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1 Introduction

This paper explores a stochastic model of learning. Since the innovative work by Arrow

(1962), the literature on economic growth has been emphasizing the importance of learning

activities in the growth process. In the literature, the main focus has been on a specific

form of learning – “learning by doing”. Typically, learning by doing is formulated as the

productivity gain due to the producer’s past production experience.

In this paper, we consider a different form of learning. In our model, the producer learns

from users. We are particularly interested in the case of capital goods (machine) producers.

For example, newly developed machines may have many “bugs”. Users may find bugs in the

machine, which leads to improvement in machine quality. Users may be able to suggest new

applications of the machine. The importance of this type of learning has been recognized

by many economic historians. In particular, Rosenberg (1982) termed this type of learning

activity as “learning by using” and stated:

... in an economy with complex new technologies, there are essential aspects

of learning that are a function not of the experience involved in producing the

product but of its utilization by the final user. ... Perhaps in most general

terms, the performance characteristics of a durable capital good often cannot be

understood until after prolonged experience with it. (p.122)

However, this type of learning has not been formulated in theoretical literature. This paper

aims to fill this gap.

Von Hippel (1988) argues that users play an important role in improving technology.

Through many case studies, such as scientific instruments, semiconductor processes, and PC

board assembly, he found that users often make crucial contributions to the improvement

of technology. The case of electron microscopes (p.17) provides a clear-cut example of the

process emphasized by Rosenberg in the above quote. Von Hippel describes the process of
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an important improvement in the design of electron microscopes (self-cleaning of microscope

aperture). The self-cleaning aperture was first invented by a microscope user at Harvard

University. He presented a paper at the Electron Microscope Society of America, and an

improved aperture was commercialized by a company that sells electron microscopic supplies,

who learned about the method from this user.

MacLeod (1992) also emphasizes this type of interaction between users and capital-goods

suppliers. She studies the mechanical engineering industry in 19th century Britain and writes

“... it was often only through the medium of their capital-goods suppliers that information

about a new technology was passed back and forth among users (p.287)”. The empirical study

by Bahk and Gort (1993) suggests the importance of this channel in modern manufacturing.

Using the plant-level data during 1973–1986, they show that the industry-wide increases in

the stock of knowledge affect output only if the increases are related to embodied technical

change in capital stock.

The concept of learning by using bears some similarity to the “second-order learning” by

Adler and Clark (1991). They distinguished between first-order learning (learning by direct

workers, based on repetition and incremental development of expertise) and second-order

learning (learning due to explicit managerial or engineering action to change the technology,

the equipment, the process, or the human capital). In a case study of an electronic equip-

ment company, they found that second-order learning is important and is largely induced

by the production experience. They also found that the capital-intensive production area

derives as much learning as the labor/materials-intensive production area, which suggests

the importance of learning in capital. Their result is consistent with the plant-level evidence

provided by Bahk and Gort (1993), which shows that a new plant experiences a productivity

increase from capital stock for five or six years after birth.

In economic development literature, the effect called “learning by exporting” is often

pointed out as an important source of productivity gain. When goods are exported from
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developing countries to more developed countries, the purchasing agents often suggest ways to

improve the quality of the goods or the efficiency of the manufacturing process. For example,

it is often argued that learning by exporting has played an important role in Korea’s economic

development [Rhee, Ross-Larson, and Pursell (1984, Chapter 4)]. Learning by exporting can

be interpreted as a particular type of learning by using.

As Rosenberg emphasizes, learning by using is even more important in modern high-

technology industries. For example, many computer software companies distribute “beta-

versions” of new softwares before their formal release, to facilitate this type of learning.

The work by Jovanovic and Nyarko (1995) is similar to ours in spirit. They construct

a stochastic model to provide a microfoundation of Arrow’s learning by doing. We attempt

to do the same for Rosenberg’s learning by using. Jovanovic and Nyarko consider the case

where the result of learning is embodied in the skills of the workers, while we consider the

case where it is embodied in the capital goods.

We show that the diffusion curve of a new technology can exhibit an S-shape under

reasonable assumptions. Our theory contributes to the recent theoretical literature which

tries to explain S-shaped diffusion curves from a solid microfoundation.1

As Jovanovic and Nyarko emphasize, one of the benefits of building an explicit stochastic

model is that it enables us to examine distributional consequences. We also explore the

distributional implications of our model.

In what follows, we will employ a statistical model to formulate the idea of learning by

using. The next section presents the model and characterizes the law of motion for the

machine quality. We also compare our learning process to the existing learning functions

in the literature. It is shown that the basic model can be extended to the case where task

assignment is correlated across users. In Section 3, we analyze the learning process further

by numerical simulations. We show that under reasonable assumptions the diffusion curves
1See, for example, Jovanovic and Lach (1989), Chari and Hopenhayn (1991), and Götz (1999).
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exhibit an S-shape. In Section 4, we characterize the stochastic properties of the learning

process. In Section 5, we study the implications of inequality across machine users. Section

6 concludes.

2 Model

2.1 Basic Model

Consider a producer of machines selling to many users. Each machine can be used for K

tasks. The operation of each task may be subject to “bugs”. For each task i and period t

(t = 0, 1, 2, ...), define a variable mi,t by

mi,t ≡
{

1 if task i has a bug at period t,
0 if it does not.

There are Zt users who operate machines in each period t. Each user employs his machine

to carry out one of these tasks, chosen at random. Here, this random assignment of tasks

is assumed to be independent across time and across users. At time t, the operation of

Mt ≡
∑K

i=1 mi,t tasks are subject to “bugs”. Thus, a user is hit by an error (finds an error)

with probability Mt/K. If a user finds an error, it is reported to the producer2 in the end

of the period, and it is fixed immediately. (From that time, that particular task becomes

error-free.) Since the assignment of tasks is random, two or more users may be assigned to

the same task and find the same error at the same time. If this duplication occurs, only one

error is fixed (since the error is found in one task). When Xt non-duplicated errors are found

at time t, the number of tasks that are subject to bugs drops to Mt+1 = Mt − Xt at time

t + 1.

Denote θt ≡ Mt/K and zt ≡ Zt/K. The machine is “better” when θt is small. zt measures

the amount of machine use in period t. It is expected that, on average, θt+1 will become

smaller when zt is larger. The next proposition shows that it is in fact the case.
2For example, we can consider an arrangement that the producer pays some fee for each reported error.

5



Proposition 1 Given θt, the expected ratio of remaining errors in a machine at period t+1,

E[θt+1|θt], follows

E[θt+1|θt] = θt

(
1− 1

K

)ztK

. (1)

Proof: For each tasks that contains an error, the probability that the error is not found (no

one is assigned to that task) is

Pr{mi,t+1 = 1|mi,t = 1} =
(

1− 1
K

)Zt

.

Since there are Mt tasks that are subject to bugs, the expected number of tasks that contains

error after Zt users used the machine is:

E[Mt+1|Mt] = Mt

(
1− 1

K

)Zt

.

Dividing both sides by K (and using Zt = ztK) yields (1). 2

The behavior of θt becomes deterministic when K is large.

Proposition 2 When we take a limit K → ∞ keeping zt = Zt/K constant, the ratio of

remaining errors in a machine at period t + 1, θt+1, converges to

θt+1 = θte
−zt . (2)

Proof: Note that

lim
K→∞

(
1− 1

K

)ztK

= e−zt .

Mt+1 can be regarded as a sum of Mt i.i.d. random variables which takes 1 with probability

(1 − 1/K)ztK and 0 with probability 1 − (1 − 1/K)ztK . Therefore, from the Law of Large

Numbers, θt+1 converges to θte
−zt in probability. 2

The equation (2) shows that machines are improved at a rate which is an exponential function

of the amount of users.
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The “learning function” (2) is quite intuitive. The marginal rate of learning at zt = 0 is

∂θt+1

∂zt

∣∣∣∣
zt=0

= −θt.

This corresponds to the fact that the probability of finding an error for the first user is θt.

As zt increases, the rate of improvement exhibits “decreasing returns”: ∂θt+1/∂zt becomes

smaller in absolute value. This reflects the duplication effect in the error-finding process: as

zt increases, it becomes more likely that a user finds an error that has already been found by

another user in the same period.

The functional form of (2) ensures that z people using the machines for two periods leads

to the same degree of improvement as if 2z people were using the machines for one period.

This transpires since (θt · e−z) · e−z = θt · e−2z. This is because the duplication does not

depend on a particular time frame (since the task assignment is i.i.d.).

2.2 Comparison to Other Learning Functions

Our learning process is comparable to the learning functions used in the literature. In the

literature, many learning functions are formulated in terms of productivity. In our context,

it is natural to assume that productivity is a decreasing function of θt, since the machines

with lower θt are better. (Consider, for example, the case where all the learning takes place

in one firm or one plant.) Specifically, assume that productivity Qt can be represented as

Qt ≡ 1− θt. Then, (2) can be rewritten as

Qt+1 −Qt = (1− e−zt) · (1−Qt).

When z is exogenous and constant over time, (1 − e−zt) can be regarded as a (positive)

constant parameter. Then, this formulation becomes equivalent to the learning function of

Parente (1994, 2000).3 Our model provides a microfoundation for this learning function,

although the context is slightly different from Parente’s.
3Jovanovic and Nyarko (1995) state that this functional form has been popularly used in economics and

psychology.
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Another popular approach in the literature is to formulate productivity as a function

of the cumulative production experience. Assuming that zt can be a proxy for production

experience in each period, our formulation results in

Qt+1 = 1− θ0e
−Λt , (3)

where Λt ≡
∑t

s=0 zs is the cumulative experience (by users). Arrow’s formulation is

Qt+1 = α1Λα2
t , α1, α2 > 0,

where the producer’s cumulative experience is Λt.4 Jovanovic and Nyarko’s learning process

produces the average productivity E[Qt+1] that follows

E[Qt+1] = 1− 1
$1 + $2Λt

, $1, $2 > 0.

Our learning function (3) suggests an alternative functional form in the case of “learning

by using”. A notable common property between our learning function and Jovanovic and

Nyarko’s is that learning is bounded. Young (1991, 1993) utilizes an exponential learning

function similar to (3). Young argues that assuming bounded learning is reasonable consid-

ering the evidence on plateauing and the stagnation in premodern history.

2.3 Extending to Correlated Task Assignment

In the basic model in Section 2.1, we assumed that the tasks are assigned independently

across users. In reality, however, it is typically the case that some tasks are preferred over

others by many users. In this situation, the probability of finding an error is not uniform

across tasks. Here, we extend the basic setup to analyze the learning process when user’s

actions are correlated. We consider two different extensions.
4Arrow used cumulative investment as Λt here.
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2.3.1 Limited Task Assignment Model

Assume that, in the beginning of each period, a subset of the total tasks is randomly se-

lected. Call these tasks “preferred tasks”.5 Each user is assigned a task randomly from these

preferred tasks. Suppose that there are k preferred tasks. Clearly, 1 ≤ k ≤ K has to be

satisfied. When k = 1, there is a perfect correlation among users’ activities: all the users are

assigned the same task. The case of k = K boils down to our basic model.

Let p ≡ k/K. For a particular task which has a bug, the probability that it is a preferred

task is p. When it is a preferred task, the probability that the error is not found is (1−1/k)Zt .

With probability (1−p), nobody is assigned to the task and the error is not found. Therefore,

the probability that an error is not found from a particular task at period t is

Pr{mi,t+1 = 1|mi,t = 1} = p

(
1− 1

k

)Zt

+ (1− p).

Since there are Mt such tasks, the expected number of tasks in the next period is

E[Mt+1|Mt] = Mt

[
p

(
1− 1

k

)Zt

+ (1− p)

]
. (4)

Therefore, the counterpart of (1) is

E[θt+1|θt] = θt


p

(
1− 1

k

) ztk
p

+ (1− p)


 . (5)

Note that when k = 1 (perfect correlation), (4) becomes

E[Mt+1|Mt] = Mt − Mt

K
.

In this case, everyone is assigned the same task. One error is found with the probability

Mt/K.
5This implies that the set of preferred tasks changes over time. If the preferred tasks are the same over time,

the analysis is much simpler. This extension has the same effect as reducing K, which implies a smaller zt

when Zt is the same. This will make the error-finding more efficient within the preferred tasks since user-task

ratio is higher. The error-finding rate from the entire tasks is lower, since some tasks are never tried.
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From (5), the counterpart of (2) can be calculated as (taking limit K →∞ with keeping

zt and p constant)

θt+1 = θt

[
pe
− zt

p + (1− p)
]
. (6)

In Appendix A, it is shown that the right-hand-side of (2) is smaller than the right-hand-side

of (6), that is,

e−zt ≤ pe
− zt

p + (1− p). (7)

Moreover, the difference between them is decreasing in p, which implies that the higher

correlation in task assignment makes the learning slower. The intuition is simple: higher

correlation in task assignment makes the duplication effect more severe.

2.3.2 Sequential Task Assignment Model

Alternatively, consider a setting where tasks are assigned sequentially to the users within

a period. The first user is assigned to a task randomly from the whole set of tasks. With

probability (1 − q), the second user is assigned to the same task as the first user. With

probability q, the second user is assigned to a task randomly (from the whole set of tasks),

in the same way as the first user. In general, the ith user (i ≥ 2) is assigned to the same

task as the (i − 1)th user with probability (1 − q), and he is assigned to his task randomly

with probability q. Here, q ∈ [0, 1] measures the degree of correlation. When q is small, the

correlation is large.

Appendix B shows that the expected number of errors in the next period is

E[Mt+1|Mt] = Mt

(
1− q

K

)Zt−1
(

1− 1
K

)
. (8)

When q = 0 (perfect correlation), (8) becomes

E[Mt+1|Mt] = Mt − Mt

K
.

When q = 1, the model is equivalent to the basic model. The counterpart of (2) can be
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calculated as

θt+1 = θte
−ztq. (9)

Clearly, e−zt ≤ e−ztq and the efficiency of learning is higher when q is larger (correlation is

lower). The intuition is the same as the previous section.

3 Deterministic Properties of θt

In this section (and parts of the following two sections), we make some parametric assump-

tions and numerically analyze the properties of the basic model. In this section, we focus on

the learning process (2). This exercise will uncover the behavior of θt when K is large.

3.1 Constant zt

First, consider the case where the number of users in each period (zt) is constant at z. Then,

(2) becomes

θt+1 = θt · e−z = θ0 · e−z(t+1)

for any t. Figure 1 plots the dynamics of θt for z = 0.2 and z = 0.4, starting from θ0 = 1.

[Figure 1 Here]

3.2 Time-Varying zt and Diffusion Curves

It is more reasonable to assume that zt changes as time passes. When θt is large, not many

users would want to use the machine. As θt becomes smaller, more and more users will start

using the machine. In fact, this is the diffusion process that Rosenberg (1982) emphasizes.6

He writes:

The diffusion process is usually dependent upon a stream of improvements in

the performance characteristics of an invention, its progressive modification and
6Olmstead (1975) argues that the rapid adoption of leapers and mowers in the mid-1850s (20 years af-

ter their invention) is largely due to the improvement in their design, which increased machine longevity,

versatility, and productivity, and reduced the risks and uncertainty of breakdowns.
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adaptation to suit the needs or specialized requirements of various submarkets,

and upon the availability and introduction of other complementary inputs that

make an original invention more useful. (p.21)

Here, we assume that

zt = (1− κθt)z0, (10)

where κ and z0 are given constant. z0 is the maximum value that zt can attain, and can be

interpreted as the potential strength of demand. In Appendix C, it is shown that (10) can be

derived from a model of heterogenous users. In Figure 2, we plot the process of θt assuming

θ0 = 1, κ = 0.95, and z0 = 0.4, 0.6, and 0.8. Larger z0 implies more feedback, and naturally

θt declines faster when z0 is larger.

[Figure 2 Here]

[Figure 3 Here]

Figure 3 shows a time path of engine maintenance expense, taken from Rosenberg (1982).

Assuming that the maintenance expense is proportional to θt, this time path fits well with

the time path of θt in Figure 2. The decline of maintenance cost is slow initially (in fact, it

even increases7), accelerates for a while, and then flattens out.

[Figure 4 Here]

In Figure 4, we draw the curves representing zt/z0. These curves represent the amount of

users (relative to z0), and can be interpreted as diffusion curves of the machine. They exhibit

an S-shape. This S-shape pattern arises in the diffusion of many products and technologies.8

Figure 5 exhibits the empirical diffusion curves for various products.

[Figure 5 Here]

7Rosenberg (1982) explains: “The rise of maintenance costs during the first year of introduction reflects

the impact of early design problems that were not anticipated prior to the rigors of actual on-line operations

(p.131)”. This story is consistent with our model.
8For recent surveys on technology diffusion, see Karshenas and Stoneman (1995), Geroski (2000), and Hall

and Khan (2002).
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Why are the diffusion curves S-shaped in Figure 4? The change in zt can be calculated

as
zt+1 − zt = (1− κθt+1)z0 − (1− κθt)z0

= (1− κθte
−zt) z0 − (1− κθt)z0

=
(
1− κθte

−(1−κθt)z0
)
z0 − (1− κθt)z0

=
[
1− e−(1−κθt)z0

]
κz0θt.

The first part, [1 − e−(1−κθt)z0 ], is decreasing in θt. This is because the number of users at

time t, (1− κθt)z0, is small when θt is large. Therefore the amount of improvement is small

when θt is small. The second part, κz0θt, is increasing in θt. As θt declines, this part becomes

smaller. Intuitively, finding the last few bugs is difficult, even if there are large number of

users. In the examples of Figure 4, the effect of first part dominates when θt is close to 1,

and the speed of diffusion is slow initially. The diffusion speed increases as θt declines, but

when θt becomes sufficiently small, the second effect starts to dominate, and the diffusion

slows down. More formally, define the slope of the diffusion curve (multiplied by z0) at t as

F (θt) ≡
[
1− e−(1−κθt)z0

]
κz0θt.

and the change in the slope at t as

G(θt) ≡ F (θt+1)− F (θt) = F
(
θte

−(1−κθt)z0

)
− F (θt).

Since dθt/dt < 0 and limt→∞ θt = 0, a set of sufficient conditions for the S-shaped diffusion

curve is that G(θt) is positive for large values of θt and negative for small values of θt.

In Figure 4, different z0 create different diffusion curves. Initially, the interaction between

zt and θt magnifies the difference in diffusion speed among the cases with different z0. The

diffusion curves “converge” as they reach the ceiling.

[Figure 6 Here]

Larger z0 can be interpreted as the strength of demand. Griliches (1957) shows that the

diffusion speed of hybrid corn is faster in the areas where average corn acres per farm is

larger. Figure 6 shows the diffusion curves from Griliches (1957).
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[Table 1 Here]

Larger z0 can also be interpreted as larger feedback from users. Therefore, z0 can be

increased by the advancement of information and communication technology. Table 1 shows

how many years it took for major inventions to diffuse to 25% of the population. Clearly,

this duration is becoming shorter in recent years. In the context of our model, this phe-

nomenon can be explained by the recent information technology revolution – more efficient

communication and information transmission increased z0.9

4 Stochastic Properties of θt

Jovanovic and Nyarko (1995) argued that one advantage of explicitly analyzing the stochastic

process of learning is that we can obtain insight on more than only the first moment of the

learning process. There are two stochastic (distributional) aspects in our model. First, due to

the stochastic nature of the learning process, the actual learning speed may differ even if we

start from the same initial conditions. Therefore, the realized values of θt may differ across

different capital goods, even when all the economic environments are the same. Second,

due to the randomness in task assignment, users may be assigned to tasks with or without

bugs. If the production performances of users differ by whether or not a bug exists in the

assigned task, there are distributional consequences across users. In this section, we analyze

the stochastic properties of θt, and in the next section we explore the distributional properties

across users.

When K becomes large, the Central Limit Theorem ensures that (given θt) the behavior

of
√

K(θt+1 − E[θt+1|θt]) can be approximated by a normal distribution.

Proposition 3 Let

µt ≡ E[θt+1|θt] = θt

(
1− 1

K

)ztK

9Cooley and Yorukoglu (2002) also argue that the arrival of an “information age” accelerates technology

diffusion. In their model, the diffusion of new goods become faster due to increased efficiency in the production

of “information input” (knowledge and information contained in products).
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and

σt ≡
√√√√

(
1− 1

K

)ztK
[
1−

(
1− 1

K

)ztK
]
.

Then, as K →∞,
√

K(θt+1−µt) converges in distribution to a random variable which follows

a normal distribution N (0, θtσ
2
t ).

Proof: Denote mi,t+1, i = 1, ..., Mt, as a random variable which attains 0 if a bug is found

at time t and 1 if not. All mi,t+1 (conditional on information at time t) are i.i.d. with mean

ψt ≡
(

1− 1
K

)ztK

and variance

σ2
t =

(
1− 1

K

)ztK
[
1−

(
1− 1

K

)ztK
]

.

Clearly, Mt+1 =
∑Mt

i=1 mi,t+1. Hence,

Mt+1 = Mtψt = Mt

(
1− 1

K

)ztK

.

Now, consider the behavior of Mt+1 =
∑Mt

i=1 mi,t+1 as Mt → ∞. Since mi,t+1 are i.i.d.,

we can apply the Lindberg-Levy Central Limit Theorem10 to conclude that

√
Mt

(
1

Mt

Mt∑

i=1

mi,t+1 − ψt

)
=

√
Mt

(
Mt+1

Mt
− ψt

)
d−→ N (0, σ2

t ).

Since
√

Mt

(
Mt+1

Mt
− ψt

)
=

√
K

θt
(θt+1 − µt),

the proposition follows. 2

It is difficult to analytically characterize the behavior of θt when K is small. In the

following, we attempt to characterize the distributional properties when K is small by Monte-

Carlo simulation.
10This particular case of binomial distribution is also called De Moivre-Laplace Theorem [see, e.g., Billingsley

(1995, p.358)].
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4.1 Constant zt

First, we simulate the case with constant zt. We assume that K = 50 and Zt = 10. Therefore,

this case corresponds to the case with zt = 0.2 in the previous section. In Figure 7, the solid

line represents the average value of θt. (This approximately corresponds to the solid line in

Figure 1.) The dashed lines represent the top 10% and bottom 10% of the distribution.11

Figure 8 shows the evolution of the distribution of θt as histograms (size of a bin = 0.02).

It can be seen that the dispersion of θt increases initially, and then declines as θt starts to

approach zero.

[Figure 7 Here]

[Figure 8 Here]

4.2 Time-Varying zt

Next, we examine the case where zt depends on θt. We assume that Zt follows the following

equation

Zt = (1− κθt)Z0, (11)

therefore zt = (1− κθt)z0. We assume that θ0 = 1, κ = 0.95, K = 50, and Z0 = 30. In terms

of equation (10), this corresponds to the case where z0 = Z0/K = 0.6. Since Zt has to be an

integer, we used the largest integer that does not exceed the right-hand-side value of (11).12

Figure 9 shows the mean, top 10%, and bottom 10% of the distribution. Figure 10 shows

the evolution of the distribution as histograms (size of a bin = 0.02). It exhibits a similar

pattern to the previous example — the dispersion increases initially, and then declines as θt

reaches close to zero.

[Figure 9 Here]

[Figure 10 Here]

11We simulated the process 10,000 times.
12Therefore, the average rate of decline in θt is somewhat smaller than the simulation with z0 = 0.6 in the

last section.
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5 Distributions Across Users

5.1 Distributions Across One-Task Users

In this section, we consider the cross-sectional distribution across users, each of whom per-

forms one task. A user is randomly assigned one task in each period. Assume that user i’s

production yi,t is

yi,t ≡
{

1 if the assigned task doesn’t have a bug,
0 if the assigned task has a bug.

(12)

At time t, a user is assigned a task that contains a bug with probability θt, which implies

that

yi,t =

{
1 with probability (1− θt),
0 with probability θt.

Therefore, when Zt is large enough, the cross-sectional variance of yi,t across users becomes

θt(1−θt). When θ0 > 0.5, the dispersion increases initially, and then decreases. This pattern

is similar to the dynamics of inequality in the model of Jovanovic and Nyarko (1995). In

particular, if θ0 > 0.5 and θ0 is not too large, then the period of the increasing inequality

is relatively short. This is consistent with the plant-level evidence in Bahk and Gort (1993,

Table 4), who observed that the adjusted R2 of the production function estimation first falls

and then rises as the plants age. If θ0 < 0.5, the heterogeneity falls monotonically. This

pattern is observed by Griliches and Regev (1995) [cited by Jovanovic and Nyarko (1995)].13

In Griliches and Regev’s samples, efficiencies are less heterogenous among older firms.

5.2 Distributions Across Multiple-Task Firms

Now, suppose that the economy consists of firms who hire many users (workers). There are

N firms in the economy, each of which consists of L users. Therefore Zt = LN for all t. Firm
13If there is heterogeneity in productivity across users and the diffusion is endogenous (as in the model

of Appendix C), inequality may not decline as θt becomes small, since new users with different productivity

are added as θt falls. However, if θt represents a skill requirement for operating a machine and the users

are heterogenous in terms of skills (but productivity is the same as long as a user can operate the machine),

inequality tends to decline as θt approaches zero. See Mukoyama (2004) for such a model.
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j assigns a task to each user randomly from the set Sj ⊆ K, where K is the set of the entire

tasks. Assume that Sj is time-invariant, the same size across firms, and Si∩Sj = ∅ for i 6= j.

Let the number of elements in Sj be S and the number of bugs in Sj at time t be χj,t.

Also define φj,t ≡ χj,t/S and l ≡ L/S. Then, the stochastic behavior of φj,t can be analyzed

in the same manner as the behavior of θt in Section 4. In particular, as S → ∞ (keeping

l constant),
√

S(φj,t+1 − ϕj,t) converges to a normal distribution with mean 0 and variance

φj,tω
2
t , where

ϕj,t ≡ φj,t

(
1− 1

S

)lS

and

ωt ≡
√√√√

(
1− 1

S

)lS
[
1−

(
1− 1

S

)lS
]
.

Since all the firms are symmetric, the cross-sectional distribution of φj,t behaves in the same

way as the distribution of θt in Figures 7 and 8.

How is the behavior of φj,t translated into the behavior of output in each firm? Below,

we consider several scenarios for how the tasks are aggregated to the output of the firm.

First, we consider a production structure called the “series” structure in Jovanovic and

Nyarko (1995):

Yj,t = min
i∈Lj

{yi,t},

where Yj,t is the output of firm j at time t, Lj is the set of users at firm j, and yi,t is defined

in (12). This structure expresses the idea that the tasks are complementary inputs in the

production process. With this production structure, Yj,t ∈ {0, 1}, and the probability that

Yj,t = 1 is equal to the probability that all yi,t is 1. Therefore,

Pr[Yj,t = 1] = (1− φj,t)
L . (13)

The polar opposite of the series structure is called the “parallel” structure, which is formu-

lated as

Yj,t = max
i∈Lj

{yi,t}.
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In this case,

Pr[Yj,t = 1] = 1− (φj,t)L. (14)

Figure 11 plots the relationships (13) and (14) when L = 5. This pattern emerges for

any L > 1. With the “series” production structure, the probability becomes sensitive to

the change in φi,j when φi,j is close to zero. With the “parallel” structure, the change in

probability is large when φi,j is close to 1. Thus, the parallel structure tends to create an

inequality in the early stage of learning, while the series structure gives rise to an inequality

in the late stage of learning.

[Figure 11 Here]

As an alternative setting, suppose that the production structure is additive:

Yj,t =
∑

i∈Lj

yi,t. (15)

Since yi,t is i.i.d. (given φj,t), the Central Limit Theorem ensures that Yj,t tends to follow

a normal distribution (given φj,t) when L is large. If, instead, the production structure is

multiplicative:14

Yj,t =
∏

i∈Lj

exp(yi,t), (16)

Yj,t tends to follow a lognormal distribution when L is large,15 since

log (Yj,t) =
∑

i∈Lj

yi,t. (17)

In this case, the distribution of output across firms is skewed to the right even when φj,t is

distributed symmetrically across j.16

[Figure 12 Here]

Figure 12 plots the result of Monte-Carlo simulation in the case of additive production

structure (15). It plots the distribution of the output Yj,t across firms at t = 1, t = 3, and
14Jovanovic and Nyarko (1995) use this type of production structure. See also Beckmann (1977), Rosen

(1982), and Kremer (1993).
15If we multiply yi,t together instead of exp(yi,t), this boils down to the “series” production structure above.
16It is well known that income distribution and firm size distribution tend to exhibit a right skew.
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t = 10. The parameter values are: S = 50, L = 10, χj,0 = 50 for all j, and N = 10, 000. It

can be seen that inequality first rises, and then falls.17 From (17), Figure 12 can be viewed

as the plot for the multiplicative case (16), by reinterpreting that the horizontal axis is for

log(Yj,t) instead of Yj,t.

6 Conclusion

This paper formulated Rosenberg’s (1982) “learning by using” as a stochastic process. The

producer of machines learns from the experience of users. Due to this learning effect, the

quality of machines improves over time. We showed that the process of this improvement

can be approximated by an exponential form. This improvement process, combined with the

growth of demand due to improvement, can produce an S-shape diffusion curve of machines.

Strong demand and advancement of communication technology increase the diffusion speed.

The distributional property of the stochastic process is also explored. We found that

when the initial quality of the machine is low, the dispersion of machine quality tends to

increase first, and to decline as the machines diffuse. It is also shown that the cross-sectional

distribution of output across users tends to follow a similar pattern. An important future

research topic is to empirically examine our predictions utilizing micro-level data.

17As can be seen from Figure 12, the distribution tends to become left-skewed as t becomes larger. This

counter-factual prediction can be remedied by assuming that a innovation of entirely new machine can occur

when the current technology is sufficiently improved. Mukoyama (2004) proposes such a model of innovation.
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Appendix

A Inequality (7)

First note that (7) holds with equality when p = 1. Therefore, it suffices to show that

f(p) ≡ e−zt − [pe
− zt

p + (1− p)]

is decreasing in p. Since

f ′(p) =
(

1 +
zt

p

)
e
− zt

p − 1,

to show that f ′(p) ≤ 0, it suffices to show that
(

1 +
zt

p

)
e
− zt

p ≤ 1.

Taking logs on both sides and denoting x ≡ zt/p, this is equivalent to

log(1 + x)− x ≤ 0.

It is clear that this holds for any x ≥ 0.

B Derivation of Equation (8)

Denote the number of the errors not found before the ith user by M i. M i is a random

variable. By definition, M1 = Mt. Let the expected probability that the ith user finds an

error be πi. Clearly, π1 = Mt/K. It is also clear that for i ≥ 2

πi = q · E[M i]
K

+ (1− q) · 0,

where E[·] is the expectation taken in the beginning of the period.

Let the event Ai ≡ {ith user finds an error} and Ac
i ≡ {ith user does not find an error}.

The following holds from the law of iterated expectations:

E[M i] = E[M i|Ai−1] · Pr[Ai−1] + E[M i|Ac
i−1] · Pr[Ac

i−1]
= E[M i|Ai−1] · πi−1 + E[M i|Ac

i−1] · (1− πi−1)
= (E[M i|Ai−1]−E[M i|Ac

i−1])πi−1 + E[M i|Ac
i−1].
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Clearly the first term is −πi−1 (since one error is found if Ai−1 happens), and the second

term is E[M i−1] (since nothing changes from the past user if the error is not found). Then,

noting that πi = qE[M i]/K for i ≥ 2 and π1 = Mt/K,

E[M i] = E[M i−1]
(
1− q

K

)

= E[M2]
(
1− q

K

)i−2

= Mt

(
1− q

K

)i−2
(

1− 1
K

)
.

Setting i = Zt + 1 (since “after Zt users” is equivalent to “before the (Zt + 1)th user”) yields

(8).

C Heterogenous Users Model

Suppose that the production function of a user is

yt = λ(1− κθt),

where κ ∈ (0, 1] is a constant. Assume that users are heterogenous in λ. Let the rental price

of the capital be γ. Then, a user decides to operate if and only if

λ(1− κθt) ≥ γ,

That is,

λ ≥ γ

1− κθt
.

Assume that λ follows a Pareto distribution with distribution function

D(x) = 1− b

x
,

where b is a parameter and x ≥ b. Then, the number of users who actively operate is (we

assume that γ ≥ b):

zt = 1−D

(
γ

1− κθt

)
=

b

γ
(1− κθt).

By denoting z0 ≡ b/γ, we obtain (10).
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Tables

Year Invented Years to Spread

Electricity 1873 46

Telephone 1876 35

Automobile 1886 55

Airplane 1903 64

Radio 1906 22

Television 1926 26

VCR 1952 34

Microwave Oven 1953 30

PC 1975 16

Cellular Phone 1983 13

Internet 1991 7

Table 1: Spread of products to a quarter of the population
Source: Federal Reserve Bank of Dallas (1996)
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Figure 1: θt when z = 0.2 and z = 0.4.
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Figure 2: θt when z0 = 0.4, 0.6, and 0.8.
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Figure 3: Engine maintenance expense
Source: Rosenberg (1982)
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Figure 4: zt/z0 when z0 = 0.4, 0.6, and 0.8.

30



0

10

20

30

40

50

60

70

80

90

100

Internet
Cell

phone

PC

Micro-
wave

VCR

Television

Radio

Airplane

Automobile

Telephone

Electricity

12011511010510095908580757065605550454035302520151051

Years since product invented
SOURCES:U.S. Bureau of the Census (1970 and various years); 

Percent ownership

Figure 5: Diffusion curves
Source: Federal Reserve Bank of Dallas (1996)
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Figure 6: Percentage of total corn acreage planted with hybrid seed
Source: Griliches (1957)
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Figure 7: Paths of mean θt, top 10%, and bottom 10%
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Figure 8: Distributions of θt
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Figure 9: Paths of mean θt, top 10%, and bottom 10%
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Figure 10: Distributions of θt
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Figure 11: Pr[Yj,t = 1] given φj,t
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Figure 12: Distributions of Yj,t
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