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Abstract

Generalizing earlier approximation results, we establish exact relations between the

Luenberger productivity indicator and the Malmquist productivity index under rather

mild assumptions. Furthermore, we show that similar exact relations can be established

between the Luenberger-Hicks-Moorsteen indicator and the Hicks-Moorsteen index.
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1 Introduction

Caves, Christensen and Diewert (1982) introduced a technology-based, discrete-time Malmquist

productivity index, defined by as a ratio of input (or output) distance functions. Luenberger

(1995) generalized existing distance functions by introducing the shortage function (also

known as the directional distance function), that accounts for both input contractions and

output improvements simultaneously and that is dual to the profit function. Making use of

the shortage function, Chambers (1996) and Chambers and Pope (1996) introduced the Lu-

enberger productivity indicator, as a difference of directional distance functions. To maintain

a total factor productivity interpretation, Bjurek (1996) proposed an alternative Malmquist

TFP (or Hicks-Moorsteen) index, defined as a ratio of Malmquist output and input in-

dices. Finally, Briec and Kerstens (2004) introduced a new difference-based variation on this

Malmquist TFP index, which has been labeled as the Luenberger-Hicks-Moorsteen indica-

tor. Thus, the renewed interest in indicators based on differences rather than ratios (Diewert

(2005)) has resulted in new technology-based productivity indicators complementing earlier

indexes.

These discrete-time technology-based productivity indices (especially the Malmquist in-

dex and the more recent Luenberger indicator) are rather popular and have become part

of the traditional toolbox in applied production research (see, e.g., Hulten (2001)). Also a

variety of extensions are available that are of relevance to agricultural and environmental eco-

nomics. For instance, Jaenicke and Lengnick (1999) develop a multiplicative decomposition

of the Malmquist productivity index which includes a soil-quality index. As another exam-

ple, Ball et al. (2004) define a set of environmentally sensitive technology-based productivity
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indices including unmarketed (hence, non-priced) undesirable by-products.

The ratio-based Malmquist and Hicks-Moorsteen productivity indices have been proven

to coincide under two properties: (i) inverse homotheticity of technology; and (ii) constant

returns to scale (see Färe, Grosskopf and Roos (1996)). In a similar vein, Briec and Kerstens

(2004) demonstrate that the difference-based Luenberger and Luenberger-Hicks-Moorsteen

indicators are identical under two conditions: (i) inverse translation homotheticity of tech-

nology in the direction of a vector g; and (ii) graph translation homotheticity in the direction

of a vector g (see Chambers (2002)).

Furthermore, Boussemart et al. (2003) have proven an approximate relation between the

Luenberger productivity indicator and the Malmquist productivity index. In particular, this

article establishes that the logarithm of the input Malmquist productivity index is twice a

linear approximation of minus the Luenberger productivity indicator. Briec and Kerstens

(2004) manage to establish a similar approximation result showing that the Luenberger-

Hicks-Moorsteen indicator is about equal to the logarithm of the Hicks-Moorsteen index.

Therefore, in the literature all currently known productivity indices and indicators have

been clearly related to one another such that applied researchers know what differences

can be expected depending on their methodological choices. This contribution takes one

further step by proposing exact instead of approximate relationships that hold between

these productivity indices and indicators under mildly stronger assumptions.

This note unfolds as follows. Section 2 lays down the definitional groundwork. In section

3, we establish an exact relation between on the one hand the Luenberger productivity

indicator and the Malmquist productivity index, and on the other hand the Luenberger-

Hicks-Moorsteen indicator and the Hicks-Moorsteen index. Section 4 offers an even more
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general exact relation by showing that the Shephard distance function can be related to the

directional distance function when computed on a logarithmic transformation of technology.

2 Technology, Distance Functions, and Productivity

Indices: Definitions

2.1 Definitions of Technology and Distance Functions

Production technology transforms inputs x ∈ Rn
+ into outputs y ∈ Rp

+. For each time period

τ = 0, 1, the production possibility set T τ summarizes the set of feasible input and output

vectors and is defined as follows:

T τ =
{
(x, y) ∈ Rn+m

+ : x can produce y in period τ
}

. (1)

We define the output correspondence P τ : Rn
+ −→ 2R

p
+ as

P τ (x) =
{
y ∈ Rp

+ : (x, y) ∈ T τ
}
. (2)

We assume throughout the paper that: (P1) 0 ∈ P τ (x) for all x ∈ Rn
+, i.e., the null

output can always be produced; (P2) P τ (x) is a closed and bounded set of Rp
+; i.e., it is

compact; (P3) For all y ∈ P τ (x), 0 ≤ u ≤ y implies that u ∈ P τ (x), i.e., fewer outputs can

always be produced with the same inputs. These assumptions suffice for our purpose.

Efficiency is estimated relative to technologies using distance or gauge functions. The

Shephard distance function in the output-orientation is the function Dτ
o : Rn+p

+ −→ R∪{+∞}

defined by:

Dτ
o (x, y) = inf

{
λ > 0 : (x,

y

λ
) ∈ T τ

}
. (3)
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The Shephard distance function in the input-orientation is the mapping Dτ
i : Rn+p

+ −→

R ∪ {+∞} defined by:

Dτ
i (x, y) = sup

{
λ > 0 : (

x

λ
, y) ∈ T τ

}
. (4)

The directional distance function
−→
D τ

T : Rn+m
+ ×Rn+m

+ −→ R ∪ {−∞} ∪ {+∞} is defined

by:

−→
D τ

T (x, y; h, k) = sup{δ : (x− δh, y + δk) ∈ T τ} (5)

if (x − δh, y + δk) ∈ T τ for some δ ∈ R and takes the value −∞ otherwise. This definition

implies that if (x, y) ∈ T , then
−→
D τ

T (x, y; 0, 0) = +∞. However, the direction g = (h, k)

is fixed, and hence we suppose that g 6= 0. Detailed properties of the directional distance

function can be found in Chambers (1996).1 In the output-oriented case, one can write:

−→
D τ

T (x, y; 0, k) = sup{δ : y + δk ∈ P τ (y)} . (6)

In the proportional output-oriented case the directional and Shephard distance functions are

related as follows:

−→
D τ

T (x, y; 0, y) =
1

Dτ
o (x, y)

− 1. (7)

This relation always holds true under the assumptions (P1)-(P3). It is rather straightforward

to show that the direction vector g = (0, y) is always feasible if y 6= 0.2

1Slightly different generalisations of the Shephard distance functions that are equally related to the profit

function have been defined in, e.g., Chavas and Cox (1999) or McFadden (1978). In principle, our analysis

could equally be transposed to productivity measures based on the latter distance functions (see, e.g., the

definitions in Chavas and Cox (1999)).
2If y = 0, then it is also true under the convention +∞ = 1

0+ .
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2.2 Discrete-Time Productivity Indices and Indicators

We can now turn to the definition of the productivity indices and indicators. We start with

the Malmquist productivity index and the corresponding Luenberger indicator. Thereafter,

we define the Hicks-Moorsteen productivity index and the Luenberger-Hicks-Moorsteen in-

dicator.

Following Caves et al. (1982), for the base periods τ = 0, 1, the Malmquist productivity

index is defined as:

M0
o =

D0
o(x

1, y1)

D0
o(x

0, y0)
and M1

o =
D1

o(x
1, y1)

D1
o(x

0, y0)
. (8)

The output-oriented Malmquist productivity index is defined by:

Mo = (M0
o M1

o )
1
2 . (9)

Symmetrically, one can define an output-oriented Luenberger indicator for the base pe-

riods τ = 0, 1 (Chambers (1996)):

L0(g0, g1) =
−→
D 0

T (x0, y0; g0)−−→D 0
T (x1, y1; g1) (10)

and

L1(g0, g1) =
−→
D 1

T (x0, y0; g0)−−→D 1
T (x1, y1; g1) . (11)

The output-oriented Luenberger productivity indicator is then defined by:

L(g0, g1) =
1

2

(
L0(g0, g1) + L1(g0, g1)

)
. (12)

A Hicks-Moorsteen productivity index with base period τ = 0 is defined as the ratio of

a Malmquist output quantity index at base period t over a Malmquist input quantity index

at base period τ = 0 (Bjurek (1996)):

HM0 =
MO0

MI0
, (13)
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where

MO0 =
D0

o(x
0, y1)

D0
o(x

0, y0)
and MI0 =

D0
i (x

1,y0)

D0
i (x

0,y0)
. (14)

A base period τ = 1 Hicks-Moorsteen productivity index is defined as follows:

HM1 =
MO1

MI1

, (15)

where

MO1 =
D1

o(x
1, y1)

D1
o(x

1,y0)
and MI1 =

D1
i (x

1, y1)

D1
i (x

0, y1)
. (16)

A geometric mean of these two Hicks-Moorsteen productivity indexes yields:

HM =
[
HM0·HM1

]1/2
. (17)

Briec and Kerstens (2004) define a Luenberger-Hicks-Moorsteen indicator with base pe-

riod τ = 0 as the difference between a Luenberger output quantity indicator and a Luenberger

input quantity indicator:

LHM0(g0, g1) = LO0(k0, k1)− LI0(h0, h1), (18)

where

LO0(k0, k1) =
−→
D 0

T (x0,y0; 0, k0)−−→D 0
T (x0,y1; 0, k1) (19)

and

LI0(h0, h1) =
−→
D 0

T (x1,y0; h1, 0)−−→D 0
T (x0, y0; h0, 0). (20)

Also a base period τ = 1 Luenberger-Hicks-Moorsteen indicator can be similarly defined as

follows:

LHM1(g0, g1) = LO1(k0, k1)− LI1(h0, h1), (21)

7
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where

LO1(k0, k1) =
−→
D 1(x1,y0; 0, k0)−−→D 1(x1,y1; 0, k1) (22)

and

LI1(k0, k1) =
−→
D 1(x1,y1; h1, 0)−−→D 1(x0,y1; h0, 0). (23)

An arithmetic mean of these two base periods Luenberger-Hicks-Moorsteen indicators is:

LHM(g0, g1) = 1
2

[
LHM0(g0, g1) + LHM1(g0, g1)

]
. (24)

3 Exact Relations between Productivity Indices and

Indicators

Figure 1 summarizes the exact relations that have been established in the literature so far

and delineates the contribution made here. First of all, Färe, Grosskopf and Roos (1996)

established necessary and sufficient conditions to ensure the equality between the Hicks-

Moorsteen and Malmquist indexes. Paralleling these results, Briec and Kerstens (2004)

introduced a Luenberger-Hicks- Moorsteen indicator and established necessary and sufficient

conditions to ensure its equality to the Luenberger indicator. Notice that Balk et al. (2008)

have also established an exact relation between the Malmquist index and the components

of the Luenberger indicator. However, our formulation is somewhat different. Moreover,

these authors did not establish the converse relation linking the Luenberger indicator to the

Malmquist index.
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Figure 1: Exact relations between Indexes and Indicators

BK (2004) = Briec & Kerstens (2004); CCD (1982) = Caves, Christensen & Diewert (1982); FGR (1996) =

Färe, Grosskopf & Roos (1996).

3.1 Exact Relation between Malmquist Index and Luenberger In-

dicator

Boussemart et al. (2003) define the productivity indicator as involving proportionate changes of inputs

and outputs. In the output-oriented case, these authors defined their proportional Luenberger productivity

indicator. For simplicity denote

Lτ
o(k0, k1) = Lτ (0, k0, 0, k1) τ = 0, 1. (25)

Taking, k0 = y0 and k1 = y1, the output-oriented proportional Luenberger productivity indicator is then

defined as:

Lo(y0, y1) =
1
2

(
L0

o(y
0, y1) + L1

o(y
0, y1)

)
, (26)
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where

L0
o(y

0, y1) =
1
2

(−→
D0

T (x0, y0; 0, y0)−−→D0
T (x1, y1; 0, y1)

)
(27)

and

L1
o(y

0, y1) =
1
2

(−→
D1

T (x0, y0; 0, y0)−−→D1
T (x1, y1; 0, y1)

)
. (28)

Returning to the Malmquist index, we have from equation (8) and (7):

M0
o =

D0
o(x1, y1)

D0
o(x0, y0)

= D0
o(x1, y1) =

[
1 +

−→
D0

T (x1, y1; 0, y1)
]−1

, (29)

where we assume that D0
o(x0, y0) = D1

o(x1, y1) = 1. From equation (7), this implies that
−→
D0

T (x0, y0; 0, y0) =

−→
D1

T (x1, y1; 0, y1) = 0. Consequently, we have L0
o(y

0, y1) = −−→D0
T (x1, y1; 0, y1). Hence, we deduce that

M0
o =

[
1− L0

o(y
0, y1)

]−1

. (30)

Using a similar procedure yields:

M1
o =

D1
o(x1, y1)

D1
o(x0, y0)

=
[
D1

o(x0, y0)
]−1

= 1 +
−→
D1

T (x0, y0; 0, y0). (31)

Since
−→
D1

T (x1, y1; 0, y1) = 0, we deduce that

M1
o = 1 + L1

o(y
0, y1) . (32)

Finally, we obtain:

Mo = (M0
o M1

o )
1
2 =

(1 + L1
o(y

0, y1)
1− L0

o(y0, y1)

)1/2

=
( ∏

τ=0,1

(
1 + (2τ − 1)Lτ

o(y0, y1)
)2τ−1

)1/2

. (33)

Notice that if L0
o(y

0, y1) and L1
o(y

0, y1) are sufficiently small we retrieve the approximation result at the first

order established by Boussemart et al. (2003) taking the logarithm on both sides (i.e., ln(Mo) ≈ Lo).

Now using equation (30) and (32) yields

L0
o(y

0, y1) = 1− 1
M0

o

and L1
o(y

0, y1) = M1
o − 1, (34)

and

Lo(y0, y1) =
1
2

(
M1

o − (M0
o )−1

)
=

1
2

∑
τ=0,1

(2τ − 1)
(
Mτ

o

)2τ−1

. (35)

This is an exact relation between the geometric mean of the Malmquist index and the arithmetic mean of the

proportional Luenberger productivity indicator (33) and the reverse (35). It differs from the approximate
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relations established in Boussemart et al. (2003) solely in adding the assumption of efficiency with respect

to the own period technology.

Notice that quite a few results in index theory require much stronger assumptions. For instance, Caves

et al. (1982) derive a relation between the Malmquist and the Törnqvist productivity indices assuming,

among others, that firms are cost minimisers or revenue maximisers, which subsumes our own assumption

as a special case.

3.2 Exact Relation between Hicks-Moorsteen Index and Luenberger-

Hicks-Moorsteen Indicator

Assuming that firms are efficient at each time period, we have, setting g0 = (x0, y0) and g1 = (x1, y1):

MO0 = D0
o(x0, y1)

/
D0

o(x0, y0) = D0
o(x0, y1)

= [1 +
−→
D0

T (x0,y1; 0, y1)]−1 (36)

= [1− LO0(y0, y1)]−1 .

Similarly, we obtain the equality:

MI0 = D0
i (x1,y0)/D0

i (x0,y0) = D0
i (x1,y0)

= [1−−→D0
T (x1,y0;x1, 0)]−1 (37)

= [1− LI0(x0, x1)]−1 .

It follows that

HM0 =
1− LI0(x0, x1)
1− LO0(y0, y1)

. (38)

Symmetrically, we obtain:

HM1 =
1− LI1(x0, x1)
1− LO1(y0, y1)

. (39)

It follows that

HM =
[ 1− LI0(x0, x1)
1− LO0(y0, y1)

· 1− LI1(x0, x1)
1− LO1(y0, y1)

]1/2

. (40)

11
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It is easy to see that one can retrieve the approximation result at the first order by Briec and Kerstens (2004)

from this formulation.

Assuming that firms are efficient in each time period, and setting g0 = (x0, y0) and g1 = (x1, y1), we

have:

LO0(y0, y1) =
−→
D0

T (x0,y0; 0, y0)−−→D0
T (x0,y1; 0, y1)

=−−→D0
T (x0,y1; 0, y1) (41)

=1− 1
D0

o(x0,y1)
= 1− (

MO0
)−1

.

Similarly, we have

LI0(y0, y1) =
−→
D0

T (x1,y0; x1, 0)−−→D0
T (x0, y0; x0, 0)

=
−→
D0

T (x1,y0; x1, 0) (42)

= 1− 1
D0

i (x1,y0)
= 1− (

MI0
)−1

.

It follows that

LHM0(x0, y0, x1, y1) =
(
MI0

)−1 − (
MO0

)−1
. (43)

Using a symmetrical procedure one can show that:

LHM1(x0, y0, x1, y1) =
(
MI1

)−1 − (
MO1

)−1
. (44)

Hence:

LHM(x0, y0, x1, y1) =
1
2

[(
MI0

)−1− (
MO0

)−1+
(
MI1

)−1− (MO1
)−1

]
. (45)

Again imposing the assumption that firms are efficient in each time period, we obtain an exact relation

between the geometric mean Hicks-Moorsteen index and the arithmetic mean Luenberger-Hicks-Moorsteen

productivity indicator (40) and the reverse (45). This assumption is again the only price to pay for moving

from approximate results in Briec and Kerstens (2004) to these exact results.
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4 General Exact Relations by Transposing the Alge-

braic Structure

4.1 Introduction

In the following we show that an exact relationship between Luenberger indicators and Malmquist index can

be deduced from a suitable transposition of the algebraic structure the Euclidean space is endowed with.

This is done using a special type of Maslov semimodules structures. Idempotent analysis, or the study of

Maslov semimodules, has applications in optimization, optimal control, and game theory. The basic algebraic

structures of semirings and of Maslov semimodules over a semiring are presented in Litvinov, Maslov and

Shpitz (2001). This exact relation is more general in that we no longer impose the assumption that firms

are efficient in each time period, as in the previous section. Instead, the proportional directional distance

function is replaced by a directional distance function with a direction vector equal to unity.

To be more precise, let us denote by 11p the vector of Rp whose coordinates are all equal to 1. For

z and z′ in (R ∪ {−∞})p let dM(z, z′) =|| ez − ez′ ||∞ where ez = (ez1 , · · · , ezp), with the convention

e−∞ = 0, and, for y ∈ Rp
+, || y ||∞= maxi=1,...,p yi. The map z 7→ ez is a homeomorphism from (R∪{−∞})p

with the metric dM to Rp
+ endowed with the metric induced by the norm || · ||∞; its inverse is the map

ln(y) = (ln(y1), · · · , ln(yp)) from Rp
+ to (R ∪ {−∞})p, with the convention ln(0) = −∞.

The basic idea is to show that the Shephard distance function can be related to the directional distance

function when it is computed on a logarithmic transformation of the data. At this stage we define the output

directional distance function over Mp as:

−→
Dτ,ln

T (x, y; 0, 11p) = sup
{

δ : ln(y) + δ11p ∈ ln
(
P τ (x)

)}
(46)

if ln(y) + δ11p ∈ ln
(
P τ (x)

)
for some δ ∈ R and takes the value −∞ otherwise. This directional distance

function with direction vector equal to the unit vector is also known as the translation function.

13
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4.2 General Exact Relation between Luenberger Indicator and

Malmquist Index

Let us define the corresponding Luenberger index as

Lln
o (11p, 11p) =

1
2

[(−→
D0,ln

T (x0, y0; 0, 11p)−−→D0,,ln
T (x1, y1; 0, 11p)

)

+
(−→
D1,ln

T (x0, y0; 0, 11p)−−→D1,ln
T (x1, y1; 0, 11p)

)]
. (47)

Returning to the Shephard distance function and setting µ = ln(λ) we obtain:

Dτ
o (x, y) = inf

{
λ > 0 : ln

( y

λ

) ∈ ln
(
P τ (x)

)}
(48)

= inf
{
λ > 0 : ln(y)− ln(λ)11p ∈ ln

(
P τ (x)

)}
(49)

= inf
{

exp(µ) : ln(y)− µ11p ∈ ln
(
P τ (x)

)}
(50)

= exp(
{

inf
{
µ : ln(y)− µ11p ∈ ln

(
P τ (x)

)})
. (51)

Hence, setting δ = −µ yields

Dτ
o (x, y) = exp

(−−→Dτ,ln
T (x, y; 0, 11p)

)
. (52)

An elementary calculus yields now

Mo = exp
(
Lln

o (11p, 11p)
)

. (53)

Or equivalently

Lln
o (11p, 11p) = ln

(
Mo

)
. (54)

Thus, the output-oriented Luenberger productivity indicator with unit direction vector defined with respect

to the logarithm of technology equals the logarithm of the output-oriented Malmquist productivity index

(54). Reversely, the output-oriented Malmquist productivity index can be obtained from an exponential

transformation of the former output-oriented Luenberger productivity indicator (53). Obviously, a similar

exact relation could be defined for the input-oriented versions of these productivity indices.
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4.3 General Exact Relation between Luenberger-Hicks-Moorsteen

Indicator and Hicks-Moorsteen Index

Paralleling the earlier definition, we define the Luenberger-Hicks-Moorsteen indicator as

LHM ln(11n, 11p) = 1
2

[
LHM0,ln(11p, 11p) + LHM1,ln(11p, 11p)

]
. (55)

At time period t = 0, we have:

LHM0,ln(11n, 11p, 11n, 11p) = LO0,ln(11p, 11p)− LI0,ln(11n, 11n), (56)

where

LO0,ln(11p, 11p) =
−→
D0,ln

T (x0,y0; 0, 11p)−−→D0,ln
T (x0,y1; 0, 11p) (57)

and

LI0,ln(11n, 11n) =
−→
D0,ln

T (x1,y0; 11n, 0)−−→D0,ln
T (x0, y0; 11n, 0) . (58)

At time period t = 1:

LHM1(11n, 11p, 11n, 11p) = LO1,ln(11p, 11p)− LI1,ln(11n, 11n), (59)

where

LO1,ln(11p, 11p) =
−→
D1,ln(x1,y0; 0, 11p)−−→D1,ln(x1,y1; 0, 11p) (60)

and

LI1(11n, 11p) =
−→
D1,ln(x1,y1; 11n, 0)−−→D1,ln(x0,y1; 11n, 0) . (61)

Now, let us denote:

−→
Dτ,ln

T (x, y; 11n, 0) = sup
{

δ : ln(x) + δ11n ∈ ln
(
Lτ (y)

)}
. (62)

Using a procedure similar to the one described in equations (48) to (51) we obtain:

Dτ
i (x, y) = exp

(−−→Dτ,ln
T (x, y; 11n, 0)

)
. (63)

Hence, from (63) we have:

LHM ln(11n, 11p) = ln
(
HM

)
. (64)
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Or equivalently

HM = exp
(
LHM ln(11n, 11p)

)
. (65)

Concluding, the Luenberger-Hicks-Moorsteen productivity indicator with unit direction vectors defined

with respect to the logarithm of technology equals the logarithm of the Hicks-Moorsteen index (64). Again,

the Hicks-Moorsteen index is linked via an exponential transformation Luenberger-Hicks-Moorsteen indicator

(65).

5 Conclusions

Existing approximate relations between primal discrete-time indices and indicators developed in Boussemart

et al. (2003) and Briec and Kerstens (2004) are strengthened towards exact relations at a minimal cost in

terms of additional assumptions. The first exact relations are based upon choosing a proportional distance

function and assuming efficiency within each time period. The exact relations based upon a logarithmic

transformation of the data just require choosing a direction vector equal to the unit vector. This result could

shed some light on the problem of the choice of direction vector in the directional distance function, probably

making the unit vector an interesting alternative compared to the widespread use of the observation itself

(the latter leading to the proportional distance function).

These results can be useful for applied researchers to interpret similarities and differences in magnitudes

of empirical results that follow from opting for different primal productivity indices and indicators.
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