTAB ,,,),(1,,
...1

−







= ∑

=

 

is called the temporal aggregation bias. 

 

Obviously, we note that ( ) 0,, ≥TgYXTAB  for all ( ) GR∈YX , . Other properties have been 

developed in Briec, Dervaux and Leleu (2003) and could be similarly derived. 

Having dealt with technical efficiency, we turn our attention to the effect of 

aggregation over time on the measures of overall and allocative efficiency. First, we define an 

index of structural overall efficiency as follows:  

( ) ( ) ( )
( ) ( ),,,,1

.,
,1,,,

...1 ...1
∑ ∑
= =

=
−−

=
Tt Tt

tttt
tt

tttttt

yxpwOE
Tgpw

xwyppw
T

YXPWSOE
π

 

where ( ) ( ) ( )
( ) .

.,
,

,,,
gpw

xwyppw
yxpwOE tt

tttttt
tttt −−
=
π

 In words, structural overall efficiency 

equals the time average of the static firm overall efficiencies. This identity is similar to the 

Koopmans (1957) result about the aggregation of profit functions over firms within an 
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industry. Now we define the aggregate overall efficiency as the performance of the firm 

average over time by: 

( )[ ] ( )








≤−−=






 ∑∑∑
=== Tt

ttt

Tt

tttt

Tt

tt pwgyxpw
T

gPWyxAOE
...1...1...1

,),(.,:sup1,,,),( πδδ . 

Following these developments above, we derive the identity:  

( ) ( )∑∑
==

==








Tt

tttt

Tt

tt yxpwOE
T

YXPWSOEgPWyxAOE
...1...1

,,,1,,,,,,),( . 

Hence, aggregate overall efficiency equals structural overall efficiency, a result similar to the 

one in Briec, Dervaux and Leleu (2003) on the aggregation across firms. 

Finally turning to the allocative efficiency component, we introduce two more 

concepts. First, the aggregate allocative efficiency is defined by:  

( ) .,),(1,,,),(,,,,
...1...1









−







= ∑∑

==

gyx
T

ASgPWyxAOEgPWYXAAE
Tt

tt

Tt

ttT  

Second, we define the structural allocative efficiency as follows: 

( ) ( ) ( )TgYXSYXPWSOEYXPWSAE ,,,,,,,, −= . 

Now we are in a position to connect both the aggregate allocative efficiency and the structural 

allocative efficiency notions to the temporal aggregation bias introduced in Definition 7. 

 

Proposition 9: Let GR  be a temporal production technology and ( ) GR∈YX ,  an input-

output path of GR . We have:  

( ) ( ) ( )TT gYXTABgPWYXAAEYXPWSAE ,,,,,,,,, =− . 

Proof: From Koopmans (1957), we have shown that ( ) ( )YXPWAOEYXPWSOE ,,,,,, = . 

Consequently: 

( ) ( ) ( )
( ) ( )
( ) .;),(,,,,

,,,,,

,,1,,,,,,

...1

1









+=

+=

+=

∑

∑

=

=

gyxASgPWYXAAE

gYXSYXPWSAE

gyxS
T

YXPWSAEYXPWSOE

Tt

ttT

T

tt
T

t

 

Therefore, we deduce that:  

( ) ( ) ( )
( ).,,,,

,,;),(,,,,,,,
...1

T

T

Tt

ttT

gPWYXTAB

gYXSgyxASgPWYXAAEYXPWSAE

=

−







=− ∑

=  Q.E.D. 
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Thus, structural allocative efficiency is larger or equal to aggregate allocative efficiency and 

the temporal aggregation bias (being positive) fills up the gap between both. This result is 

similar to Corollary 1 in Briec, Dervaux and Leleu (2003). 

 

Proposition 10: Let GR  be a temporal production technology and ( ) GR∈YX ,  an input-

output path of GR . We have:  

( ) ( )TgYXTABYXPWSAE ,,,,, ≥ . 

Proof: We have shown that  

( ) ( ) ( ).,,,,,,,,,,, TT gPWYXTABgPWYXAAEYXPWSAE =−  

But, ( ) 0,,,, ≥TgPWYXAAE . Consequently, ( ) ( )TT gPWYXTABgPWYXSAE ,,,,,,,, ≥ .

  Q.E.D. 

 

Thus, structural allocative efficiency is larger or equal to the temporal aggregation bias. The 

temporal aggregation bias thus provides a lower bound for the structural allocative efficiency 

measure. This last result duplicates exactly the aggregation results over firms developed in 

Proposition 8 of Briec, Dervaux and Leleu (2003). 

 
6. Conclusions 

This paper has offered a temporal generalisation of the popular analysis of static efficiency 

measurement. The temporal efficiency measure generalises the shortage function, introduced 

by Luenberger (1992, 1995) and Chambers, Chung and Färe (1996, 1998). The definition of 

temporal technical efficiency allows us to verify the efficiency in panel data of production 

units, while ignoring the possibility of technological change and its precise measurement. 

Moreover, the development of a temporal duality result between the temporal shortage and 

profit functions allows obtaining a shadow price path and a temporal inefficiency 

decomposition. Finally, some aggregation results were derived allowing some statements 

about the average performance of a unit over time.  

 Obvious potential extensions of this approach are the derivation of similar temporal 

analysis for the special cases of the (i) input-oriented directional distance function and the 

cost function and the (ii) output-oriented directional distance function and the revenue 

function. Equally so, the derivation of the detailed results for the discounted temporal 

shortage function may be worthwhile pursuing. In addition, it could be valuable to extend our 
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development by linking it to the literature allowing for time substitution (e.g., Färe and 

Grosskopf (1996), Sengupta (1995, 2003)) or for dynamic phenomena like adjustment costs 

(e.g., Sengupta (1992, 1999)). 

 We hope this contribution proves inspiring when evaluating the performance of 

industries where technological change is a priori of little relevance because of its embodied 

nature in large and indivisible infrastructures. 
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Fig. 1: Temporal graph of technology 

 

 

 

 
 



 

Fig. 2: Temporal shortage function: Observed and optimal paths 
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Fig. 3: Duality between temporal shortage and profit functions 
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