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1 Introduction

The Gibbard-Satterthwaite Theorem is a fundamental result in the theory of mech-

anism design. It states that if a planner has to provide dominant strategy incen-

tives for agents to reveal their private information, then this can accomplished

only by allowing some agent (called the dictator) to always get his most preferred

alternative. An assumption which is crucial for the result, is that the domain

of preference ordering is complete. An extensive literature on restricted domains

has emerged whose objective is to escape the strongly negative conclusion of the

Gibbard-Satterthwaite Theorem by assuming that the domain of admissible pref-

erences is restricted. For instance, if preferences are assumed to be single-peaked,

then the median voter rule provides appropriate incentives for all agents to be

truthful. If money is introduced in the model and preferences are assumed to be

quasi-linear, then the rich theory of Groves-Clarke transfers applies and numerous

possibility results exist. Other examples of restricted domains include economic

environments where agents’ preferences are assumed to be continuous and convex

and environments where the objective function of the planner is stochastic and

agents’ preferences satisfy von-Neumann-Morgenstern axioms.

In this paper, we focus attention on a model which is related by quite different in

spirit to therestricted domain model. We refer to this model as one with a partially

observant planner. The idea is that ex-ante, an agent can have any preference

ordering. However, after realization, the planner is able to observe some feature

of these preferences. For instance, in a model of committee voting, the planner

may be able to observe that voter 1’s most preferred candidate is x, voter 2’s least

preferred candidate is y, voter 3 prefers w to z and so on. Thus, the planner

has some (ex-post) information on preferences which could be based on commonly

known ideological positions, personal dislikes etc. The mechanism, however, in

keeping with the standard assumption has to designed ex-ante, i.e. before the
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realization of preferences. On the other hand, in the restricted domains model,

which we refer to as the partially informed planner model, the planner has some

ex-ante information on the structure of preferences. We believe that the observant

planner model is a realistic one and worthy of attention. It is particularly plausible

in the standard voting model where it may be unnatural to impose structure such

as single-peakedness, convexity or cardinal-valuedness.

The observant planner model is also related to the complete information imple-

mentation model. In the latter, agents know each others preferences perfectly but

the planner is completely ignorant. The problem here is to design a mechanism

which will allow the planner to collate reports from each agent to infer something

about the true state of the world. In the observant planner model, partial infor-

mation about each voters’ preference is not only common knowledge amongst the

other voters but is also known to the planner.

The analysis in the observant planner model differs in crucial respects from

that in the informed planner model. In the former, the domain of preferences re-

mains complete unlike that in the informed planner model. However, the incentive

compatibility condition is weaker. In particular we require only that no voter can

gain by misrepresenting his preferences only for thos misrepresentations which are

consistent with observed information. Suppose that the planner knows that voter

i’s peak is x. Then it must the case that the agent cannot do better than truth-

telling than by announcing any other preference whose peak is x. The analysis, in

the two models is thus independent of each other.

In the paper, we assume that the observant planner can observe the peak of each

voters’ preference ordering. We provide a complete characterization of incentive

compatible social choice functions under a range assumption. We contrast this

case with that of a restricted domain model where the planner has some ex-ante

information about peaks. In particular, it is known that each voter’s peak lies in

some pre-specified set which is a subset of the set of alternatives.
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Our results are as follows. In the observant planner case we show that if a range

condition is satisfied, a social choice condition is incentive compatible if and only

if, for every vector peaks, there is a voter and a set of alternatives over which this

voter is a dictator. The choice of the voter who dictates and the set over which

he does so could depend on what the planner observes. In the informed planner

model on the other hand, incentive compatibility (or strategy-proofness) implies

that there is a dictator over the range of the social choice function. There are

therefore significant possibility results in the observant planner case unlike in the

informed planner case. We also demonstrate that the dictatorship result in the

informed planner is rather delicate and depends critcally on our assumption that

the planner only has a priori information on voter peaks. We show by means of an

example that if the planner had information on the alternatives which were ranked

first and second, then non-dictatorial possibility results exist.

Although our results are quite intuitive they are not very easy to prove. There

does appear to be a way to apply the Gibbard-Satterthwaite Theorem directly. A

special feature of these models is that the “effective” domain of preferences are

voter specific. The induction technique of coalescing or cloning voters used in

various proofs (for example, Sen (2001)) can no longer be used. We develop a

completely novel induction technique which can be used to provide yet another

proof of the Gibbard Satterthwaite Theorem.

This paper is organized as follows. Section 2 lays out the basic notation while

the next two sections discuss the observant and informed planner models. The last

section concludes.

2 Basic Notation

The set I = {1, · · · , N} is the set of individuals or voters. The set of alternatives

is the set A with |A| = m. Elements of A will be denoted by a, b, c, d etc. Let
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IP denote the set of strict orderings1 of the elements of A. A typical preference

ordering will be denoted by Pi where aPib will signify that a is preferred (strictly) to

b under Pi. A preference profile is an element of the set IPN . Preference profiles will

be denoted by P, P̄ , P ′ etc and their i-th components as Pi, P̄i, P
′
i respectively with

i = 1, · · · , N . Let (P̄i, P−i) denote the preference profile where the i-th component

of the profile P is replaced by P̄i.

For all Pi ∈ IP and k = 1, · · · , m, let rk(Pi) denote the k th ranked alternative

in Pi, i.e., rk(Pi) = a implies that |{b 6= a|bPia}| = k−1. For all Pi, the alternative

r1(Pi) will be referred to as the peak of Pi.

For all Pi ∈ IP and B ⊂ A, max (Pi, B) will denote the maximal element in B

according to Pi.

3 The Partially Observant Planner

We assume that each individual i’s preferences Pi are drawn from the set IP . The

objectives of the planner are described by a social choice function defined below.

Definition 3.1 A Social Choice Function (SCF) f is a mapping f : IPN → A.

The preference ordering of voter i is i’s private information. However, once it

has been realized, each voter’s peak r1(Pi) can be observed by the planner. Since

the vaule of a SCF f at a preference profile could depend on more than voters’

peaks at that profile, preferences have to be elicited from voters. The appropriate

incentive constraints to ensure truth telling in this setting are described below.

Definition 3.2 A SCF f is strategy-proof* (SP*) if, for all i ∈ I, Pi ∈ IP ,

P−i ∈ IPN−1, there does not exist P ′
i ∈ IP , such that

• r1(Pi) = r1(P
′
i ) and

1A strict ordering is a complete, transitive and antisymmetric binary relation
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• f(P ′
i , P−i)Pif(Pi, P−i)

Thus, incentive compatibility requires that no can individual profit from devi-

ating from truth telling when these deviations are consistent with the information

held by the planner. Observe that SP* differs from the standard notion of strategy-

proofness only in this respect. (The latter condition does not require that the P ′
i

in the definition above satisfies the condition r1(Pi) = r1(P
′
i )). Of course, a SCF

which is strategy-proof also satisfies SP*.

Our goal is to characterize the SCFs which satisfy SP*. We first note a familiar

definition.

Definition 3.3 A SCF f is dictatorial in the range of f , denoted by Rf , if there

exists an individual i such that for all profiles P ∈ IPN , we have f(P ) = max

(Pi, R
f ).

Dictatorial SCFs play a central role in the theory of strategy-proof SCFs. A

dictatorial SCF is strategy-proof SCF. Moreover, according to the well-known

Gibbard-Satterthwaite Theorem, a strategy-proof SCF which has a range of at

least three alternatives, is dictatorial. The example below shows that this is no

longer true under SP*.

Example 3.1

For each a ∈ A, let Ba ⊂ A. Define a SCF f as follows.

For all P ∈ IPN , f(P ) = max (P2, B
r1(P1))

Thus voter 1 ”offers” a set of outcomes for voter 2 to choose from. This set

depends on voter 1’s observable peak. Note that this SCF is SP*. It is also non-

dictatorial. In fact, by choosing the set Ba to be either a singleton or the whole

set A, the domain of preference profiles IPN can be partitioned arbitrarily into two

sets, one over which voter 1 gets his maximum and the other over which 2 gets his

maximum.
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The set of all SP* SCFs can be obtained by suitably generalizing the example

above.

Let f be a SCF. Let a1, a2, · · · , aN ∈ A. The set Rf (a1, a2, · · · , aN) is defined

as follows.

Rf (a1, a2, · · · , aN) = {f(P )|r1(Pi) = ai, i = 1, 2, · · · , N}.

Thus Rf (a1, a2, · · · , aN) is the range of f when the peak of Pi is constrained to

be ai for i = 1, 2, · · · , N .

For all P ∈ IPN , we will let r1(P ) denote the vector (r1(P1), r1(P2), · · · , r1(PN)).

We are ready for the characterization result.

Theorem 3.1 Let f be a SCF. Assume that for all a1, a2, · · · , aN ∈ A,

|Rf (a1, a2, · · · , aN)| ≥ 3. Then f is SP* if and only if there exist maps φ1 : AN →

N and φ2 : AN → 2A 2 such that

for all P ∈ IPN , f(P ) = max (Pφ1(r1(P )), φ
2(r1(P ))

Proof: Sufficiency

This follows easily from the observation that at no profile P , can a voter can

change the identity of the individual φ1(r1(P )) nor the set φ2(r1(P )) by changing

his preference announcement. Of course, player φ1(r1(P )) gets his best alternative

in the feasible set by telling the truth and can only be worse-off by misrepresenting

his preferences.

Necessity

We will prove the result by induction on N .

2We let 2A denote the set of all non-empty subsets of A
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Consider the case where there is only one voter say voter 1. Let f be a SCF

satisfying SP*. The function φ1 is the constant function whose value is 1. For

all a1 ∈ A, let φ2(a1) = Rf (a1). An immediate consequence of SP* is that for

all P1 ∈ IP , f(P1) = max (P1, R
f (r1(P1)). This establishes the result in the case

where N = 1.

We now complete the induction step. Pick an integer N > 1 and assume that

the result is valid for all integers K < N . Let f : IPN → A be a SCF satisfying

SP* and such that for all a1, a2, · · · , aN ∈ A, |Rf (a1, a2, · · · , aN)| ≥ 3.

For all ai ∈ A, let IP ai denote the set of all orderings whose peak is ai. For

all a1, · · · , aN ∈ A, let D(a1, · · · , aN) denote the Cartesian product of the sets IP ai

with i = 1, · · · , N . Let g : D(a1, · · · , aN) → A be the restriction of f to the set

D(a1, · · · , aN), i.e. for all P ∈ D(a1, · · · , aN), g(P ) = f(P ). Clearly g satisfies SP*.

We will show that g is dictatorial over the range of g which we will denote simply

as Rg. This will enough to prove the theorem because of the following observations

(i) the sets D(a1, · · · , aN) obtained as a1, · · · , aN vary, form a partition of the set

of profiles IPN (ii) we can let the values of φ1(a1, · · · , aN) and φ2(a1, · · · , aN) be the

the identity of the dictator and the range respectively, of the appropriate function

g.

Let i ∈ I and Pi ∈ IP ai . Let

Rg(Pi) = {x|x = g(Pi, P−i) for some P−i ∈ D−i(a1, · · · , aN)} 3

Thus Rg(Pi) is the range of g when voter i’s preference is fixed at Pi. Our

objective is to show that there exists some i and Pi such that |Rg(Pi)| ≥ 3. For

future reference we let B denote the (unrestricted) range of g. (By assumption

|B| ≥ 3.

3The set D−i(a1, · · · , aN ) is defined in the obvious way: for all Pi ∈ D−i(a1, · · · , aN ), we have

(Pi, P−i) ∈ D(a1, · · · , aN ).
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Lemma 3.1 Let x ∈ B and Pi ∈ IP ai be such that x = max(Pi, B). Let

P−i ∈ D−i(a1, · · · , aN) be such that for all j 6= i, we have x = r2(Pi) whenever

x 6= aj. Then g(Pi, P−i) = x.

Proof: Since x ∈ B, there exists P̄ ∈ D(a1, · · · , aN) such that g(P̄ ) = x. Now

pick a voter j 6= i and switch his preference ordering from P̄j to Pj. Suppose

g(Pj, P̄−j) = w. If xPjw, then j will gain by announcing P̄j instead of his true

preference Pj at profile (Pj, P̄−j). If wPjx, then w = aj and wP̄jx. Then j will

be better off by announcing Pj instead of announcing his true preference P̄j at

profile P̄ . Therefore w = x. Repeating this argument for all j 6= i, we obtain

g(P̄i, P−i) = x. Suppose g(Pi, P−i) = w. If w 6= x, then xPiw because x = max

(Pi, B). But then i will gain by announcing P̄i rather than his true preference Pi

at the profile (Pi, P−i). Therefore g(Pi, P−i) = x.

According to Lemma 3.1, the maximal element in B according to Pi is the

outcome under g of the profile where all other voters rank this element as ”high as

possible”. We also record a trivial corollary of the Lemma.

Corollary An immediate consequence of Lemma 3.1 is that if x = max

(Pi, B), then x = Rg(Pi).

Lemma 3.2 Let Pi, P̄i ∈ IP ai be such that max(Pi, B) = max(P̄i, B). Then

Rg(Pi) = Rg(P̄i).

Proof: Suppose not. Let max(Pi, B) = max(P̄i, B) = x. In view of Lemma

3.2, there must exist y 6= x such that y ∈ Rg(Pi) but y /∈ Rg(P̄i). Construct

P−i ∈ D−i(a1, · · · , aN) as follows. For all j 6= i
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• if x = aj, then r2(Pj) = y

• if y = aj, then r2(Pi) = x

• if x and y are both distinct from aj, then r2(Pj) = y and r3(Pj) = x.

In other words, under Pj, y is better than x whenever possible. In addition,

they are also both ranked as ”high as possible”.

We first claim that g(Pi, P−i) = y. In order to see this, note that since y ∈

Rg(Pi), there exists P ′
−i ∈ D−i(a1, · · · , aN) such that g(Pi, P

′
−i) = y. Now pick a

arbitrary voter j 6= i and let g(Pi, Pj, P
′
i,j) = w. Oberve that if yPjw, then j would

gain by announcing P ′
j instead of his true preference Pj at the profile (Pi, Pj, P

′
i,j).

On the other hand, if wPjy, then w = aj and once again SP* would be violated

because j would gain by announcing Pj instead of P ′
j at (Pi, P

′
i ). Therefore w = y

and applying this argument repeatedly, we claim that g(Pi, P−i) = y.

We claim next that g(P̄i, P−i) = x. To see this consider all voters j 6= i and

let P̄j ∈ IP aj be the ordering obtained by just reversing the ranking of x and y

whenever possible leaving preferences over all other alternatives undisturbed. If

either x or y coincide with aj, P̄j = Pj. It follows from Lemma 3.1 that g(P̄ ) = x

(since all voters other than i rank x as high as possible). Now change voter j’s

ordering from P̄j to Pj. The new outcome can only be either x or y. But it cannot

be y because y /∈ Rg(P̄i). Proceeding to the end of the sequence and repeating the

same argument, we obtain g(P̄i, P−i) = x.

But this will violate SP* because voter i whose true preference is Pi will be

strictly better off by announcing P̄i in the profile (P̄i, P−i).

Lemma 3.3 Either |Rg(Pi)| = 1 or |Rg(Pi)| ≥ 3.
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Proof: Suppose not. Suppose there exists x, y, z ∈ B with x, y ∈ Rg(Pi) and

z /∈ Rg(Pi). In view of the Corollary, we can assume without loss of generality

that x = max(Pi, B). Also applying Lemma 3.2, we can assume that r2(Pi) = x,

r3(Pi) = z and r4(Pi) = y if x 6= ai and r2(Pi) = z and r2(Pi) = y if x = ai. Now

choose P−i ∈ D−i(a1, · · · , aN) such that for all j 6= i,

• if aj = y, then r2(Pj) = z

• if aj = z, then r2(Pj) = y

• if aj 6= y, z, then r2(Pj) = z and r3(Pj) = y.

We claim that g(Pi, P−i) = y. We use an argument identical to one we em-

ployed in the previous Lemma. Let P̄−i ∈ D−i(a1, · · · , aN) be obtained by reversing

wherever possible, the alternatives y and z in the preferences of all voters j 6= i in

P−i. Since y ∈ Rg(Pi) and y is ranked as ”high as possible”, it follows (by using

an argument in Lemma 3.2) that g(Pi, P̄i) = y. Now progressively switch the pref-

erences of all voters j 6= i from P̄j to Pj. All along this sequence, the outcome is

either y or z because they are the only two alternatives over which preferences are

changing. But the outcome can never be z anywhere along the sequence because

z /∈ Rg(Pi). Therefore g(Pi, P−i) = y.

Let P ′
i ∈ IP ai be obtained by switching, (if possible), y and z in the ordering

Pi. Notice that at the profile (P ′, P−i), z is ranked as ”high as possible” in the

ranking in all the voters’preferences. Since z ∈ B, it follows from the argument

used in Lemma 3.1 and elsewhere that g(P ′
i , P−i) = z. But then SP* is violated

because zPiy and g(Pi, P−i) = y. This proves the lemma.

Lemma 3.5 It cannot be the case that for all i ∈ I and Pi ∈ IP ai , we have

|Rg(Pi)| = 1.

11



Proof: Suppose not. Pick Pi ∈ IP ai and let Rg(Pi) = x. For all j 6= i, pick

P̄j ∈ IP aj such that x is ranked ”as low as possible” i.e. if x = aj, then r1(P̄j) = x;

otherwise x is ranked last in P̄j. It follows immediately from the definition of the

set Rg(Pi) that g(Pi, P̄−i) = x. Let P̄i ∈ IP ai be such that x is ranked ”as low

as possible”. Now pick some j 6= i. Since |Rg(P̄j| = 1 by hypothesis and since

g(Pi, P̄−i) = x, it follows that g(P̄ ) = x. Let P̃ ∈ D(a1, · · · , aN) be an arbitrary

profile. By changing voter preferences progressively from the P̄ profile to the P̃

profile and applying SP* repeatedly, we can conclude that g(P̃ ) = x. But this

implies that B = {x} which contradicts our assumption that |B| ≥ 3.

We know from Lemma 3.5 that there exists i ∈ I and Pi ∈ IP ai such that

|Rg(Pi)| ≥ 3. Let h : D−i(a1, · · · , aN) → A be defined as follows. For all P−i ∈

D−i(a1, · · · , aN)

h(P−i) = g(Pi, P−i)

Clearly h is a SCF defined over a society of N − 1 voters. It is trivial to check

that h satisfies SP*. Moreover, since the range of h is Rg(Pi), it has at least three

elements. We can therefore apply the induction hypothesis to conclude that that

there exists a voter, say j where j ∈ I−{i} such that for all P−i ∈ D−i(a1, · · · , aN),

we have

g(Pi, P−i) = h(P−i) = max(Pj, R
g(Pi))

Here φ2(a1, .., ai−1, ai+1, .., aN) = range h = Rg(Pi).

We complete the proof by showing that j is also the dictator in g.

In order to do this let P̄i ∈ IP ai be such that it involves a switch of two

alternatives which were ranked consecutively in Pi. In other words, there exists x

and y such that rk(Pi) = x and rk+1(Pi) = y for some integer k and rk(P̄i) = y and

rk+1(P̄i) = x. The ranking of all alternatives other than x and y are unchanged
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in P̄i relative to Pi. Suppose that there exists P ′
−i ∈ Di(a1, · · · , aN) such that

g(Pi, P
′
−i) 6= g(P̄i, P

′
−i). In order for SP* not to be violated it must be the case

that g(Pi, P−i) = x and g(P̄i, P−i) = y. Since j dictates in h, it follows that x =

max(Pj, R
g(Pi)). Furthermore, x is not the peak of Pj; otherwise Rg(Pi) = {x}

which contradicts our hypothesis that |Rg(Pi)| ≥ 3. In view of Lemma 3.4, there

are two cases to consider.

Case A |Rg(P̄i)| ≥ 3.

It follows from the induction hypothesis that there exists a voter k 6= i such

that for all P−i ∈ Di(a1, · · · , aN), we have

g(P̄i, P−i) = max (Pk, R
g(P̄i))

It is clear that k must be distinct from j; otherwise g(Pi, P
′
−i) = g(P̄i, P

′
−i) = x

which violates our hypothesis. Assume therefore that k and j are distinct. Now

pick P̄−i ∈ Di(a1, · · · , aN), such that r2(P̄j) = y and r2(P̄k) = x. (Note that the

peaks of Pj and Pk cannot lie in the sets Rg(Pi) and Rg(P̄i) respectively. If they

did then the cardinality of these sets be one instead of at least three as we have

assumed.) Then g(Pi, P̄−i) = y and g(P̄i, P̄−i) = x and SP* would be violated since

xPiy by assumption.

Case B |Rg(P̄i)| = 1.

An immediate consequence of this assumption is that g(P̄i, P−i) = y for all

P−i ∈ Di(a1, · · · , aN).

Since |Rg(Pi)| ≥ 3, there must exist z ∈ Rg(Pi) distinct from both x and y.

Since x and y are contiguous in Pi, z must be either worse than both x and y or

better than both x and y according to Pi.

Suppose that the former is true. Pick P̄−i ∈ D−i(a1, · · · , aN) such that r2(P̄j) =

z. It follows that g(Pi, P̄−i) = z. On the other hand g(P̄i, P̄−i) = y. Since

g(P̄i, P̄−i) = y and yPiz, it follows that SP* will be violated. Now suppose instead

that z is better than both x and y according to Pi. This impies that zP̄iy. Picking
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P̄−i as before, we observe that voter i will be better off announcing Pi instead of

his true preference P̄i at the profile (P̄i, P̄−i).

We have established that g(Pi, P−i) = g(P̄i, P−i) for all P−i ∈ D−i(a1, · · · , aN).

By considering a sequence of switches of contiguous alternatives, we can demon-

strate the same equality for all P̄i ∈ IP ai . But g(Pi, P−i) = max(Pj, R
g(Pi)).

Therefore, the set Rg(Pi) does not depend on Pi. Writing it as Rg, we have

g(P ) = max(Pj, R
g) for all P ∈ D(a1, · · · , aN)

Thus voter j dictates in g over the range Rg which proves the result.

Remark 3.1 Example 3.1 is a special case of the characterization in Theorem

3.1 where N = 2, φ1(a1, a2) = 2 and φ2(a1, a2) = Ba1 for all (a1, a2).

Remark 3.2 The proof of Theorem 3.1 has a special feature. The usual induc-

tion proofs of such propositions, such as the proof of the Gibbard-Satterthwaite

Theorem in Sen (2001) employ the technique of coalescing or cloning voters in the

induction step. This is done in order to define a SCF on a society of lower car-

dinality with the appropriate properties (strategy-proofness and unanimity). This

makes the induction step relatively straightforward but entails the additional cost

of having to establish the Theorem in the non-trivial case of N = 2. In the current

setting, the cloning technique does not work because the peaks of all voters in the

function g may be different. In order to define a SCF in a society of N − 1 voters

we use a projection technique. Most of the effort in proving the result goes into

showing that there exists a SCF induced on a N1 society which satisfies the range

requirement. Some of the methods here are reminiscent of the arguments devel-

oped in Barberà and Peleg (1990). In fact the object Rg(Pi) can be interpreted

as the option set offered by voter i to the voters I − {i}. However, a pleasant

aspect of our approach is that the induction can begin at N = 1 which is a trivial
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case. We note that this approach can be used to give yet another proof of the

Gibbard-Satterthwaite Theorem.

Remark 3.3 Note that for all a1, a2, · · · , aN ∈ A, it must be true that ai /∈

φ2(a1, a2, · · · , aN) where φ1(a1, a2, · · · , aN) = i. In other words, if i is the dicta-

tor when the vector of peaks is (a1, a2, · · · , aN), then the set of alternatives over

which voter j is allowed to choose from cannot include j’s peak. If it did, then

Rf (a1, a2, · · · , aN) would be a singleton consisting of this peak which would violate

the assumption that this range has at least three alternatives.

Remark 3.4 We have noted (Remark 3.3) that the assumption that

Rf (a1, a2, · · · , aN) ≥ 3 can be restrictive. It is however not difficult, though rather

clumsy to relax this assumption. If |Rf (a1, a2, · · · , aN)| = 1, then the associated

g function is constant. If |Rf (a1, a2, · · · , aN)| = 2, then the associated g function

is defined by a committee. The latter comprises a set of winning coalitions which

satisfy a monotonicity property. Suppose Rf (a1, a2, · · · , aN) = {x, y}. For any

profile P ∈ D(a1, a2, · · · , aN), we have g(P ) = x if and only if the set of voters who

prefer x to y is a winning coalition.

Remark 3.5 We can provide some intuition for Theorem 3.1 and Remark 3.4.

In order to characterize f which stisfies SP* we simply partition the domain IPN

into sets with the property that while the planner cannot distinguish between two

profiles in the same element of the partition, he can do so between profiles in dif-

ferent elements of the partition. The problem then ”essentially” reduces to finding

conventional strategy-proof SCFs over domains which constitute each element of

the partition (we are not being precise here - formal arguments are required which
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we have not provided). It is, however, still not a trivial problem to solve (one

might, for instance, be tempted to believe that the Gibbard-Satterthwaite The-

orem could be applied to each ”sub-domain”, i.e. the problem over a particular

element of the partition). This is because preferences are restricted in each of the

sub-domains. In particular, we are not free to choose peaks of voter preferences.

4 The Partially Informed Planner

In this section, we consider the case where the planner has some ex-ante information

about the peaks of individual preferences. Our objective is to contrast both the

formulation and the results here with those of the previous model.

For all i ∈ I, let Ai ⊂ A. The set Ai is the set of admissible peaks of voter i.

The planner thus has some ex-ante information about voter preferences.

Let Di = {Pi ∈ IP |r1(Pi) ∈ Ai}. We shall let D denote the Cartesian product of

the sets D1, D2, · · ·DN . Elements of the set Di and D wil be referred to as an admis-

sible preference for voter i and an admissible preference profile respectively. Finally,

let D−i denote the Cartesian product of the sets D1, · · · , Di−1, Di+1, · · · , DN .

Definition 4.1 A Social Choice Function (SCF) is a mapping f : D → A.

Definition 4.2 A SCF f is manipulable by voter i at (admissible) profile P via

(admissible) ordering P ′
i if

f(P ′, P−i)Pif(P )

A SCF f is strategy-proof if it is not manipulable by an voter at any admissible

profile.

The defintions above are completely standard in the restricted domain litera-

ture. In contrast to the observant planner model, the domain of preferences here

are restricted but the incentive compatibility condition is stronger.
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As in the previous section, let Rf denote the range of the SCF f .

Theorem 4.1 Let f : D → A be a SCF with |Rf | ≥ 3. Then f is strategy-proof

if and only if it is dictatorial.

Proof: The sufficiency part of the result is, of course, trivial. We prove only

the necessity part. The proof uses the same ideas as the proof of Theorem 3.1.

However, many of the details are far more subtle.

We will prove the result by induction on N , the number of voters. The result

is obvious in the case N = 1. In order to establish the induction step, we assume

that the result holds for all societies of size K where K is an integer strictly less

than some positive integer N .

Let f : D → A be a strategy-proof SCF with |Rf | ≥ 3. For all i ∈ I and

Pi ∈ Di, let

Rf (Pi) = {x|x = f(Pi, P−i) for some P−i ∈ D−i}

Lemma 4.1 Let Pi, P̄i ∈ Di be such that max(Pi, R
f ) = max(P̄i, R

f ). Then

Rf (Pi) = Rf (P̄i).

Proof: Let max(Pi, R
f ) = max(P̄i, R

f ) = x. We first show that x ∈ Rf (Pi) and

x ∈ Rf (P̄i).

Since x ∈ Rf , there exists P̃ ∈ D such that f(P̃ ) = x. Let f(Pi, P̃−i) = w. If

x 6= w, then xPiw. But then voter i will manipulate at (Pi, P̃−i) via P̃i. Therefore

f(Pi, P̃−i) = x so that x ∈ Rf (Pi). By an identical argument, x ∈ Rf (P̄i).

Suppose that the Lemma is false. Then there must exist y distinct from x

such that y ∈ Rf (Pi) but y /∈ Rf (P̄i). Let P̄−i ∈ D−i be such that f(Pi, P̄i) = y.
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Now construct P−i ∈ D−i by raising y and x ”as high as possible” in P̄j for each

j 6= i. In other words, if y ∈ Aj, then r1(Pj) = y and r2(Pj) = x. If y /∈ Aj, then

r1(Pj) = r1(P̄j), r2(Pj) = y and r3(Pj) = x. Now progressively switch preferences

of all voters j 6= i from P̄j to Pj. It follows from standard arguments that strategy-

proofness implies that each stage the outcome remains y, i.e f(Pi, P−i) = y.

Our goal is to show that f(P̄i, P−i) = x. We do this in a sequence of steps.

Step 1 For all j 6= i, we construct P ′
j ∈ Dj by interchanging x and y in Pj.

If it is not possible to do this, i.e y ∈ Aj but x /∈ Aj, we let Pj = P ′
j . We claim

that f(Pi, P
′
−i) ∈ {x, y}. To see this, change the preferences of some j 6= i from Pj

to P ′
j in the profile (Pi, P

′
−i). Since f(Pi, P−i) = y and the only preference reversal

between Pj and P ′
j is that between x and y, it follows from standard strategy-

proofness arguments that the new outcome can only be either x or y. Moreover

the same argument holds as we progressively change preferences from P−i to P ′
−i

which establishes that f(Pi, P
′
−i) ∈ {x, y}.

Step 2 We claim that in fact, f(Pi, P
′
−i) = x. Since x ∈ Rf (Pi), there exists

P̃−i ∈ D−i such that f(Pi, P̃−i) = x. Let r1(P̃j) = bj for all j 6= i. Similarly,

let r1(P
′
j) = aj for all j 6= i. By a standard strategy-proofness argument, we can

assume without loss of generality that for all j 6= i, if bj is distinct from aj, x and

y, then r4(P
′
j) = bj.

4 Similarly we can assume without loss of generality that if

aj, bj, x and y are all distinct, then r3(P̃j) = y and r4(P̃j) = aj. Moreover, we

can also assume without loss of generality that the ranking of all alternatives other

than these four agree in P̃j and P ′
j for all j 6= i. Now, suppose that contrary to

our claim, f(Pi, P
′
−i) = y. Start with the profile (Pi, P

′
−i) and progressively (in

some sequence) switch preferences of all voters j 6= i to P̃j. Note that at some

stage the outcome must change because f(Pi, P̃−i) = x by assumption. Let k

4If bj is indeed distinct from the other three alternatives, then bj is worse than these alter-

natives in P ′
j and can be shuffled around as long as it remains below these three alternatives,

without affecting the outcome f(Pi, P
′
−i) which we have established is either x or y.
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be the first voter in the sequence such that outcome differs from y. Note that by

strategy-proofness, this outcome can only be bk. Moreover, if the outcome switches

to z further along the sequence when, say, voter t switches preferences from P ′
t to

P̃t. By strategy-proofness this is possible only if at = bk and z = bt. We can

conclude therefore that f(Pi, P̃−i) = bk for some voter k 6= i. But this contradicts

the assumption that f(Pi, P̃−i) = x. Therefore f(Pi, P
′
−i) = x.

Step 3 We claim that f(P̄i, P
′
−i) = x. Suppose instead that f(P̄i, P

′
−i) = z

where z is distinct from x. Since x = max(P̄i, R
f ) by assumption, xP̄iz. Therefore

i will manipulate at (P̄i, P
′
−i) via Pi. This completes the step.

Step 4 We claim that f(P̄i, P−i) = x. Recall that for all j 6= i, P ′
j is obtained

from Pj by interchanging x and y (which are contiguous in Pj). Now start with

the profile (P̄i, P
′
−i) and switch preferences of all j 6= i progressively from P ′

j to Pj.

It follows from strategy-proofness that the outcome at each point in the sequence

is either x or y. But it cannot be y because y /∈ Rf (P̄i) by hypothesis. Therefore

f(P̄i, P−i) = x.

We now complete the proof of the Lemma. Since f(Pi, P−i) = y and f(P̄i, P−i) =

x where xPi, y, voter i can manipulate.

Lemma 4.2 |Rf (Pi)| = 1 or |Rf (Pi)| ≥ 3.

Proof: Suppose not. Suppose there exists x, y, z ∈ Rf with x, y ∈ Rf (Pi) and

z /∈ Rf (Pi).

We have shown in the proof of the earlier lemma that if an alterntive is maximal

in Rf according to Pi, then it belongs to Rf (Pi). We can therefore assume without

loss of generality that x = max(Pi, R
f (Pi)). Furthermore, applying Lemma 4.1 we

can assume that x and z are contiguous i.e. there exists an integer k such that

rk(Pi) = x and rk+1(Pi) = z. Since y ∈ Rf (Pi), there exists P−i ∈ D−i such that
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f(Pi, P−i) = y. Moreover, using arguments that we have used repeatedly earlier,

we can assume that for all voters j 6= i

• if y ∈ Aj, then y = r1(Pi) and z = r2(Pi)

• if y /∈ Aj, then y = r2(Pi) and z = r3(Pi).

For all j 6= i, let P ′
j be obtained by switching (if possible) y and z in Pj.

Progressively switch preferences of all voters j 6= i in the profile (Pi, P−i) from Pj

to P ′
j . It follows from strategy-proofness that at each stage of this procedure, the

outcome can only be either y or z. But it cannot be z because z /∈ R(Pi). Therefore

f(Pi, P
′
−i) = y.

Let P ′
i be the preference ordering obtained by switching x and z in Pi. Since

both z and x are strictly better than y according to Pi, strategy-proofness implies

that f(P ′, P−i) = y. The proof of the Lemma is completed by showing that

f(P ′, P ′
−i) must, in fact, be z.

In order to establish this, note that z = max (P ′, Rf ), so that z ∈ Rf (P ′
i ).

We can now mimic the arguments in Step 2 of the previous lemma and we sketch

them briefly. Since z ∈ Rf (P ′
i ), there exists P̄−i ∈ D−i such that f(P ′

i , P̄−i) =

z. Moreover we can assume that z and y are contiguous (with z better than y

whenever possible) in P̄j, j 6= i and both these alternatives are ranked as high

as possible. Now progressivly switch preferences from P̄−i to P ′
−i. The critical

difference between the P̄j and P ′
j is that their peaks could differ. By making

suitable (innocuous) assumptions regarding the ranking of alternatives other than

y and z, it is possible to conclude that if f(P ′
i , P

′
−i) 6= z, then it must be the

case that f(P ′
i , P

′
−i) = ak where ak = r1(P

′
k) for some voter k 6= i. But this will

contradict our earlier conclusion that the outcome at this profile is y.

Lemma 4.3 It cannot be the case that for all i ∈ I and Pi ∈ Di, we have

|Rf (Pi)| = 1.

20



The proof of this Lemma is identical to that of Lemma 3.4 and is omitted. The

idea of the proof is as follows. If Rf (Pi) is a singleton say x, then the outcome of

every f , at every profile where voter i’s preference is Pi must be x. In particular,

the outcome where all voters j 6= i rank x last, must also be x. Now fix the

preferences of some j 6= i and repeat the argument to conclude that x is the

outcome even when it is ranked last by all voters. But strategy-proofness would

then immediately imply that that the outcome at all profiles is x contradicting the

assumption that the range of f has at least three elements.

It follows from Lemmas 4.2 and 4.3 that there exists a voter i and an ordering

Pi ∈ Di such that |Rf (Pi)| ≥ 3. Define the function h : D−i → A as follows.

h(P−i) = f(Pi, P−i) for all P−i ∈ D−i

It is trivial to check that h is strategy-proof. Moreover we have shown that |Rh| ≥

3. Therefore we can apply the induction hypothesis and infer that there exists

j 6= i such that for all P−i ∈ D−i,

f(Pi, P−i) = max (Pj, R
f (Pi))

In other words, if voter i’s preference is Pi, then voter j dictates over Rf (Pi). In

order to complete the proof of the Theorem, it is required only to show that voter

j continues to dictate even when i changes his preference. We can use the same

arguments that we used to show the same thing in the proof of Theorem 3.1. We

briefly sketch the details.

Consider a switch of two contiguous elements, say x and y in Pi does not change

the outcome for any P−i ∈ D−i. Suppose that xPiy and let the new preferences of i

be denoted by P̄i. Suppose that |Rf (P̄i)| ≥ 3. Applying the induction hypothesis,

it follows tht there exists a voter k who dictates over Rf (P̄i). If the outcome is to

change when i changes his preferences, it must be true that j and k are distinct.

But if they are then it is easy to derive a contradiction. Consider a profile for all
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players other than i where voter j’and k’ s maximal elements in Rf (Pi) and Rf (P̄i)

are y and x respectively. Then i would manipulate aat this profile when his true

preferences are Pi by announcing P̄i. So suppose |Rf (P̄i)| = 1 and suppose that

for some profile of preferences of the other voters, the outcome changes from x to

y (this is the only change consistent with strategy-proofness). There must exist

some z in Rf (Pi) distinct from x and y. Pick a profile for voters other than i where

z is maximal in Rf for voter j. There are two cases to consider. One is where

x and y are bothbetter than z under Pi and the other is when x and y are both

worse than z under Pi. (Recall that x and y are contiguous in Pi.) Since Rg(P̄i)

is a singleton, the outcome at the profile where i’s preferences are P̄i must be y.

Suppose that yPiz. Then i will manipulate when his preferences are Pi via P̄i.

The proof is now completed by observing that every ordering for voter i can be

obtained by a sequence of switches elements starting from Pi.

Remark 4.1 Like the proof of Theorem 3.1, it does not seem possible to provide

a proof of Theorem 4.1 by the cloning method. Once again the difficulty is that

the domain resrictions are voter-specific.

The dictatorship result does not hold if the planner has information about more

than just top-ranked alternatives. We illustrate this with an example.

Example 4.1

Let I = {1, 2} and A = {a, b, c, d}.

Suppose that the planner has the following information regarding the prefer-

ences of voter 1. He knows that if 1 ranks a first, then he ranks b second. There are

no other restrictions regarding the ranking of alternatives. In other words, among

the 12 possible pairs of first and second alternatives, exactly two, viz. a is first and
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c second and a is first and d second are infeasible. There are no other restrictions

on the preferences of other voters.

We claim that there is exists a non-dictatorial SCF in this setting. The outcome

at any profile is voter 1’s top ranked alternative if this alternative is b, c or d. If it

is a then the outcome is the alternative in the pair {a, b} which is higher ranked

in voter 2’s preferences.

It is easy to check that this SCF is strategy-proof. Voter 1 is not getting his

peak only in the case where his peak is a. In this case he might get his second

ranked alternative b. However, since 2 prefers b to a, there is no way for 1 to do

better and get a.

This example appeared originally in Aswal, Chatterji and Sen (2001) where it

was employed for a different purpose. We note that there are other ways to extend

the spirit of the domain restrictions from the tops case analysed in this section to

the more case. For instance, we may require that an alternative is never ranked in

the kth position and so on.

5 Conclusion

This paper addresses the problem of mechanism design in two different models.

The first is one where the planner is able to observe the actual realization of voter

peaks. The second is one where the planner only has ex-ante information about

possible peaks. The paper defines and characterizes ncentive compatible social

choice functions in both settings. The class of such mechanisms is much larger in

the observant planner case where the mechanism designer’s information is ex-post.
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