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Abstract

In this paper we examine the formation of International Environmental
Agreements (IEAs). We show that the welfare of the signatories does not

increase monotonically with respect to the number of signatories. We provide
an analytical solution of the leadership model. In particular, we find that the
unique stable IEA consist of either two, three or four signatories if the number
of countries is greater than 4. Furthermore, we show that the welfare of the
signatories is almost at its lowest level when the IEA is stable. While in our
model countries’ choice variable is emissions, we extend our results to the case
where the choice variable is abatement efforts.
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1 Introduction

Some of the most important environmental problems urgently calling for solution

are problems related to transboundary pollution. Environmental problems such as

ozone depletion, climate change and marine pollution have been the focus of intense

negotiations at the international level over the past two decades. Given the high

priority environmental problems receive at the policy front, it is not surprising that

there is a growing effort to analyze International Environmental Agreements (IEAs) at

the theoretical front. A significant part of the literature on IEAs utilizes game theory

to model the formation of a single coalition that reduces pollution. There are two main

directions in which the IEA literature has been developed over the last fifteen years.

The first argues that the formation of an IEA resembles the voluntary provision of a

public good (with externalities) and formalizes countries’ behavior as a cooperative

game. It shows that an IEA ratified by all countries is stable (Chander and Tulkens

(1995) and (1997)). The second direction uses the tools of non-cooperative game

theory to model the formation of an IEA. The latter is the direction we follow in this

paper.

The non-cooperative approach examines both the case where all countries (mem-

bers or not of the IEA) make their decisions simultaneously (Carraro & Siniscalco

(1993)), as well as the case where the countries that have ratified the IEA (signato-

ries) act as a leader, whose decision precedes the decision of the countries that remain

outside the IEA (Barrett (1994)). The simultaneous case has been resolved by De

Cara & Rotillon (2001), Finus & Rundshagen (2001) and Rubio & Casino (2001)

leading to the conclusion that, when cost and benefit functions are quadratic, the

stable IEA will involve no more than 2 countries. In the leadership approach the

most important contributions are based so far on simulations. While the size of the

stable IEA remains unknown, simulations in Barrett (1994) suggest that a stable IEA

may include a large number of countries, even the grand coalition. We believe that

the leadership model, in which an individual country that decides unilaterally will

wait to observe the decision of a coalition whose emission will influence significantly

global pollution, is compelling enough to warrant further investigation. Thus, in this

paper we adopt the leadership model which we solve analytically and our results

complement the simulated ones in Barrett (1994).
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In particular, each country’s welfare (or payoff) is expressed as the difference be-

tween the benefits from the country’s emissions and the damages from the aggregate

emissions. In the leadership literature it is assumed that, in the first stage, countries

signing the IEA form a coalition and behave cooperatively by maximizing the coali-

tion’s aggregate welfare and in the second stage, the countries that do not participate

in the agreement observe the results of the agreement and behave non-cooperatively by

maximizing their individual welfare. Naturally, when the coalition (leader) maximizes

its welfare in the first stage, it foresees and takes into account the non-signatories’

(followers) behavior. Due to the lack of supra-national authorities that could enforce

non-binding agreements, IEAs have to be self-enforcing in the sense that they are

immune to deviation by the countries involved . An IEA is considered to be stable if

none of its signatories has an incentive to withdraw (this aspect of stability is known

as Internal Stability) and none of the non-signatories has an incentive to further par-

ticipate in the agreement (this aspect of stability is known as External Stability)1.

Such a coalitional stability notion was originally introduced by D’Aspremont et. al

(1983) in the study of stable cartels in a price leadership model. However, our model

and D’ Aspremont et al.’s (1983) model differ significantly: (i) while in our model

non-members behave strategically in theirs they behave as price takers, (ii) unlike the

cartel formation case, in the IEA case members’ welfare does not increase monotoni-

cally with respect to the size of the coalition. We study the problem of deriving the

size of a stable IEA in a model very similar to Barrett (1994) with the main difference

being the choice variable: in our model countries choose emission levels whereas in

his they choose abatement efforts.

The main contribution of this paper is the complete analytical solution of the

coalition formation model with quadratic benefit and damage functions. We find that

a stable coalition consists of either 2, 3 or 4 members if the total number of countries

is greater than 4. Furthermore, we show that the welfare level of the signatories is

very close to its lowest value when the IEA is stable. Our results corroborate the

outcome of the static models by anticipating very little participation in an IEA. In

fact, the predicted size of a stable IEA is so small in both static and dynamic models

1The reader should take note that the notions of Internal and External stability introduced in
this paper are completely different from those introduced by von Neumann and Morgenstern (1944)
within the concept of the (abstract) stable set.
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that contradicts empirical observations2 and establishes the need for an alternative

approach to modeling countries’ behavior in international environmental negotiations.

Along this vain, Hoel and Schneider (1997) propose a simultaneous model similar to

that of Carraro and Siniscalco (1993) with one major difference: they introduce non-

environmental costs incurred by the non-signatories3. In particular, in the primitive

simultaneous model, when a country exits the coalition, there are two forces in effect:

(i) the increase in its own emissions that results in higher benefits (e.g. due to

cheaper production), and (ii) the increase in total emission levels that results in higher

damages (e.g. due to an increase in global environmental pollution). If the increase

in benefits exceeds the increase in damages the country has indeed an incentive to

exit. Hoel and Schneider (1997) introduce an additional cost incurred by the exiting

country representing non-environmental costs such as political ones. Naturally, if this

additional cost is high enough it may reverse the original incentives, inducing thus

the country to stay in the coalition. Due to this effect, Hoel and Schneider (1997) are

able to support larger coalitions, including the grand coalition.

Our work parallels that of Konishi and Lin (1999) in terms of the coalition forma-

tion analysis employed. However, in Konishi and Lin (1999) the primitive model is

cartel formation with Cournot fringe whereas in this paper it is IEA formation. While

the two models share many common features, among which free-riding incentives by

the coalition members, there are nevertheless, significant differences. As we show

in this paper, an IEA can never contain more than 4 countries whereas a cartel, as

Konishi and Lin (1999) show, may include a larger number of firms.

Our results, severely restricting the size of stable coalitions, complement Barrett’s

(1994) suggestion that stable IEAs could consist of any large number of countries

by relating the size of a stable coalition to the domain of the choice variable. We

convert our model’s choice variable from emission levels to abatement efforts making,

thus, our model directly comparable to his framework. In doing so, we formulate the

2For example, from the 194 members of the United Nations General Assembly, 184 have ratified
the Montreal Protocol, 158 the Basel Convention, 164 the Convention on International Trade in
Endangered Species and although the Kyoto Protocol has not come into effect yet, it has been
ratified by 119 countries, 29 of which belong to the Annex I countries.

3Additionally the damage function is linear as opposed to quadratic but this makes their analysis
simpler without disturbing the results. It is shown in De Cara & Rotillon (2001) and Finus and
Rundshagen (2001) that this simpler version without non-environmental costs results also in very
small coalitions.
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link between the two approaches and show that our results survive such a conversion.

Assuming that abatement cannot exceed the current flow of emissions we show that

Barrett’s (1994) model yields stable coalitions consisting of no more than 4 members.

It is only when abatement can exceed the current flow of emissions, such as in the

case of a stock pollutant whose stock could be technologically and economically viable

to reduce, that Barrett’s (1994) model could support stable IEAs consisting of more

than 4 countries. The proofs of all the results presented in the paper are delineated

in the appendix.

2 The model

We assume that there exist n identical countries, N = {1, ..., n}. Production and

consumption in each country i generates emissions ei ≥ 0 of a global pollutant as

an output. The term global pollutant indicates that we assume pollution to be a

public bad and that individual emission impose negative externalities on all other

countries. Similarly, in Section 4 where the model is specified in terms of abatement

effort, individual abatement effort is assumed to be a public good. The social welfare

of country i, wi, is expressed as the net between the total benefits from country i’s

emissions, Bi(ei), and the damages Di(E) from the aggregate emissions, E, including

country i’s emissions. Since countries are assumed to be identical we henceforth drop

the subscripts from the functions. As each country i’s emission level increases, its

benefits B(ei) increase as well. We consider the following quadratic benefit function

for each country i ∈ N , B(ei) = b
[
aei −

1

2
e2
i

]
, where a and b are positive parameters.

Country i’s damages from pollution depend on aggregate pollution, E, where E =∑
i∈N

ei. We assume a quadratic damage function for each country i ∈ N , of the

following form D(E) = 1

2
c(E)2, where c is a positive parameter.4

With these specifications, each country i’s welfare function becomes:

w(ei) = b

[
aei −

1

2
e2
i

]
−

c

2

(∑
i∈N

ei

)
2

. (1)

4An alternative form of the damage function is also used in the literature, see for example Barrett
(1994). According to their functional form, each country’s damages are a share of aggregate emis-
sions, that is, D(E) = 1

2n
c(E)2. The difference between the two forms is a difference in parameter

specification and it does not affect the results. The full analysis using this alternative functional
form is available to the interested reader upon request.
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The (pure) non-cooperative case: In the non-cooperative case each country

chooses its emission level taking the other countries’ emissions as given. That is,

country i behaves in a typical Cournot fashion maximizing equation (1). The first or-

der condition of the above maximization problem yields country i’s emission reaction

function, ei =
ba−c

∑
j �=i ej

b+c
.

Since we have assumed complete symmetry, all countries generate the same level

of emission at the equilibrium, denoted by enc. The solution of the reaction functions’

system yields,

enc =
a

1 + γn
, (2)

where γ = c
b
. Consequently, the aggregate emission level under the (purely) non-

cooperative case is, Enc = nenc =
na

1+γn
.

Full cooperation: Under full cooperation, the grand coalition maximizes the joint

welfare. The first order condition yields the aggregate emission level, Ec = an
γn2+1

.

Since each country contributes 1
n
of the total emissions, the per country emission

level, ec, is

ec =
Ec

n
=

a

γn2 + 1
. (3)

It is easily verifiable that each country emits less and is better off in the case of

full cooperation than under non-cooperation, that is, ec < en and wc > wn.

However, in this one stage, purely simultaneous framework each country has an

incentive to cheat on the agreement and free-ride on the emission reduction achieved

by the countries complying with the agreement. In what follows we examine the

two stage framework where the incentive to free ride on the coalition’s cooperating

efforts may be offset by the adjustment of the coalition’s emissions upon a member’s

deviation. The equilibrium number of countries participating in an IEA, is derived

by applying the notions of internal and external stability of a coalition as was orig-

inally developed by D’Aspremont et. al (1983) and extended to IEAs by Carraro &

Siniscalco (1993) and Barrett (1994).

Coalition Formation: Assume that a set S ⊂ N of countries sign an agreement

and N\S do not. Let the size of coalition S be |S| = s, the total emission generated

by the coalition be Es, while each member of the coalition emits es such that Es = ses.
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In a similar manner, each non-signatory country emits ens, yielding a total emission

level Ens = (n− s)ens.

The non-signatories behave non-cooperatively after having observed the choice of

signatories. Their maximization problem results to a best response function of the

form presented earlier. However, now only n−s countries stay outside of the emission

reduction agreement emitting ens, while the rest s countries emit in total Es, that is∑
i∈N ei = (n−s)ens+ses. Substituting this into the reaction function yields each non-

signatory country’s emissions ens =
a−γses

1+γ(n−s)
as a function of the signatory countries’

emission es. The aggregate non-signatory emission level is Ens =
(a−γses)(n−s)

1+γ(n−s)
.

Signatories choose their emission level by maximizing their collective welfare while

taking into account the behavior of non-signatories. That is, signatories choose es by

solving the following maximization problem,

max
es

s [B(es)−D(ses + (n− s)ens(es))] .

The first order condition yields the emission of the signatories,

es = a
[
1−

γsn

Ψ

]
, (4)

where Ψ = X2 + γs2 and X = 1 + γ (n− s). The aggregate emission level by the

signatories is Es = sa
[
1− γsn

Ψ

]
. Substituting the value of es into the reaction function

of non-signatories yields,

ens = es +
aγn(s−X)

Ψ
. (5)

The total emission level by non signatories is Ens = (n− s)
[
es +

aγn(s−X)
Ψ

]
.

The full-cooperative and the pure non-cooperative solutions can be derived as

special cases of the above solution. That is, when s = n, the problem reduces to

the full cooperative solution and es = ec, while when s = 0, it reduces to the pure

non-cooperative solution, and, ens = enc.

The aggregate emission level E = Ens + Es is,

E =
naX

Ψ
. (6)

Unlike the previous two cases where enc > 0 and ec > 0 always hold, in the

coalition formation case we have to restrict the parameters of the model in order to
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guarantee that our solutions are interior, that is, we need to restrict the parameters

so that es > 0 and ens > 0. The following Proposition establishes the necessary

conditions for interior solutions.

Proposition 1 es > 0 if and only if γ < 4
n(n−4)

and n > 4, ens > 0 if γ < 4
n(n−4)

and

n > 4.

The intuitive explanation behind these conditions is that for emissions to be posi-

tive it must be that the relative impact of damages to benefits is not very high (recall

that γ = c/b). Although such a restriction may seem benign at first, it is of great

importance since it is this condition that restricts the size of the stable coalition to

2, 3 or 4 countries as we formally show in Section 3.

Despite its importance, this condition has been overlooked so far, simply because

the model is most commonly defined in terms of abatement efforts rather than in

terms of emissions (the prominent example is the work of Barrett (1994)). In Section

4 we convert our model’s choice variable to abatement effort and, while establishing

the direct link between the two models, we extend the constraint to the converted

model as well, validating, thus, the immunity of our results to the selection of choice

variable.

The last step in fully formulating our model is the determination of the welfare

level of signatories and non-signatories for any given s. This is done by simply substi-

tuting the emission levels es, ens and E with their equilibrium values from equations

4, 5 and 6 respectively into the corresponding welfare functions. We denote the in-

direct welfare function of the signatories by ωs while that of the non-signatories by

ωns, which take the following form:

ωs = ba2
[
1

2
−

n2γ

2Ψ

]
, and ωns = ba2

[
1

2
−

n2γX2(1 + γ)

2Ψ2

]
. (7)

The properties of these indirect welfare functions are established in Proposition

2.

Proposition 2 Consider the indirect welfare functions of signatory and non-signatory

countries, ωs(s) and ωns(s) respectively and let zmin = 1+γn
1+γ

. Then,

1. zmin = argmins∈�∩[0,n] ωs(s),
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2. ωs(s) increases in s if s > zmin and it decreases in s if s < zmin,

3. ωns(s) ≶ ωs(s) for all s ≶ zmin.

4. If, moreover, zmin is an integer then the two indirect welfare levels are equal at

s = zmin that is, ωns(s
min) = ωs(s

min).

We would like to point out that these indirect welfare functions do not exhibit

the same properties with those in D’ Aspremont et al. (1983). While in the latter

paper the welfare functions are monotonically increasing, in our analysis there exist

situations (with sufficiently small coalitions), where a country is better off as a member

of the coalition than outside of the coalition and as the coalition grows its members’

welfare drops. The difference stems from the fact that in the price leadership model

the fringe behaves non-strategically, i.e., its members behave as price-takers, not

conceptualizing the impact of their actions on the market price. Whereas, in the

IEAs case the non-signatories behave strategically by explicitly taking into account

the negative effect their individual emissions have on their welfare via global pollution.

Not surprisingly, the same observation is been made in Konishi and Lin (1999).

3 The size of stable IEAs

We now proceed with the determination of the size of the stable IEA, denoted by s∗,

using the internal and external stability conditions. Recall that the internal stability

condition ensures that if a country were to defect unilaterally, its gains from free

riding would be outweighed by the adjustment (due to its defection) of the emission

levels of the remaining members of the IEA. The external stability condition ensures

that no other non-signatory country finds it beneficial to unilaterally join the IEA.

Formally, the internal and external stability conditions are,

ωs(s
∗) ≥ ωns(s

∗ − 1) and ωs(s
∗ + 1) ≤ ωns(s

∗) ,

respectively. The following proposition establishes all the possible sizes of the unique

stable IEA.

Proposition 3 For n > 4 there exists a unique stable IEA whose size s∗ is such that

s∗ ∈ {2, 3, 4}.
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We illustrate the results presented in Proposition 3 by considering a numerical

example that leads to s∗ = 3. We assume n = 10, a = 10, b = 6 and c = 0.39999,

which result in γ = 0.066665. Observe that γ < 4
n(n−4)

⇔ 0.066665 < 0.06666 7

satisfying the interior solution constraint.

-400

-200
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200

2 4 6 8 10s

Figure 1

-500

-400

-300

1 2 3s

Figure 2

In both Figures 1 and 2 ωs(s) is depicted by the solid line, ωns(s) by the crossed

line and ωns(s−1) by the dashed line. All three indirect welfare functions are plotted

against different coalition sizes s. While Figure 1 plots the functions for all possible

values of s = 0, ..., 10, Figure 2 focuses on the values of interest, that is, s = 1, ..., 4.

Observe that coalition s∗ = 3 is internally stable, i.e., ωs(s
∗) > ωns(s

∗ − 1) since the

dashed curve is below the solid curve. Moreover, s∗ = 3 is externally stable, i.e.,

ωs(s
∗ + 1) < ωns(s

∗) since s∗ + 1 is after the intersection of the dashed and the solid

curves. Therefore, the coalition of size s∗ = 3 is stable.

Remark 1 An important observation stemming from the above analysis is that the

size of the stable coalition is slightly larger than that for which the welfare of the

signatories is at its minimum.

Closer to our results, Rubio and Casino (2001) have suggested that a coalition

consisting of two countries is the only stable coalition, but, their result is derived by

constraining the indirect welfare levels to be positive. Such a constraint is unjustified

since welfare functions are invariant to positive monotonic transforms and hence their

cardinal values are insignificant.
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4 Emissions vs Abatement

As we mentioned in the previous section, our result in Proposition 3 regarding the

size of the stable coalition complements that of Barrett (1994) where the same type of

quadratic benefits and costs functions are used. Although the main difference between

Barrett’s (1994) and our model is the choice variable, abatement effort and emissions

respectively, the difference in the results is not due to the choice variable but rather

to the restrictions imposed on the choice variable. As we show in this section the

two models are equivalent and all results carry over, as long as abatement does not

exceed the flow of emission. The difference arises in the case of a stock pollutant,

whose stock could be technologically and economically viable to reduce.5 In such case

it could be possible to abate more than the current flow of emission, that is, it could

be possible to have a negative net flow of emission. Then, Proposition 3 does not

hold anymore eliminating, thus, the difference between our present work and Barrett’s

(1994) contribution. Lemma 4, however, applies to both models and the stable IEA

remains the largest integer below zmin+1, while the pessimistic observation, outlined

by Remark 1, that a stable IEA is (almost) the least rewarding to its members is still

in effect. That is, when the feasibility constraint is not binding we can have large

coalitions whose members attain close to the lowest, in terms of coalition size, net

welfare.

In the rest of this section we illustrate that the two models are directly comparable

when abatement is defined as a reduction in the flow of emission. Barrett (1994)

assumes that countries derive benefits from aggregate abatement Q, with country i’s

benefits given by Bi(Q) = b̂
n
(âQ − 1

2
Q2). Each country’s costs depend on its own

abatement, that is, Ci(qi) = ĉ
2
q2i , where b̂, â and ĉ are parameters and n denotes

the number of countries.6 Within this framework, it is asserted in Barrett (1994,

Proposition 1) that stable IEAs can be signed by a large number of countries for low

values of γ̂ = ĉ

b̂
, that is, when the importance of own abatement costs is small relative

5For example, in the case of carbon dioxide serious consideration is given recently to the technolog-

ical option of geological and oceanic storage, usually referred to as carbon sequestration. Although

currently at the experimental stage, its pottential is explored both at national and international

level. UNFCCC has invited IPCC to prepare a Special Report on the subject, and the results of the
first workshop were presented in the 20th Session of IPCC, see IPCC-XX/Doc.19 (10.II.2003).

6We added hats in the symbols b, a and c to distinghuish them from the ones we have already
used.
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to the benefits derived from aggregate abatement. Although the model can be solved

in a manner parallel to ours, the goal here is to derive the abatement model from the

emission model, establishing the equivalence between them.7

If, as discussed earlier, abatement effort is defined as a reduction in the flow of

emissions then abatement is meaningful only in the presence of emissions, and thus,

the maximum level of abatement is constrained by the maximum uncontrolled flow of

emissions. In other words, the abatement model is derived from the emission model.

Denote by E the uncontrolled, aggregate emissions level, that is, the level of emissions

associated with zero abatement, and by E the controlled emissions level we derived in

the previous section. According to the above definition of abatement the domain of Q,

as captured by Bi(Q), should be derived from the emissions model that independently

determines the level of uncontrolled emissions. That is, each country’s uncontrolled

level of emissions is derived directly from its benefit function Bi(ei) and it is e = a,

and thus, E = na. By extension, country specific and aggregate abatements are

then defined as qi = e − ei, and Q = E − E = na − E respectively. Substituting

these definitions into county i’s welfare function defined in terms of abatement yields,

wi =
b̂
n

[
â (na− E)− 1

2
(na− E)2

]
− ĉ

2
(a−ei)

2 .This expression can take the following

form which facilitates direct comparison with the welfare function specified in terms

of emissions in equation (1).

wi = ĉ

[
aei −

1

2
e2i

]
−

b̂

2n
E2 +

b̂

n
(na− â)E +

[
b̂âa−

b̂na2

2
−

ĉa2

2

]
. (8)

By setting ĉ = b, b̂ = nc and â = na, equation (8) reduces to wi = b
[
aei −

1
2
e2i
]
−

c
2
E2 + cna2

2

(
n− 1

γn

)
, where γ has been defined in Section 2 as γ = c

b
. Note that

the last term is just a constant that only scales welfare levels and does not affect

the solution of the problem. Therefore, the same solution is derived whether we

specify welfare in terms of emissions, that is, wi = b
[
aei −

1
2
e2i
]
− c

2
E2, or in terms of

abatement, that is, wi =
b̂
n

[
âQ− 1

2
Q2

]
− ĉ

2
q2i , as long as ĉ = b, b̂ = nc, â = na, and

γ̂ = ĉ
b̂
= 1

γn
. For example, one can derive the abatement level of signatory countries

using equation (4) in Section 2 (es = a − aγsn
Ψ

), simply by recalling the definition of

abatement, that is, es = e− qs which implies that qs =
aγsn
Ψ

.8

7We can provide the full solution to the interested reader on demand.
8Simple parameter transformation using the definitions in the begining of the paragraph yields
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Using the above equivalence between the two models we can now support the de-

rived abatement model specification with the necessary constraints from the primary

emission model. Recall that Proposition 2 provides the necessary conditions to ensure

that the choice variables are positive, that is, es ≥ 0 and ens ≥ 0. These constraints

though, imply the following conditions for the corresponding abatement levels, qs ≤ a,

and qns ≤ a. Note that the latter constraints are equivalent with the ones stemming

from the benefit function Bi(Q), that is Q ≤ â which implies q ≤ â
n

= an
n

= a.

Since the parameters â, b̂ and ĉ are directly derived from the emission model, they

carry over the constraints imposed on a, b and c, namely, γ < 4
n(n−4)

⇐⇒ c
b
< 4

n(n−4)
.

Replacing c and b yields b̂/n
ĉ

< 4
n(n−4)

which is equivalent to γ̂ = ĉ
b̂
> n−4

4
.

If these conditions are taken into account, it is immediate that the admissible sizes

of a stable coalition reduce to 2, 3, and 4 as was the case in Section 3. To illustrate the

equivalence between the two models consider the first example constructed in Barrett

(1994). The parameters’ values are n = 10, â = 100, b̂ = 1 and ĉ = 0.25, implying γ̂ =
ĉ
b̂
= 0.25, and the stable coalition allegedly consists of four countries. However, the

chosen values of b̂ and ĉ clearly violate the maximum abatement constraint established

earlier, requiring that γ̂ > 1.5. The violation of the maximum abatement constraint

is evident from the data presented in Barrett (1994, Table 1), since the abatement

of signatory countries exceeds the corresponding uncontrolled level of emissions e =
â
n
= 10. That is, each signatory abates more than it can ever emit. In this case,

restricting γ̂ > 1.5 yields stable coalitions consisting of either two or three countries

depending on the value of γ̂. In general, restricting the value of γ̂ to the admissible

range, we find that the stable coalition consists of either two, three or four countries,

depending on how close the value of γ̂ is to its lower bound.

5 Conclusions

The present paper studies the size of stable coalitions that ratify IEAs concerning

transboundary environmental problems. A coalition is considered stable when no

signatories wish to withdraw while no more countries wish to participate. Within

this framework we show that, contrary to the general perception in the literature, the

qs =
âαγ̂

(γ̂+1−α)2+α2nγ̂ , which if multiplied by nα yields the total abatement level of signatory countries,

given in equation (6), p. 882, Barrett (1994).
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welfare levels of both the signatories and the non-signatories do not monotonically

increase in the size of the coalition. Furthermore, in the case of small coalitions,

signatories are better off than non-signatories while as the coalition grows sufficiently

the opposite is true.

We find that the size of the stable coalition is not only very small, but it is also

invariant to the value of the model’s parameters. Moreover, it is very close to the

worst, in terms of the members’ welfare, coalition size.

All these problematic features of a stable coalition suggest that there exists a

caveat in the model. One explanation of the results is that when each country acts

it does not foresee the disappointing outcome in which it may end up. Instead,

it myopically concentrates on its own action ignoring the reactions of others. In

a companion to this paper we study stable IEAs when countries behave in a more

sophisticated manner and are forward looking.

There are, however, other venues one can explore. Asymmetry among countries

has not yet been studied while in the real world it is widespread. For example,

not all countries posses identical technologies, leading thus, to varying abating costs.

Similarly, the (perceived) impact of environmental damages differs from country to

country, hence the Damage function can vary as well. Such asymmetries can be

incorporated in our model by indexing parameter γ by country. Then, a coalition

will be characterized not only by its size but also by the identity of those in it.

Spatial topology is another dimension that can be added to the basic model when

regional pollution problems are studied. Emissions from a given country may affect

only its neighbors instead of all the countries. A network will be more appropriate in

modelling such a situation.

Lastly, in the present work it is assumed that there is only one IEA (hence one

coalition). Although it is a natural assumption, it would be very interesting to ex-

amine whether it is also the outcome of a model that allows ex ante many coalitions

to form. There are several works that model endogenous coalition formation, for

example Block (1996) and Ray and Vohra (1999).

14
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7 Appendix

Although in our model s is a non-negative integer smaller than n, for the ease of

exposition and calculations in the proofs we assume that s is a real number taking

values from [0, n]. When necessary, at the end of some proofs we convert s back to

being an integer.

Proof of Proposition 1. From equation (4) we know that es = a
[
1− γsn

Ψ

]
.

Hence es > 0 ⇔ [1 + γ(n− s)]2− γs(n− s) > 0. Let A(s) = [1 + γ(n− s)]2− γs(n−

s) = 1 + γ(n− s) [γ(n− s)− (s− 2)] and consider s = argminsA(s) =
2γn+2+n
2γ+2

. For

A(s) > 0 for all s it suffices that A(s) > 0. Observe that since (n − s) = n−2
2γ+2

and

(s − 2) = (n−2)(2γ+1)
2γ+2

we have A(s) = 4γn−γn2+4
4γ+4

. Then A(s) > 0 ⇔ 4γn − γn2 + 4 >

0 ⇔ γ < 4
n(n−4)

and the latter is true from our hypothesis.

From equation (5) we know that ens = es +
aγn(s−X)

Ψ
= a

[
1− γsn

Ψ

]
+ aγn(s−X)

Ψ
. For

ens > 0 it suffices that [1 + γ(n− s)] (1− γs)+γs2 > 0. LetΦ(s) = [1 + γ(n− s)] (1− γs)+

γs2 and consider s̄ = argminsΦ(s) = γn+2
2γ+2

. For Φ(s) > 0 for all s it suffices that

Φ(s̄) > 0. Observe that since 1 + γ(n − s̄) = γn(γ+2)+2
2γ+2

and (1 − γs̄) = 2−γ2n
2γ+2

we

have Φ(s̄) =
[
γn(γ+2)+2

2γ+2

] [
2−γ2n
2γ+2

]
+ γ(γn+2)2

(2γ+2)2
. Notice that for Φ(s̄) > 0 it suffices that

2−γ2n
2γ+2

> 0 ⇔ γ <
√

2
n
. But we already know from our hypothesis that γ < 4

n(n−4)

and since 4
n(n−4)

<
√

2
n

for all n ≥ 6 it is indeed the case that γ <
√

2
n

if n ≥ 6.

Moreover, when n = 5 we have Φ(s̄) = −1
4
25γ3−20γ−4

γ+1
. For Φ(s̄) > 0 it suffices that

25γ3 − 20γ − 4 < 0 which is true since γ < 4
5
.

Proof of Proposition 2.

1-2 Observe that ∂ωs

∂s
= ba2γ2n2

Ψ2 (s−X) . Thus, ∂ωs
∂s

|s=zmin = 0 ⇔ zmin = 1+γn
1+γ

. Since
∂2ωs
∂s2

> 0 for all γ and n the first order condition is sufficient. Moreover, observe

that ∂ωs

∂s
≶ 0 if s ≶ X ⇔ s ≶ zmin.

3-4. Combining the expressions in (7), the welfare of non-signatory countries can be

expressed as a function of signatories’ welfare as follows: ωns = ωs+
ba2γ2n2

2Ψ2 (X+

s)(s−X). Then it is obvious that ωns ≶ ωs, for s ≶ X ⇔ s ≶ zmin. If, moreover,

zmin is an integer, then when s = zmin ⇔ s = X and ωns(z
min) = ωs(z

min).
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Proof of Proposition 3. Unfortunately, allowing s to take non-integer values

and then setting ωs(z
′) = ωns(z

′ − 1) where z′ ∈ [0, n] does not provide an analytical

solution for z′ due to computational limitations and the model has remained unsolved.

Fortunately, it is not z′ that we are interested in, per se. Instead, it is the largest

integer s∗ ≤ z′ that we are looking for as we formally explain in the Stability section

below.

We are able to bypass the difficulties of solving the complicated polynomial that

results from ωs(z
′) = ωns(z

′ − 1) by “guessing” some value z̄, that satisfies both sta-

bility conditions, not necessarily with equality. Then we adjust it to the appropriate

integer.

Stability:To illustrate our analysis we use Figure 3 below. The curve ωs(s) de-

notes the welfare of the signatories for a size of coalition s, while curves ωns(s) and

ωns(s − 1) denote the welfare of the non-signatories when the size of coalition is s

and s − 1 respectively. By its definition zmin is such that ωs(z
min) = ωns(z

min). We

now define z̄ : = zmin + 1, and by Lemma 4 below we deduce that z̄ satisfies the

internal and external stability conditions: ωs(z̄) ≥ ωns(z̄− 1) and ωs(z̄+1) ≥ ωns(z̄)

respectively.

Let z′ be the smallest s such that ωs(z
′) = ωns(z

′ − 1). It is straight forward to

show9 that ωs(z
min) > ωns(s− 1) for all s < z̄. Then, from the internal and external

stability of z̄ we can conclude that z̄ < z′ < z̄+1 and hence ωs(s) > ωns(s−1) for all

s < z′. Let �x	 denote the largest integer that is less than or equal to (if x is an integer

itself) x. Then, the size of the stable coalition is s∗ = �z′	. The internal stability

of s∗ (ωs(s
∗) ≥ ωns(s

∗ − 1)) is satisfied due to the fact that z′ is, by definition,

the first intersection between ωs(s) and ωns(s − 1), and since ωs(z̄) > ωns(z̄ − 1)

and z̄ < z′ we have ωs(s
∗) ≥ ωns(s

∗ − 1). Similarly, the external stability of s∗, i.e.,

ωns(s
∗) ≥ ωs(s

∗+1), is satisfied since ωns(s−1) > ωs(s) for all s > z′ (as we illustrate

below, under the Uniqueness section) and s∗ + 1 > z′.

Recall that zmin = γn+1
γ+1

, rearranging the expression yields γ = zmin
−1

n−zmin . We know

that 0 < γ < 4
n(n−4)

, thus, 0 < zmin
−1

n−zmin < 4
n(n−4)

. From 0 < zmin−1
n−zmin

we get that

zmin > 1. From zmin
−1

n−zmin < 4
n(n−4)

we get that zmin < n2

n2−4n+4
< 2 if n > 6. Therefore,

1 < zmin < 2, and by extension 2 < z̄ < 3, and 3 < z̄ + 1 < 4, hence 2 < z′ < 4.

Since we know that 2 < z′ < 4 we can conclude that if z′ < 3 then s∗ = 2 (this is

9The calculations are available upon request.
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the case depicted in Figure 3), whereas if 3 ≤ z′ then s∗ = 3.

Moreover, 1 < zmin < 3 if 4 < n ≤ 6, hence 2 < z̄ < 4 and 3 < z̄ + 1 < 5, and

thus 2 < z′ < 5. Then, the size of the stable coalition s∗ can take the values

s∗ = 2 if z′ < 3

s∗ = 3 if z′ < 4

s∗ = 4 if z′ ≥ 4

if 4 < n < 6. In the special case where n = 6 the possibility of s∗ = 4 is ruled out

below when we show the uniqueness of s∗.

Figure 3

Uniqueness: We have already argued above that ωs(s) > ωns(s − 1) for all s < z′.

Thus, all coalitions s < s∗ are externally unstable since ωs(s + 1) > ωns(s). In order

to show that s∗ is the only size of a stable IEA it suffices to show that all coalitions

of size s > z′ are internally unstable, i.e., ωns(s− 1) > ωs(s), for all n > 4.

Using the expressions in (7) we derive that

ωns(s− 1)− ωs(s) =
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ba2n2γ

2

[
Ψ2(s− 1)−Ψ(s)Ψ(s− 1) + Ψ(s)γ(s− 1)2 −Ψ(s)γX2(s− 1)

Ψ(s)Ψ2(s− 1)

]
.

To show that ωns(s − 1) − ωs(s) > 0 for all s > z′suffices to show that Ξ(s) =

Ψ2(s− 1)−Ψ(s)Ψ(s− 1) +Ψ(s)γ(s− 1)2−Ψ(s)γX2(s− 1) > 0. Substituting all the

relevant values, the expression can be further simplified to the following rather long

polynomial:

Ξ(s) = γ(−8γns+ 3− 4s− 12γ2sn− 2γ2ns3 + 2γ3ns + 2γns2 + γ3

+5γ2 + 8γ2n− 12γ2s+ 9γ2s2 + 15γs2 + 8γ − 18γs+ 6γn− 2γ3s
−2γ3s2 + 2γ3n− γ3n2 + 2γ2n2 − 6γ4ns2 + 4γ3s3 − 6γs3 − 2γ3n3

−γ4s2 + 2γ4s3 − γ4s4 + γ2s4 − 4γ2s3 − γ4n2 − 2γ4n3 − γ4n4

−8γ3ns2 − γ3s4 + 4γ4n3s+ γs4 + 6γ4n2s+ 2γ3s3n− γ3s2n2 + 2γ4ns
−4γ2n2s+ 8γ2ns2 − 6γ4n2s2 + γ2n2s2 + 4γ4ns3 + 6γ3n2s+ s2)

We know that ωns(s− 1) = ωs(s) at s = z′ for all n > 4. We proceed by showing that

Φ′(s) = dΦ
ds

> 0 for all s ≥ z̄ and for all n > 4, where Φ(s) = 1
γ
Ξ(s). To do that we

show that it is positive at its lowest value, i.e., Φ′(s̃) > 0 where s̃ = argmin s≥z̄Φ
′(s).

We argue that s̃ = z̄ since dΦ′(s)
ds

= d2Φ(s)
ds2

> 0. The calculations are omitted due to

their length and are available upon request.

Lemma 4 Consider z̄ such that z̄ = zmin+1, then z̄ satisfies the internal and external

stability conditions.

Proof.

Internal stability: From Proposition 1 we know that ωs(z
min) = ωns(z

min) and

that ωs(s) increases in s if s > zmin. Then, ωs(z
min+1) > ωs(z

min), thus, ωs(z
min+1) >

ωns(z
min) which is equivalent to the internal stability condition ωs(z̄) > ωns(z̄ − 1).

External stability: External stability is shown by substituting z̄ = γn+1
γ+1

+ 1

into the external stability condition ωns(z̄) > ωs(z̄ + 1). The inequality reduces to

γ
2γ2n3+(−3γ2+4γ−γ3)n2+(8γ3+2γ+14γ2+2)n+6−γ2−4γ4−11γ3+14γ

(γ+1)3
≥ 0. It suffices to show that

the following inequality holds:⎡
⎣ 2γ2n3 + (4γ − γ3 − 3γ2)n2

+(2 + 14γ2 + 8γ3 + 2γ)n
+6 + 14γ − γ2 − 4γ4 − 11γ3

⎤
⎦ ≥ 0.

Observe that 4γ − γ3 − 3γ2 ≥ 0 for γ ≤ 1, while 6 + 14γ − γ2 − 4γ4 − 11γ3 ≥ 0 for

γ < 1. 093 7. Therefore, the external stability condition is satisfied since γ < 4
n(n−4)

and n > 4 imply that γ < 1.
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