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Abstract
Conflict parties are frequently involved into more than one conflict at a given
time. In this paper the interrelated structure of conflictive relations is modeled
as a conflict network where opponents are embedded in a local structure of bi-
lateral conflicts. Conflict parties invest in specific conflict technology to attack
their respective rivals and defend their own resources. We show that there ex-
ists a unique equilibrium for this conflict game and examine the relation be-
tween aggregated equilibrium investment (interpreted as conflict intensity)
and underlying network characteristics. The derived results have implications
for peaceful resolutions of conflicts because neglecting the fact that opponents
are embedded into an interrelated conflict structure might have adverse con-
sequences for conflict intensity.
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1 Introduction

Violent conflicts and wars are frequently observed phenomena in human history
and have always been in the research focus of social scientists. Recently, the
economists profession became interested in establishing general, and therefore
abstract models of conflicts based on a game-theoretical setup. Most of this
growing literature is based on stylized models of unique and isolated conflicts
between two or more conflict parties. The nature of the respective conflict is
then analyzed depending on specific idiosyncratic characteristics of the involved
conflict parties, e.g., Esteban and Ray (2008), Esteban and Ray (1999), Caselli
and Coleman (2006), Basu (2005), Skaperdas (1992), and Beviá and Corchón
(2008). We depart from this literature by assuming that conflictive relations
between conflict parties are interrelated, i.e., a conflict party may be involved
into two or more different conflicts involving different opponents at the same
time. This interrelated structure results in local externalities when behavior by
agents is affected by changes in behavior of direct (and also indirect) opponents.
Hence, our objective is to clarify the relation between the structure of those
interrelated conflicts and equilibrium behavior.

In this paper we restrict our analysis to bilateral conflicts which allows us
to represent the overall conflict structure as a network, or graph, where conflict
parties are linked if they are in a conflictive relation among each other. Hence,
we can interpret the structure of interrelated conflicts as a simultaneously played
conflict game, consisting of several distinctive bilateral conflicts, played on a
fixed and given network.

Conflict parties can affect the probability of winning against a particular
direct rival by investing into conflict specific technology, e.g., military equip-
ment, mercenaries, etc. The network structure of conflictive relations implies
that the investment decision of a conflict party may not only affect the decision
of direct rivals but also of other parties that are not directly involved. This type
of interdependencies might induce spill-over effects that are common in network
models of social interaction.

We model each bilateral conflict as a transfer contest, where contested re-
sources are transfered from the winner to the loser, see Appelbaum and Katz
(1986), Hillman and Riley (1989), and Leininger (2003).1 Hence, resources are
reallocated between direct rivals depending on their relative conflict investment.
This implies that conflict investment is socially inefficient because conflict in-
vestment is social waste. In principle, a conflict party has also the option not
to invest anything into a bilateral conflict which would reduce social waste.
However, this option can be exploited by their rival and therefore will never
occur in equilibrium, i.e., investing into conflict specific technology resembles a

1The model is formulated in general terms such that different interpretations for the under-
lying conflictive environment are possible: For instance, lobbying of several firms for several
distinctive issues at different authorities could also be interpreted as a network of bilateral
conflicts where two firms are connected if they lobby for the same issue. Analyzing the de-
pendence of overall lobbying activity on the underlying relations of lobby issues and firms is
an important issue due to the social waste that is generated by these activities.
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prisoner’s-dilemma structure.
In this study we are especially interested in the relation between conflict

intensity (measured as the total equilibrium investment into conflict technol-
ogy by all opponents) and the underlying network structure. For reasons of
tractability we restrict our analysis in the first part of the paper to the three
classes of conflict structures.2

• Regular conflict networks are characterized by a large degree of symmetry
among the opponents. In this context we briefly discuss the anthropolog-
ical concept of conflictive peer polity interaction, that can be interpreted
as a description of regular conflict networks.

• Star-shaped conflict networks are characterized by a large degree of asym-
metry between a center and its periphery. Historically, the multitude of
conflictive relations among an empire and its surrounding neighbors, e.g.,
the Western Roman Empire, has this kind of core-periphery structure.

• Complete bipartite conflict networks consist of two coalitions that are
in conflict against each other. Ideological conflicts can be interpreted
as bipartite conflict networks because all members of one coalition share
the same ideology and consider each member of the hostile coalition as a
potential enemy, as it could be observed in the ideological conflicts of the
20th century, e.g., World War II.

For these classes of conflict networks we find an intuitive relation between
the underlying network characteristics and conflict intensity: Within each con-
sidered class, conflict intensity is increasing in the number of conflictive relations
and the density of the network. Based on a prominent centrality measure, i.e.,
eigenvector centrality, we are also able to compare conflict intensity across the
three different classes of conflict networks.

The relation between conflict intensity and network characteristics can also
be stated from the perspective of peaceful conflict resolution. Peaceful resolu-
tion of conflicts is here interpreted as an exogenous ad-hoc deletion of specific
conflictive links within the conflict network.3 For each of the three consid-
ered classes the established positive relation between conflict intensity and the
number of bilateral conflicts implies then that peaceful conflict resolution is
beneficial because total conflict intensity is decreased if the number of links in
the respective class is reduced.

However, this result does not carry over to conflict networks that are not in
the considered classes. In fact, peaceful resolution of bilateral conflicts might
have adverse consequences: we provide a specific example outside the considered

2The examples of historical conflicts mentioned below are also frequently applied in the-
oretical concepts from social anthropology. We discuss those connections briefly in the main
text.

3In most cases the conflict parties that are directly affected by peaceful conflict resolution
will benefit because no socially-wasteful conflict investments will be exerted for a resolved
conflict. Hence, for the affected conflict parties peaceful conflict resolution can be interpreted
as exogenously enforced solution of the prisoner dilemma situation of conflict investment.
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classes where conflict intensity is increased as a consequence of peaceful conflict
resolution.

Obtaining general results for irregular networks is a complex issue due to
the fact that no closed form solution for an equilibrium exist. Nevertheless,
we are able to characterize indirectly equilibrium behavior in general irregular
networks. This equilibrium characterization can be used to derive the counterin-
tuitive result that an agent spending relatively more in total conflict investment
than its opponent will in expectation loose the bilateral conflict against the
respective rival.

Our approach is related to the recent network literature that considers games
that are played on a fixed and given network structure, for instance, Bramoullé
and Kranton (2007), Goyal and Moraga-González (2001), Calvó-Armengol and
Zenou (2004) and Ballester et al. (2006). As we are interested in local exter-
nalities, we depart from this literature in an important aspect: In our set-up
the individual action is link-specific (and therefore multi-dimensional) because
conflict investment is specific for each bilateral conflict.4 This is in contrast
with most of the network literature based on games played on fixed and given
networks where an individual’s strategy space is usually assumed to be uni-
dimensional (and hence common for all neighbors).5 Our extension provides
a richer structure that also allows to analyze explicitly how a specific agent
reallocates her conflict investment among its different bilateral conflicts.

Besides this difference there exists a close relation to Ballester et al. (2006)
where also the consequences of the network structure for aggregated equilibrium
actions are analyzed. In their model simple linear quadratic payoff functions are
considered that facilitate the analysis substantially. However, we are interested
in the analysis of conflict situations and therefore consider payoff functions that
are based upon so called contest success functions. This type of functional form
is frequently applied in the literature on conflict analysis and has a simple and
intuitive interpretation in this context. The caveat is that this functional form
is not linear quadratic which makes the analysis more complex.

The rest of the paper is structured as follows. In the next section we set
up a general model of conflict networks and show, in section 3, that a unique
equilibrium exists for our framework. We analyze three specific classes of conflict
network in section 4, and reinterpret and discuss our results from the perspective
of peaceful conflict resolution in section 5. In section 6 we analyze irregular
conflict networks. Finally, section 7 concludes.

4This might be due to the different nature of the conflict, e.g., naval forces are more suited
than air forces in specific conflicts. Moreover, even if the same type of force is suitable in
various conflicts, the conflict party has to decide where they should be employed. Link-
specificity then simply implies that forces cannot be employed at two distinct locations at the
same time.

5For a recent exception with multi-dimensional individual strategy space, see Goyal et al.
(2008).
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2 The Model

There is a set N = {1, . . . , n} of conflicting parties (from now on called agents)
that are embedded in a fixed structure of bilateral conflicts, i.e., each agent i
is engaged into bilateral conflicts with some agents called her rivals. The set
of rivals of agent i is denoted by Ni ⊆ N \ {i} which implies that agent i is
involved in ni = |Ni| conflicts. The underlying structure of bilateral conflicts can
be interpreted as a fixed network which is represented by a graph g consisting of
nodes (agents) and links (conflicts). Hence, if agent i is in conflict with opponent
j then gij = 1, while if there is no conflictive relation between them then gij = 0.
It is assumed that both opponents in a bilateral conflict are affected in the same
way, i.e., the network is undirected and symmetric: gij = gji for all i �= j. The
set Ni of rivals of agent i can then be defined as Ni = {j ∈ N \ {i} : gij = 1}.

The outcome of each bilateral conflict is probabilistic and depends on the
investment into conflict specific technology by the respective rivals. The invest-
ment of agent i into the conflict against rival j ∈ Ni is denoted by eij ∈ �+ and
the ni-dimensional vector of conflict spendings of agent i against all her rivals
(her strategy) by ei = (eij)j∈Ni . The vector of conflict spending that is directed
against agent i by all of her respective rivals is denoted by e−i = (eji)j∈Ni .

Our study is focused on the analysis of the effects of the network structure on
equilibrium outcome. As the network structure by itself induces endogenously
heterogeneity on the agents (depending on their location), we exclude all other
sources of heterogeneity in our model to be able to concentrate exclusively on
this channel.6 Hence, it is assumed that all bilateral conflicts are symmetric in
the sense that rivals have identical perceptions with respect to potential gains
and losses in each bilateral conflict in which they are involved: If agent i wins the
conflict against any of her rivals j ∈ Ni she obtains an amount V of resources
of rival j, if agent i looses against j an amount V of her own resources are
transferred to the winning agent j, and vice versa.7 In other words, as a result
of the conflict contested resources are purely redistributed among direct rivals,
i.e., the loser has to fully compensate the winner. This assumption reflects the
frequently observed fact that underlying motivations for conflict are contested
natural resources, or territory, and that looting is and was a frequently observed
behavior of the winning conflict party. 8

The outcome of each bilateral conflict is governed by a probability function
that maps the conflict specific investments of the respective two opposing rivals
into a probability to win the respective conflict, i.e., agent i wins the bilateral
conflict against rival j with probability pij = p(eij , eji) ∈ [0, 1], which is twice
differentiable, increasing and strictly concave in own spendings eij for each level

6In section 7 we briefly discuss the consequences of an additional source of heterogeneity.
7This assumption implies that agents that have more rivals might potentially gain more

but also loose more resources than agents with a lower number of hostile neighbors, see also
the discussion in section 7.

8In Collier and Hoeffler (2004), for instance, it is shown that economic factors (‘greed’), like
primary commodities and opportunity costs for conflict activity, have more predictive power
for the outbreak of civil war than political factors (‘grievance’), e.g. inequality or ethnic
polarization.
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of spending eij by its respective opponent j. It is also assumed that pij is
decreasing and strictly convex in the spending eji of its rival j. Moreover,
it is symmetric in the sense that if two direct rivals i and j spend the same
amount, e = eij = eji, then they will win the conflict with the same probability:
pij = p(e, e) = pji.

Spending in conflict against rivals is related with a cost c(ei) that is a con-
tinuous, increasing and convex function with c(0, . . . , 0) = 0.

The expected payoff function of agent i is additively separable in costs and
expected wins and losses of all bilateral conflicts in which she is involved, and
can be stated in the following way:

πi(ei, e−i;g) =
∑
j∈Ni

pijV −
∑
j∈Ni

pjiV − c(ei).

For notational simplicity we reformulate this expression as follows:

πi(ei, e−i;g) = W (ei, e−i) − c(ei), (1)

where W (ei, e−i;g) = V
∑

j∈Ni
(pij − pji) denotes the expected ‘revenue’ of

conflict for agent i, i.e., the aggregated expected amount of transfered resources
that agent i wins or looses in all her bilateral conflicts. Note that, due to the
fact that each conflict is modeled as a transfer contest where losers have to
compensate the winner, the total expected revenue of the overall conflict game
(or, in other words, the aggregated value of contested and transfered resources)
is zero independently of the network structure:∑

i∈N

W (ei, e−i;g) = 0. (2)

This implies that equilibrium behavior does purely depend on the strategic re-
sponse to the network structure and is not confounded by the fact that different
network structures induce different values of aggregated resources.

Our objective is the analysis of overall conflict intensity, denoted by E∗(g),
and formally defined as the aggregated level of conflict investment in equilibrium
by all agents in all bilateral conflicts:

E∗(g) =
∑
i∈N

E∗
i (g) =

∑
i∈N

∑
j∈Ni

e∗ij(g),

where Ei =
∑

j∈Ni
eij is the aggregated conflict investment of agent i against

all her rivals j ∈ Ni. The variation of conflict intensity for different networks
can then be determined by analyzing how E∗(g) depends on the variables that
characterize the respective network structure.
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3 Equilibrium Analysis

For the conflict network game we will establish the existence of a unique equi-
librium by using results from Rosen (1965) and Goodman (1980).9 They estab-
lish existence and uniqueness for a concave n-person game based on the concept
of diagonal strict concavity of the joint (and weighted) payoff function:10

σ(e, r) =
∑
i∈N

ri πi(ei, e−i), (3)

where e = (e1, . . . , en), r = (r1, . . . , rn), and ri ≥ 0. Intuitively, this technical
condition guarantees that an agent has more control over her payoff than the
other players.

The conflict network game satisfies the requirement of a concave n-person
game by assumption. Theorem 1 and 2 of Rosen (1965) imply that a unique
equilibrium exists in a concave n-person game with orthogonal constraint set11

if and only if the function σ(e, r) is diagonally strictly concave. Using a charac-
terization of Goodman (1980), the following conditions on the payoff functions
are equivalent for diagonally strict concavity of function σ(e, r):

(i) πi(ei, e−i) is strictly concave in ei for all e−i,
(ii) πi(ei, e−i) is convex in e−i for all ei,
(iii) σ(e, r) is concave in e for some r with ri > 0 for all i ∈ N .

Proposition 1 There exists a unique equilibrium in the conflict network game.

Proof. The conflict network game is a concave n-person game by assump-
tion. To proof that it is also diagonally strictly concave it suffices to show that
conditions (i), (ii) and (iii) are satisfied.

(i) W (ei, e−i) is strictly concave in ei for all e−i and for all i ∈ N be-
cause its Hessian is negative definite, i.e., it is a (diagonal) matrix with entries
∂2W (ei,e−i)

∂e2
ij

= ∂2pij

∂e2
ij

− ∂2pji

∂e2
ij

< 0 on the diagonal (the last inequality holds by

assumption) and ∂2W (ei,e−i)
∂eij∂eik

= ∂2pij

∂eij∂eik
= 0 elsewhere for all j, k ∈ Ni with

9The conflict game is neither an aggregative game (the reaction functions cannot be ex-
pressed in terms of aggregated strategies of all the other players), nor a supermodular game
(because the reaction functions are non-monotonic). This implies that common existence
proofs that are based on those characteristics, e.g. Galeotti et al. (2009), are not applicable
in this setup.

10For reasons of notational simplicity the dependence of the payoff functions on graph g is
suppressed in the following paragraphs.

11A constraint set is orthogonal if it is uncoupled. This is the case in the conflict game
because the strategy space of each individual does not depend on the strategies of her rivals.
Note also that in Rosen (1965) the strategy space for each i ∈ N is convex and compact,
which is, in principle, not the case in the conflict game defined above (here it is the non-
negative orthant). However, we can construct a (sufficiently high) upper limit ē such that all
strategies eij > ē are strictly dominated (for instance by choosing eij = 0) due to the fact
that W (ei, e−i) ∈ [−niV, niV ] is bounded while c(ei) is unbounded. Hence, without loss of
generality we can restrict attention to the strategy space [0, ē]ni of non-dominated strategies
for each individual i ∈ N which is convex and compact.
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j �= k. As c(ei) is convex for all i ∈ N , the payoff function πi(ei, e−i) is the
sum of a constant, a strictly concave and a concave function in ei. Hence, it is
strictly concave in ei for all e−i and for all i ∈ N .

(ii) Note that W (ei, e−i) = V
∑

j∈Ni
(pij − pji). Take a generic factor of

this sum, for instance (pij − pji). It is strictly convex in eji for j ∈ Ni because
∂2pij

∂e2
ji

− ∂2pji

∂e2
ji

> 0 by assumption. Moreover, it is convex in e−i for all ei because

its Hessian is positive semi-definite, i.e., it is a (diagonal) matrix with positive
entries, ∂2(pij−pji)

∂e2
ji

> 0, or zero entries, ∂2(pij−pji)

∂e2
ki

= 0, on the diagonal and zero

entries, ∂2(pij−pji)
∂eji∂eki

= 0, elsewhere for all j, k ∈ Ni with j �= k. This implies that
W (ei, e−i) is a sum of functions that are all convex in e−i for all ei. Hence,
W (ei, e−i) is also convex in e−i for all ei. As the cost function does not depend
on conflict spending of the rivals, the function πi(ei, e−i) is convex in e−i for
all ei.

(iii) Assume that ri = r > 0 for all i ∈ N . Then Eq. (3) simplifies substan-
tially due to the fact that the aggregated value of contested resources is zero,
compare Eq. (2):

σ(e, r) = −r
∑
i∈N

c(ei)

By assumption, the cost function is convex in own conflict spending. Hence, the
function σ(e, r) is a sum of concave functions which is also concave.

To derive closed form equilibrium expressions we adopt the following func-
tional form for the pay-off function.12 The cost function has the following
quadratic form:

c(ei) = c(Ei) = (Ei)2 = (
∑
j∈Ni

eij)2. (4)

This functional form captures the externalities of the network structure be-
cause the marginal cost of conflict technology for a specific bilateral conflict
also depends on the spending in all other bilateral conflicts in which agent i is
involved.13 Intuitively, this could be attributed to the fact that agent i has ac-
cess to a centralized (and convex) production process where conflict technology
for all her different bilateral conflicts has to be produced. Agent i then allocates
conflict technology to the different bilateral conflicts in which she is involved.

The outcome of a bilateral conflict is realized according to a contest success
function in the style of Tullock (1980), which is frequently applied in models
of conflict and contests.14 Under this contest success function the winning

12In section 7 the relevance of the specific functional form for the derived results is discussed.
13An additive separable cost function, for instance c(ei) =

∑
j∈Ni

(e2
ij), would not induce

externalities because neither marginal benefits, nor marginal costs are affected by the network
structure of conflicts. For this scenario the network structure would not have any impact. As
we are interested in the externalities that are induced by the underlying network, we stick to
the functional form presented above.

14Recent surveys that review the literature that is based on this functional form are Corchon
(2007) and Konrad (2007, 2009) for models of contests, as well as Garfinkel and Skaperdas
(2006) for conflict models.
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probability of agent i in the bilateral conflict against rival j is simply determined
as the relation between individual conflict investments:

pij =

{
eij

eij+eji
if eij + eji > 0,

1/2 if eij + eji = 0.
(5)

This functional form does not fit exactly the setup as introduced before because
of its discontinuity at point (0, 0), i.e., in the case that two rivals do not spend
anything in the respective bilateral conflict. However, properties (i), (ii) and
(iii) of the existence proof in Proposition 1 still hold for this specific functional
form. In the appendix it is shown how the existence result from Proposition 1
can still be applied to this framework.

Corollary 10 in the appendix states that the unique equilibrium in the conflict
network game is interior. This implies that equilibrium investment turns out to
be socially inefficient: Resources are merely reallocated while all agents invest
positive amounts into conflict technology and therefore face real costs. Hence,
aggregated expected equilibrium payoff will be negative. This captures the idea
that conflicts are generally highly destructive and socially undesirable. In fact,
the socially efficient outcome in this kind of conflict game would be not to invest
in conflict spending at all. In principle, all agents could voluntarily decide to
refrain from conflict investment. However, as in the prisoner’s dilemma, the
strategy of not investing into a specific bilateral conflict is exploitable by the
respective rival. To avoid exploitation all agents invest in equilibrium strictly
positive amounts in each of their bilateral conflicts.

Interiority also implies that the equilibrium solves the following system of
first order conditions:

e∗ki(g)
(e∗ik(g) + e∗ki(g))2

V = E∗
i (g), for all k ∈ Ni and all i ∈ N . (6)

This is a non-linear system with
∑

i∈N ni equations that does not allow a closed
form solution for general conflict structures. Therefore we will concentrate our
analysis at first on three distinct classes of more structured conflict networks
that allow closed form solutions of the above system. An analysis for general
irregular networks follows in section 6.

4 Characteristic Classes of Conflict Networks

The three considered classes of conflict networks are distinct with respect to
their grade of symmetry. In our framework asymmetry is induced through the
underlying network structure in the sense that agents with a high number of
conflictive relations can potentially gain and also loose more resources than
agents with less conflicts. Hence, we consider on one side highly symmetric
conflict structures where each agent has the same number of conflicts, and, on
the other side, highly asymmetric conflict networks, e.g., conflicts among center
and periphery. An intermediate class are complete bipartite conflict networks
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consisting of two hostile coalitions where members of one coalition are in conflict
with each member of the opposed coalition.

The considered classes of conflict networks share some characteristics that
are emphasized in anthropological theories of (hostile) interaction among soci-
eties. Although the conflict game is highly stylized we try to relate and discuss
the derived results in light of this literature.

4.1 Regular Conflict Networks

Regular conflict networks are characterized by their high degree of symmetry
among rivals. The symmetry property among social entities in a local environ-
ment is also the crucial element in the concept of ‘peer polity interaction’. This
concept was introduced in Renfrew and Cherry (1986) to describe the historical
fact that complex societies often developed through interaction of autonomous
and homogeneous social units that were not related to each other in forms of
dominance and subordination. Peer polity interaction also included warfare and
conflict. Historical examples that could be subsumed under this concept are:

The Mycenaean states, the later small city-states of the Aegean
and the Cyclades, or the centers of the Maya Lowlands, that interact
on an approximately equal level. [...] The evolution of such clusters
of peer polities is conditioned not by some dominant neighbor, but
more usually by their own mutual interaction, which may include
both exchange and conflict. Tainter (1988, p. 201)

Our focus is on hostile interaction among peer polities and we associate the
symmetric nature of peer polity interaction with a regular conflict network.

Formally, a graph gR is called regular of degree d if each agent i ∈ N has
the same number d of opponents: ni = d for all i ∈ N . Hence, a regular graph
gR can be characterized by its degree d and the total number n of agents. The
corresponding class of regular networks is denoted by R and incorporates cases
such as the fully connected network, where d = n − 1, and a ring structure,
where d = 2, compare figure 1.

Figure 1: Regular Conflict Structures: Ring (left) and Complete Network (right)
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The following proposition describes the relation between those characteristics
and conflict intensity for the class R of regular networks.

Proposition 2 In conflict networks of class R,
(i) Conflict intensity is increasing in its degree d and in the total number n

of agents in the network.
(ii) Conflict intensity in a regular network gR1 is higher than in gR2 if and

only if
n1

√
d1 > n2

√
d2.

(iii) Individual conflict investment and expected payoff in equilibrium is de-
creasing in d and does not depend on n. Moreover, expected equilibrium payoff
is negative for all agents.

Proof. By Corollary 10 there exists a unique and interior equilibrium of the
conflict game. The following (symmetric) conflict investment e∗ ≡ e∗ij for all
i �= j solves the system of first order conditions; hence it must be the unique
equilibrium:

e∗(gR) =
1
2

√
V

d
, for all i ∈ N .

Total conflict intensity is defined as aggregated equilibrium spending:

E∗(gR) =
∑
i∈N

∑
j∈Ni

e∗(gR) = n d e∗(gR) =
n

2

√
d V .

The last expression is increasing in the total number of agents and also in its
degree d. Simplifying the inequality E∗(gR1) > E∗(gR2) yields the condition
presented in (ii).

As the equilibrium is symmetric, the probability to win (or loose) each bilat-
eral conflict is identical for all agents, i.e., p∗ij = 1

2 for all i �= j. Hence, expected
equilibrium payoff is:

π(e∗i , e
∗
−i;g

R) = −d
V

4
, for all i ∈ N.

Clearly, e∗(gR) and π(e∗i , e
∗
−i;g

R) are decreasing in d and independent of n
which establishes the statements of the proposition.

In equilibrium all agents choose the same level of conflict investment which
implies that they win each bilateral conflict with the same probability. By
definition the sum of expected transfered resources is equal to zero for each
agent. Hence, equilibrium payoff is negative because an agent also faces the
cost of conflict spending. This situation is socially (and also Pareto) inefficient
because universal peace would result in zero expected payoff. The fact that
such a conflict structure induces socially inefficient results is also acknowledged
in the historical analysis of the above mentioned examples:

13



Successful competition by any Mycenaean polity would yield lit-
tle real return. The result was probably constant investment in
defense, military administration, and petty warfare, with any single
polity rarely experiencing a significant return on that investment.
(ibid., p. 204).

Figure 2: A Star-Shaped (left) and a Bipartite Conflict Network (right)

4.2 Star-Shaped Conflict Networks

We now focus our attention on asymmetric conflict structures that are star-
shaped, i.e., where one agent is in conflict with all other remaining rivals while
none of the rivals is in conflict with each other, see the left part of figure 2. This
class of conflict networks has a center-periphery structure which is reminiscent
of historical empires that were frequently in permanent conflict with rivals at
their periphery, (e.g., the Western Roman Empire at the point of its largest
expansion).

Formally, a star-shaped conflict network consists of a center agent c who is in
conflict with all other agents such that gci = 1 for all i ∈ Nc and Nc = N \ {c}.
All agents of set Nc at the periphery are only in conflict with the center but
not with each other, gij = 0 for all i, j �= c and thus ni = 1 for all i ∈ Nc.
This implies that there are in total n− 1 bilateral conflicts in the star network.
Hence, the class of star networks, from now on denoted by S, is completely
characterized by nc = n − 1, the number of agents in the periphery.

The payoff of the center agent c can be written as

πc(ec, ei;gS) =
∑
i∈Nc

eci

eci + eic
2V − (Ec)2 − (n − 1)V, (7)

and the corresponding payoff by an agent p in the periphery is

πp(epc, ecp;gS) =
epc

ecp + epc
2V − (epc)2 − V. (8)

The following proposition summarizes the equilibrium in this class of star-
shaped conflict networks.

14



Proposition 3 In conflict networks of class S
(i) Conflict intensity is increasing in the number nc of agents in the periph-

ery.
(ii) For the center agent individual (aggregated) conflict investment is de-

creasing (increasing) in nc, while equilibrium probability and expected payoff is
decreasing in nc. For the periphery agent the same relation holds with respect
to individual conflict investment, while the relation is inversed for equilibrium
probability and payoff.

Proof. By Corollary 10 the equilibrium is interior and unique. Inspection of
the first order conditions reveals that the center agent invests the same amount
in each of her conflicts, i.e., e∗c(g

S) ≡ e∗ci(g
S) for all i ∈ Nc. This also holds

for each agent p in the periphery: e∗p(gS) ≡ e∗jc(g
S) for all j ∈ Nc. Calculating

those expressions yields:

e∗i (g
S) = p∗i (g

S)

√
V√
nc

for i ∈ {c, p} , (9)

where p∗c(gS) = 1
1+

√
nc

and p∗p(gS) = 1−p∗c(gS) are the equilibrium probabilities
for the center and the periphery agent to win a bilateral conflict. Note also, that
∂p∗

c (gS)
∂nc

< 0 and that ∂p∗
p(gS)

∂nc
> 0.

Individual conflict investment as expressed in Eq. (9) is decreasing in nc for
the center agent c and the periphery agent p. Aggregated conflict investment
of the center agent is E∗

c (gS) = nc e∗c(g
S) = n3/4

c

1+
√

nc

√
V , which is increasing in

nc. Plugging the obtained expressions into the payoff functions in Eq. (7) and
(8) yields the following expected equilibrium payoff:

πc(e∗c, e
∗
p;gS) = −nc(

√
nc + nc − 1)

(1 +
√

nc)2
V,

πp(e∗p, e
∗
c ;g

S) =
nc − 1 −√

nc

(1 +
√

nc)2
V.

Note that ∂πc(ec,ep;gS)
∂nc

< 0 and that ∂πp(ep,ec;g
S)

∂nc
> 0. Hence, equilibrium payoff

for the center agent is decreasing in nc, while it is increasing for an agent at the
periphery.

Finally, conflict intensity in a star conflict network can be expressed as:

E∗(gS) = nc[e∗c(g
S) + e∗i (g

S)] = n3/4
c

√
V , (10)

which is increasing in nc.

The results stated in proposition 4 imply that the center agent is worse
off if she faces more bilateral conflicts with the periphery. This is intuitive
because additional opponents of the center agent will also invest in the bilateral
conflict which forces the center agent to invest more into total conflict spendings

15



(E∗
c (gS) is increasing in the number of agents in the periphery). However, this

is not sufficient to induce equal or higher probability to win in each of her
conflicts. The marginal cost of the center is relatively higher compared with a
star-shaped network with less agents which explains why p∗ci(g

S) is decreasing in
nc. In addition, for n > 2 we have that p∗ci(g

S) < 1
2 . Hence, in conflict networks

with more rivals the center will more frequently loose conflicts in expectation.
As a consequence, expected equilibrium payoff π∗

c (gS) is strictly decreasing
in the number of rivals. This result bears some similarities to the historically ob-
served tendency of expanding empires to collapse at some point in time because
expansion requires more total investment for an increasing number of conflicts.
However, this types of investment are related with diminishing marginal returns,
as is argued in Tainter (1981). The following quotation clarifies his argumenta-
tion:

The economics of territorial expansion dictate, as a simple mat-
ter of mathematical probability, that an expanding power will ulti-
mately encounter a frontier beyond which conquest and garrisoning
are unprofitable. [...] The combined factors of increased costliness
of conquest, and increased difficulty of administration with distance
from the capital, effectively require that at some point a policy of
expansion must end. (ibid, p. 148 f.)

Although based on a specific historical case, i.e., the decline of the western
roman empire, this quotation reflects the importance of marginal increasing
costs (or equivalently declining marginal returns on investment) which is also
the driving force in the results for star-shaped conflict networks.

4.3 Complete Bipartite Conflict Networks

An intermediate case with respect to the symmetry of the underlying conflict
structure are complete bipartite conflict networks where the members of two
hostile coalitions are in conflict among each other. Hence, each agent of a
coalition is in conflictive relations with all the members of the hostile coalition,
as represented in the right part of figure 2. This type of conflict structure
resembles an ideological bipolar conflict because members of the two hostile
coalitions perceive each other as enemies.15

Moreover, the common ideology among coalition members implies that there
are no conflictive relations among agents of the same ideology. Historical exam-
ples of conflicts that fit to this description are the massive ideological conflicts
in the 20th century, especially the second world war where each country of the
Axis Powers were (at least at some point in time) in conflict with nearly each
member of the Allies.

15As mentioned earlier our basic assumption is that the underlying conflict network is
exogenously given. For a recent contribution that shows how a bipolar coalition structure
can be the stable equilibrium outcome in a coalition formation game embedded in a conflict
framework, see Jackson and Morelli (2007).
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A complete bipartite network, denoted by B, consists of two sets (coalitions)
of agents, X and Y , that each have x = |X | and y = |Y | members. All members
of set X are in conflict with each member of set Y and vice versa, such that
gij = 1 for all i ∈ X and all j ∈ Y . Agents of the same coalition are not in
conflict among each other: gij = 0 for all i, j ∈ X or i, j ∈ Y which also implies
that X = Nj for all j ∈ Y and vice versa.

The payoff function of an agent i ∈ X in a complete bipartite network B can
be stated as follows:

πi(ei, e−i;gB) =
∑
j∈Y

eij

eij + eji
2V − (Ei)2 − yV, (11)

and vice versa for an agent that is member of coalition Y . Note also, that the
star-shaped network is a special case of a bipartite network where one coali-
tion only consists of one (center) agent, i.e., S ⊆ B. Therefore, the following
proposition is a generalized version of Proposition 3.

Proposition 4 In conflict networks of class B,
(i) Conflict intensity is increasing in the number x and y of each coalition.
(ii) Conflict intensity in a complete bipartite network gB1 is higher than in

gB2 if and only if:
x1 y1 > x2 y2.

(iii) A larger coalition is beneficial for its members, i.e., each member of the
more numerous coalition invests less in total conflict investment, wins each bi-
lateral conflict with higher probability and has higher equilibrium payoff.

Proof. By Corollary 10 the equilibrium is interior and unique. Inspection of
the first order conditions reveals that each member of the same coalition invests
the same amount in each of her conflicts, e.g., for i ∈ X : e∗x(gB) = e∗ij(g

B) for
all j ∈ Ni and all i ∈ X . A symmetric observation holds for all agents j ∈ Y .
Hence, there exist only two levels of individual equilibrium conflict investment
in a bipartite conflict network:

e∗i (g
B) = p∗i (g

B)

√
V√
x y

for i ∈ {X, Y } , (12)

where p∗x(gB) =
√

x√
x+

√
y

for members of coalition X and p∗y(g
B) = 1 − p∗x(gB)

for members of coalition Y . Note also, that ∂p∗
x(gB)
∂x > 0, ∂p∗

x(gB)
∂y < 0, and that

p∗x(gB) > p∗y(gB) if and only if x > y. Total conflict investment of an agent
i ∈ X can be calculated as:

E∗
i (gB) =

√
V
√

x y

1 +
√

x
y

.
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This expressions is strictly increasing in x as long as x < y and becomes strictly
decreasing for x > y. Using the derived solutions to calculate expected equi-
librium payoff for an agent i ∈ X as specified in Eq. (11) yields:

πi(e∗i , e
∗
−i;g

B) =
y(x − y −√

x y)
(
√

x +
√

y)2
V,

which is strictly increasing in x. Note that this relation also implies that, for
i ∈ X and j ∈ Y , we have that πi(e∗i , e

∗
−i;g

B) > πj(e∗j , e
∗
−j;g

B) if and only if
x > y.

Conflict intensity in a complete bipartite network can be expressed as:

E∗(gB) =
√

(x y)
3
2 V . (13)

This expression is obviously increasing in x, as well as in y, the number of agents
in each coalition, which proves (i). Solving the inequality E∗(gB1) > E∗(gB2)
yields the condition stated in (ii).

In a complete bipartite conflict network a coalition becomes more powerful if
it has more members. The intuition for this result is similar to the star-shaped
network: Assume for a moment that x > y, then Proposition 5 implies that
members of coalition X will in expectation win each bilateral conflict with higher
probability, i.e., for i ∈ X and j ∈ Y , we have that p∗ij(g

B) > p∗ji(g
B) = 1 −

p∗ij(g
B), and therefore p∗ij(g

B) > 1
2 . Moreover, aggregated conflict investment

E∗
j (gB) of an agent j of coalition Y is increasing in x but this increase is not

sufficient to keep the win probabilities constant among all bilateral conflicts in
which she is involved. This relation also holds with respect to equilibrium payoff
that is increasing in the number of members of the respective own coalition. If
the lead in coalition membership is sufficiently large (out of the perspective of
coalition X : if x > y(3+

√
5)/2 ≈ 2.62 y) then it is possible that the conflict game

results in positive equilibrium payoff for the members of the more numerous
coalition.16

4.4 Conflict Intensity and Centrality

In the previous sections equilibrium outcomes were analyzed separately for each
of the considered conflict classes. In this section we present a result that allows to
compare conflict networks that belong to different classes within the considered
ones. This cross-comparison is facilitated by establishing a relation between
conflict intensity and network centrality, here eigenvector centrality, across the
considered classes of conflict networks R, S, and B. Its union is denoted by
C ≡ R ∪ S ∪ B.17

16As a star-shaped network is a special case of a complete bipartite network, this result also
holds for star-shaped conflict network, i.e., if the number of players in the periphery is 3 or
larger, then agents at the periphery have positive equilibrium payoff.

17A star-shaped network is a special case of a complete bipartite network, i.e. S ⊆ B. We
included it in the definition for completeness.
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The following additional notation is used: The symmetric adjacency ma-
trix18 G represents graph g and has elements gij where gii = 0 for all i ∈ N
(because no agent is in a conflictive relation with herself). The largest eigen-
value of G, denoted by μ(G), is real-valued and positive because G is symmetric.
By the Perron-Frobenius theorem the components (μ1(G), . . . , μn(G)) of the
eigenvector that corresponds to the largest eigenvalue μ(G) are all positive and
frequently interpreted as a centrality measure of the respective nodes of graph g.
Solving the characteristic equation for the considered classes of conflict networks
implies that:

• for regular networks: μ(gR) = d and μi(gR) = 1 for all i ∈ N .

• for star-shaped networks: μ(gS) =
√

n − 1, and

μi(gS) = 1 for all i ∈ Nc,

μc(gS) =
√

n − 1. (14)

• for complete bipartite networks:19 μ(gB) =
√

x y, and, assuming without
loss of generality that x > y:

μi(gB) = 1 for all i ∈ X,

μj(gB) =
√

x

y
for all j ∈ Y.

Based on this notation the following relation holds:

Corollary 5 For the class C of conflict networks total conflict intensity is pos-
itively related to the number of conflicts in the respective network and negatively
to the largest eigenvalue of its adjacency matrix. Individual conflict spending is
negatively related to individual eigenvector centrality and the largest eigenvalue.

E∗(gC) =
∑
i�=j

gij

2

√
V

μ(G)
, and (15)

e∗ij(g
C) =

μj(G)
μi(G) + μj(G)

√
V

μ(G)
. (16)

Proof. Applying the derived eigenvector results for the different network classes
to the equilibrium solutions for each type of conflict network yields the statement
in the corollary.

The comparison of equilibrium outcomes between the considered classes R,
S, or B based on this corollary is straight forward. The following example, that

18To save on notation we identify a network class with its adjacency matrix.
19It was already mentioned that a star-shaped network is a special case of a complete

bipartite network. This fact is also reflected by the expressions for eigenvalues and -vectors,
i.e., the eigenvalues and -vector of a star-shaped network can be obtained from those of a
bipartite network by simply setting x = c and y = n − 1.
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compares ring- and star-shaped conflict networks, provides the insight that the
local externality that is generated by the center agent plays an important role
for conflict intensity.

Two types of network structures are considered: g1 is a ring-shaped network,
i.e., a regular network of class R with degree d = 2, g2 is a star-shaped network
of class S, and both conflict networks have the same number of bilateral conflicts:∑

i�=j

g1
ij

2
=

∑
i�=j

g2
ij

2
. (17)

The last condition implies, in combination with Eq. (15), that the difference
in conflict intensity between g1 and g2 is solely determined by the relation of
their largest eigenvalues: E∗(g1) > E∗(g2) iff μ(G1) < μ(G2). It also should
be mentioned that a ring-shaped network with n agents is compared with a
star-shaped network that involves n + 1 agents, i.e., there is always one agent
more involved in g2 than in g1.

The largest eigenvalue of the ring-shaped network g1 is equal to its de-
gree, μ(G1) = 2, and therefore independent of the number of involved agents.
However, the largest eigenvalue of the star-shaped network g2 is equal to the
centrality of its center, μ(G2) = μc(G2) =

√
n, which is increasing in the num-

ber of involved agents. Hence, the comparison of conflict intensity between g1

and g2 does crucially depend on the centrality of the center in g2.
The direct comparison between g1 and g2 reveals that for n > 4 the rela-

tion E∗(g1) < E∗(g2) holds. In other words, although the number of conflicts
is identical among g1 and g2 the star-shaped network induces higher conflict
intensity for a low number of bilateral conflicts which is related to the fact that
an additional agent is involved in the star-shaped network g2. For higher num-
ber of conflicts the centrality of the center agent in the star-shaped network is
increased. Being more central implies higher externalities which tend to reduce
conflict investments by affected agents. There exists a cut-off value for the num-
ber of bilateral conflicts (n = 4) from which on the relation of conflict intensity
between g1 and g2 is reversed: for n > 4 we can observe that E∗(g1) > E∗(g2).
Hence, for a sufficiently high number of bilateral conflicts the local externality
that is induced through the center agent on each agent on the periphery becomes
so dominant that conflict intensity is lower in the star-shaped network.

5 Peaceful Conflict Resolution

In our framework agents are linked if there is a conflictive relation among them
and then they decide how much to invest in each of their bilateral conflicts.
Lemma 2 revealed that in equilibrium all agents invest positive amounts into
each of their bilateral conflicts. This also implies that conflict parties cannot
by themselves induce a peaceful outcome with zero conflict investment for the
respective bilateral conflict.20

20This result holds although in most cases both direct rivals would profit from zero invest-
ment. As already mentioned, the prisoner-dilemma like structure implies that they cannot
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Hence, peaceful conflict resolution is interpreted as the ad-hoc deletion of
conflictive relations in a given conflict network. Formally, the graph g that
remains after peaceful conflict resolution is a subset of the original graph g′. The
crucial question is how conflict intensity is affected by changing exogenously the
network structure, or, in other words, if peaceful conflict resolution is beneficial
in the sense that conflict intensity is reduced.

The following proposition answers this question under the restriction that
the original and the resulting conflict network belongs to class C of regular,
star-shaped, or bipartite conflict networks.

Proposition 6 For class C peaceful conflict resolution is beneficial with respect
to conflict intensity:

If g ⊂ g′, where g ∈ C and g′ ∈ C, then E∗(g) < E∗(g′). (18)

Proof. From proposition 2, 3, and 4 peaceful conflict resolution implies re-
duced conflict intensity if the resulting conflict network after peaceful conflict
resolution remains within the same class. It remains to check whether this re-
sult also hold across the considered classes. For peaceful conflict resolution of
star-shaped conflict networks the proof is trivial because the resulting conflict
network is always star-shaped. Also, peaceful conflict resolution of bipartite
networks is clearly beneficial if the resulting network is star-shaped because
star-shaped are subclasses of bipartite networks (Proposition 4 can be applied
directly). The remaining two cases are therefore:

1. Case: g ⊂ g′, with g ∈ R and g′ ∈ B

Peaceful conflict resolution is beneficial if E∗(g) < E∗(g′). We calculate
the largest possible conflict intensity Ē∗(g) = maxg⊂g′ E∗(g) for a regular
network g (with maximal degree d̄ and maximal number n̄ of agents)
that results from a bipartite network with x (y) members of coalition
X (Y ) through deleting links. Assume without loss of generality that
x < y. Then d̄ = min {x, y} = x, and similarly for n̄ = min {x, y} = x.
Hence, maximal conflict intensity for a regular network that results from
a bipartite network is Ē∗(g) =

√
x3V . This is clearly less than E∗(g′) =√

(xy)
3
2 V , which proves the statement.

2. Case: g ⊂ g′, with g ∈ B and g′ ∈ R

We derive the largest possible conflict intensity Ē∗(g) = maxg⊂g′ E∗(g)
of the resulting bipartite network with x (y) members of coalition X (Y )
that stems from a regular network g of degree d with n agents. We then
show that Ē∗(g) < E∗(g′) which proves the statement.

The bipartite network must satisfy the following inequalities: x + y ≤ n,

mutually commit to the efficient strategy of zero investment because it will be exploited by
the rival.
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x ≤ d, and y ≤ d, where one of this equation must be strict.21 Conflict

intensity for a bipartite network, E∗(g) =
√

(xy)
3
2 V will be maximal if

x = y because (xy)
3
2 is a concave and symmetric function. Hence, there

are two cases to check for the inequality Ē∗(g) < E∗(g′) to be satisfied:

• x = y < d and x + y = n which implies that x = y = n
2 and n < 2d:

Based on this information the inequality Ē∗(g) < E∗(g′) can be
reduced to: (n

2 )3 < n2d
4 , which is satisfied because n < 2d.

• x = y = d and x + y < n which implies that n > 2d: Based on
this information the inequality Ē∗(g) < E∗(g′) can be reduced to:
d3 < n2d

4 , which is satisfied because n > 2d.

As the inequality Ē∗(g) < E∗(g′) is satisfied for both cases, this relation
also holds for E∗(g) < E∗(g′), which proves the statement.

Proposition 6 is restrictive in the sense that it only covers cases where the
process of peaceful conflict resolution starts and ends with a conflict network
in class C. For irregular conflict networks that are not member of class C the
proposition makes no statement.

Figure 3: Example S2 before (left) and after (right) peaceful conflict resolution

In fact, peaceful conflict resolution can have highly adverse consequences.
In the following example, for instance, peaceful resolution of bilateral conflicts
does lead to an increase in total conflict intensity. Here, two centers of two
identical star networks (that each have nc = n − 1 agents in their respective
periphery such that there are in total 2n agents in this conflict network) are in

21Without the last restriction the following case could occur: x = y = d where n = d/2.
Here, the regular network with n = 2d describes a complete bipartite network with x = y = d.
As we consider a resulting regular network after the deletion of links, this case can be excluded.
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conflictive relation with each other. We are interested in the consequences for
overall conflict intensity induced through resolving the central conflict between
the center agents. The resulting graph of two stars with linked centers is denoted
by S2 and is represented, together with the situation after conflict resolution,
i.e., two isolated stars, in figure 3.

The payoff function of a center agent that is linked with the other center is:

πc(ec, e−c;gS2) =
∑
i∈Nc

eci

eci + eic
2V +

ecc

ecc + ecc
2V − (

∑
i∈Nc

eci + ecc)2 − nV,

where ecc denotes the conflict spending of one center against the other.22

Based on numerical solution techniques it is possible to calculate the con-
flict intensity E∗(gS2) for this network constellation and to compare it with
2E∗(gS), i.e., conflict intensity in a network with two isolated star-shaped con-
flict networks based on Eq. (10). Results are presented in table 1.23

nc E∗(gS2) 2E∗(gS)
8 8.639 8.607
9 9.529 9.514
10 10.392 10.392
11 11.234 11.247
12 12.055 12.080
13 12.856 12.895

Table 1: Conflict intensity for gS2 and gS

Surprisingly, resolving the central conflict may actually imply an increase
in conflict intensity. More precisely, if nc > 10 then E∗(gS2) < 2E∗(gS), i.e.,
peaceful conflict resolution induces higher conflict intensity if each of the two
stars has more than ten agents in the periphery. If nc < 10 then conflict intensity
decreases.

This result can be related to the negative externality that the center agent
exerts on the respective rivals in the periphery. This externality is induced
through the decrease in the number of conflictive relations of the center agent:
The direct effect is that the two center agents spend less in aggregated conflict
investment because they face less direct conflicts. However, they also shift part
of the conflict investment from the resolved central conflict to the periphery.
Agents in the periphery react to this increase in conflict spending of their rival
(the respective center agent) by also increasing investment into this conflict.

22Note that both star networks have the same number of agents in their periphery. It can
be shown that the only interior equilibrium is symmetric in the sense that both center agent
invest the same amount into the conflict against each other. Hence, it is not necessary to
discriminate between the two center agents.

23To apply those techniques it is assumed that V = 1. Results are similar for different
numerical values of V.
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Hence, if the number of periphery agents is sufficiently large, those indirect
effects (the externality induced by resolving the central conflict) by the periphery
dominate the direct effect of decreased aggregated spending by the two center
agents.

This example shows, that paying attention to the underlying structure of
conflicts is crucial for the success of peaceful conflict resolution. It also sug-
gests that the resolution of bilateral conflicts should be targeted with respect to
the underlying conflict structure to guarantee a reduction of conflict intensity.
However, finding the bilateral conflict that would (by peacefully resolving it)
induce the maximal decrease in conflict intensity requires an analytical solution
of Eq. (19) which in general does not exist for conflict networks outside of class
C. In the next section we derive partial results that indirectly characterize the
bilateral conflict that induces the highest aggregated conflict spending. This
bilateral conflict might constitute a presumably valuable target for peaceful
conflict resolution.

6 General Irregular Conflict Structures

The results derived in the previous section are based on the assumption that
the conflict network belongs to class C. This assumption is now relaxed by
extending the analysis to general irregular networks. As already mentioned,
individual conflict spending can be characterized as the solution to the following
system of

∑
i∈N ni first order equations:24

e∗ki

(e∗ik + e∗ki)2
V = E∗

i , for all k ∈ Ni and all i ∈ N . (19)

Analytical solutions for this system of non-linear equations do in general not
exist. However, the following reformulation allows to derive some additional
indirect results.

Combining the two first order conditions for two direct rivals i and j implies
that in equilibrium:

e∗ij
e∗ji

=
E∗

j

E∗
i

, and (20)

e∗ij + e∗ji =
V

E∗
i + E∗

j

. (21)

The probability to win the bilateral conflict can be expressed in terms of aggre-
gated conflict spending of the two rivals:

p(e∗ij , e
∗
ji) =

E∗
j

E∗
i + E∗

j

(22)

24The dependence of equilibrium conflict spendings on graph g is suppressed in the following
section for notational convenience.
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It is assumed that the agents are ordered according to their level of aggre-
gated equilibrium investment, i.e., E∗

1 ≤ E∗
2 ≤ . . . ≤ E∗

n.25 Then the following
relation holds in equilibrium:

Proposition 7 If agent i is in conflict with agent j and i < j then agent i will
win this conflict with higher probability.

Proof. If i < j then E∗
i ≤ E∗

j because the agents are ordered. By Eq. (20) this
implies that e∗ij ≥ e∗ji. By the definition of the probability p(e∗ij , e

∗
ji) ≥ p(e∗ji, e

∗
ij)

and hence p∗ij ≥ 1
2 .

This result is counter-intuitive at first sight because it states that agent i will
win the conflict against j although she invests in total less in all her conflicts
than her rival j. However, the reason for j investing relatively more in total
conflict spending in equilibrium is due to the fact that she either faces very
aggressive rivals or because she has a lot of them. Both situations favor her
direct rival i who can guarantee a high winning probability because agent j
will not invest too much into the conflict against i in comparison to her other
conflicts. Note, that the same intuition has been discussed in the section on star-
shaped networks where the center agents is the one with highest total conflict
investments but still looses in expectation in each bilateral conflict with the
periphery.

By combining Eq. (20) and (21) it becomes obvious that individual conflict
spending into a singular bilateral conflict is totally determined by the aggregated
conflict spending of the two directly affected rivals:

e∗ij =
E∗

j

(E∗
i + E∗

j )2
V.

This allows the simplification of the system of
∑

i∈N ni first order conditions as
specified in Eq. (19) to a system of only n equations:

E∗
i =

∑
j∈Ni

E∗
j

(E∗
i + E∗

j )2
V for all i ∈ N.

However, this system of equations is still non-linear and can not be solved ana-
lytically. Overall conflict intensity can be indirectly expressed in the following
way:

E∗ =
∑
i∈N

E∗
i =

∑
i�=j

gij

2
V

E∗
i + E∗

j

. (23)

Note that the same caveat as in footnote 25 applies here because E∗, as well
as E∗

i , depend on the whole network structure g. This implies that changes in
the network structure g, for instance ad-hoc deletion of conflictive links, affect

25Ordering agents according to their aggregated individual equilibrium spending obviously
depends on the network structure. In this sense Proposition 7 is an indirect result because
this order is based on equilibrium outcomes.
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E∗ in two ways: First, there is a direct effect because at least one gij takes on
a value of zero which tends to reduce conflict intensity (at least one term in the
sum of Eq. (23) is eliminated. Second, there are also indirect effects because all
agents in the network will react to the change in aggregated conflict investment
that is induced by the direct effect. This implies that all remaining terms in
the sum are altered. In general, it is not clear which effect dominates the other
because the indirects effect depend in a complex way on the network structure
g.26

Nevertheless, those results can be used to determine the bilateral conflict
that induces the highest aggregate conflict investment maxj∈Ni E∗

ij for all i ∈ N
where E∗

ij = e∗ij + e∗ji. By Eq. (21) E∗
ij is maximal for the bilateral conflict be-

tween those agents that have the lowest aggregated conflict investment. This
seems to suggest that isolated bilateral conflicts where affected agents do not
have any additional rivals induce the highest levels of conflict spending. Intu-
itively, for agents in isolated conflicts there is no local externality from other
conflicts that tends to reduce conflict investment. The question whether such
an isolated conflict is the optimal target for peaceful conflict resolution must
remain open because the feedback effects that are induced by resolving alterna-
tive (and more embedded) bilateral conflicts cannot be compared based on the
indirect results derived here.

7 Discussion

The model as presented in section 4 ff. is based on specific functional forms.
Here, we argue that our results are (at least qualitatively) robust to more general
specifications as long as they are in the framework of section 2. For instance, we
additionally considered a convex (but not necessarily quadratic) cost function
of the type c(ei) = Er

i with r > 1 that did neither alter our results for conflict
networks of the combined class C, nor the indirect results derived in section 6.27

Moreover, a more general contest success function of the type pij = es
ij

es
ij

+es
ji

with

s ∈ (0, 1] should not alter our results substantially.
In our set up heterogeneity among agents is implicitly induced by the rel-

evant position in the potentially irregular network structure. Hence, adding
another source of heterogeneity, for instance different valuations or different
cost functions, might influence our results. If this second source of heterogene-
ity is sufficiently important then it will dominate differences in behavior induced

26In the example presented in section 5 the indirect effects dominated the direct effects,
while this is never the case for peaceful conflict resolution of conflict networks within class C.

27The numerical values that we derived in section 4.3 and section 5 would obviously be
different without affecting the argumentation in these sections. Also the relation to eigenvector
centrality is sensitive with respect to quadratic cost functions, compare Ballester et al. (2006)
for a brief discussion of this issue. It should also be mentioned that for r → 1 the externality
that is induced through the network structure vanishes because for r = 1 the marginal costs
of investing into a specific bilateral conflict is independent of the other conflict investments of
an agent.
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by different locations in the network. The following extension clarifies this intu-
ition for conflict networks of class C. We relax the assumption that each agent
can win (or loose) in principle the same amount of resources in each conflict.
Instead, the value of contested resources depends now on the number of rivals
that an agent faces: Vi = V

ni
. Equilibrium investment is now identical for each

agent in a given network of class C: e∗ij(g
c) = k(gc) for all j ∈ Ni and all i ∈ N ,

where k(gc) is a constant that depends on the underlying network structure.28

Hence, in this specification the heterogeneity of the network structure is exactly
balanced out by the heterogeneity in valuations.

In our framework we assume that the underlying conflict network is given ex-
ante without specifying how it came into existence. Hence, the formation process
of the conflict network could be an interesting extension. However, the usual
stability conditions, for instance pairwise stability, see Jackson and Wollinsky
(1996), are not applicable in our context because at least one rival in each
bilateral conflict has negative payoff in equilibrium. This would imply that at
least one agent would sever the respective link in each bilateral conflict such that
all conflict networks would be unstable. Still, our model has some elements of
network formation because investing zero into a specific bilateral conflict is part
of the individual strategy space of an agent. Two direct rivals could therefore
leave a link inactive if they mutually decided not to invest into the respective
conflict. We already argued that this mutually beneficial strategy cannot occur
in equilibrium because it is exploitable by the involved agents. Hence, the
reason why agents in our set up do not decide to endogenously dissolve links
is not related with network stability but with the lack of commitment devices
that would allow them to coordinate on peaceful behavior.

8 Concluding Remarks

Analyzing conflict situations that are embedded in a structure of conflictive
relations yields constructive results with respect to equilibrium conflict inten-
sity and network characteristics. While we confirm the intuitive statement that
more conflictive relations imply higher conflict intensity for an important class
of conflict structures, i.e., regular, star-shaped, and complete bipartite con-
flict networks, we also provide an example under which this statement is not
true. Nevertheless, a general relation between conflict intensity and a promi-
nent centrality measure is established for the three mentioned classes of conflict
networks.

Extending the analysis to more general irregular networks is a complex is-
sue due to the fact that no closed form equilibrium solutions exist. Indirect
results allow us to characterize the bilateral conflict that induces maximal con-
flict investment. Moreover an inverse relation between individual aggregated
conflict spending and the individual win probability for each bilateral conflict
is established.

28For regular networks individual conflict investment is now also independent of the respec-
tive degree, i.e., all regular conflict networks induce the same individual conflict investment.
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An advantage of our simple model is that, contrary to most of the literature
that considers games played on fixed networks, the resulting equilibrium is in-
terior and unique. This feature in combination with the very intuitive contest
rule should make our model especially attractive for experimental approaches
which is part of our ongoing research.

Appendix

Due to the discontinuity of the applied contest success function (CSF) with
pij = eij

eij+eji
at the point (0, 0) the existence result established in Proposition

1 cannot be applied directly.29 Therefore, an extended existence result for the
conflict network game as specified in Eq. (1), (4) and (5) is provided in this
appendix based on the following line of arguments. In Lemma 8 we show that an
equilibrium (if it exists) in the conflict network game as specified in Eq. (1), (4)
and (5) must be interior. We then use a suggestion by Myerson and Wärneryd
(2006), where it is observed that the CSF pij = eij

eij+eji
can be obtained as the

limit of the function p̄ij = eij+a
eij+eji+2a as a → 0 for a > 0. This alternative CSF30

is continuous everywhere and also satisfies all the conditions of Proposition 1.
Therefore, Lemma 9 states that there exists a unique equilibrium in a conflict
network game based on this alternative CSF p̄ij which is also interior. As pij

can be obtained as the limit of p̄ij where the same relation also holds for its first
order conditions, Corollary 10 then states that there must exist a unique and
interior equilibrium for the original conflict network game based on Eq. (1), (4)
and (5).

Lemma 8 If an equilibrium exists in the conflict network game as specified in
Eq. (1), (4) and (5) then it is interior.

Proof. The proof consists of two parts:

1. Claim: Two direct rivals cannot exert zero conflict investment in equi-
librium in their respective bilateral conflict.

Consider an arbitrary strategy profile (ei, e−i), where eij = eji = 0 and
j ∈ Ni. Consider now the following strategy e′i = (ei1, . . . , e

′
ij , . . . , eini)

where e′ij = ε for ε sufficiently small. This is a profitable deviation because
πi(e′i, e−i;g) > πi(ei, e−i;g) as p(e′ij , eji) = 1 > p(eij , eji) = 1/2 due
to the discontinuity at (0, 0) while limε→0c(e′i) = c(ei) because the cost
function is continuous.

2. Claim: An agent cannot exert zero conflict investment in equilibrium
against a rival with positive conflict investment.

29There also exist alternative approaches that provide existence proofs for discontinuous
payoff functions which might be applicable in our framework, for instance, Baye et al. (1993),
and Reny (1999). However, in this literature the issue of uniqueness is usually not addressed
which is crucial for comparative static analysis.

30A similar functional form is also used, for instance, in Nti (1997).

28



Assume by contradiction that there exists an equilibrium strategy pro-
file e∗ = (e∗1, . . . , e∗i , . . . , e

∗
j , . . . , e

∗
n) with j ∈ Ni where agent i invests

e∗ij = 0 and its rival j invests e∗ji > 0 into the respective bilateral conflict.
The following strategy is a profitable deviation: e′j = (e′ji, e

∗
j−i) where

e′ji ∈ (0, e∗ji) and e∗j−i = {e∗jk}k∈Nj/i, i.e., agent j only reduces conflict
spending against rival i without altering conflict investment in all other
conflicts. Note that p(e′ji, e

∗
ij) = p(e∗ji, e

∗
ij) = 1 while c(e′j) < c(e∗j ) and

therefore πj(e′j, e
∗
−j;g) > πj(e∗j , e

∗
−j;g). Hence, e∗ cannot be an equi-

librium strategy profile.

Interiority of equilibrium would imply that an equilibrium can be character-
ized by first order conditions. Note also, that the strategy that is related with
this discontinuity cannot be part of an equilibrium strategy.

Based on the mentioned suggestion by Myerson and Wärneryd (2006), we
now substitute the CSF in the original conflict network game by the following
expression:

p̄ij =
eij + a

eij + eji + 2a
with α > 0. (24)

Note first that the CSF pij can be obtained as the limit from the alternative CSF
p̄ij for a → 0: pij = limα→0 p̄ij , because eij

eij+eji
= limα→0

eij+a
eij+eji+2a . The same

relation holds for a generic equation from the system of first order conditions for
the two CSFs: ∂pij

∂eij
= limα→0

∂p̄ij

∂eij
, because eji

(eij+eji)2
= limα→0

eji+a
(eij+eji+2a)2 .

Note also that Eq. 24 is continuous everywhere and that a conflict network
game based on Eq. (1), (4) and (24) satisfies all the conditions mentioned in
Proposition 1. Hence, by the same proposition a unique equilibrium exists for
this setup. The following Lemma summarizes this result and additionally shows
that this equilibrium is interior.

Lemma 9 There exists a unique and interior equilibrium for the alternative
conflict network game based on Eq. (24).

Proof. The alternative CSF p̄ij is everywhere continuous and a conflict network
game based on this alternative CSF is a concave game which is diagonally strictly
concave. Hence, Proposition 1 can be applied to proof that there exists a unique
equilibrium. This equilibrium is also interior for a sufficiently small, which is
proved in a similar way as in Lemma 8:

• Claim 1: For a sufficiently low two direct rivals cannot exert zero conflict
investment in equilibrium in their respective bilateral conflict .

Assume by contradiction that there exists an equilibrium strategy profile
e∗ = (e∗1, . . . , e∗i , . . . , e

∗
j , . . . , e

∗
n) with j ∈ Ni where e∗ij = e∗ji = 0. Evalua-

tion of the respective first order derivative at the equilibrium point reveals
that ∂πi(e

∗
i ,e∗

−i)

∂eij
= 1

4a − 2
∑

j∈Ni
e∗ij , which should be non-positive to sus-

tain an equilibrium e∗. However, the last expression will be positive for
small a which is a contradiction to the statement that e∗ is an equilibrium.
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• Claim 2: For a sufficiently low an agent cannot exert zero conflict invest-
ment in equilibrium against a rival with positive conflict investment.

Assume by contradiction that there exists an equilibrium strategy profile
e∗ = (e∗1, . . . , e∗i , . . . , e

∗
j , . . . , e

∗
n) with j ∈ Ni where agent i invests e∗ij > 0

and its rival j invests e∗ji = 0 into the respective bilateral conflict. This
implies that in equilibrium the respective first order condition for player i

is satisfied by equality: ∂πi(e
∗
i ,e∗

−i)

∂eij
= a

(e∗
ij+2a)2 − ∑

j∈Ni
e∗ij = 0. However,

in the limit for a → 0 the last equality cannot hold which contradicts the
statement that e∗ is an equilibrium.

The results obtained so far imply that, by Lemma 8, an equilibrium in the
original conflict network game based on CSF pij is interior (if it exists) and
therefore characterized by first order conditions. By Lemma 9 the alternative
conflict network game based on the continuous CSF p̄ij has a unique and interior
equilibrium which is therefore also characterized by first order conditions. We
also showed that pij as well as a generic equation from its system of first order
conditions can be obtained in the limit for a → 0 from the alternative CSF
p̄ij . Hence, for the limit a → 0 the equilibrium result carries through which is
summarized in the following corollary:

Corollary 10 There exists a unique and interior equilibrium for the conflict
network game as specified in Eq. (1), (4) and (5).
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Beviá, C., and L.C. Corchón (2008). “Peace Agreements without Commitment,”
Working Paper.
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Goyal, S., and J.L. Moraga-González (2001). “R&D Networks, ” RAND Journal
of Economics 32(4): 686-707.

Hillman, A., and J.G. Riley (1989). “Politically Contestable Rents and Trans-
fers,” Economics and Politics 1: 17-39.

Jackson, M.O., and M. Morelli (2007). “Political Bias and War,” American
Economic Review 97(4): 1353-1373.

Jackson, M.O., and A. Wollinsky (1996). “A Strategic Model of Social and
Economic Networks,” Journal of Economic Theory 71: 44-74.

Konrad, K.A. (2009). “Strategy and Dynamics in Contests,” Oxford University
Press.

Konrad, K.A. (2007). “Strategy in Contests - An Introduction,” Discussion
Paper SP II- 01, Social Science Research Center Berlin.

Leininger, W. (2003). “On Evolutionary Stable Behavior in Contests,” Economics
of Governance 4: 177–186.

Myerson, R.B., and K. Wärneryd (2006). “Population Uncertainty in Contests,”
Economic Theory 27: 469-474.

Nti, K.O. (1997). “Comparative Statics of Contests and Rent-Seeking Games,”
International Economic Review 38(1): 43-59.

Renfrew, C., and J.F. Cherry (1986). “Peer Polity Interaction and Socio-Political
Change.” Cambridge University Press.

Reny, P.J. (1999). “On the Existence of Pure and Mixed Strategy Equilibria in
Discontinuous Games,” Econometrica 33(3): 520-534.

Rosen, J. (1965). “Existence and Uniqueness of Equilibrium Points for Concave
N-Person Games,” Econometrica 33(3): 520-534.

Skaperdas, S. (1992). “Cooperation, Conflict, and Power in the Absence of
Property Rights,” American Economic Review 82(4), 720-739.

Tainter, J.A. (1988). “The Collapse of Complex Societies.” Cambridge University
Press.

Tullock, G. (1980), “Efficient Rent Seeking.” in J. Buchanan, R. Tollison, and
G. Tullock (eds), Towards a Theory of the Rent-Seeking Society, A & M
University Press: 97-112.

32




