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1 Introduction

This paper examines if the folk theorem of perfect competition holds under

Bertrand competition, both when entry is exogenous, as well as free. Inter

alia, it also characterizes the limit equilibrium sets.

We focus on price competition when firms supply all demand. The as-

sumption that firms supply all demand can, in fact, be traced back to Cham-

berlin (1933).1 This assumption is appropriate when the costs of turning

away customers are very high (see Dixon (1990), or Vives (1999)). Such

costs may arise because of either reputational reasons, or governmental reg-

ulations. Vives (1999) argues that such regulations are operative in U.S.

industries like electricity and telephone.

We study the properties of the limit equilibrium set under Bertrand com-

petition both when entry is exogenous, as well as when it is free. Under the

exogenous entry approach, pioneered by Ruffin (1971) and Okuguchi (1973)

for the case of Cournot competition, we solve for the n-firm Bertrand equi-

librium where demand is given and all firms are active in equilibrium. Under

the free entry approach, pioneered by Novshek (1980) for the case of Cournot

competition, we consider an r-fold replication demand and then solve for the

free entry Bertrand equilibrium where at least one firm is inactive. We then

examine the limit equilibrium sets under both these approaches. The ob-

jective is to examine if, for the Bertrand framework, the folk theorem of

perfect competition holds, in the sense that the set of limit equilibrium

prices contains the perfectly competitive price(s), and no other price(s).2

We then briefly summarize our main results.
1It has also been adopted, among others, by authors like Bulow, Geanakoplos and

Klemperer (1985), Dastidar (1995), Novshek and Roy Chowdhury (2003), and Vives (1990,

1999).
2While the folk theorem is relatively well explored in the Cournot framework, (see,

among others, Novshek (1980), Okuguchi (1973) and Ruffin (1971)), it is much less so in

the Bertrand framework.

1



First consider the case with exogenous entry. To begin with we charac-

terize the limit-equilibrium set. We then use this characterization to show

that the folk theorem fails to hold unless average cost is constant (and, for

all prices greater than the average cost, the demand function achieves its

maximum at the average cost).

Under the free entry case, we begin by characterizing the limit equilib-

rium set for average cost functions that are ultimately either increasing, or

decreasing. For these class of cost functions we demonstrate that the folk

theorem fails to hold. However, it does hold if the average cost function

is constant (and, for all prices greater than the average cost, the demand

function achieves its maximum at the average cost).

Finally, in the Appendix we show that irrespective of whether entry is

exogenous, or free, our results regarding the folk theorem goes through even

if we allow for multiple price equilibria.

We then relate our paper to the literature. This problem has been ex-

amined earlier by Novshek and Roy Chowdhury (2003) (NRC from now

on), though for the case when the demand function is negatively sloped and

the average cost function is primarily either U-shaped, or increasing.3 The

assumptions on the demand and the cost functions imposed by NRC are

certainly quite reasonable. Given the importance of the issue, however, it is

of interest to re-examine the problem under a minimal set of restrictions on

the demand and the cost functions.

Hence in this paper we essentially only assume that the demand function

is continuous and intersects both the axes, and that the cost function is

continuous (except possibly at the origin). Moreover, for the free entry

case the average cost function is assumed to be ultimately monotonic. In

particular, we do not assume that the demand function is negatively sloped,

or that the average cost function is either increasing, or U-shaped. Further,
3NRC, of course, also characterize the limit equilibrium set when average costs are

constant, or decreasing, or have a capacity constraint.
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in the paper we derive conditions under which the characterizations derived

in this paper coincide with those in NRC.

The rest of the paper is organized as follows. In the next section we

describe the model. The case with exogenous entry is analyzed in Section

3, whereas Section 4 considers the case with free entry. Section 5 concludes.

In the Appendix we allow for multiple price equilibria.

2 The Model

The market M(n) comprises the demand function f(p) and n firms, all

producing a single homogeneous good, and having the same cost function,

c(q) and the average cost function AC(q).4

The market demand function f(p) satisfies the following assumption.

Assumption 1: (a) f : [0,∞) → [0,∞).5 Moreover, f(p) is continuous.

(b) There exists a choke-off price p̂ (> 0) such that, ∀p ≥ p̂, f(p) = 0,

and, ∀p < p̂, f(p) > 0.

Note that the demand function is not necessarily negatively sloped.6

The cost function satisfies the following assumption.

Assumption 2: (a) c : [0,∞) → [0,∞). Moreover, c(0) = 0 and

c(q) > 0, ∀q > 0.

(b) The cost function is continuous, except possibly at the origin.

(c) AC : (0,∞) → (0,∞).7 Moreover, there exists p such that p >

4For ease of comparison, the notations in this paper closely follow those in NRC.
5Note that this implies that f(0) is finite.
6Other papers to allow for a general class of demand functions include, among others,

Allen and Hellwig (1986) and Maskin (1986) (both these papers are in the Bertrand-

Edgeworth framework).
7Given Assumptions 2(a) and 2(b), AC(q) is well defined and continuous on (0,∞).
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AC(f(p)).8 Finally, b = limq→0 AC(q) is well defined (allowing for infinity

as a possible limit).

Note that we do not assume that the average cost function is necessarily

either increasing, or U-shaped (we say that AC(q) is U-shaped if there exists

q∗ > 0 such that the average cost function is strictly decreasing for all

0 < q < q∗, and strictly increasing for all q > q∗).

We examine a game of Bertrand competition where the firms simultane-

ously announce their prices, and the Chamberlin (1933) assumption holds.

Assumption 3. The firms supply all demand.

Let Di(p1, · · · , pi, · · · , pn) denote the residual or contingent demand fac-

ing firm i when the announced price vector is (p1, · · · , pi, · · · , pn). We assume

that the residual demand is the parallel, or the efficient one.9 Further, firms

charging the same price share the residual demand equally between them.

Thus

Di(p1, · · · , pi, · · · , pn) =
max{0, f(pi)−

∑
j:pj<pi

Dj(p1, · · · , pn)}
mi

, (1)

where mi denotes the number of firms charging pi.

The profit of the i-th firm

πi(p1, · · · , pn) = (pi −AC(Di(p1, · · · , pn)))Di(p1, · · · , pn). (2)

We solve for the pure strategy Nash equilibrium in prices, i.e. Bertrand

equilibrium.

Definition. A Bertrand equilibrium for the market M(n) consists of a
8This implies that the optimal monopoly profit is strictly positive. It is equivalent to

the NRC assumption that f(p) and AC(q) intersect at least once in the p− q plane.
9Our results are not dependent on the specific rationing rule being used though.
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price vector (p1, · · · , pi, · · · , pn) such that, ∀i and ∀p′i,

πi(p1, · · · , pi, · · · , pn) ≥ πi(p1, · · · , p′i, · · · , pn). (3)

In this paper we shall be mainly concerned with single price Bertrand

equilibria, where all active firms (i.e. firms with positive output) charge

the same price. For an important class of demand functions, i.e. negatively

sloped ones, it is easy to see that all Bertrand equilibria are necessarily single

priced (follows from Assumption 3).10

Finally, a Bertrand equilibrium is said to be a free entry equilibrium if

some of the firms are not active, i.e. have zero demand.

3 Exogenous Entry

In this section we examine a situation where the number of active firms is

taken to be exogenously given. We study the limiting equilibrium outcomes

as the number of active firms goes to infinity. Following NRC, we character-

ize the set of all prices p such that if the number of firms n is large enough,

then, for the market M(n), there is some single price equilibrium where all

firms are active and the equilibrium price is arbitrarily close to p.

Definition: S = {p : there is a sequence p(n) that converges to p

such that, for each sufficiently large n, all firms setting a price p(n) is an

equilibrium for the market M(n)}.

We need some more notations before we can characterize S.

c∗ = infq AC(q).11

p̃ = argmaxp∈[0,p̂] f(p).12

10For Cournot competition also, all equilibria are single priced. In the Appendix we

briefly allow for equilibria that are not single-priced.
11Given that AC : (0,∞) → (0,∞), c∗ is finite.
12Given that f(p) is continuous, p̃ and f(p̃) are well defined.
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d̃ = inf {p : p > AC(f(p))}.13

d is the minimum p such that AC(f(p)) = p.14

F (r) = {p : ∀ p′ > p, either (a) f(p′) ≤ f(p), or (b) f(p′) > f(p) and

p′ ≤ AC(rf(p′)− rf(p))}.15 For ease of exposition we write F (1) = F .

p = argmaxp∈(c∗,p̂] f(p).

For any set A, let A denote the closure of A.

We then impose the following regularity condition.

Assumption 4. (i) If b = d̃, then the cost function is either linear, or

there exists t > 0 such that AC(q) is negatively sloped for all q ∈ (0, t).

(ii) If p is well defined, then f(p) 6= f(c∗).

It may be argued that Assumption 4 is not very strong.16 Recall that

in the NRC framework, b = d̃ implies that the average cost function is

U-shaped, so that Assumption 4 is necessarily satisfied.

Proposition 1 below characterizes the set S.
13Given Assumption 2(c), the set {p : p > AC(f(p))} is non-empty. Since p = 0 is a

lower bound, there is a least upper bound. Hence d̃ is finite.
14Given Assumption 2(c), d is well defined.
15Clearly, F (r) is closed. Suppose p /∈ F (r). Then ∃p′ > p such that f(p′) > f(p) and

p′ > AC(rf(p′) − rf(p)). Clearly, for any p + ε, ε > 0 but sufficiently small, p′ > p + ε,

f(p′) > f(p + ε) and p′ > AC(rf(p′)− rf(p + ε)).
16Consider 4(i). This is because in general b 6= d̃. Take f(p) and AC(q) such that b = d̃.

Now if the two functions are perturbed slightly (in an appropriate manner), then it will no

longer be the case that b = d̃. For example, consider the family of demand functions λf(p),

λ different from, but close to 1. Let d̃(λ) denote the appropriately modified version of d̃

for the demand function λf(p). Assuming that AC(q) does not have horizontal segments,

and f(p) does not have vertical segments (in the p−q plane), for λ close to 1, d̃(λ) 6= d̃ = b.

Next consider 4(ii). Suppose that f(p) = f(c∗). Let us perturb AC(q) by considering the

family of functions λAC(q), where λ is close to 1. Thus unless c∗ = 0, c∗(λ) 6= c∗, for

λ 6= 1 (where c∗(λ) is the obvious extension of c∗ for λf(p)). Thus if f(p) does not have

a vertical section then, for λ close enough to 1, f(p) 6= f(c∗(λ)).
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Proposition 1. Let Assumptions 1, 2, 3 and 4 hold.

(i) If b < d̃, then S = (b, d̃) ∩ F .

(ii) If b > d̃, then S is empty.

(iii) If b = d̃, then S = {b}, if either (a) AC(q) is constant, and p is not

well defined, or (b) there exists some sequence < p(n) > in F such that, ∀n,

p(n) < b, and < p(n) > converges to b. Otherwise, S is empty.

Proof: To begin with we argue that no price less than b, or greater than

d̃, or not in F , can belong in S. Suppose that p(n) converges to p as n

increases and for each sufficiently large n, all n firms setting a price p(n) is

an equilibrium for M(n).

Note that the output per active firm is at most f(p̃)
n , which converges to

zero as n goes to infinity. Thus if p < b, then for all sufficiently large n,

p(n) < AC(f(p(n))
n ), so that p(n) cannot be an equilibrium price.

Next let p > d̃. Note that profit per active firm, [p(n)−AC(f(p(n))
n )]f(p(n))

n ,

is less than (p̂ − c∗)f(p̃)
n . Thus, for n large, profit per active firm con-

verges to zero. Moreover, from the definition of d̃, there exists p′ such that

d̃ < p′ < p(n) and p′ > AC(f(p′)). Undercutting to such a price p′ yields a

strictly positive profit that depends on p′, but not on n. Thus, for n large,

undercutting is strictly profitable.

Next consider some p /∈ F . As argued earlier, for n large, profit per active

firm goes to zero. Since p /∈ F , there exists p′ > p such that f(p′) > f(p)

and [p′ −AC(f(p′)− f(p))][f(p′)− f(p)] > 0. Given that F is closed, for n

sufficiently large, we can find some p(n) such that p′ > p(n), f(p′) > f(p(n))

and [p(n)−AC(f(p(n))
n )]f(p(n))

n < [p′−AC(f(p′)−f(p(n)))][f(p′)−f(p(n))].

Hence one of the firms can deviate to p′, and make a strict gain.

We then argue that every price in the interval (b, d̃) ∩ F is in the limit

set. If p > b, then, for any sufficiently large n, if n firms set such a price

then each firm will produce an output at which p exceeds average cost, and

thus obtain a positive profit. Undercutting is unprofitable since for any p
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strictly less than d̃, an undercutting firm cannot make a positive profit as

p ≤ AC(f(p)). Finally, since p ∈ F , none of the firms can charge a higher

price and gain.

Next we consider p ∈ (b, d̃) ∩ F − (b, d̃) ∩ F . Suppose b < d̃. Since

p ∈ (b, d̃) ∩ F , any such p can be obtained as the limits of appropriate

sequences of equilibrium prices, p(n), described above.

Finally, let b = d̃ < p̂.17 First suppose average cost is constant, and p

is not well defined. Since p is not well defined, f(c∗) > f(p), for all p > c∗

(otherwise ∃p > c∗ such that f(p) ≥ f(c∗). But then p = arg max[c∗,p̂] f(p),

which is well defined). Then p = b = c∗ can be sustained as a Bertrand

equilibrium for all n. Further, any p > b will be undercut. Whereas if

AC(q) is constant, and p is well defined, then the only possible equilibrium

involves the firms charging b = c∗, when they have an incentive to deviate

to p. This follows since from Assumption 4(ii), f(p) > f(c∗).

Next, given Assumption 4(i), we assume that there exists t > 0 such that

AC(q) is negatively sloped for all q ∈ (0, t). Consider some p ∈ (AC(t), b).

Let q̃(p) be the unique q, 0 < q < t, such that AC(q̃(p)) = p. Next, let n(p)

satisfy f(p)
n(p) = q̃(p), where n(p) can be a non-integer. Given that f(b) > 0

and limp↑b q̃(p) = 0, it follows that limp↑b n(p) → ∞. Next, let ñ(p) be

the largest possible integer such that p ≥ AC(f(p)
n ) (this is well defined

for n(p) large enough). Clearly, there exists some largest interval (b′, b),

AC(t) ≤ b′ < b, such that for all p ∈ (b′, b), ñ(p) is well defined. Given that

|n(p)− ñ(p)| < 1 and limp↑b n(p) →∞, we have that limp↑b ñ(p) →∞. Let

n̂ = minp∈(b′,b) ñ(p).

We then construct a sequence < p(n) >⊆ F such that ∀i ∈ {0, 1, 2, . . .},
p(n̂ + i) is some p ∈ (b′, b) such that n̂ + i = ñ(p). Note that for n ≥ n̂, the

pair (n, p(n)) belongs to the graph of ñ(p). Thus p(n) ≥ AC(f(p(n))
n ), so that

all firms earn non-negative profits. Moreover, since p(n) < b = d̃, no firm can

17Since f(p) is negatively sloped at p̂, it cannot be the case that b = d̃ > p̂. If b = d̃ = p̂,

then all firms charging p̂ and having zero demand and supply is an equilibrium for M(n).
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undercut profitably. Finally, we argue that the sequence < p(n) > converges

to b. Suppose not. Then there exists some ε > 0 and some sub-sequence

< p(ni) > such that p(ni) ≤ b − ε, ∀ni. Note that limni→∞
f(p(ni))

ni
≤

limni→∞
f(p̃)
ni

= 0. Hence, for ni large enough, p(ni) < AC(f(ni)
ni

). This,

however, is a contradiction since for all ni, (ni, p(ni)) belongs to the graph

of ñ(p).

3.1 The Folk Theorem

We next use Proposition 1 to examine whether the folk theorem of perfect

competition holds or not, i.e. if S = {c∗}.

Definition. f(p) is said to be of limited variation if, ∀p ∈ [c∗, p̂], ∃ε(p) >

0, such that f(p) is monotonic over [p, p + ε(p)].

We need one more assumption before we can proceed further.

Assumption 5. (i) f(p) is of limited variation.

(ii) If b = c∗, then AC(q) is either constant, or increasing.

It can be argued that Assumption 5(ii) is not very strong.18 We can now

write down our next proposition.

Proposition 2. Suppose Assumptions 1, 2, 3, 4 and 5 hold. Then

S = {c∗}, if and only if AC(q) is constant and p is not well defined.

Proof. There are two cases to consider.

Case 1. c∗ < b. Since c∗ /∈ (b, d̃) ∩ F , the folk theorem cannot hold.

Case 2. c∗ = b (thus b is finite). From Assumption 5(ii), AC(q) is either

constant, or increasing. To begin with we consider the case where AC(q) is
18One can argue that in general b 6= c∗. Let us perturb AC(q) by considering the family

of functions AC(q) + αq, where α is close to 1. Unless c∗ is achieved at q = 0 (this is true

if AC(q) is increasing or constant), then, for α close to zero, c∗(α) 6= c∗ = b.
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increasing, so that b = c∗ < d̃. From Assumption 5(i), ∃ε(c∗) > 0, such that

f(p) is monotonic over [c∗, c∗ + ε(c∗)]. We consider two sub-cases.

Case (2a). Suppose p is not well defined. Then f(p) is negatively

sloped over [c∗, c∗ + ε(c∗)]. (Suppose not, then ∃p ∈ (c∗, c∗ + ε(c∗)] such

that f(p) ≥ f(c∗). But then p = argmaxp∈[c∗,p̂]f(p), which is well defined.)

W.l.o.g. let ε(c∗) < d̃. Suppose there exists some p ∈ (c∗, c∗ + ε(c∗)], such

that f(p′) ≤ f(p), ∀p′ > p, then p ∈ F , and hence p ∈ S. Since p > c∗, S 6=
{c∗}. Thus, we next consider the case where no such p exists. Then we can

find a monotone decreasing sequence < p(n) > in (c∗, c∗ + ε(c∗)] converging

to c∗ such that ∀p(n), ∃p′(p(n))) > p(n), such that f(p′(p(n))) > f(p(n)).

Fix some n such that f(p′(p(n)) > f(p(n)). Since f(p) is decreasing over

[c∗, c∗ + ε(c∗)], f(p′(p(n))) > f(p(n)), ∀n > n. Taking limits, f(p′(p(n))) ≥
f(c∗). However, in that case p = argmaxp∈[c∗,p̂]f(p), which is well defined.

Case (2b). We next consider the case where p is well defined. Clearly,

f(p) ≥ f(c∗). In fact, from Assumption 4(ii), f(p) > f(c∗). Then, from the

continuity of f(p), ∃p(c∗) > c∗ such that f(p(c∗)) = f(c∗) and, ∀p′(c∗)
strictly less than, but sufficiently close to p(c∗), f(p′(c∗)) > f(c∗) and

p′(c∗) > AC(f(p′(c∗))−f(c∗)) (this follows since limp′(c∗)→p(c∗) AC(f(p′(c∗))−
f(c∗)) = b < p(c∗)). Thus ∃p′(c∗) > c∗ such that f(p′(c∗)) > f(c∗) and

[p′(c∗)−AC(f(p′(c∗))− f(c∗))][f(p′(c∗))− f(c∗)] = 2δ, where δ > 0. Hence

∃ε′ > 0 such that ∀p ∈ [c∗, c∗+ ε′], ∃p′(p) > p, such that f(p′(p)) > f(p) and

[p′(p)− AC(f(p′(p))− f(p))][f(p′(p))− f(p)] > δ > 0. Consider a sequence

< p(n) > converging to c∗, such that p(n) is an equilibrium for M(n). We

then note that ∃n′ such that for all n > n′, p(n) < c∗ + ε′, and the profit of

the active firms is less than δ. Hence they have an incentive to deviate to

p′(p).

Finally, we consider the case where AC(q) is constant. Note that any

single price equilibrium must involve all the firms charging c∗ (any p > c∗ will

be undercut). Suppose p is not well defined. Then, ∀p > c∗, f(c∗) > f(p).

Thus, ∀n, there is an equilibrium where all the firms charge c∗. Next suppose
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p is well defined, so that from Assumption 4(ii), f(p) > f(c∗). But then,

the firms charging c∗ will have an incentive to deviate to p.

Thus, in the class of continuous demand and cost functions (the cost

function may possibly be discontinuous at the origin), the folk theorem fails

unless the average cost function is constant and p is not well defined.

Finally, let us relate our results to those for Cournot competition with

exogenous entry. It is well known that the folk theorem goes through if

average cost is constant. Further, from Ruffin (1971), the folk theorem goes

through if AC(q) is increasing, but not if its U-shaped, and the cost function

is continuous.

Remark. While we adopt the efficient rationing rule, it is easy to see

that Proposition 1 goes through for other rationing rules, including the

proportional one. This follows since the choice of the rationing rule does

not affect the definition of F , which is what we need for Proposition 1.

3.2 Relating Proposition 1 to NRC

We then relate the characterization of S in Proposition 1 to the correspond-

ing one in NRC (i.e. Theorem 1). Note that if the demand function is

negatively sloped, then F = [0,∞). Further, if the average cost function is

either increasing, or U-shaped, and b ≤ d̃, then d̃ = d.19 Thus under these

assumptions the characterization of S in Proposition 1 coincides with that

in NRC.

We then argue that for negatively sloped demand functions, the char-

acterization of S in NRC holds for a large class of cost functions satisfying

some mild regularity condition.

19If b ≤ d̃, then, under the NRC formulation, the average cost function must be positively

sloped at d̃. Thus there does not exist any p′ < d̃ such that p′ = AC(f(p′)). Of course if

b > d̃, then S is empty.
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Definition. f(p) is said to be tangent to AC(q) at some p, if p =

AC(f(p)) and ∃ε(p) > 0 such that ∀p ∈ (p − ε(p), p) ∪ (p, p + ε(p)), either

p ≥ AC(f(p)), or p ≤ AC(f(p)).

Assumption 6. At any p < d̃ such that p = AC(f(p)), the demand

and the average cost functions cannot be tangent to each other.

Note that assumption 6 above is not very strong.20

We are now in a position to prove Proposition 3.

Proposition 3. Let Assumptions 1, 2, 3, 4 and 6 hold and let the

demand function be negatively sloped. Then S = [b, d] if b ≤ d, S is empty

otherwise.

Proof. Note that F = [0,∞) since the demand function is negatively

sloped. Hence given Proposition 1, it is sufficient to show that, under As-

sumption 6, d̃ = d. Clearly, d̃ = AC(f(d̃)). Since d is the minimum p such

that p = AC(f(p)), d̃ ≥ d. Next suppose that d̃ > d. From the definition of

d̃, p ≤ AC(f(p)) for all p ∈ [0, d̃). Moreover, since d = AC(f(d)), f(p) and

AC(q) are tangent to each other at d, thus violating assumption 6.

Thus, Theorem 1 in NRC can be substantially generalized to allow for

a large class of average cost functions. In contrast, the assumption that the

demand function be negatively sloped appears much more critical. In fact,

if the average cost function is increasing, then the negativity of the demand

function is necessary in the following sense: Suppose to the contrary that

there is some b < p < d such that the demand function is positively sloped

in a neighborhood of p. It is easy to show that such a p cannot belong to

20Suppose there is some p < d̃ such that p = AC(f(p)), and the demand and the average

cost functions are tangent to each other. Then, for any λf(p), λ not equal to 1, but close

to it, we can find a neighborhood of p such that the functions are not tangent to each

other at any price in the neighborhood.
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S.21 If, however, the average cost is U-shaped, then Theorem 1 in NRC may

go through even if the demand function is not negatively sloped.22

4 Free Entry

Let M(r, n) denote a market with the demand function rf(p) and n firms.

In this section we examine equilibria when market size is large, and there

is free entry of firms, where free entry is formalized as there being inactive

firms in equilibrium. Hence we examine n-firm single price equilibria where

m (< n) firms are active (i.e. set the lowest price), and n−m (> 0) firms are

inactive (i.e. charge higher prices and have no demand). We then study the

limiting equilibria as the market demand goes to infinity. We characterize

the set of all prices p such that if r is sufficiently large, then, for M(r, n),

there is some free entry equilibrium where the market price is arbitrarily

close to p.

Definition: T = {p : there is a sequence p(r) that converges to p such

that for each sufficiently large r, there is an integer n and an equilibrium

for the market M(r, n) in which all active firms charge the lowest price p(r),

but not all firms set the price p(r)}.

We focus on average cost functions that are ultimately increasing.

Assumption 7. There exists some smallest q̃ such that AC(q) is strictly
21Suppose there is an equilibrium where all firms charge p(n) which is sufficiently close

to p. Then, for n large enough, the profit level of all such firms is close to zero. Since

f(p(n)) is positively sloped at p(n), and p(n) > b, one of the firms can deviate to p(n)+ ε,

and, for ε small enough, obtain a positive profit that is independent of n. Thus for n large

enough, deviating to p(n) + ε is profitable.
22Consider an U-shaped average cost function, and let the demand function be positively

sloped over the interval [p′, p′′], and negatively sloped otherwise. In order to rule out trivial

cases, we assume that c∗ < p′. Let AC(q) > p, ∀q ≤ f(p′′)−f(p′). In that case F = [0,∞),

and Theorem 1 in NRC goes through.
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increasing for all q > q̃.

Note that Assumption 7 is satisfied by both the increasing, as well as the

U-shaped average cost function. If AC(q) is increasing, then q̃ = 0, whereas

if AC(q) is U-shaped, then q̃ = q∗.

Next let

d(r) = argmax p such that AC(rf(p))=p f(p).

Further, let d∗ = limr→∞ d(r).

Given Assumptions 1, 2, 3 and 7, we have the following lemma.

Lemma 1. For c∗ < p̂, d∗ is well defined. Moreover, if d∗ is well defined,

then p̂ ≥ d∗ > c∗.

Proof. If c∗ < p̂, then, for r sufficiently large, d(r) is well defined.

Further, for r large enough, rf(d(r)) > q̃, so that AC(q) is strictly increasing

in q. Hence d(r) is increasing in r. Further, d(r) ≤ p̂. Thus d∗ exists, and,

moreover, d∗ ≤ p̂. Finally, since d(r) ≥ c∗, and d(r) is strictly increasing for

r large, c∗ < d∗.

We need some further notations.

Lat q(p) be the minimum q′ such that, AC(q′) = p and AC(q) is strictly

negatively sloped at q′.

V = {p : q(p) is well defined.}
F̃ = {p : ∃ some sequence < p(r) > converging to p such that p(r) ∈

F (r), ∀r.}23

We are finally in a position to characterize the set T .
23Clearly, F̃ is closed. Consider some sequence < pn > converging to p, where pn ∈ p̃ ∀n.

Using the triangle inequality it is straightforward to show that ∃ some sequence < p(r) >

converging to p such that p(r) ∈ F (r), ∀r.
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Proposition 4. Assume that c∗ < p̂ and Assumptions 1, 2, 3 and 7

hold. Then T = [c∗, d∗] ∩ V ∩ F̃ .

Proof. Note that since c∗ < p̂, d∗ is well defined from Lemma 1. Further,

given Assumption 7, the interval [c∗, d∗] is non-empty. Next suppose to the

contrary that p(r) converges to some p outside [c∗, d∗]∩V ∩ F̃ as r increases,

and for each sufficiently large r, there is an n and an equilibrium for M(r, n)

in which p(r) is the lowest price, but not all firms charge p(r).

Clearly, p(r) ≥ c∗, ∀r, so p ≥ c∗. We then argue that any equilibrium

price p(r) < d∗. There are two cases to consider.

Case 1. d∗ = p̂. Define p′(r) as the maximum p satisfying rf(p) = q∗.

Clearly, p′(r) is defined for r large enough. Further, p′(r) < p̂.24 Moreover,

since rf(p) is negatively sloped at p′(r), p′(r) is increasing in r. Hence

limr→∞ p′(r) is well defined. Also note that limr→∞ p′(r) = p̂.25 Since

p̂ > c∗, for r sufficiently large, p̂ > p′(r) > c∗. Now suppose to the contrary

that p(r) ≥ d∗ = p̂. Then p(r) ≥ p̂ > p′(r) > c∗. But then an inactive firm

could undercut by charging p′(r), and make a strictly positive profit.

Case 2. d∗ < p̂. Since d∗ < p̂, from Assumption 1(b), f(d∗) > 0.

Thus for r sufficiently large, rf(d∗) > q̃. Moreover, since AC(q) is strictly

increasing for q > q̃, it follows that AC(rf(d∗)) < d∗. From continuity, for

ε > 0 small enough, AC(rf(d∗ − ε)) < d∗ − ε. Now suppose to the contrary

that p(r) ≥ d∗. Then p(r) ≥ d∗ > AC(rf(d∗)). But then, for ε > 0 but

sufficiently small, an inactive firm could deviate to price d∗−ε, sell rf(d∗−ε)

and earn a strictly positive profit.

Next consider some p /∈ V . Thus p is such that ∀q′(p) satisfying AC(q) =

p, AC(q) is strictly positively sloped at q′(p). In case such a q′(p) does not

exist, then p > AC(q) for all q, and an inactive firm can match p and make
24Suppose not. Then, from Assumption 1(b), q∗ = rf(p′(r)) = 0. Since q∗ > 0, this is

a contradiction.
25Suppose not. Let limr→∞ p′(r) = p̃ < p̂. Then limr→∞ f(p′(r)) = f(p̃) > 0. Hence,

q∗ = limr→∞ rf(p′(r)) →∞, which is a contradiction.
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a gain. So suppose such a q′(p) exists. For p ∈ T there must be some market

M(r, n) and some free entry equilibrium such that all active firms charge p′,

where p′ is arbitrarily close to p, and there are some inactive firms. Since V

is closed, p′ /∈ V and AC(q) is positively sloped at q′(p′). Since the active

firms make non-negative profits, the output level of any active firm is less

than equal to q′(p′). Then an inactive firm can match p′ and earn a strictly

positive profit.

We then consider some p /∈ F̃ . Suppose to the contrary that p ∈ T . Then

we can find a sequence < p(r) > converging to p such that p(r) constitutes

a free entry equilibrium for rf(p). Then p(r) ∈ F (r), ∀r, otherwise some of

the inactive firms can deviate to some appropriate p′ > p(r), and make a

positive profit. However, this implies that p ∈ F̃ .

Consider any p such that c∗ < p < d∗ and p ∈ V ∩ F̃ . We argue that

any such p must be in the limit set. Since p ∈ F̃ , there exists a sequence

< p(rn) > converging to p such that p(rn) ∈ F (rn), ∀rn. Without loss of

generality let < p(rn) >⊆ V . Consider q(p(rn)) (since p(rn) ∈ V, AC(q)

is negatively sloped at q(p(rn))). Let N(rn) be the largest integer such

that N(rn) < rnf(p(rn))
q(p(rn)) . For rn sufficiently large, AC( rnf(p(rn))

N(rn) ) < p ≤
AC( rnf(p(rn))

N(rn)+1 ). Let N(rn) firms each set the price p(rn) in the rn-market

and share demand equally, and let one firm set a higher price. Then the

active firms all earn a positive profit. If one of them, or the inactive firms

undercuts the price, then that firm must produce to meet a demand that

exceeds rnf, where f = minc∗≤p′≤p f(p′) > 0. But as rn gets large, AC(rnf)

either approaches or exceeds d∗ > p(rn). Also, if an inactive firm matches

the lowest price, by the properties of N(rn) the firm at best has a profit of

zero. Since p(rn) ∈ F (rn), none of the firms can charge a higher price and

gain. Thus for each sufficiently large rn, p(rn) is an equilibrium price for r,

and thus is in the limit set.

Finally, all p in [c∗, d∗] ∩ V ∩ F̃ − (c∗, d∗) ∩ V ∩ F̃ can be obtained as

limits of appropriate sequences of p(r).
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We then argue that if the average cost function is ultimately decreasing,

then T is empty. Let Assumptions 1, 2, 3 and 6 hold. Suppose that there

exists some minimum −→q such that AC(q) is negatively sloped for all q > −→q .

Further, ∀q, let AC(q) > limq′→∞AC(q′), . For r sufficiently large, d(r)

exists, rf(d(r)) > −→q , and d(r) satisfies AC(rf(p)) = p. Now, for any n > 1,

any price above d(r) can be undercut. Whereas if there is a single firm

charging d(r), then it can increase its price slightly and make a positive

profit.

4.1 The Folk Theorem

We then use Proposition 4 to examine if the folk theorem holds in this

framework or not, i.e. if T = {c∗}.

Proposition 5. Suppose that c∗ < p̂ and Assumptions 1, 2, 3 and 5

hold.

(i) If Assumption 7 holds, then the folk theorem fails to holds.

(ii) If c∗ = b, then the folk theorem holds if and only if AC(q) is constant

and p is not well defined.

Proof. We consider two cases.

Case 1. Suppose c∗ < b. Then [c∗, b] ⊆ V . There are two sub-cases to

consider:

1(a). First, consider the case where p is not well defined. We can then

mimic the proof of Case 2(a) of Proposition 2 to argue that ∃ε(c∗) > 0 such

that ∃p ∈ (c∗, c∗ + ε(c∗)], so that f(p′(p)) ≤ f(p), ∀p′(p) > p. W.l.o.g. let

ε(c∗) < b. But then p ∈ F (r), ∀F (r), and hence p ∈ F̃ . Thus T 6= {c∗}.
1(b). Next suppose p is well defined. Then f(p) > f(c∗). Thus, ∀r, we

can find some p′(c∗, r) > c∗ such that f(p′(c∗, r)) > f(c∗), and rf(p′(c∗, r))−
rf(c∗) is small enough such that p′(c∗, r) > AC(rf(p′(c∗, r))−rf(c∗)). Thus

∃ε′ > 0, such that ∀p ∈ [c∗, c∗+ ε′], ∃p′(p, r) > p such that f(p′(p, r)) > f(p)
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and [p′(p, r) − AC(rf(p′(p, r)) − rf(p))] > 0. Thus such a p cannot be

sustained as a free entry equilibrium for any r, however large, as one of

inactive firms can deviate to p′(p, r) and make a gain. Thus c∗ cannot be

sustained as a limit of free entry equilibrium price sequence < p(r) >.

Case 2. Suppose c∗ = b. Then, from Assumption 5(ii), AC(q) is either

increasing, or constant. First consider the case where AC(q) is increasing.

Then no p > b can be sustained as a free entry equilibrium for any r.

Suppose not. Then, for any such p, one of the inactive firms can match this

price and make a positive profit.

We next consider the case where AC(q) is constant. Note that any single

price equilibrium must involve all the firms charging c∗. Suppose p is not

well defined. Then, ∀p > c∗, f(c∗) > f(p). Thus, ∀r, there is a free entry

equilibrium where all the active firms charge c∗. Further, there is no other

free entry equilibrium. Next suppose p is well defined, so that f(p) > f(c∗).

But then, given Assumption 4(ii), the active firms will have an incentive to

deviate to p.

Thus, for the class of average cost functions that are ultimately increas-

ing, the folk theorem for the free entry case holds if and only if AC(q) is

constant and p is not defined. Next recall that if AC(q) is ultimately de-

creasing (and ∀q, AC(q) > limq′→∞AC(q′),) then no price can be sustained

as a free entry equilibrium, so that the folk theorem fails. These results are

in sharp contrast to that for the Cournot case when Novshek (1980) shows

that the folk theorem goes through for U-shaped average cost functions.

4.2 Relating Proposition 4 to NRC

We then relate Proposition 4 to Theorem 2 in NRC. Recall that for neg-

atively sloped demand functions, F (r) = [0,∞), ∀r, so that F̃ = [0,∞).

Further, for U-shaped average cost functions, V = {p : c∗ < p < b}. Thus,

if the demand function is negatively sloped and the average cost function is
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U-shaped, T = [c∗, min{b, d∗}], so that the two characterizations coincide.

Thus Proposition 4 extends Theorem 2 in NRC to demand functions that

are not necessarily negatively sloped, and to average cost functions that are

ultimately increasing.

We then use Proposition 4 to show, that for negatively sloped demand

functions, the characterization in NRC hold for a larger class of average cost

functions than the U-shaped one.

Define b′ = max{p : p = AC(q′) where q′ is a local maximizer of AC(q)}.

Proposition 6. Assume that c∗ < p̂ (so that d∗ is well defined) and

assumptions 1, 2 and 5 hold. If the demand function is negatively sloped

and max{b′, d∗} ≤ b, then T = [c∗, min{b, d∗}].

Proof. There are two cases to consider.

Case 1. Let b′ ≤ b. Given Proposition 4, it is sufficient to observe that

V = {p : c∗ < p < b}.
Case 2. Let d∗ ≤ b. Given Proposition 4, it is sufficient to observe that

{p : c∗ < p < b} ⊆ V .

Thus, the characterization of the limit equilibrium set T in NRC can be

generalized to allow for a class of average cost functions that are ultimately

increasing, and max{b′, d∗} ≤ b.

5 Conclusion

In this paper we examine if the folk theorem of perfect competition goes

through under Bertrand competition (where firms supply all demand). We

allow for a large class of demand and cost functions where we essentially

only assume that the demand function is continuous and intersects both the

axes, and that the cost function is continuous (except possibly at the origin).

We find that the folk theorem fails to hold for a large class of demand and
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cost functions. In fact, for the folk theorem to hold, it is in some sense

necessary that the cost function be linear.

Inter alia, we also characterize the limit equilibrium sets and relate the

characterizations obtained in this paper to those in NRC.
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6 Appendix: Multiple Price Equilibria

In this appendix we allow for multiple price equilibria and examine if ana-

logues of our earlier results go through.

6.1 Exogenous Entry

For the market M(n), let P (n) = (p1(n), · · · , pn(n)) denote a multiple price

Bertrand equilibrium (MPE) with exogenous entry (so that all firms are

active). For this case, the limit equilibrium set S′ is defined as follows:

Definition: S′ = {p : there is a sequence < P (n) > such that for

∀ε > 0, ∃n(ε), so that for each n > n(ε), all elements of P (n) belongs to an

ε-neighborhood of p}.

Proposition 7 below provides a partial characterization of S′.

Proposition 7. Let Assumptions 1, 2, 3 and 4 hold.

(i) If b < d̃, then S′ ⊇ (b, d̃) ∩ F . Further, no p < b, and no p > d̃

belongs to S′.

(ii) If b > d̃, then S is empty.

(iii) Suppose b = d̃.

(a) Let AC(q) be constant. If p is not well defined, then S′ = {b},
whereas if p is well defined, then S′ is empty.

(b) Suppose AC(q) is not constant. If there exists some sequence <

p(n) > in F such that, ∀n, p(n) < b, and < p(n) > converges to b, then

b ∈ S′.

Proof: To begin with we argue that no price less than b, or greater than

d̃ can belong in S′. Suppose not.

First let p < d̃. Consider some MPE, P (n), of M(n). Note that there

is some active firm which has an output of at most f(p̃)
n , which converges
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to zero as n goes to infinity. Thus if p < b, then for all sufficiently large n,

there is some active firm charging p(n) where p(n) < AC(f(p(n))
n ), so that

p(n) cannot be an equilibrium price.

Next let p > d̃. Consider some MPE, P (n), of M(n). Note that there

is some active firm whose profit, [p(n) − AC(f(p(n))
n )]f(p(n))

n , is less than

(p̂ − c∗)f(p̃)
n , which, for n large, converges to zero. Moreover, from the

definition of d̃, there exists p′ such that d̃ < p′ < p(n) ∀p(n) ∈ {P (n)} and

p′ > AC(f(p′)). Undercutting to such a price p′ yields a strictly positive

profit that depends on p′, but not on n. Thus, for n large, undercutting is

strictly profitable for some active firm making a profit less than (p̂− c∗)f(p̃)
n .

We can then mimic the argument in Proposition 1 to argue that every

price in the interval (b, d̃) ∩ F is in the limit set. We can similarly argue

that, for b < d̃, all p ∈ (b, d̃) ∩ F − (b, d̃) ∩ F, belongs to S′.

Next, let b = d̃ < p̂. Suppose average cost is constant. We first note that

in any MPE the least price charged by the firms, say p, must be c∗. (Suppose

not, i.e. p > c∗. Suppose that there are more than one firm charging p, then

this price will be undercut by the firms charging p. Next suppose that there

is exactly one firm charging p. Then, for n large, some of the other firms

will have a profit close to zero, and will undercut p.) If p is not well defined

then, ∀p > c∗, f(c∗) > f(p). Thus, ∀n, there is an equilibrium where all

the firms charge c∗. Further, there cannot be any other equilibrium. Next

suppose p is well defined, so that f(p) > f(c∗). But then, the firms charging

c∗ will have an incentive to deviate to p when they earn a strictly positive

profit.

Finally, for the case where b = d̃, but AC(q) is not constant, we can

mimic the proof in Proposition 1.

Proposition 7 above is an analogue of Proposition 1 earlier. Note, how-

ever, that we only achieve a partial characterization of S′. The characteriza-

tion would be complete if one can show that if p /∈ F , then p /∈ S′. Whether
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this is true is an open question.

We then argue that an analogue of Proposition 2 goes through.

Proposition 8. Suppose Assumptions 1, 2, 3, 4 and 5 hold. Then

S′ = {c∗}, if and only if AC(q) is constant and p is not well defined.

Proof. Case 1. c∗ < b. Consider some MPE for M(n), that is arbitrarily

close to c∗. Then there will be some firm that will be supplying at most f(p̃)
n .

Now suppose n is taken to infinity, and w.l.o.g. assume that the identity of

the firm supplying at most f(p̃)
n remains the same. Then, for n sufficiently

large, this firm makes a loss (since the average cost of this firm will be close

to b > c∗). Thus c∗ /∈ S′.

Case 2. c∗ = b. From Assumption 5(ii), AC(q) is either constant, or

increasing. To begin with we consider the case where AC(q) is increasing,

so that b = c∗ < d̃. From Assumption 5(i), ∃d̃ > ε(c∗) > 0, such that f(p)

is monotonic over [c∗, c∗ + ε(c∗)]. We consider two sub-cases.

Case (2a). Suppose p is not well defined. Then we can mimic the

argument in Proposition 2 to show that there exists d̃ > p > c∗ such that

p ∈ F , so that p ∈ S′.

Case (2b). We next consider the case where p is well defined. We can

mimic the argument in Proposition 2 to claim that there exists 0 < ε′ ≤ ε(c∗)

such that ∀p ∈ [c∗, c∗ + ε′], ∃p′(p) > p, such that f(p′(p)) > f(p) and

[p′(p)−AC(f(p′(p))− f(p))][f(p′(p))− f(p)] > δ > 0. Consider some MPE

for M(n) where n is sufficiently large so that the maximum price charged

is c∗ < p(n) < c∗ + ε′. The profit of all active firms are bounded above by

(p(n)− c∗)f(p̃). Thus for p(n) close to c∗, the profit of all active firms is less

than δ, and have an incentive to deviate to p′(p(n)).

Finally, if AC(q) is constant, we can mimic the argument in Proposition

7.
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6.2 Free Entry

For the market M(r, n), let P (r) = (p1(r), · · · , pn(r)) denote a multiple price

free entry Bertrand equilibrium. For this case, the limit equilibrium set T ′

is defined as follows:

Definition: T ′ = {p : there is a sequence < P ′(r) > such that ∀ε > 0,

∃r(ε) so that ∀r > r(ε), there is an integer n and a free entry equilibrium for

the market M(r, n) in which all active firms charge prices that are within

an ε-neighborhood of p}.

We then provide a partial characterization of T ′.

Proposition 9. Assume that c∗ < p̂ and Assumptions 1, 2, 3 and 7

hold. Then T ′ ⊇ [c∗, d∗] ∩ V ∩ F̃ . Further, no p < c∗, or p > d∗, or p /∈ V

can be in T ′.

Proof. Clearly, in any free entry equilibrium, the price charged by any

active firm must be at least c∗, so, for any p ∈ T ′, p ≥ c∗. We then argue

that for any p ∈ T ′, p ≤ d∗. There are two cases to consider.

Case 1. d∗ = p̂. As in the proof of Proposition 4, for r sufficiently

large ∃p′(r) which is the maximum p satisfying rf(p) = q∗. Further, for

r sufficiently large, p̂ > p′(r) > c∗. Now suppose to the contrary p > d∗.

Then, for r large enough, the least price charged by the active firms, p(r) ≥
p̂ > p′(r) > c∗. But then an inactive firm could undercut by charging p′(r),

and make a strictly positive profit.

Case 2. d∗ < p̂. As in the proof of Proposition 4, for r sufficiently large,

∃ε > 0 small enough such that AC(rf(d∗ − ε)) < d∗ − ε. Now suppose to

the contrary that p > d∗. Then for any free entry equilibrium where r is

sufficiently large, the least price charged by the active firms is at least d∗.

But then, for ε > 0 but sufficiently small, an inactive firm could deviate to

price d∗ − ε, sell rf(d∗ − ε) and earn a strictly positive profit.
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Next consider some p /∈ V . Then ∀q′(p) satisfying AC(q) = p, AC(q) is

strictly positively sloped at q′(p). First suppose such a q′(p) exists. If p ∈ T,

then there is some market M(r, n) and some free entry equilibrium such that

the least price charged by the active firms is p′, where p′ is arbitrarily close

to p. Since V is closed, AC(q) is positively sloped at q′(p′). Since the active

firms make non-negative profits, the output level of any active firm is less

than equal to q′(p′). Then an inactive firm can match p′ and earn a strictly

positive profit. Next suppose such a q′(p) does not exist. Then p > d∗, and

we can mimic the argument in case 2 above.

Finally, we can mimic the proof of Proposition 4 to claim that all p in

[c∗, d∗] ∩ V ∩ F̃ belongs to T ′.

Note that Proposition 9 achieves a partial characterization of T ′. For a

full characterization one needs to show that if p /∈ F̃ , then p /∈ T ′. Whether

this is true is an open question.

We finally write down an analogue of Proposition 5.

Proposition 10. Suppose that c∗ < p̂ and Assumptions 1, 2, 3 and 5

hold.

(i) If Assumption 7 holds (so that c∗ < b), then the folk theorem fails to

holds.

(ii) If c∗ = b, then the folk theorem holds if and only if AC(q) is constant

and p is well defined.

Proof. Case 1. Suppose c∗ < b. Then [c∗, b] ⊆ V . There are two

sub-cases to consider:

1(a). First, consider the case where p is not well defined. We can then

mimic the proof of Proposition 5 to argue that ∃b > p > c∗, such that p ∈ F̃ .

But then p ∈ T ′.

1(b). Next suppose p is well defined. Then f(p) > f(c∗). We can mimic

the proof of Proposition 5 to argue that ∃ε′ > 0, such that ∀p ∈ [c∗, c∗ + ε′],
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∃p′(p, r) > p such that f(p′(p, r)) > f(p) and [p′(p, r) − AC(rf(p′(p, r)) −
rf(p))] > 0. Consider some free entry equilibrium where the highest price

charged by some active firm is p < c∗+ε′. Thus such a p cannot be sustained

as a free entry equilibrium for any r, however large, as one of inactive firms

can deviate to p′(p, r) and make a gain.

Case 2. Suppose c∗ = b so that, from Assumption 5(ii), AC(q) is either

increasing, or constant. First consider the case where AC(q) is increasing.

Suppose that there is some free entry equilibrium where the lowest price

charged by some active firm is p, where p > b. Then one of the inactive

firms can match this price and make a positive profit.

We next consider the case where AC(q) is constant. Note that in any

free entry equilibrium, the lowest price charged by the active firms must be

c∗. Suppose p is not well defined, so that ∀p > c∗, f(c∗) > f(p). Thus,

∀r, there is a unique free entry equilibrium where all the active firms charge

c∗. Next suppose p is well defined, so that f(p) > f(c∗). But then, the

firms charging c∗ will have an incentive to deviate to p when they obtain a

positive profit.
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