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Abstract

This paper proposes a nonparametric efficiency measurement ap-
proach for the static portfolio selection problem in mean-variance-
skewness space. A shortage function is defined that looks for possible
increases in return and skewness and decreases in variance. Global
optimality is guaranteed for the resulting optimal portfolios. We also
establish a link to a proper indirect mean-variance-skewness utility
function. For computational reasons, the optimal portfolios resulting
from this dual approach are only locally optimal. This framework
permits to differentiate between portfolio efficiency and allocative effi-
ciency, and a convexity efficiency component related to the difference
between the primal, non-convex approach and the dual, convex ap-
proach. Furthermore, in principle, information can be retrieved about
the revealed risk aversion and prudence of investors. An empirical
section on a small sample of assets serves as an illustration.
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1 Introduction

The seminal work of Markowitz (1952) in modern portfolio theory trades off
the risk and expected return of a portfolio in a static context. Portfolios
whose expected return cannot increase unless their risk increases define an
efficient frontier, i.e., a Pareto-optimal subset of portfolios. His work main-
tains strong assumptions on probability distributions and Von Neumann-
Morgenstern utility functions. Furthermore, the computational cost of solv-
ing quadratic programs in these days led Sharpe (1963) to propose a simpler
“diagonal” model and inspired Sharpe (1964) and Lintner (1965) to develop
the capital asset pricing model (CAPM), an equilibrium model assuming that
all agents have similar expectations about the market. Widespread tools for
gauging portfolio efficiency, such as Sharpe (1966) and Treynor (1965) ra-
tios and Jensen (1968) alpha, have mainly been developed with reference
to these developments; and in particular CAPM. Despite these and later
enhancements, the Markowitz model still offers the most general framework.

The main theoretical difficulty with the so-called parametric approach
where utility depends on the first and second moments (i.e., mean and vari-
ance) of the random variable’s distribution is that it is only consistent with
expected utility and its von Neumann-Morgenstern axioms of choice when
(i) asset processes are normally distributed (hence, higher moments can be
ignored), or (ii) investors have quadratic utility functions (e.g., Samuelson
(1967)). However, a plethora of empirical studies shows that portfolio re-
turns are generally not normally distributed. Furthermore, investors prefer
positive skewness, because it implies a low probability of obtaining a large
negative return. In particular, the observation that increased diversification
leads to skewness loss and the widespread phenomenon of imperfectly di-
versified portfolios may well reveal a preference for positive skewness among
investors, rather than simply capital market imperfections (Kraus and Litzen-
berger (1976), Simkowitz and Beedles (1978), Kane (1982)). Theoretically,
positive skewness preference is related to the positivity of the third derivative
of the utility function: the prudence notion is to marginal utility what risk
aversion is to utility.1 Furthermore, ever since Samuelson (1970) it is known
that the mean-variance (MV) approach is adequate when return distributions
are compact and when portfolio decisions are made frequently (almost con-
tinuously) such that the risk parameter becomes sufficiently small. However,
when the portfolio decision is limited to a finite time interval and rebalanc-
ing is restricted, then higher moments (cubic utility and beyond) are needed,
since the quadratic approximation is not locally of high contact.

While the limits of a quadratic approximation of the utility function are
acknowledged, the development of third or higher degree polynomial forms for
the utility function as part of operational procedures for constructing port-

1As Kimball (1990) states: “it [i.e., prudence] measures the propensity to prepare and
forearm one self in face of uncertainty in contrast to absolute risk aversion which is how
one dislikes uncertainty and would turn away from uncertainty if one could”.
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folios has been hampered mainly by computational problems (see Markowitz
(1991)).2 Several alternative criteria for portfolio selection based upon higher
order moments have been developed (Philippatos (1979), Wang and Xia
(2002)), but so far not a single generally valid procedure seems to have
emerged. It is possible to distinguish between primal and dual approaches to
determine mean-variance-skewness (MVS) portfolio frontiers. An example of
the primal approach is found in Lai (1991) and Wang and Xia (2002) who
determine MVS portfolios via a multi-objective programming approach.3 In
line with the work of Farrar (1962) in the basic Markowitz model, the dual
approach starts from a specification of the indirect MVS utility function and
determines optimal portfolios via its parameters reflecting preferences for
risk and skewness (see, e.g., Jondeau and Rockinger (2006) and Harvey et al
(2003) for recent studies). In the current state of affairs, however, there is
no connection between primal and dual approaches.

More in general, as the dimensionality of the portfolio selection problem
increases, it becomes more difficult to develop a geometric interpretation
of the portfolio frontier and to select a most preferred portfolio among its
boundary points. While the geometric construction of a MV portfolio frontier
is trivial, no general procedure currently exists to generate a three dimen-
sional geometric representation of the MVS portfolio frontier. Even if one
could come up with such a procedure, it would obviously be of no help for
higher dimensions when approximating higher order polynomial forms of the
expected utility function.

It is our basic contention that a general procedure to describe the bound-
ary of the set of portfolios and to pick a point among these boundary points in
terms of risk preferences requires the use of a distance function. In consumer
theory, the distance function is employed to position bundles of goods with
respect to a target utility level of the utility function, and this distance func-
tion turns out to be dual to the expenditure function (e.g., Deaton (1979)).
In production theory, Luenberger (1995) introduced the shortage function as
a distance function that simultaneously looks for reductions in inputs and
expansions in outputs and that is dual to the profit function.4 Thus, a dis-
tance (gauge) function offers a perfect representation of multi-dimensional
choice sets and can position any point relative to the boundary (frontier) of
the choice set. Since points beneath the frontier are in general inefficient,
distance functions have an interpretation as indicators of inefficiency. Obvi-

2While a cubic utility function need not guarantee decreasing absolute risk aversion
everywhere, it is already more satisfactory than a quadratic utility function which implies
increasing absolute risk aversion for all wealth levels, a counter-intuitive assumption.

3The goal programming model of Lai (1991) is by far the most popular in empirical
studies: it has been applied to 14 major stock markets by Chunhachinda et al. (1997),
to an extended set of 17 stock markets in Prakash, Chang and Pactwa (2003), and to
Japanese and US stocks by Sun and Yan (2003), among others.

4This shortage function generalizes the input distance function, that is dual to the cost
function, and the output distance function, that is dual to the revenue function.
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ously, points on the frontier of a choice set are efficient. Furthermore, thanks
to their duality relationships, one can select among the efficient boundary
points a point that optimizes an economically meaningful objective function.

Briec, Kerstens and Lesourd (2004) integrate the shortage function as
a representation of the MV space and as an efficiency measure into the
Markowitz model. They also develop a dual framework to assess the de-
gree of satisfaction of investors’ preferences (see, e.g., Farrar (1962)). They
propose a decomposition of portfolio performance into allocative and portfo-
lio efficiency.5 Moreover, via the shadow prices associated with the shortage
function, duality yields information about investors’ risk aversion.6

In this paper the shortage function is extended to the MVS space to ac-
count for a preference for positive skewness in addition to a preference for re-
turns and an aversion to risk. The shortage function projects any (in)efficient
portfolio exactly on the three dimensional MVS portfolio frontier. Antici-
pating a major result, we prove that the shortage function achieves a global
optimal solution on the boundary of the non-convex MVS portfolio frontier.
Starting from a sample of observed portfolios with unknown efficiency sta-
tus, this shortage function projects a portfolio for which improvements can
be found, in terms of increasing return and skew and decreasing risk, onto
the MVS frontier and labels these inefficient. By contrast, when no such im-
provements can be found, then the initial portfolio must have been part of the
MVS frontier right at the outset and it obtains the label efficient. Proceeding
in this way, the shortage function reconstructs parts of the unknown MVS
portfolio frontier. Just like in the MV case, all points on the MVS portfolio
frontier are Pareto efficient. Furthermore, to choose among these frontier
portfolios we develop a dual approach specifying a MVS utility function. For
given risk aversion and prudence parameters, we can pick an optimal point
on the boundary of the non-convex MVS portfolio frontier. Furthermore,
by proving a duality result between the shortage function and the indirect
MVS utility function, we show that our shortage function approach is not
devoid of economic interpretation, but rather that both approaches are firmly
integrated.

In general, the shortage function accomplishes four goals of both theoreti-
cal and practical importance: (i) it rates portfolio performance by measuring
a distance between a portfolio and its optimal benchmark projection onto the
primal MVS efficient frontier; (ii) it provides a nonparametric estimation of
an inner bound of the true but unknown portfolio frontier; (iii) it judges si-
multaneously return and skewness expansions and risk contractions; and (iv)
it provides a new, dual interpretation of this portfolio efficiency distance.

5This work generalizes earlier contributions transposing efficiency measures from pro-
duction theory into basic portfolio analysis: for instance, Morey and Morey (1999) focus
either on return expansion or on risk reduction, but ignore that in general investors may
be assumed to prefer higher returns and reduced risk simultaneously.

6This procedure has the additional advantage of being simple compared to other non-
parametric estimators (see, for instance, Lien (2002) and the references cited therein).
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To expand on the latter possibility, thanks to the above mentioned duality
result the shortage function can under some specific conditions reveal via its
shadow prices the (shadow) risk aversion and prudence compatible with the
projection of an inefficient portfolio at the frontier.

This framework based upon the shortage function improves upon various
attempts to determine MVS portfolio frontiers.7 First looking at the primal
approach, the estimation of MVS portfolio frontiers via multi-objective pro-
gramming problem does not comply with the theoretical notion of a frontier
portfolio. Minimizing deviations from three objectives simultaneously only
guarantees a solution “close” to the frontier. Furthermore, there is no clear
performance measure and there is no link whatsoever between the param-
eters weighting the deviations from the three moment objectives and the
parameters of the expected utility function. By contrast, the use of distance
functions avoids any compromise between the three objectives, provides a
clear performance measure, and is via duality firmly linked with risk prefer-
ences. Furthermore, there are a series of primal contributions that tend to
solve the MVS portfolio problem by privileging one or two of the objectives
at the cost of the other(s). Konno and Suzuki (1995) trace the MVS portfolio
frontier by maximizing skewness, and focus thereby on finding approximate
optimal solutions using piecewise linear approximations of nonlinear objec-
tive function and constraints. Adopting the efficiency measures proposed in
Morey and Morey (1999), Joro and Na (2006) determine MVS portfolio fron-
tiers by minimizing the risk reduction for a given MVS portfolio. Athayde
and Flôres (2004) look for the analytical solution characterizing the MVS
portfolio frontier assuming a risk-free asset and shorting, whereby the objec-
tive is to minimize the variance for given mean and skewness. Womersley
and Lau (1996) maximize the skewness divided by the standard deviation
cubed, assuming that maximizing the third moment tends to minimize the
variance.

While all approaches are capable to determine some Pareto efficient points
on the MVS frontier (with a qualification perhaps for the multi-objective pro-
gramming approach), these primal approaches are disconnected from any
preference information eventually allowing to select one portfolio among
those on the Pareto efficient MVS frontier. In fact, it is shown below that
most of these approaches can be re-interpreted as special cases of our short-
age function, whereby the direction of projecting onto the frontier privileges
one of the three dimensions: e.g., one only looks for improvements in skew-
ness. Therefore, one should realize that some of these methods may lead to
points on the unknown MVS frontier that are probably unattractive from
the viewpoint of general investor preferences. By contrast, our approach
caters for more general investor preferences in that we seek simultaneously
improvements in return and skewness and reductions in risk. Furthermore,

7Early attempts looking at skewness but ignoring co-skewness (e.g., Arditti and Levy
(1975)) are disregarded.
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our approach is more general in that we impose the weakest of possible as-
sumptions. For instance, we ignore the presence of a risk free asset as well
as the possibility of shorting.

Current dual approaches are hampered by a lack of knowledge of prefer-
ences for risk and skewness (e.g., Jondeau and Rockinger (2006) and Harvey
et al (2003)) and suffer from their lack of integration with primal approaches.
Since the MVS portfolio frontier is non-convex, the optimization of an in-
direct utility function in the dual approach only ensures local optimal so-
lutions from a computational point of view. This inherent characteristic of
the MVS decision problem can only be remedied via the development of
global optimization algorithms. Furthermore, it inevitably convexifies part
of the underlying non-convex MVS portfolio frontier. This may carry the
risk that certain target portfolios based upon particular specifications of the
utility function are infeasible in practice. But, our shortage function ap-
proach is compatible with general investor preferences and selects optimal
portfolios without assuming a detailed knowledge on the preference parame-
ters defining the indirect utility function. Furthermore, it can in the long run
contribute to a better understanding of risk preferences via its estimation of
(shadow) risk aversion and prudence. This is a major advantage of opting
for a micro-economic tool like the shortage function integrating primal and
dual approaches.

The limited experience with MVS portfolio selection established so far
shows that the composition of an optimal MVS portfolio differs from the
MV one, and that the resulting return (risk) may well be lower (higher) in
trade off with a higher positive skewness that is achieved (see Lai (1991),
Prakash, Chang and Pactwa (2003), among others). Sun and Yan (2003)
make the observation that while many studies indicate that ex post stock
returns are positively skewed, most of them find skewness to be persistent
only for individual stocks not for portfolios (e.g., Simkowitz and Beedles
(1978)). However, these studies do not start from MVS efficient portfolios.
These two authors show that taking skewness preference seriously and using
the Lai (1991) goal programming method of selecting MVS efficient portfolios
for USA and Japanese stocks guarantees skewness persistence over time. If
their results would be corroborated, this implies that even ex post skewness
could be used as a crude proxy for ex ante skewness when selecting optimal
MVS efficient portfolios to guarantee skewness persistence.

While limiting ourselves to the three-dimensional MVS space, this contri-
bution paves the way to any portfolio selection approach using a higher order
Taylor expansion of the utility function, as ideally dictated by the number
of statistical moments that turn out to count in explaining asset prices. Fi-
nally, the interest of this approach based on cubic (nonlinear) programming
concerns not only the MVS model with short sales excluded. This nonlinear
programming approach remains valid as a general framework for any other
traditional portfolio extension (e.g., buy-in thresholds for assets, cardinality
constraints restricting the number of assets, transaction round lot restric-
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tions, dedicated cash flow streams, immunization strategies, etc. (Jobst et al
(2001)).

Section 2 of the article lays down the foundations of the analysis. Section
3 introduces the shortage function and studies its axiomatic properties. The
next section studies the link between the shortage function and the direct
and indirect MVS utility functions. A simple empirical illustration using a
small sample of 35 assets (all part of the French CAC40 index) is provided
in Section 5. Conclusions and possible extensions are formulated in a final
section.

2 Portfolio and Efficient Frontier: Definitions

Developing some basic definitions, consider the problem of selecting a port-
folio (or fund of funds) from n financial assets (or funds). Assets are charac-
terized by an expected return E [Ri] for i ∈ {1, ..., n}, by a covariance matrix
Ωi,j = Cov [Ri, Rj] for i, j ∈ {1, ..., n}, and by a co-skewness matrix:

CSKi,j,k = E [(Ri − E[Ri]) (Rj − E[Rj]) (Rk − E[Rk])] ,

for i, j, k ∈ {1, ..., n}.8 Following Athayde and Flôres (2004), we transform
the n×n×n CSK matrix into a useful n×n2 matrix Λ by slicing each n×n
layer and pasting them in the same order.

A portfolio x = (x1, ..., xn) is composed by a proportion of each of these n

financial assets

( ∑
i=1...n

xi = 1

)
. When short sales are excluded, the condition

xi ≥ 0 is imposed. In general, the set of admissible portfolios can be written
as follows:9

= =

{
x ∈ Rn;

∑
i=1...n

xi = 1, x ≥ 0

}
. (2.1)

It is assumed throughout the paper that = 6= ∅.
The return of portfolio x is given by R (x) =

∑
i=1...n

xiRi. The expected

return, its variance, and its skewness can be calculated as follows:

E [R (x)] = µ(x) =
∑

i=1...n

xiE [Ri] = x′M, (2.2)

8In line with Chunhachinda et al. (1997) and Lai (1991), among others, skewness and
coskewness are defined in terms of central moments. Other definitions are available, but
the choice of definition does not affect our basic results.

9When investors face additional constraints (e.g., transaction costs or upper limits on
any fraction invested) that can be written as constraints that are linear functions of asset
weights, then the set of admissible portfolios can be easily adapted (Pogue (1970), Rudd
and Rosenberg (1979)). See Briec, Kerstens and Lesourd (2004) for this development in a
similar context.
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V ar [R (x)] = E[(R(x)− µ(x))2] =
∑
i,j

xixjCov [Ri, Rj] = x′Ωx, (2.3)

Sk [R (x)] = E[(R(x)− µ(x))3] (2.4)

=
∑

i,j,k

xixjxkE
[
(Ri − µ(x))(Rj − µ(x))(Rk − µ(x))

]
(2.5)

= x′Λ(x⊗ x), (2.6)

where Λ = E
[
(Ri − µ(x))(Rj − µ(x))′ ⊗ (Rk − µ(x))′

]
has dimension (n,n2)

to maintain a standard matrix format and ⊗ stands for the Kronecker prod-
uct. Because of certain symmetries, not all elements of these matrices need
to be computed. Indeed, while the variance-covariance matrix has dimen-

sion (n,n), only

(
n + 1

2

)
= (n + 1)n/2 of its elements must be computed.

Similarly, while the skewness-coskewness matrix has dimension (n,n,n), only(
n + 2

3

)
= (n + 2)(n + 1)n/6 are independent (see Athayde and Flôres

(2004: 1338)).
We introduce the function Φ : = −→ R3 defined by:

Φ(x) = (E [R (x)] , V ar [R (x)] , Sk [R (x)]) .

to represent, for a given portfolio x, its expected return, variance and skew-
ness.

It is useful to define the MVS representation of the set = of portfolios as
the range of Φ on =:

ℵ = {Φ(x); x ∈ =} . (2.7)

The above set can be extended by defining a MVS (portfolio) disposal rep-
resentation set through:

DR = ℵ+
(
R+ × ( −R+)× R+

)
. (2.8)

The disposal representation set DR can be rewritten as follows:

DR =
{
(E, V , S) ∈ R3;∃x ∈ = ,

(E,−V , S) ≤ (E [ R(x) ],−V ar[ R(x) ], Sk[ R(x) ] )} . (2.9)

The addition of the cone is necessary for the definition of a sort of “free
disposal hull” of the MVS representation of feasible portfolios.

To measure portfolio efficiency, it is necessary to define a subset of this
representation set known as the efficient frontier:
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Definition 2.1 In the MVS space, the weakly efficient frontier is defined as:

∂M (=) = {(E, V, S) ; (−E ′, V ′,−S ′) < (−E, V,−S) =⇒ (E ′, V ′, S ′) 6∈ DR} .

From the above definition the weakly efficient frontier is the set of all the
MVS points that are not strictly dominated in the three dimensional space.10

The above definition allows defining the set of weakly efficient portfolios:

Definition 2.2 The set of weakly efficient portfolios is defined, in the sim-
plex, as:

ΘM (=) =
{
x ∈ = ; Φ(x) ∈ ∂M (=)

}
.

By analogy to its role in the MV approach (see Briec, Kerstens and
Lesourd (2004)), the next section introduces the shortage function (Luen-
berger (1995)) as a performance indicator for the MVS portfolio optimization
problem.

3 Shortage Function and the Frontier of Ef-

ficient Portfolios

In production theory, the shortage function measures - intuitively stated-
the distance between some point of the production possibility set and the
Pareto frontier (Luenberger (1995)). The basic properties of the subset DR
on which the shortage function is defined are discussed in Briec, Kerstens and
Lesourd (2004) in the setting of MV portfolio theory. It is now possible to
extend their definition to obtain an efficiency measure in the specific context
of MVS portfolio selection. Therefore, the shortage function is introduced
and its properties are studied in the context of MVS portfolio theory.

Definition 3.1 Let g = (gE,−gV , gS) ∈ R+ × (−R+) × R+. The function
Sg : = −→ R+ defined as:

Sg (x) = sup {δ ; Φ(x) + δg ∈ DR}
is the shortage function for portfolio x in the direction of vector g.

The pertinence of this shortage function as a portfolio management effi-
ciency indicator stems from its elementary properties. Since these properties
can be immediately transposed from the MV into the MVS space, these prop-
erties are stated without extensive comments and proof.

10It is also possible to define a strongly efficient frontier, but the above formulation
simplifies most results in this contribution.
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Proposition 3.2 Sg satisfies the following properties:
a) If (gE, gV , gS) ∈ R3

++, then Sg (x) = 0 ⇐⇒ x ∈ ΘM(=) (weak efficiency).
b) Sg is MVS weakly monotonic, i.e.,

(E[ R(x′) ],−V ar[ R(x′) ], Sk[ R(x′) ] )

≤ (E[ R(x) ],−V ar[ R(x) ], Sk[ R(x) ] )

implies that:
0 ≤ Sg (x) ≤ Sg (x′) .

c) If (gE, gV , gS) ∈ R3
++, then Sg is continuous .

When the shortage function equals zero, then the portfolio is part of the
weakly efficient frontier. This only guarantees weak efficiency, because it
does not exclude projections on vertical or horizontal parts of the non-convex
frontier allowing for additional improvements (see expression (2.8)). In ad-
dition, a portfolio that is weakly dominated in terms of its return, risk and
skewness characteristics is classified as weakly less efficient. Notice that the
condition (gE, gV , gS) ∈ R3

++ is not necessary in this case to guarantee weak
monotonicity. Finally, this shortage function is continuous when the direction
vector g is strictly positive.

The representation set DR, defined by expression (2.9), can be directly
used to compute the shortage function by standard cubic optimization meth-
ods. Assume a sample of m portfolios (or investment funds) x1, x2, ..., xm.
Now, consider a specific portfolio yk for x1, x2, ..., xm whose performance
needs to be gauged. The shortage function for this portfolio yk under evalu-
ation (Sg

(
yk

)
) is computed by solving the following cubic program:

max δ

s.t. E
[
R

(
yk

)]
+ δgE ≤ E [R (x)]

V ar
[
R

(
yk

)]− δgV ≥ V ar [R (x)] (P1)

Sk
[
R

(
yk

)]
+ δgS ≤ Sk [R (x)]∑

i=1...n

xi = 1, xi ≥ 0, i = 1...n.
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Making use of equations (2.2), (2.3) and (2.4), this program (P1) is rewritten
as follows:

max δ

s.t. E
[
R

(
yk

)]
+ δgE ≤

∑
i=1...n

xiE [Ri]

V ar
[
R

(
yk

)]− δgV ≥
∑
i,j

Ωi,jxixj (P2)

Sk
[
R

(
yk

)]
+ δgS ≤

∑

i,j,k

CSKi,j,kxixjxk

n∑
i=1

xi = 1, xi ≥ 0, i = 1...n.

Thus, gauging the performance of a sample of m portfolios requires comput-
ing one cubic program for each of these m portfolios in turn. Indeed, the
logic is that each observation is positioned with respect to the boundary of
the choice set with the help of the shortage function. All possible combina-
tions of returns, risk and skewness of the portfolios in the sample that can be
combined to constitute the MVS portfolio frontier are situated on the RHS
of (P2). In turn, an evaluated portfolio is represented on the LHS of (P2): by
maximizing δ, one attempts to augment its return and skewness and reduce
its risk in the direction of vector g. If δ = 0, then the evaluated portfolio
is efficient and part of the boundary. Otherwise, there exists a combination
of other portfolios that yields a higher return and skewness and a lower risk
and the evaluated portfolio is situated below the boundary, thus inefficient.

In addition to really observed portfolios, it is also possible to evaluate
fictitious portfolios. In that case, one simply fills out the target values for
return, risk and skewness one would be eager to achieve in the LHS, and
the program (P2) computes whether there is a combination of portfolios in
the sample that could generate these values or improve upon them. If the
target values happen to lay on the non-convex portfolio frontier, then the
optimal delta equals zero. In the more likely event these target values are
situated below the frontier, delta is positive. When the target values cannot
be generated from the current sample, then (P2) is simply infeasible (the
target values are “outside”the portfolio frontier). Theoretically, one could
in this way define a grid of target values as a starting point to find a series
of projection points on the portfolio frontier. With a sufficiently fine grid,
this could allow to draw a 3-dimensional geometrical representation of the
primal non-convex portfolio frontier. As indicated before, this procedure
is only relevant up to the three dimensional MVS portfolio space and its
computational feasibility and practical relevance remain to be explored.

Notice that, as mentioned before, the RHS of the constraints with the
variance-covariance matrix and the skewness-coskewness matrix can be rewrit-
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ten to exploit all symmetries.11 Notice furthermore, that dropping the third
constraint leads to computing a shortage function relative to the MV model
(Briec, Kerstens and Lesourd (2004)).

The above programs are special cases of the following standard, nonlinear
(cubic) program:

min cT z

s.t. Lj (z) ≤ αj, j = 1...q

Qk (z) ≤ βk, k = 1...r (P3)

Nl(z) ≤ γl, l = 1...t

z ∈ Rp,

where Lj is a linear map for j = 1...q and Qk is a positive semi-definite
quadratic form for k = 1...r and Nl is cubic form for l = 1...t. In the case
of program (P2), p = n, q = r = t = 1. Program (P3) is not a standard
convex nonlinear optimization problem (see Fiacco and McGormick (1968),
Luenberger (1984)).

Due to this non-convex nature, we need to state a necessary and sufficient
condition showing that a local optimal solution is also a global optimal solu-
tion. The next proposition clearly demonstrates that the shortage function
achieves a global optimum for the cubic program (P2).

Proposition 3.3 If (δ∗, x∗) is a local optimum of (P2), then it is a global so-
lution. Therefore, if the first order and second order Kuhn-Tucker conditions
hold at point (δ∗, x∗), then (δ∗, x∗) is a global maximum of (P2).

Proof: See the Appendix (see Online Supplement).

This proposition clearly makes our approach stand out compared to existing
primal approaches listed in the introduction only guaranteeing a local opti-
mal solution. Thus, the shortage function offers the only tool known so far
providing a global optimum for the MVS portfolio approach.

Remark 3.4 Sg encompasses all existing primal proposals mentioned in the
introduction. In particular, setting two subvectors of the direction vector g
equal to zero generates the following possibilities:
a) g = (gE, 0, 0) yields a return maximization model;
b) g = (0,−gV , 0) yields a risk minimization model; and

11To be explicit, the RHS of the second constraint can be rewritten as follows:∑
i,j

Ωi,jxixj =
∑
i=j

Ωi,j(xi)2 + 2
∑
i<j

Ωi,jxixj , while the RHS of the third constraint can

be rewritten as:
∑

i,j,k

CSKi,j,kxixjxk =
∑

i=j=k

CSKi,j,k(xi)3 + 3
∑

i=j,j<k

CSKi,j,k(xi)2xk

+ 6
∑

i<j,j<k

CSKi,j,kxixjxk.
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c) g = (0, 0, gS) yields a skewness maximization model.
Other special cases can be imagined by setting only one subvector equal to
zero rather than two.

For instance, the approach of Athayde and Flôres (2004) characterizes ana-
lytically the MVS portfolio frontier by minimizing the variance (thus, in our
approach it coincides with part b)), apart from them allowing for a risk-free
asset and shorting. As another series of examples, Joro and Na (2006) use
a special efficiency measure that solely minimizes portfolio risk (thus, coin-
ciding with part b)), while Konno and Suzuki (1995) focus on maximizing
skewness (thus, coinciding with part c)).

Notice that in these special cases (gE, gV , gS) ≯ 0. Hence, there is no
guarantee that the shortage function characterizes a weakly efficient portfolio.
While the fact that the shortage function equaling zero only guarantees a
weakly efficient portfolio is true in general, it is intuitively clear that setting
part of the direction vector g equal to zero increases the chances of projecting
onto vertical or horizontal parts of the non-convex frontier.

Remark 3.5 Sg defined on the MVS space is smaller or equal to Sg defined
relative to the MV space.

This remark describes a simple consequence of adding a constraint to a max-
imal value function: program (P2) contains one more constraint, namely the
third skewness-coskewness constraint, compared to the MV model using a
similar shortage function. It can provide a basis for developing statistical
tests for the relevance of including additional moments in the approximation
of the expected utility function.12

The result in the previous Proposition 3.3 has an immediate consequence
in terms of Kuhn-Tucker optimality, complementary slackness and second
order conditions. As can be shown in Corollary 3.6 (see the Appendix (On-
line Supplement)), these otherwise local conditions become global conditions
thanks to this proposition.

The next section studies the shortage function from a duality standpoint.

4 Mean-Variance-Skewness Utility and Dual-

ity: Shadow Risk Aversion and Prudence

4.1 Motivation

To show how the shortage function is linked to the dual approach based
upon the specification of a MVS utility function, we must establish a duality

12It is possible to improve the small sample error of our nonparametric frontier estima-
tor using either information on its asymptotic distribution of efficiency estimates, or by
simulated (bootstrapped) empirical distributions (see Simar and Wilson (2000)).
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result between the shortage function and the MVS utility function. However,
this cannot be done straightforwardly because the MVS portfolio frontier is
non-convex. One can only establish a duality result after convexifying this
MVS portfolio frontier. Therefore, we can define another shortage function
relative to this convexified MVS portfolio frontier and establish a duality
result between this new shortage function and the MVS utility function.
This duality result indicates that this new shortage function has an economic
interpretation, which transposes to the initial shortage function.

This duality result also leads to the definition of an efficiency decompo-
sition. Similar to standard micro-economic approaches in production and
consumption theory, we distinguish principally between portfolio efficiency,
the distance from the interior to the boundary of the primal MVS portfolio
frontier, and allocative efficiency, the deviation from an eventual boundary
portfolio to the most preferred portfolio based upon some specification of
a MVS utility function. Finally, we can determine the conditions under
which shadow prices of the initial shortage function are valid in the sense
that they convey information about the supporting MVS utility function at
the tangency point. This happens when these shadow prices coincide to
the shadow prices obtainable from the shortage function defined relative to
the convexified MVS portfolio frontier. Basically, this presupposes that the
initial shortage function projects onto a “convex” part of the primal MVS
portfolio frontier. Otherwise, one cannot attribute any economic significance
to these shadow prices.

These developments serve to establish a connection between our new pri-
mal approach and existing dual approaches. It also reveals that the shortage
function approach has a meaningful economic interpretation. Therefore, this
section is structured as follows. In the next subsection we define a MVS
utility function as a third order polynomial approximation of expected util-
ity. Then, we define another shortage function relative to a convexified MVS
portfolio frontier and establish a duality result between it and the MVS util-
ity function. We also define an efficiency decomposition. Finally, we study
the properties of the shortage function that assume differentiability at the
point where the function is evaluated in an effort to determine the conditions
for the validity of shadow prices.

4.2 Mean-Variance-Skewness Utility Functions: Defi-
nition

From the outset, portfolio selection was conceived as a two-step procedure:
the determination of the efficient set of portfolios is just the first step, prepar-
ing the selection of an optimal portfolio for a given preference structure. To
provide a dual interpretation of the shortage function, a corresponding indi-
rect utility function must first be defined.

14



Let the MV utility function defined by:

U(µ,ρ) (x) = µ E [R (x)]− ρV ar [R (x)] .

This utility function satisfies positive marginal utility of expected return, and
negative marginal utility of risk.

To determine an optimal portfolio corresponding to a given degree of risk
aversion within the MV approach, Markowitz (1959) formalizes a quadratic
optimization program maximizing the above MV utility function:

max E [R (x)]− ϕV ar [R (x)]
s.t

∑
i=1...n

xi = 1, x > 0, (4.1)

with ϕ = ρ
µ
∈ [0, +∞] representing the degree of absolute risk aversion.

To integrate the skewness, we propose another optimization program that
determines the optimal portfolio corresponding simultaneously to a given
degree of risk aversion and prudence. The concept of prudence, introduced
by Kimball (1990), is related to skewness preference. In combination with risk
aversion, it allows to handle simultaneously variance and skewness. Kimball
(1990) develops the relationship between prudence and the third derivative of
the utility function in a consumption-savings approach. Since at least Kraus
and Litzenberger (1976) (see Harvey et al (2003) and Jondeau and Rockinger
(2006) for recent developments), it is known that this link between the third
derivative of the utility function and the skewness can be simply illustrated
by taking a Taylor expansion of the expected utility of the final wealth (wf )
of an investor around his expected wealth (w) as follows:

u(wf ) = u(w) + u′(w)(wf − w) +
u′′(w)

2
(wf − w)2 +

u′′′(w)

6
(wf − w)3 + · · ·

This implies:

E [u(wf )] = E [u(w)] +u′(w)E [(wf − w)] +
u′′(w)

2
E

[
(wf − w)2

]

+
u′′′(w)

6
E

[
(wf − w)3

]
+ · · ·

which finally leads to the expression:

E [u(wf )] = u(w) +
u′′(w)

2
V ar [wf ] +

u′′′(w)

6
Sk [wf ] + · · ·

Clearly, u′′(.) and u′′′(.) are respectively related to variance and skewness:
while a negative second derivative of the utility function implies variance
aversion, a positive third derivative of the utility function entails a preference
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for positive skewness.13 Along this line, we define a MVS utility function and
a corresponding indirect utility function:

Definition 4.1 The function U(µ,ρ,κ) : = −→ R as:

U(µ,ρ,κ)(x) = µE [R (x)]− ρ V ar [R (x)] + κSk[R(x)]

is called the MVS utility function. The function U∗ : R3
+ −→ R defined as:

U∗ (µ, ρ, κ) = max

{
U(µ,ρ,κ)(x) ;

∑
i=1...n

xi = 1, x > 0

}

is called the indirect MVS utility function.

This nonlinear optimization program can be rewritten as follows:

max E [R(x)]− ϕV ar [R(x)] + ΨSk[R(x)]
s.t

∑
i=1...n

xi = 1, x ≥ 0, (4.2)

where ϕ = ρ
µ

> 0, and Ψ = κ
ρ

> 0, where the latter ratio represents the
degree of absolute prudence. This utility function satisfies positive marginal
utility of expected return and skewness and negative marginal utility of risk.
Therefore, the maximum value function for the decision maker is simply
determined for a given set of parameters (µ,ρ,κ) > 0 representing his/her
absolute risk-aversion and absolute prudence. Knowledge of these parame-
ters allows selecting a unique efficient portfolio among those on the weakly
efficient frontier maximising the decision maker’s direct MVS utility function.

Lai (1991) and Konno and Suzuki (1995) mention the possibility of di-
rectly optimizing this third order approximation of expected utility, but de-
cline it as impractical given the difficulty of specifying the necessary pa-
rameters.14 This same dual approach is effectively pursued by Jondeau and
Rockinger (2006) and Harvey et al (2003), among others. Since the objective
function is non-concave, it is impossible to guarantee global optimality in the
dual approach. By its very nature, one can only verify whether conditions of
local optimality are satisfied.

13This positive preference direction for the third moment is widely accepted: see, e.g.,
Kane (1982) or Scott and Horvath (1980). The determination of the preference direction
of the fourth moment in relation to the first three moments has been treated in Scott and
Horvath (1980). However, Brockett and Kahane (1992) cast serious doubt on the leap
from derivatives of utility functions to preferences for moments of arbitrary distributions.
Jondeau and Rockinger (2006) describe some recent literature investigating under which
conditions adding higher moments improves or deteriorates the approximation.

14Konno and Suzuki (1995) also develop a piecewise linear approximation for this direct
utility maximization approach.
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4.3 A Duality Result between the Hyper-shortage Func-
tion and the Mean-Variance-Skewness Utility Func-
tion

Since the representation set DR is incompatible with a dual representation
because of its non-convexity, we can define the convex representation set as
follows:

CR =
{
(E, V, S) ∈ R3; ∀(µ, ρ, κ) ∈ R3

+, U∗ (µ, ρ, κ) ≥ µE − ρV + κS
}

.
(4.3)

Basically, DR is convexified by imposing tangent iso-utility surfaces com-
patible with the set of admissible MVS portfolios. Now we are in a position
to define another shortage function corresponding to CR and to state its
properties.15

Definition 4.2 Let g = (gE,−gV , gS) ∈ R+ × (−R+) × R. The function
S̄g : = −→ R+ defined as:

S̄g (x) = sup {δ ; Φ(x) + δg ∈ CR}
is the hyper-shortage function for portfolio x in the direction of vector g.

Proposition 4.3 S̄g satisfies the following properties:
a) If (gE, gV , gS) ∈ R3

++, then S̄g (x) = 0 ⇐⇒ x ∈ ΘM(=) (weak efficiency).
b) S̄g is MVS-weakly monotonic, i.e.,

(E[ R(x′) ],−V ar[ R(x′) ], Sk[ R(x′) ] )

≤ (E[ R(x) ],−V ar[ R(x) ], Sk[ R(x) ] )

implies that:
0 ≤ S̄g (x) ≤ S̄g (x′) .

c) S̄g is continuous.

This hyper-shortage function defined on CR shares almost all the proper-
ties of Sg mentioned in Proposition 3.2. Its proof is similar and therefore
discarded.

To grasp duality in our framework, it is useful to distinguish between
overall, allocative, convexity and portfolio efficiency when evaluating the
scope for improvements in portfolio management.16 The following definition
clearly distinguishes between these concepts. For all (E, V, S) ∈ DR and
(µ, ρ, κ) ∈ R3, we denote:

(µ,−ρ, κ).(E, V, S) = µE − ρV + κS.

15This development is partly inspired by the way Luenberger (1992) defines the hyper-
benefit function in a similar non-convex setting.

16This framework from production theory was transposed to portfolio analysis in Briec,
Kerstens and Lesourd (2004).
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Definition 4.4 The Overall Efficiency (OE) index is defined as the quantity:

OE (x; µ, ρ, κ) = sup {δ ; (µ,−ρ, κ).(Φ(x) + δg) ≤ U∗ (µ, ρ, κ)} ;

The Allocative Efficiency (AE) index is defined as the quantity:

AE(x; µ, ρ, κ) = OE (x; µ, ρ, κ)− S̄g(x);

The Convexity Efficiency (CE) index is defined as the quantity:

CE(x) = S̄g(x)− Sg(x);

The Portfolio Efficiency (PE) index is defined as the quantity:

PE(x) = Sg(x).

Portfolio Efficiency only guarantees reaching a point on the non-convex
primal portfolio frontier, not necessarily a point on the frontier maximising
the investor’s indirect MVS utility function. In this sense, it is similar to the
notion of technical efficiency in production theory. Convexity Efficiency
measures the difference between the shortage functions computed on both
the convex representation set CR and the initial non-convex representation
set DR. Allocative Efficiency measures the portfolio adjustment along the
convexified portfolio frontier to achieve the maximum of the indirect MVS
utility function. This may imply reshuffling an eventual Portfolio Efficient
and Convexity Efficient portfolio in function of relative prices (i.e., the pa-
rameters of the MVS utility function). Finally, Overall Efficiency ensures
that all these ideals are achieved simultaneously. In fact, OE is simply the
ratio of (i) the difference between indirect MVS utility (Definition 4.1) and
the value of the direct MVS utility function for the observation evaluated,
and (ii) the normalized value of the direction vector g for given parameters
(µ,ρ,κ):

OE (x; µ, ρ, κ) =
U∗ (µ, ρ, κ)− U(µ,ρ,κ) (x)

µgE + ρgV + κgS

. (4.4)

Obviously, the following additive decomposition identity holds:

OE(x; µ, ρ, κ) = AE(x; µ, ρ, κ) + CE(x) + PE(x). (4.5)

Luenberger (1995) established duality between the expenditure function
and the shortage function. Similarly, the following result proves that the
hyper-shortage function can be computed over the dual of the MVS space.
The support function of the representation set CR is the indirect MVS utility
function U*.
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Proposition 4.5 Let S̄g be the hyper-shortage function defined on =. S̄g

has the following properties:

1) For all x ∈ =:

S̄g (x) = inf
(µ,ρ,κ)>0

{U∗ (µ, ρ, κ)− U(µ,ρ,κ) (x) ; µgE + ρgV + κgS = 1}.

2) For all (µ, ρ, κ) ∈ R3
+:

U∗ (µ, ρ, κ) = sup
x∈=

{U(µ,ρ,κ) (x)− S̄g(x)}.

Proof. The proof follows from Luenberger (1995). Q.E.D.

Remark 4.6 The special cases of Sg in Remark 3.4 lead to three equivalent
special cases for S̄g: a) return maximization (g = (gE, 0, 0)), b) risk min-
imization (g = (0,−gV , 0)), and c) skewness maximization (g = (0, 0, gS))
approaches imply particular versions of the above duality result with extreme
investor preferences in terms of absolute risk aversion and absolute prudence.

It is clear that these special types of projections onto the MVS frontier are
only compatible with rather extreme investor preferences. Notice first that
Proposition 4.5 is established for all nonnegative triplets (gE, gV , gS). Hence,
since the hyper-shortage function is derived from the convex set CR, the
above duality result holds true in these special cases. Returning now to
some of the examples commented upon after Remark 3.4, for instance, it is
clear that Joro and Na (2006) focus on variance reduction and Konno and
Suzuki (1995) only on skewness augmentation. In our view, these alternative
methods may sometimes lead to points of the unknown MVS frontier that are
probably unattractive from the viewpoint of general investor preferences (e.g.,
when a projection is made on vertical or horizontal parts of the non-convex
portfolio frontier). This fact is to some extent masked by these methods
because the link to a dual (utility based) approach is missing. By contrast,
the standard shortage function adapted here, by simultaneously looking for
improvements in return, risk and skew, is compatible with what are widely
supposed to be more general investor preferences.

4.4 Shadow Prices: Conditions for Their Validity

Next, we devote some attention to study the properties of the shortage func-
tion that presume differentiability at the point where the function is eval-
uated. To this end, the adjusted risk aversion and prudence function is
introduced:

(µ, ρ, κ) (x) = arg min
{
U∗ (µ, ρ, κ)− U(µ,ρ,κ) (x) ;

µgE + ρgV + κgS = 1, (µ, ρ, κ) > 0} ,
(4.6)
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that implicitly characterizes both the agent’s risk aversion and prudence.17

Another possible name is the shadow indirect MVS utility function, since it
adopts a reverse approach by determining the parameters (µ,ρ,κ) and their
implied shadow risk aversion and shadow absolute prudence that render the
current portfolio optimal for the investor. Remark that for these parameters
(µ,ρ,κ): OE = PE, since AE = 0 and CE = 0 by definition.

The fact that, in principle, absolute risk aversion and absolute prudence
can be revealed using this adjusted risk aversion and prudence function ex-
pands our possibilities to directly optimize the third order approximation
of expected utility indicated in Definition 4.1 above based upon “realistic”
parameter values. Therefore, we are slightly more optimistic than, e.g., Lai
(1991) about the potential of specifying the necessary parameters.

Proposition 4.7 Let S̄gbe the hyper-shortage function defined on =. At the
points where S̄g is differentiable, it has the following properties:

1) ∂S̄g(x)

∂x
=

∂U(µ,ρ,κ)(x)(x)

∂x
= µ(x)M − 2ρ(x)Ωx + 3κ(x)Λ(x⊗ x);

2) We have:

i) ∂S̄g(x)

∂E[R(x)]

∣∣∣
V ar[R(x)]=Ct,Sk[R(x)]=Ct

= µ (x);

ii) ∂S̄g(x)

∂V ar[R(x)]

∣∣∣
E[R(x)]=Ct,Sk[R(x)]=Ct

= −ρ (x);

iii) ∂S̄g(x)

∂Sk[R(x)]

∣∣∣
E[R(x)]=Ct,V ar[R(x)]=Ct

= κ (x),

where M denotes the vector of expected asset returns, Ω is the co-variance
matrix, and Λ is the modified co-skewness matrix.

Proof: See the Appendix (Online Supplement).

In result 1), it is shown that changes of the hyper-shortage function with
respect to x are identical to the variation of the indirect utility function,
computed with respect to the adjusted risk aversion and prudence function.
Furthermore, this same variation can be linked to the return of each asset,
the co-variance and co-skewness matrices. Finally, result 2) shows that the
hyper-shortage function increases when the expected return or the skewness
increases, or when the variance decreases.

Turning again to the computational aspects, the only requirement to
obtain the decomposition from Definition 4.4 is to compute the additional
cubic program from Definition 4.1. Then, applying expression (4.4) and
Definition 4.4 itself, the components OE on the one hand and the sum of
both the components AE and CE on the other hand follow from taking the
difference between OE and PE. However, since we know of no practical way
to compute the hyper-shortage function S̄g, we cannot sharply distinguish
between AE and CE.

17Luenberger (1995) defines an adjusted price function in consumer theory. Due to its
similarity, we label it the adjusted risk aversion and prudence function.
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In contrast to the shortage function, one cannot guarantee global opti-
mality for OE in the dual approach, because of the non-concave nature of
the objective function. However, despite the fact that conditions of local op-
timality do not guarantee global optimality, there is a simple way to detect
certain deviations of global optimality for the indirect MVS utility function.

Remark 4.8 In some circumstances, one can infer the nature of the dual
optimal solution:
a) When PE = 0 and overall efficiency (hence also allocative efficiency)
turns out to be negative, then the current optimal solution for the indirect
utility function (U∗ (µ, ρ, κ)) is not a global optimum. b) When PE = 0,
then one cannot infer global optimality for the same indirect utility function.

This finding may well imply that it is better to develop portfolio optimization
approaches using a primal rather than a dual framework. However, the devel-
opment of global optimization algorithms may well soon solve this problem
from a computational point of view.

Though the distinction between AE and CE cannot be made, there is a
way to determine whether CE is equal to or larger than zero. It suffices to
compute PE and to insert its shadow prices as parameters in the objective
function when computing OE. If both these components yield identical op-
timal portfolio weights, then CE = 0 (hence, S̄g = Sg). Otherwise, CE > 0,
though its precise magnitude remains unknown. This is expressed more ex-
actly in the following proposition.

Proposition 4.9 Let k ∈ {1, ..., m} such that program (P2) has a regular
optimal solution. Let λE ≥ 0, λV ≥ 0 and λS ≥ 0 be respectively the Kuhn-
Tucker multipliers of the first three constraints in program (P2). If Sg is
differentiable at point yk ∈ =, and if yk ∈ arg max

{
U(λE ,λV ,λS) (x) ; x ∈ =}

,
then CE(yk) = 0.

Proof. See the Appendix (Online Supplement).

It turns out that Proposition 4.9 is especially of great practical significance
when CE=0, because in that case the shadow prices from PE are identical
to the ones of S̄g (because Sg = S̄g). Thus, the adjusted risk aversion and
prudence function (4.5) can be derived from the Kuhn-Tucker multipliers in
program (P2) when CE = 0 for a specific portfolio yk under evaluation, as
shown in the next proposition.

Proposition 4.10 Let k ∈ {1, ..., m}such that program (P2) has a regular
optimal solution. Let λE ≥ 0, λV ≥ 0 and λS ≥ 0 be respectively the Kuhn-
Tucker multipliers of the first three constraints in program (P2). If Sg is
differentiable at point yk ∈ =, and if there exists a neighborhood V (yk, ε)
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such that CE(y) = 0 for all y ∈ V (yk, ε), then this yields:
1)

∂Sg (y)

∂E [R (y)]

∣∣∣∣ y=yk

V ar[R(y)]=V ar[R(yk)]
Sk[R(y)]=Sk[R(yk)]

= λE;

∂Sg (y)

∂V ar [R (y)]

∣∣∣∣ y=yk

E[R(y)]=E[R(yk)]
Sk[R(y)]=S[R(yk)]

= −λV ;

and

∂Sg (y)

∂Sk [R (y)]

∣∣∣∣ y=yk

E[R(y)]=E[R(yk)]
V ar[R(y)]=V ar[R(yk)]

= λS.

2) The adjusted risk aversion and prudence function is identical to the Kuhn-
Tucker multipliers:

(µ, ρ, κ)
(
yk

)
= (λE, λV , λS) .

Proof. See the Appendix (Online Supplement).

Note that this last result only holds true when CE = 0.
To conclude, the introduction of the hyper-shortage function only serves

to establish the above duality result and to obtain an economic interpretation
for the initial shortage function. The fact that the hyper-shortage function
cannot be computed creates no practical difficulties, since it is in general
not meaningful to obtain estimates of shadow risk aversion and prudence
for all observations based on the hyper-shortage function. Shadow prices
are only meaningful if the convexity efficiency is zero, since only then the
initial shortage function and the hyper-shortage function coincide. If both
functions coincide, then the shadow prices coincide too (see Proposition 4.10).
Proposition 4.9 establishes a simple way to verify whether CE=0 or not,
and thus whether the shadow prices of the initial shortage function have an
economic meaning.

In general, it would of course be desirable to have a way of computing the
hyper-shortage function S̄g. Firstly, this would allow to separate AE and CE
sharply instead of only being able to determine whether CE = 0. Secondly,
S̄g could also be instrumental in the computation of the indirect MVS utility
function. Indeed, starting from a projection of an initial (eventually ineffi-
cient) portfolio using S̄g onto the boundary of CR, computing OE (Definition
4.4) with current optimization tools would guarantee a global optimum.
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5 Empirical Illustration: Assets Composing

the French CAC40 Index

Just as an empirical illustration, we compute the decomposition of overall
efficiency for a small sample of 35 assets being part of the French CAC40
index between February 1997 and October 1999.18 This sample contains 567
daily return observations in common for all assets upon which the first three
centered moments have been computed. As stated before, our analysis can be
applied to both assets and funds when keeping the proper interpretation in
mind. When evaluating assets, each of the assets in turn is projected onto the
MVS frontier and furthermore evaluated with respect to the optimal point
on the same frontier given certain parameters of the indirect MVS utility
function. This yields an optimal portfolio starting from a given asset with
specific characteristics. This perspective may seem unusual, but it should be
kept in mind that our approach does not try to trace the whole frontier, but
only evaluates existing assets relative to this same frontier. When evaluating
funds, each fund is projected onto the frontier and evaluated against an
optimal point on the frontier in an effort to define a fund of funds. This
adheres to a more traditional interpretation.

The calculation of the cubic program (P2) yields PE. Then, solving the
cubic program (4.2) with parameters µ = 1 , ρ = 1.5 and κ = 1.5 determines
the maximum of the indirect MVS utility function in Definition 4.1. These
parameters of the MVS utility function fix absolute risk aversion (ϕ = 1.5)
and absolute prudence (Ψ = 1) around conventional values. Finally, applying
the decomposition in Definition 4.4 and using (4.4) leads to the decomposition
results in Table 1. Notice that our AE component also includes CE : that is,
no effort was done to determine whether CE is larger than or equal to zero.
To save space, portfolio weights and slack variables are not reported. These
results are contrasted with the MV results using basically (P2) without the
skewness constraint and quadratic program (4.1) (see Briec, Kerstens and
Lesourd (2004) for all details).

A technical remark on the choice of a direction vector when computing
(P2) needs to be added. The direction vector retained is the return, variance
and skewness of the evaluated asset itself. This turns the shortage function
into a proportional shortage function: return and skewness are proportionally
increased, while variance is proportionally reduced. In particular, we assume
that:

gE = |E[R(x)]|, gV = V ar[R(x)], and gS = |Sk[R(x)]|.
Taking absolute values of return and skewness is needed, since one cannot
preclude negative values. In practice, this amounts to taking a positive (neg-
ative) δ in (P2) for positive (negative) values of return and skewness.

18Changes in the CAC40 index over this period explain our focus on these 35 out of the
total of 40 assets.
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To develop some intuition with the above theoretical developments, we
first interpret the decomposition results for a few single assets. First, we focus
on the asset “Vinci” and show how the above procedures can be applied in
practice. Then, as an illustration of the fact that sometimes the differences
between the MVS and MV results are wide, we discuss the asset “Credit
Lyonnais”. Thereafter, we make some comments on the sample results on
the average.

Example 5.1 For the single asset “Vinci”, its initially observed mean re-
turn is 0.0013, its risk is 0.00056, and its skewness is 2.9258E-06. These
observed values are entered on the LHS of program P2, and the model is
solved. Holding all wealth in this asset and projecting using its direction vec-
tor leads to a portfolio that is doing 92% better in terms of OE compared
to this asset. That is, by applying the optimal portfolio weights one can si-
multaneously improve return and skewness and reduce risk of this same asset
by 92%. The decomposition indicates that 34% of this poor performance is
due to PE (i.e., operating below the non-convex portfolio frontier), while the
remaining 58% of the gap is due to AE (i.e., choosing a wrong mix of return,
skewness and risk given postulated risk aversion and prudence parameters).
At the PE optimum, its return has increased to 0.0022, its risk has been re-
duced to 0.00037, and its skewness has risen to 3.9253E-06. The optimal
weights for this solution are: x3 =0.056, x8 =0.087, x9 =0.031, x26 = 0.096,
x29 =0.480, x32 =0.165, and x33 =0.085. By contrast, in the traditional MV
model we obtain a PE optimum with a higher return of 0.0023 and a lower
risk of 0.00014, but its skewness has now actually decreased to 2.88173E-07
compared to its initial skewness. The optimal weights are now: x8 =0.174,
x10 =0.035, x11 =0.023, x12 =0.250, x14 =0.012, x22 =0.013, x23 =0.023,
x29 =0.214, x31 =0.190, and x34 =0.065. Notice that the MVS model implies
an average non-zero weight of 0.143 and a maximum weight of 0.480, while
the MV model leads to an average non-zero weight of 0.1 and a maximum
weight of 0.250. Thus, the MVS model leads to less diversification compared
to the MV model in an effort to win in terms of skewness. By contrast, the
MV model offers better results in terms of return and risk, but at the cost of
ignoring the skewness dimension altogether.

Example 5.2 “Credit Lyonnais” is deemed very portfolio inefficient in MV
space, while it is spanning the MVS frontier (PE = 0). Starting off from an
observed return of 0.0017, a risk of 0.00041, and a skewness of 9.57366E-06,
the MVS model claims these result cannot be improved upon, while the MV
model yields an PE improved optimum return of 0.0026 and a reduced risk of
0.00020, but at the cost of reducing the skewness to only 5.84529E-07. Thus,
the performance improvement suggested by the MV model turns out to be
completely illusory: in fact, no improvement can be made once the skewness
dimension is taken into account.
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The average performance of the individual assets is poor. In MVS space,
they could improve their OE performance by about 160% (compared to 154%
in MV space). The decomposition results indicate that the majority of these
inefficiencies can be attributed to AE (compared to PE in MV space). Av-
erage portfolio inefficiency is only about 50% (compared to about 76% in
MV space). When looking at individual assets, no single asset perfectly cor-
responds to the investors’ preferences in that the minimum OE is 10% (“St
Micro”). However, in total 10 assets are portfolio efficient and span the MVS
frontier (compared to only one asset in the MV space). Obviously, as stated
above, PE in MVS space is always smaller or equal to PE in MV space,
because of the additional constraint. This explains, for instance, why the
first three assets have identical PE in both spaces.

TABLE 1 ABOUT HERE

Table 2 reports in a condensed form the distribution of the optimal port-
folio weights. In particular, we report the number of non-zero weights as
well as the mean and standard deviation of these portfolio weights. Fur-
thermore, the portfolio weights corresponding to the following approaches
are contrasted: the shortage function in full MVS space, as well as its three
special cases, the (i) maximum return, (ii) minimum risk, and (iii) maximum
skewness models.

Comparing the MVS and the MV results first, one observes that the latter
implies a higher diversification with on average lower weights and less disper-
sion among weights. The minimum risk model resembles the MV approach
in that, on average, it has 8.78 non-zero portfolio weights. These weights
are somewhat higher than the MV weights, but lower than the optimal MVS
portfolio weights. The maximum return and maximum skewness models turn
out to generate rather extreme solutions by concentrating wealth in less than
2 assets with extremely high average weights as a consequence. This casts
some doubts on the approaches in the literature advancing these modeling
strategies.

An effort was done to determine whether CE is larger than or equal to
zero. It turns out that for 8 out of 35 observations CE=0. However, among
these 8 observations, several observations contain some slack(s) into one of
the three dimensions. Therefore, it is hard if not impossible to obtain reliable
information on the implied shadow risk aversion and prudence. If one could
obtain reliable estimates for enough observations in the sample, then, in
principle, the confrontation between postulated risk aversion and prudence
parameters and the shadow risk aversion and shadow prudence would allow
inferring whether actual portfolio management strategies conform to certain
ideal pre-specified risk aversion and prudence profiles.

As a final remark, it is worthwhile pointing out that decomposition results
depend on specific risk aversion and prudence parameters. But, if one is
reluctant to specify these parameters, then nothing prevents one from simply
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computing PE while ignoring OE and AE. The only inconvenience may be
that it may be difficult for an investor to have a clear idea about the position
of certain portfolio efficient points in a three-dimensional MVS space. The
specification of an indirect MVS utility function has the advantage of picking
an optimal point without the need to consider the exact geometry of the
three-dimensional frontier.

TABLE 2 ABOUT HERE

6 Conclusions

This paper has introduced a general method for benchmarking portfolios
in the non-convex MVS space using the shortage function framework (Luen-
berger (1995)). Portfolio efficiency is evaluated by looking for risk contraction
on the one hand, and mean return and skewness augmentation on the other
hand. This shortage function is linked to an indirect MVS utility function.
Exploiting this duality allows to differentiate between portfolio efficiency,
allocative efficiency, and a convexity efficiency component. The latter com-
ponent is related to the difference between the primal, non-convex approach
and the dual, convex approach. A brief empirical application has served to
illustrate the computational tractability of the approach.

The proposed framework approximates the true frontier by a nonpara-
metric frontier using an efficiency measure that is perfectly suitable for per-
formance gauging and that guarantees global optimality. In addition, this
shortage function can specialize to any of the existing approaches focusing
on return-maximization, skewness-maximization, or risk-minimization. Fur-
ther virtues are that interesting dual interpretations are available without
imposing any simplifying hypotheses. Unfortunately, no global optimal solu-
tion can be guaranteed for the indirect MVS utility function. These findings
indicate that future research should probably focus on developing portfolio
optimization methods using a primal rather than a dual approach.

One could first of all hope for some further improvements in the proposed
framework. For instance, it would be good to have a computational procedure
to obtain the hyper-shortage function, since this would enable identifying
the convexity efficiency component. Furthermore, the recent development of
proper statistical inference for nonparametric frontier models in a production
context could probably be transposed in an investment context (see Simar
and Wilson (2000)).

But more drastic extensions are possible. Since the shortage function is
a distance function capable of representing multidimensional choice sets, one
obvious theoretical extension is to treat the general, higher order moment
portfolio problem corresponding to a general, higher order Taylor expan-
sion of the expected utility function. This would, for instance, allow inte-
grating the full kurtosis-cokurtosis matrix into the current MVS portfolio
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gauging framework. This would allow to improve upon the recent efforts of,
e.g., Athayde and Flôres (2003) who come up with a mean-skewness-kurtosis
model, but they ignore the variance dimension. Since the transition from the
traditional MV to the MVS space necessitated dealing with non-convexities,
one could hope these further generalizations would not be hindered by too
many computational problems.
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Table 1: Mean-Variance-Skewness versus Mean-Variance Benchmarking

Mean-Variance-Skewness Mean-Variance
OE AE ∗ PE OE AE PE

1 Accor 1.192 0.366 0.826 1.082 0.256 0.826
2 AGF 7.174 6.587 0.587 9.634 9.047 0.587
3 AirLiquide 2.426 1.596 0.830 2.049 1.219 0.830
4 Alcatel 1.385 0.469 0.916 1.266 0.350 0.916
5 Aventis 1.640 1.640 0.000 1.468 0.598 0.870
6 AXA 1.206 0.607 0.600 1.084 0.327 0.757
7 BNP 0.989 0.989 0.000 0.935 0.094 0.841
8 Bouygues 0.334 0.000 0.333 0.341 0.007 0.334
9 Capgemini 1.137 0.248 0.889 1.053 0.164 0.889

10 Carrefour 1.121 1.121 0.000 1.019 0.261 0.758
11 Casino 1.331 0.612 0.719 1.182 0.462 0.720
12 CreditLyonnais 0.602 0.602 0.000 0.566 0.046 0.520
13 Danone 1.964 1.199 0.766 1.700 0.935 0.765
14 Dassault 0.996 0.159 0.837 0.933 0.096 0.837
15 Dexia 2.726 1.957 0.770 2.292 1.522 0.770
16 Lafarge 1.421 0.827 0.594 1.270 0.428 0.843
17 Lagardere 1.674 0.787 0.887 1.469 0.582 0.887
18 L’Oreal 1.731 1.034 0.697 1.514 0.648 0.865
19 LVMH 1.195 1.195 0.000 1.092 0.266 0.826
20 Michelin 2.851 2.207 0.644 3.487 2.602 0.885
21 Peugeot 1.247 0.412 0.835 1.127 0.292 0.835
22 PPR 0.896 0.704 0.192 0.836 0.103 0.733
23 Renault 0.897 0.897 0.000 0.860 0.042 0.819
24 Gobain 1.808 0.963 0.844 1.571 0.727 0.843
25 Sanofi 1.570 1.570 0.000 1.396 0.534 0.861
26 Schneider 2.742 1.849 0.893 2.228 1.335 0.893
27 SocGenerale 1.119 0.271 0.848 1.029 0.181 0.848
28 Sodhexo 1.819 0.971 0.847 1.592 0.745 0.847
29 St Micro 0.102 0.102 0.000 0.167 0.167 0.000
30 Suez 2.513 2.383 0.129 2.140 1.392 0.748
31 TF1 0.330 0.330 0.000 0.341 0.009 0.332
32 Thales 2.269 1.366 0.903 1.898 0.995 0.903
33 Total 1.318 0.492 0.827 1.183 0.356 0.827
34 Vinci 0.922 0.580 0.342 0.855 0.115 0.741
35 VivendiUniversal 1.573 1.573 0.000 1.389 0.648 0.740

Mean 1.606 1.105 0.502 1.544 0.787 0.757
St.Dev. 1.183 1.133 0.374 1.544 1.538 0.191

Max 7.174 6.587 0.916 9.634 9.047 0.916

* Note: includes CE.
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Table 2: Optimal Portfolio Composition

# Non-0 Weights† Avg. Weight† St.Dev. Weight
Mean-Variance-Skewness 6.12 0.163 0.420
MVS∗: Maximum Return 1.42 0.705 0.331

MVS: Minimum Risk 8.78 0.114 0.379
MVS: Maximum Skewness 1.28 0.779 0.273

Mean-Variance 12.45 0.080 0.168

* Note: MVS = Mean-Variance-Skewness.
† Geometric mean.
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Appendix (Destined to the Online Supplement)

Proof of Proposition 3.3
Let us denote:

D =

{
(δ, x) ∈ R+ × Rn : E

[
R

(
yk

)]
+ δgE ≤

∑
i=1...n

xiE [Ri]

V ar
[
R

(
yk

)]− δgV ≥
∑
i,j

Ωi,jxixj

Sk
[
R

(
yk

)]
+ δgS ≤

∑
i,j,k

CSKi,j,kxixjxk

∑
i=1...n

xi = 1, xi > 0, i = 1...n

}
.

We have Sg(x) = max{δ : (δ, x) ∈ D}. Assume that (δ̂, x̂) is a local maxi-
mum, but that is not a global maximum. In this case, there exists (δ̄, x̄) ∈ D
such that δ̄ > δ̂. But, since DR satisfies the disposal assumption, this implies
that for all δ ∈ [δ̂, δ̄] there exists x ∈ = such that (δ, x) ∈ D. Therefore, there
does not exists a neighborhood V ((δ̂, x̂), ε) where ε > 0 such that δ̂ ≥ δ for
all (δ, x) ∈ V ((δ̂, x̂), ε). Consequently, if (δ∗, x∗) is a local maximum, then it
is a global maximum. Q.E.D.

Corollary 3.6 Let the functions hR, hV and hS be defined on Rn+1 by re-
spectively:

hR(δ, x) =
∑

i=1...n

xiE [Ri]− E
[
R

(
yk

)]− δgE,

hV (δ, x) = V ar
[
R

(
yk

)]− δgV −
∑
i,j

Ωi,jxixj,

hS(δ, x) =
∑

i,j,k

CSKi,j,kxixjxk − Sk
[
R

(
yk

)]− δgS.

Moreover, we consider the function l= : Rn −→ R defined as:

l=(x) =
∑

i=1...n

xi − 1.

Let L : Rn+1 × R3
+ × R× Rn

+ −→ R be the Lagrangian function defined by:

L(δ, x, κ, ρ, µ, λ, α) = δ+κhS(δ, x)+ρhV (δ, x)+µhE(δ, x)+λl=(x)+
∑

i=1...n

αixi.

Then, (δ∗, x∗) is a solution of Program (P2) if and only if there exists z∗ =
(δ∗, x∗, κ∗, ρ∗, µ∗, λ∗, α∗) ∈ Rn+1 × R3

+ × R× Rn
+ such that the following con-

ditions hold:
i) ∂L(z∗)

∂δ
= 0, ∂L(z∗)

∂x
= 0, ∂L(z∗)

∂λ
= 0,

ii) κ∗hS(δ, x) + ρ∗hV (δ, x) + µ∗hE(δ, x) +
∑

i=1...n α∗i xi = 0,

iii) −ρ∗Ωi,j + κ∗
[

∂2hS(x∗)
∂2xixj

]
i,j

is negative semidefinite.
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Proof of Corollary 3.6
If z∗ = (δ∗, x∗, κ∗, ρ∗, µ∗, λ∗, α∗) ∈ Rn+1×R3

+×R×Rn
+ is an optimal solution

of (P2), then it satisfies the Kuhn-Tucker conditions, and hence it satisfies
i), ii) and iii). Conversely, if z∗ satisfies i), ii) and iii), then it is a local opti-
mum. But, from Proposition 3.3 it is also a global optimum and we deduce
the result. Q.E.D.

Proof of Proposition 4.7
1) The proof is obtained by the standard envelope theorem. The relationship
∂S̄g(x)

∂x
=

∂U(µ,ρ,κ)(x)(x)

∂x
is obvious. Since

∂U(µ,ρ,κ)(x)(x)

∂x
= µ (x) M − 2ρ (x) Ωx +

3κ(x)Λ(x⊗ x), the result can be deduced. The proof for 2) is obtained in a
similar way. Q.E.D.

Proof of Proposition 4.9
In this case U∗ (λE, λV , λS) = U(λE ,λV ,λS)

(
yk

)
. Thus:

S̄g(y
k) =

U ∗ (λE , λV , λS )− U(λE ,λV ,λS )

(
yk

)

λEgE + λV gV + λSgS

=0.

Consequently, CE(yk) = 0. Q.E.D.

Proof of Proposition 4.10
1) The proof is based on the sensitivity theorem (e.g., Luenberger (1984)).
If there is a neighborhood V (yk, ε) such that CE(y) = 0 for all x ∈ V (yk, ε),
then Sg(y) = S̄g(y) for all x ∈ V (yk, ε). This implies that the constraint:

−
∑

i,j,k

CSKi,j,kxixjxk + δgS ≤ −Sk
[
R

(
yk

)]

is convex on V (yk, ε). Therefore, we can apply the Kuhn-Tucker conditions
to Program (P2). A solution of Program (P2) is immediately obtained solving
the program:

min − δ
s.t. − ∑

i=1...n

xiMi + δgE ≤ −E
[
R

(
yk

)]
∑
i,j

Ωi,jxixj + δgV ≤ V ar
[
R

(
yk

)]

− ∑
i,j,k

CSKi,j,kxixjxk + δgS ≤ −Sk
[
R

(
yk

)]

xi ≥ 0, i = 1...n.

(P4)

Remark that all constraint functions on the left hand side in the two first
inequalities are convex. Therefore, (P4) has the standard form described in
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Luenberger (1984). Now, consider the parametric program:

min − δ

s.t.−
∑

i=1...n

xiMi + δgE ≤ cE

∑
i,j

Ωxixj + δgV ≤ cV (P5)

−
∑

i,j,k

CSKi,j;kxixjxk + δgS ≤ cS

∑
i=1...n

xi = 1, xi ≥ 0, i = 1...n.

Since (P2) has a regular optimal solution, the bordered Hessian of (P4) at
the optimum is nonsingular.

Let x∗(cE, cV , cS) be the optimal solution of the parametric program (P5).
Let −δ ∗ (x ∗ (cE, cV , cS)) denote the corresponding optimal value function.
By definition, the Kuhn-Tucker multipliers of programs (P2) and (P4) are
identical. From the sensitivity theorem, we have:

∂ ( − δ ∗ (x∗ (cE, cV , cS)))

∂cV

∣∣∣∣
cV =V ar[R(yk)]

= −λV ;

∂ ( −δ ∗ (x ∗ (cE, cV , cS)))

∂cE

∣∣∣∣
cE=−E[R(yk)]

= −λE;

∂ ( −δ ∗ (x ∗ (cE, cV , cS)))

∂cS

∣∣∣∣
cS=−Sk[R(yk)]

= −λS.

We immediately deduce that:

∂Sg (y)

∂V ar [R (y)]

∣∣∣∣ y=yk

E[R(y)]=E[R(yk)]
Sk[R(y)]=Sk[R(yk)]

= λE = − ∂ (−δ ∗ (x ∗ (cE, cV , cS)))

∂cV

∣∣∣∣
cV =V ar[R(yk)]

= λV .

Moreover:
∂Sg (y)

∂E [R (y)]

∣∣∣∣ y=yk

V ar[R(y)]=V ar[R(yk)]
Sk[R(y)]=S[R(yk)]

= − ∂ (−δ ∗ (x ∗ (−cE, cV , cS)))

∂ (−cE)

∣∣∣∣
−cE=E[R(yk)]

=
∂ (−δ ∗ (x ∗ (cE, cV ,−cS)))

∂cE

∣∣∣∣
cE=−E[R(yk)]

= −λE.
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We similarly obtain the result concerning the skewness. This ends the proof.
2) The proof is immediate from Proposition 4.9. Q.E.D.
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