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 Aggregation in Area Yield Crop Insurance: 
The Linear Additive Model 

 
Introduction 

 A classic issue in agricultural economics is the design of schemes that would offer 

insurance against production risks in agriculture.  The experience with conventional crop 

insurance has been disappointing as insurers have struggled to obtain reliable actuarial 

data on individual yields (Skees, Black and Barnett). The primary attraction of area yield 

insurance schemes is that insurers do not have to contend with the informational 

problems of moral hazard and adverse selection (Halcrow).  These problems can be 

dismissed because indemnities and premiums are based not on a producer’s individual 

yield but rather on the aggregate yield of a surrounding geographical area.  However, the 

key question is how adequate are aggregate yield instruments for reducing the risks faced 

by producers?   

To address this question, previous studies have expressed individual yields as a 

linear stochastic function of area yield (Mahul, Miranda, Vercammen).  The approach has 

been to use the form of a linear regression model where the dependent variable is the 

yield of an individual producer, the only independent variable is area yield and where the 

additive random error term measures omitted individual-specific factors uncorrelated 

with area yield.  Thus, the model decomposes variations in individual yield to variations 

in area yield that represents systemic risk and variations in the error term that represents 

individual-specific or non-systemic risk.  The key parameter of the model is the so-called 

beta coefficient, which is the slope coefficient in the relation.  It has been shown that the 

beta determines the extent of risk reduction as well as the form of the optimal insurance.  

As the model combines linearity and additivity (of the error term to area yield), it can be 
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called the linear additive model (LAM). The literature assumes the LAM and does not 

derive it.  In principle, the LAM can be useful in any kind of risk analysis where it is 

important to distinguish between systemic and non-systemic risk, and thus, it is important 

to better understand its underlying conceptual fundamentals..   

As the implications for area yield crop insurance flow from the model, this paper 

investigates the theoretical foundations of the LAM.  On surface, the LAM bears a 

striking similarity to the capital asset pricing model (CAPM) of finance.  The CAPM 

postulates returns on individual assets to be a linear stochastic function of the returns on 

the market portfolio.  The CAPM beta – the slope coefficient in the model – measures the 

sensitivity of asset returns to the returns on the market portfolio.  Variations in asset 

returns are the sum of variations in systemic risk (as measured by the variation in the 

returns to the market portfolio), and variations in individual-specific risk (as denoted by 

the random term in the CAPM).   

The theoretical basis of the CAPM is well known.  It lies in mean variance utility 

functions, optimizing investor behaviour, two-fund separation results and the efficiency 

of a market portfolio (Merton).  However, there is no meaningful way of transferring 

these arguments to the context of area yield crop insurance.  Clearly, the LAM of area 

yield crop insurance is the consequence of aggregation of individual producer 

technologies and is not the outcome of optimization.  CAPM type arguments are 

therefore inapplicable.   

 This paper derives the precise conditions under which the LAM is valid.  The 

conditions are two-fold applying to individual technologies and on the extent of 

aggregation.  We show that if systemic and individual risks are additive in individual 
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yields and if the aggregation is such that the law of large numbers hold then the LAM 

obtains.  These are sufficient conditions.  The additivity property of systemic and 

individual risks is a necessary condition.  Interestingly, the LAM is otherwise 

independent of assumptions about the functional form of the production function.  

Neither does the LAM require assumptions about the functional form of the density 

function of the random variables.  

 These results are important for two reasons.  First, they extend the applicability of 

LAM to new questions.  For instance, what are  the underlying factors determining the  

individual betas and the additive disturbance term of the LAM?  We show these factors 

include producer actions as well as features of insurance design.  In this paper, we use 

this understanding to analyse how the level of aggregation matters to risk reduction and 

insurance demand.  There are other potential uses as well.  The LAM can also be used to 

analyse the “nexus between the producer’s insurance choice and his farm-level 

production decisions” which otherwise (i.e., in the absence of our results) would not be 

possible (Chambers and Quiggin).  Second, our results shed light on the circumstances in 

which the LAM is not valid.  To develop these extensions to and conditions on the LAM 

model, we begin with a discussion of the basic model.  

  

Literature 

 The LAM is of the following form:  

(1)    iiii yy εµβµ +−+= )(  

where yi is producer i’s yield, µi is the unconditional mean of yi, i.e., E(yi), y is area yield, 

βi is the slope parameter satisfying ,  µ is the unconditional mean of y 2/),( yii yyCov σβ =
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and εi is a mean zero random variable uncorrelated with area yield.  Equation (1) 

decomposes individual yield variation into a systemic component perfectly 

correlated with area yield (since Cov and a non-

systemic or individual-specific componentε uncorrelated with area yield.   

)( µβ −yi

)1=

(ymi −= β

)(/)),(( 222− yVaryy ii βµβ

i

)0,max()( yyyI c −=

)(yI

)(yI

PyIyi −+= )(

Suppose the indemnity schedule is where yc is a yield 

trigger fixed exogenously. Then Miranda showed that the extent of variance reduction is 

proportional to βi (and other exogenous parameters that do not vary across producers). 

It thus follows that the more highly correlated a producer’s yield is to the area yield, the 

greater is the risk reduction.   

Mahul considered the choice of an optimal contract .  If insurance is 

actuarially fair, then the optimal contract is characterized by where y)y m, 

the yield trigger, is the maximum possible value of y.1  Hence the slope of the optimal 

indemnity schedule is -βi.  An aspect of this result, not noted by Mahul but relevant for 

us, is that the optimal indemnity schedule is independent of the non-systemic risk and its 

moments (such as Var(εi)).    

Another implication is that optimal area yield insurance completely eliminates the 

systemic risk.  To see this, note that a producer’s revenue with insurance (denoted π) is  

(2)    π  

where P is the premium.  When a producer chooses the optimal area yield insurance, (2) 

becomes  

                                                 
1 For the LAM in (1), Vercammen considers the optimal design of an area yield crop insurance contract 
when the yield trigger is constrained, for institutional reasons, to be below the maximum possible value of 
area yield.   
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(3)      Pyyy miiii −−++−+= )()( βεµβµπ

where we have used (1).  But when insurance is actuarially fair, .  

Substituting in (3), we see that the producer bears only the non-systemic risk, i.e.,   

)( µβ −= mi yP

(4)    π +  ii εµ=

Thus optimal area yield insurance fully insures against the systemic risk.  Since the 

optimal insurance is independent of the riskiness of the non-systemic risk εi, we have the 

result that the optimal area yield insurance delivers full insurance against the insured 

(systemic) risk whatever be the riskiness of the uninsured (non-systemic) risk.   

 Conventional individual yield crop insurance offers insurance against both 

systemic and non-systemic risks; however because of moral hazard such insurance comes 

with a deductible.  By contrast, optimal area yield crop insurance does not contain a 

deductible but insures only against systemic risk.  If the deductible in the individual yield 

insurance is large enough, area yield insurance would reduce risk more effectively than 

individual yield insurance.  Miranda demonstrates this possibility empirically.   

 The LAM is tractable and delivers clear predictions about the design of optimal 

insurance and its effectiveness in reducing producer risk.  However, several fundamental 

questions remain.  Although the properties of optimal insurance depend on the LAM 

betas, the LAM itself says nothing about how the betas are determined.  In terms of their 

individual characteristics, why might some producers have higher betas than others?  An 

even more basic question is why should individual yields be related to area yields linearly 

as in the LAM?   

 Chambers and Quiggin have criticised the LAM because it models yield as a 

stochastic variable not subject to control by the producer.  As they correctly point out, 
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this makes the LAM inappropriate for investigating producer response to area-yield 

insurance.  However, we shall show that if the LAM is derived from the aggregation of 

individual technologies, then its parameters can be seen to be functions of individual 

choice variables.  The criticism of Chambers and Quiggin will then no longer apply.   

 

A Structural Model of Systemic and Non-Systemic Risks 

In this section, we derive the LAM from a description of individual production 

technologies.  As these are the primitives, the specification of production environments 

constitutes a structural model.   

Consider a region R where there are n producers.  Producer i’s yield yi, is given by  

(5)     iiiy ηµ=

where µi is producer i’s mean yield and ηi is a unit mean random variable capturing the 

risks of farming.  (5) is a standard specification of stochastic technologies where risks are 

multiplicative to mean yields.  The mean yield is a function of inputs controlled by the 

producer.  However, we purposely leave the functional form of this relationship 

unspecified.  η

iµ

i is a linear combination of two independent shocks and is given by  

(6)    η +  γθα= ii e

where ei is a shock specific to i and θ  is a shock common to all producers in region R.  

We therefore refer to ei as the non-systemic or individual risk and θ as the systemic or 

aggregate risk.  The individual and aggregate risks satisfy the following properties: 

,    , , and Cov .  To ensure 

the composite risk η

1)( =θE  ,1)( =ieE ieCov i  allfor   0)( =θ jiee ji ≠=  allfor  0)(

i has unit mean, we impose the restriction (α + γ) = 1.  Individual 

yields are, therefore, 
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(7)     )( iii ey αγθµ +=
 
We also assume that individual risks are independent of mean yields, i.e., | µieE( i) = 

E(ei).   

This completes the description of the structural model.  In this model, the composite 

risk is multiplicative to mean yields and its components are additive.  We therefore call it 

a model with multiplicative risks and additive components (MRAC).  Our goal is to 

discover whether the MRAC model can be represented as a LAM.  If so, how do the 

parameters of the LAM (  and Var ) depend on the micro parameters of the 

structural model?  The answers are not obvious.   

iβ )( iε

The area yield for the region R is  

    )]()([ i
i

ii
i

ii
i

ii ewwywy ∑∑∑ +== µαµγθ

where wi denotes the area share of the ith producer.  Let µ denote the mean area yield 

(i.e., average of the mean yields of producers). Then,  and  ∑=
i

iiw µµ

(8)    )( ii
i

i ewy ∑+= µαγθµ

Now decompose as  )( ii
i

i ew∑ µ

(9)   eeewew
i

iiiii
i

i µµµµ +−−= ∑∑ ))(()(  

where ∑=
i

ii ewe is the area average of individual risks.  Note that the first term on the 

right-hand side of (9) is the sample covariance (weighted) between mean yields and 

individual risk.   If the region contains a large number of producers, and if the law of 

large numbers applies, the sample covariance will approach (in probability) the 
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population covariance (assumed to be zero).  Similarly, e

)ie

 in large samples will be close 

to E(ei).  

When wi = (1/n), it is straightforward to use the law of large numbers to obtain 

large sample results.  In the case of weighted averages, however, a restriction on the 

weights is necessary.  Essentially, we need to assume that the average yield is not 

dominated by the yield of any single producer.  This requirement is automatically 

satisfied by the unweighted sum but needs to be explicitly assumed in the case of 

weighted sums.2  Assuming this condition to be satisfied, we use large sample 

approximations to obtain 

(10)    µµµµ =+=∑ (),()( iiii
i

i EeCovew

Substituting in (8), area yield is  

(11)     µαγθ ][ +=y

Thus, area yield is random only because of aggregate systemic shocks as individual risks 

cancel out in the aggregate.  Since area yield is a monotonic function of θ, the inverse 

function exists and is given by  

    θ  µγµα /][ −= y

Substituting for θ in (7), we obtain producer yield as a function of area yield, i.e.,  

    or  iiii eyy αµµαµµ +−= ))(/(

                                                 
2 Consider where xi is i.i.d with mean µ and . Then .  By 

Chebychev’s inequality, given any δ > 0, Prob[ | |>δ] ≤ , the limit of 

which tends to zero as long as for every n, there exists a bound c such that and c(n) → for large 
n.   

∑
i

ii xa 1=∑
i

ia

µ−ii x

µ=∑ )(
i

ii xaE

∑
i

i axVar 2 )/)( δ

cai ≤

∑
i

a i
2(

 0
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(12)     )1())(/( −+−+= iiiii eyy αµµµµµ

which is identical to the LAM in (1) if we denote and   

Hence we have the following result.   

ii βµµ =)/( iii e εαµ =− )1( .

 

Proposition 1:  In the MRAC model described by equations (5) to (7), the relationship 

between individual yield and area yield follows a LAM.  The LAM parameters are 

related to the structural parameters in the following manner:  

(a)  )/( µµβ ii =

(b)  ε  )1( −= iii eαµ
 

From part (a), we see that for any individual producer the β parameter is the ratio 

of a producer’s mean yield to the mean of area yield. It follows immediately that 

.  Miranda noted this result earlier.  From part (b), we see that the error term 

in the linear projection of individual yield on area yield is heteroscedastic. In particular, 

= which varies across producers even if the non-systemic risk in the 

structural model is homoscedastic.   

1=∑
i

iiw β

)( iVar ε iµ 222
eσα

In an empirical analysis of 102 cotton farms in Kentucky, Miranda observed that 

the distribution of the empirical betas possesses a regular, bell shape centred on 1.  We 

now know the conditions under which this result obtains.  Proposition 1 says that this 

property is inherited from the distribution of average yields.  Since the distribution of 

average yields depends on the dispersion of soil and climatic conditions in the region, 

Proposition 1 provides the formal basis for Miranda’s conjecture that “..the more 

homogenous are the soil and climatic conditions faced by producers in a given area, the 
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more closely the βi ‘s will cluster around one.” (pp 236).  To this, we can also add that 

the dispersion of betas will depend on the heterogeneity in the other factors that 

determine yield such as management practices, farming skills and capital assets.  In the 

extreme when all farmers have the same mean yield, they will also have betas identically 

equal to one.   As mean yield depends on input application and technology, production 

decisions affect the beta parameter and the disturbance term of the LAM.  Proposition 1 

thus provides the basis for using the LAM to investigate producer behaviour in the 

presence of area-yield insurance.3   

Interestingly, the LAM is surprisingly general as its parameters are independent of  

assumptions about the (a) the functional form of the relationship between input 

application and mean yield and about (b) the probability density of the systemic and non-

systemic risks.  Recall that these assumptions are left unspecified in the structural model.  

 

Systemic Risks, Non-Systemic Risks and Aggregation  

 A design problem is the selection of the area that should be used as the basis for 

computing area yields.  To maximize correlation of producer yield with area yield, it has 

been suggested that “the area or zone boundaries for an area yield contract should be 

selected so as to group together the largest possible number of farms with similar soils 

and climate” (Skees, Black and Barnett).  Can this recommendation be evaluated using 

the LAM or do we need to turn to an underlying structural model?  

                                                 
3 Chambers and Quiggin who examined it within a state-contingent model brought this issue to the fore. 
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Suppose producer yields can be averaged at two levels of aggregation.4  For 

convenience, call the smaller aggregation a cluster and the larger aggregation as a county.  

Under the LAM, producer yields are related to cluster yields in the following manner: 

(13)       11 )( ickckckickickick yy εµβµ −+= +

+

                                                

where yick and are the individual yield and its expected value of producer i in cluster c 

of county k,  y

ickµ

ck and µck are the area yield and its expected value of cluster c in county k, 

 is the slope coefficient and ε  is a shock specific to producer i in cluster c of county 

k.  Similarly, by applying the LAM to aggregation at the county level we obtain  

1
ickβ 1

ick

(14)      22 )( ickkkickickick yy εµβµ −+=

where yk and µk are the area yield and its expected value of county k,  is the slope 

coefficient and ε  is a shock specific to producer i in cluster c of county k.  Note that the 

notation allows the slope coefficient as well as the individual specific risk to vary with  

the level of aggregation.   

2
ickβ

2
ick

From (4), we know that when area yield insurance is optimal, the producer bears 

only the non-systemic risk.  Thus, in the case of cluster yield insurance, the variability of 

producer’s profit is Var while it is Var in the case of county yield insurance.  

When is variability lower?  The LAM cannot answer this question because it does not 

show how the non-systemic risk is determined.  For this, we have to turn to the 

underlying structural model.    

)( 1
ickε )( 2

ickε

Consider a variant of the MRAC model of the previous section.  Yield of 

producer i in cluster c of county k is given by   

 
4 Extension to many levels is straightforward.  
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     where  ickickicky ηµ=

kckickick e 23121 θαθααη ++=  

where eick is a shock specific to i, θ1ck  is a shock specific to all producers in cluster c of 

county k and θ2k is a shock common to all producers in county k.  In other words, eick  is 

the individual risk, θ1ck is the cluster-specific risk and θ2k is the county-specific risk. The 

risks have unit means, constant variances and are stochastically independent.  Also 

assume .   This ensures the mean of y∑ =1iα ick is µick.  The individual risk eick is 

distributed independently of the individual mean yield µick.   

The average yield of cluster c in county k can be calculated as  

  ∑∑∑
∈∈∈

++=
ci

ickickkckickick
ci

ickick
ci

ick wewyw µθαθαµα )( 23121

where  is the share of the ith producer in the area of cluster c.  Denote cluster c’s 

yield as y

ickw

ck and its mean as µck.  By arguments similar to that in the preceding section, 

substitute ∑  by its large sample approximation µickick
i

ick ew µ ck.  Hence  

(15)    ckkckcky µθαθαα ][ 23121 ++=

Thus, cluster yields are random because of cluster-specific risk and county-specific risk.  

Area yield insurance schemes at the cluster level would therefore offer protection against 

both these risks.  Write  θ .  θ)( 2312 kckk θαθα += k denotes the systemic risk at the cluster 

level.  Hence, for the cluster yield insurance scheme, we can write the equations of the 

structural model as  

(16)    and )( 1 kickickickickick ey θαµηµ +==

(17)    ckkcky µθα )( 1 +=
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By Proposition 1, the relationship between individual and cluster yields follows a LAM 

as in (13).  Furthermore, the beta of an individual producer can be computed as 

.  By the same proposition, the disturbance term in the LAM model 

isε   Hence, for a producer with cluster yield insurance, the variance of 

profits is Var .  The reduction in variance due to cluster yield 

insurance is therefore, .   

ckickick µµβ /1 =

(1
1 = ickick eµα

(

).1−ick

()1
ick αε = )()2

1 ickick eVarµ

)(2
ickick VarVar η − )()( 1

kick Var θεµ =

 Consider next area yield insurance schemes where the indemnity is contingent on 

county yield rather than cluster yield.   The average yield of county k can be calculated by 

using (15) to average across clusters within the county.  Hence   

ck
c

ckkckck
c

ck
c

ckck
c

ckck wwwyw µθαµθαµα ∑∑∑∑ ++= 23121  

where wck is the share of cluster c in area of county k.  Denote yk  to be county yield and 

µk to be its mean.  Because θ is a cluster specific risk, averaging across clusters should 

lead this risk to be approximately equal to its expected value.  Using this approximation 

and arguments similar to that in equations (8) to (10), .  Substituting,  

ck1

kckck
c

ckw µµθ =∑ 1

  kkky µθααα )( 2321 ++=

Denoting α +  as α, and α + as v21 α ckie 121 θα ick, the structural equations for the county 

yield insurance scheme are  

(18)     and )( 23 kickickick vy θαµ +=

(19)    kkky µθαα )( 23+=

Now, compare (16) and (18).  At the county level, the systemic risk is θ2k while it is θk at 

the cluster level.  The non-systemic individual specific risk changes too.  At the county 
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level, what is measured as the non-systemic risk is α +  while it is α  at the 

cluster level.  Interestingly, higher aggregation reduces systemic risk and increases non-

systemic individual specific risk.  In the extreme, averages at the level of nation or group 

of nations may be so stable that the systemic risk component of a producer’s yield might 

be close to zero.  In such a case, all producer risk would be non-systemic individual 

specific risk.   

ckicke 121 θα icke1

Applying Proposition 1, the relation between individual and county yields can be 

represented as a LAM as in (14).   Furthermore,  and the disturbance term 

isε    It follows that for a producer with optimal county yield insurance, 

the variability in profits would be Var  = 

.  Consequently, the reduction in variance due 

to county yield insurance schemes is Var .   

kickick µµβ /2 =

)(2
ickick vVar

)( 3
22
iickVar αµεη =

).(2 αµ= ickickick v

)()2
1 ickick eVarµα +

−

                                                

)( 2
ick µε =

)( 1ckVar θ

)( i −

)(( 2
2 ickµα

)( 2
2

kVar θ

Compared with the reduction achieved by cluster yield insurance, we see that the 

cluster yield insurance achieves an additional variance reduction of Var .  

This happens because, while θ

)( 12 ckick θαµ

1ck is a systemic risk at the cluster level, it becomes a non-

systemic risk at the county level and is therefore not insured by the county yield 

insurance scheme.5  It is now clear that the division of producer risk into systemic and 

non-systemic risks is dependent on the level of aggregation.  The higher is the level of 

aggregation, the greater are individual risks, the smaller are systemic risks and hence the 

smaller are the risk reduction impacts of area-yield insurance.   

 
5 It is easy to show that cluster yields are more correlated with producer yields than county yields.   
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Skees, Black and Barnett are right in emphasizing that farms with similar soils 

and climate should be grouped together.  In terms of the structural model, such a 

grouping would face risks that do not cancel out in the aggregate, and hence qualify as 

systemic risks.  However, what our analysis has pointed out is that more risks are likely 

to survive aggregation (and hence be regarded as systemic) when the farmer groups are 

small.  Hence, for area yield insurance to have the maximum impact on risk reduction, 

the area boundaries for an area yield contract should be selected so as to group together 

the smallest (and not the largest) number of farms with similar soils and climate.  

However, we now face the problem that large sample approximations will fail in small 

aggregations.  The implications of this failure are investigated in a later section where we 

show that, fortunately, a modified linear model emerges.  More importantly, none of the 

results on optimal insurance are affected.   

 

A General Structural Model 

The earlier sections presented a structural model that led to the LAM used in 

evaluations of area-yield insurance.  But there might be other structural models as well 

which imply a LAM.  What are they?  Conversely, what are instances of structural 

models that do not imply a LAM?   

Some examples of popular specifications other than the MRAC model are the 

following:  

(a)  Model of Additive risks with Additive components (ARAC):    θµ ++= iii ey

(b) The Just-Pope model with Additive Components (JPAC):     )( iiii ey ++= θσµ

(c)  Model of Multiplicative Risks with Multiplicative Components (MRMC): .   θµ iii ey =
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Do any or all of these models imply the LAM?  To answer this, we characterize the entire 

class of structural models that imply the LAM.  Suppose a general structural model of the 

form  

    )

)

,,( θiii efy z=

where, as before, ei and θ  are the random realizations of individual risk and aggregate 

shock and  f is a function that maps the individual risk, the aggregate shock and a vector 

of parameters z into realized yields.  In the MRAC model, zi consisted of a single 

parameter µi, the i’th producer’s mean yield.  Suppressing zi, we can write the model as  

(20)      fy =  ),( θiii e

where the function fi is now specific to producer i.   

If the relationship between individual yield and area yield is linear as in a LAM, 

then what restrictions must the function fi satisfy?   

 

Proposition 2: If the relationship between individual and area yields is described by a 

LAM as in (1), the structural model (20) necessarily satisfies the following:  

(a) For all i,  where h)()(),( θθ iiiiii gehefy +== i and gi are functions that map 

non-systemic shocks and systemic shocks respectively into individual yields.  

(b) For all i, there exists a function k(.) and a parameter λi such that, 

 where ciii ckg += )()( θλθ i is a constant of integration.  

Proof:   The structural model (20) satisfies 

    /)(/()/( iiiiii eyey ∂∂∂∂=∂∂ εε

But from (1), . Hence  1/ =∂∂ iiy ε
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   (   =∂∂ )/ ii ey )/( ii e∂∂ε

Recall that the LAM splits the variation in individual yields into variation in area yield y 

and an individual-specific risk ε .  By assumption, y and ε  are orthogonal.  It follows 

that area yield y is a function of θ  alone while ε  is a function of e

i i

i i alone.  Hence  

0)/()/( 22 =∂∂∂=∂∂∂ θεθ iiii eey  

i.e., the cross-partial derivatives of (20) are zero.  Since this can be true only if (20) is 

additive in the two risks, we have the result in part (a).   

We now turn to the proof of part (b) of Proposition 2.  Define the parameter δi = 

.  δθ∂∂ /iy

/ =∂θy

i measures the sensitivity of producer i’s yield to aggregate shocks.  Also 

define δ as the sensitivity of area yield to aggregate shocks, i.e., δ . Since 

, we have δ .  Now  

θ∂= /y ∂

)/(∑ ∂∂∂ θii yw ∑
=

=
n

i
iiw

1
δ

(21)   δi =  = δ .   )/)(/(/ θθ ∂∂∂∂=∂∂ yyyy ii )/( yyi ∂∂

Hence, for all i, 

(22)     
δ
δ i

i yy =∂∂ /    

Fix a producer j and define, for all i, λi = .  Clearly λ)//()/( yyyy ji ∂∂∂∂ j is 1.   Using 

(22) we obtain, δ = .  Using part (a) of Proposition 4, this can be written as  jii δλ

(23)    .   )/(/ θλθ ∂∂=∂∂ jii gg

λi does not vary with the aggregate shock θ .  This can be seen from the LAM in equation 

(1), where for all i, is a parameter that is independent of the realization of θ.   

Integrating both sides of (22) with respect to θ, we therefore find that, for all i, the 

yyi ∂∂ /
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structural model satisfies  where cijii cgg += )()( θλθ

)ie ()( iii ehkba ++ θ

[)]([ii hEkEba ++= θ

i is a constant of integration that 

varies with i.  Since j is arbitrarily chosen, we define k(θ) to be .  This proves part 

(b).   

)(θjg

Proposition 2 specifies the class of structural models implied by the LAM. 

Notice that the LAM does not restrict the way in which the risks affect production.  

However, the LAM does require that either the components of risk or their effects on 

production be additive.  As a result, the model of multiplicative risks with multiplicative 

components (MRMC) does not satisfy the necessary conditions identified in Proposition 

2.  We have the important result that the LAM is inappropriate in this case.   However, 

the ARAC and JPAC structural models meet the conditions of Proposition 2 and are 

therefore not inconsistent with a LAM.  The next result considers the converse 

relationship: does every member of the class identified in Proposition 2 imply the LAM?  

The answer is yes, provided the aggregation is large enough.   

 

Proposition 3:  The structural model in (20) implies a LAM if (a) the area weighted 

average of individual risks can be replaced by its large sample equivalent of population 

average and if (b) the structural model satisfies  

(24)  =  ,(ii fy θ= )i

 where  and  are monotone functions, a(.)ik (.)ih i and bi are parameters that possibly 

vary with i.   

Proof:  From (24), mean producer yield is  

(25)    )]( iii eµ

Adding and subtracting µi to the right-hand side of (24), and using (25), we get 
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(26)   )]]([)([)]()([ iiiiiii ehEehEkkby −+−+= θθµ

Now using (24), area yield is  

(27)    )()( iii ehwbkay ∑++= θ

where and .  Using the weak law of large numbers, 

can be approximated in large samples by .

ii awa ∑=

ii eh )(

iibwb ∑=

∑
i

iw )]([ ii
i

i ehEw∑ 6  Hence  

(28)     )]([)()( iii ehEwbkay ∑++= θθ

Mean area yield is therefore  

(29)    )]([)( iii ehEwbEka ∑++= θµ

From (28) and (29), .  Substituting in (26) and defining, 

 and ( , we get  

)]()([ θθµ Ekkby −=−

iiii eEhe ε=− ))()(ii bb β=)/( ih

   iiii yy εµβµ +−+= )(  

where εi is a mean zero random variable uncorrelated with area yield.   

 The above proof also derives the relationship of the structural parameters to the 

parameters of the LAM model.  As it is useful to identify this result separately, we have 

the next proposition. 

 

Proposition 4:  In the general structural model that is equivalent to the LAM, the 

parameters satisfy  

(a) b .   ii b β=/
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(b) h iiiii eEhe ε=− )()(  

 Two implications of Proposition 4 are worthy of special mention.  bi measures the 

sensitivity of producer i’s yield to aggregate shocks while b is the sensitivity of area yield 

to aggregate shocks.  Part (a) of Proposition 6 therefore states that βi, the sensitivity of 

producer i’s yield to area yield is that producer’s sensitivity to aggregate shocks relative 

to the sensitivity of area yield to aggregate shocks.  Also recall that when area yield 

insurance is optimal, the producer bears only the risk ε .  From part (b) of Proposition 6, 

it can be seen therefore that, with optimal area yield insurance, the variability of producer 

profits is Var   

i

)).(( ii eh

Given Proposition 4, it is easy to compute the betas for special cases of the 

general structural model.  We consider a few specifications that were mentioned at the 

beginning of this section.   

(i) MRAC:   )( iii ey αγθµ +=

This is the multiplicative specification considered earlier.  It is additive in the interaction 

of systemic and non-systemic shocks.  Fix any j and define .  Define bγθµθ jk =)(

i by

jµµ /

i = 

(µi/µj) and .  Then, individual yields can be written as , 

which is a special case of the structural model (20).  Here, b = .  Applying 

Proposition 4, we compute β

iiii eeh αµ=)( )()( iii ehk += θ

i as .    µµ /i

(ii)  ARAC:  θµ ++= iii ey

                                                                                                                                                 
iiii eeh µ=)( ∑ iihw

∑ ∑ ∑ === µµµ iiiiiii weEwhEw )()( 1)( =ieE

6 In the MRAC model, .  Hence in large samples, converges in probability to 

,  given the assumption for all i. 
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 In this specification, risks are additive to mean yield.  It clearly satisfies (20).  

Here k(θ) = θ, bi = 1 and so b = 1.  Hence βi = 1 for all i.  Note this result obtains even 

though producers are heterogeneous in mean yields.  We can now see that what is 

important for there to be heterogeneity in betas is heterogeneity in the way the aggregate 

shock affects mean yields.   

(iii) JPAC:  )( iiii ey ++= θσµ

This is the specification of a stochastic production function due to Just and Pope.  This is 

also a special case of (20) where k(θ) = θ, bi = σi and therefore b = σ where σ . 

Therefore β

∑=
i

iiw σ

i = σi/σ.   

 

Small Aggregations 

 The results in the earlier section point to the fact that a LAM is a consequence of 

additive interaction of systemic and non-systemic risks.  However, while such structure 

of risks is necessary, it is not sufficient to ensure a LAM with conventional properties.  

Some structure is also required on the extent of aggregation.  For this reason, Proposition 

3 assumed it was valid to use large sample approximations.  What if this assumption was 

seriously violated?  What would be the relation between individual yield and area yield in 

small aggregations? 

 Suppose the structural model satisfies (24).  The question is interesting only for 

this case because we already know that a LAM does not obtain otherwise.  Given (24), 

equations (25), (26) and (27) are immediate consequences and their derivation does not 

involve large sample approximations.  Using (27), mean area yield is  

 21 



(30)    )]([)( iii ehEwbEka ∑++= θµ

From (27) and (30), we can solve for [ as  )]()( θθ Ekk −

)()( θθ Ekk − =  bAby //)( −− µ

where .  If the aggregation is large, the difference A 

could be approximated as zero by Chebychev’s law of large numbers.  But otherwise, it is 

a non-zero random variable.  Substituting for [ in (27),   

∑ ∑−= )]([)( iiiiii ehEwehwA

)]()( θθ Ekk −

  iiiii yAy εµββµ +−+−= )(  

where we have used the definitions (  and ( .  Separating 

out the quantity A into its stochastic and a non-stochastic components and re-arranging 

terms, we obtain  

ii bb β=)/ iiiii eEheh ε=− ))()(

   )))(()())((( ∑∑ −+−++= iiiiiiiiiii ehwyehEwy εµββµ

Letting φ and v , we get  ∑+= ))((( iiiiii ehEwβµ )))(( ∑−= iiiii ehwε

(31)      iiii vyy +−+= )( µβφ

Surprisingly,  a linear relation between producer yield and area yield obtains once again.  

However, in other respects, the properties of (31) are different from (1).  First, the 

intercept term is no longer the mean producer yield.  Second, the error term is no longer 

uncorrelated across producers even when individual risks are uncorrelated.  This happens 

because of the common random component in each of the    

is nothing but the area average of individual risks.  In small aggregations, this is no 

longer equal to the population average but is a random quantity.  As the area average y is 

also a function of  , the error term v

∑ )( iii ehw .' svi ∑ )( iii ehw

∑ )( iii ehw i is correlated with y.  The important 
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implication of this result is  that, if the betas are estimated by an ordinary least squares 

regression, they are inconsistent.  In particular, since vi is negatively correlated with y,  

plim (  iiiii
OLS

i yVarvyCov ββββ >−= )(/),()
^

 Even though (31) does not have the properties of a conventional LAM, it is easy 

to show that the results of earlier work will continue to hold.  In particular, the slope of 

the optimal indemnity schedule will be −  and such insurance will eliminate the 

systemic risk component of a producer’s risk.   

iβ

 
Multiplicative Components 

 As noted earlier, a structural model with multiplicative components cannot be 

represented as a LAM.  But does that make a difference to the results of Miranda and 

Mahul?  Suppose, for a given level of aggregation, individual yields are described by  

(32)    and η  iiiy ηµ= θii e=

where the variables continue to have the same meaning and properties as before.  Such a 

specification is natural whenever the yield impacts of one risk depend on the realization 

of the other risk as well.  For instance, even with a positive systemic shock due to say 

timely rainfall, the impact on an individual producer’s yield might be negligible because 

of a local risk such a pest or fungal infestation.  Conversely, very adverse aggregate 

shocks could nullify a good outcome in terms of local risks.  Unfortunately, in an additive 

structure, the impact of rainfall is invariant to local risks and vice-versa.7  

To see how the multiplicative structure makes a difference, we compare it with 

the MRAC model.  The results of Miranda and Mahul apply to the MRAC model and 
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therefore we know that the slope of the optimal indemnity schedule is − and 

that it is invariant to the non-systemic risk and its moments.  Furthermore, with the 

optimal amount of insurance, all systemic risk is eliminated.  To see whether these results 

extend to the MRMC model, it is necessary to directly analyze the structural form (31) as 

the LAM is unavailable.   

)/( µµβ ii =

The area yield associated with (31) is .  By using large sample 

approximations, we can express area yield as  

∑=
i

iiey µθ

(33)     µθ=y

Substituting in (32),  

(34)    =  iii yey )/( µµ= ii yeβ

where we have denoted ( by β)/ µµ i i .  Notice that, when the non-systemic risk is absent 

and is equal to its expected value 1, (34) is identical to a LAM (without non-systemic risk 

and with zero intercept).  From the results that apply to a LAM, we therefore have that 

the insurance schedule satisfies  whenever there is no non-systemic risk.  

Now suppose e

iyI β−=)('

i is a random variable that takes values other than one with nonzero 

probability.  We can write producer i’s revenue with insurance as  

PyIyePyIy iiii −+=−+= )()( βπ  

An actuarially fair optimal insurance contract maximizes expected utility of producer i 

subject to the break-even constraint of the insurers.  Hence it solves  

(35)     subject to  Max
yI )(

∫ ∫
ie y

ii edFydGU )()()(π ∫=
y

ydGyIP )()(

                                                                                                                                                 
7 For an analysis of multiplicative structures arising from the interaction of price and quantity risks, see 
Mahul (2000) and Ramaswami and Roe (1992).   
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where U is an increasing, concave and thrice differentiable utility function, F is the 

cumulative density of the non-systemic shock, and G is the cumulative density of area 

yield derived from the probability distribution of the systemic shock θ (from (33)).  Note 

that since area yield is a function of θ  alone, it is distributed independently of the non-

systemic risk.   

Let λ be the Lagrange multiplier associated with the break-even constraint.  Then 

the optimal function I(.) satisfies for every y 

(36)   )()()()(' yfedGyfU ii
ei

λπ =∫

where .  Clearly (36) can also be written as  dyydFyf /)()( =

   λπ =]|)('[ yUE i

i.e., the optimal insurance equalizes the expected marginal utility in every state of area 

yield, y.  Differentiating the first order condition with respect to y,  

0))](')(('[ =+ yIeUE ii βπ  

from which we can solve for the slope of the indemnity schedule as  

(37)  ]
)(''

)),(''(
1[)('

π
π

β
EU

eUCov
yI i

i +−=  

0'' <EU and so the sign of 
)(''

)),(''(
π
π

EU
eUCov i

yU ii βπ )(''') =

 is opposite to the sign of the covariance 

term.  Since , the covariance term is positive, equal to zero 

or negative as 'U  is positive, zero or negative.  A risk-averse agent with a positive third 

derivative of utility function has been referred to as prudent (Kimball).  It is easy to show 

that an agent with non-increasing risk-aversion must be prudent.  U  is zero for an agent 

eU iiπ /)(''( ∂∂

''

'''
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with a quadratic utility function.  Since constant or decreasing risk-aversion is a 

reasonable restriction on risk-averse behaviour, we concentrate below on the case when 

.   0''' >U

yI− )('

 

Proposition 5:  If systemic and non-systemic risks interact multiplicatively, the optimal 

insurance for a prudent producer I satisfies −  iyI β<)(' .

 The proof is immediate from (37).  Recall, that when non-systemic risk is absent, 

.  This can also be seen directly from (37).  Thus, we obtain the important 

result that in the presence of an uninsured non-systemic risk, it is optimal for a producer 

to choose a lower level of coverage as compared to the case where non-systemic risk is 

absent.  This is unlike the additive case where the demand for insurance against the 

systemic risk is unaffected by non-systemic risk.   

iβ=

To analyse local changes in risk, consider a one-term expansion of U  as  ''

  or  ))(('''))(())(('')('' πππππ EUEEUU −+=

))((''')1())(('')('' πβππ EUeyEUU ii −+=  

Substituting in (37),  

(38)  ]
))((''
))((''')(1[)('

π
π

ββ
EU
EUeyVaryI iii +−=  

Greater is the riskiness of the non-systemic risk, smaller is the optimal coverage for a 

prudent producer.  The demand for area yield insurance depends therefore on the 

uninsured non-systemic risks faced by an individual producer.   As seen earlier, the 

classification of risks as either systemic or non-systemic changes with the area size used 

for computing area yields.  In a multiplicative model, therefore, the demand for area yield 
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insurance will depend on the level of aggregation at which area yields are determined.  

Since higher aggregations increase non-systemic risk, they thus reduce the demand for 

area yield insurance.   

To see this, denote I1 and I2 as the optimal insurance contracts at the cluster and 

county levels of aggregation.  Suppose also that the mean yields of all producers are 

equal.  Then βi = 1, irrespective of the level of aggregation.  In an additive model, the 

optimal coverage would satisfy  where y1)(')(' 21 =−=− kck yIyI ck and yk are cluster and 

county yields.    

In a multiplicative model, individual yields, cluster yields and county yields are 

given by , and .  Hence the non-

systemic risk for cluster insurance is e but is only  for a county yield insurance.  

The variance of non-systemic risk is therefore greater with county yield insurance.  From 

Proposition 5 and (38), it follows that the optimal coverage for a prudent producer 

satisfies 1 .   

kckickickick ey 21 θθµ=

)(')(' 21 kck yIyI >−>

kckckcky 21 θθµ=

ckick 1θ

kkky 2θµ=

icke

  

Conclusions 

 The linear additive model (LAM) decomposes individual producer yield into a 

systemic component due to area yield variation and to an independent additive producer-

specific component.  While previous work has established its convenience for analyzing 

area-yield insurance, its theoretical justification has been neglected.  Inspite of its 

likeness to the CAPM model of finance, the LAM cannot be validated in a similar 

manner.    
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 This paper has derived the LAM from aggregation of micro production functions.  

The basis for LAM rests on two conditions.  First, the aggregation must be large enough 

that all individual risk is eliminated in the area aggregate.  Second, in the individual 

production functions, the systemic and non-systemic individual risk components must be 

additive.   

Knowledge of the underlying “structural” model enables analysis of the factors 

that determine the parameters of the LAM model.  This was used in the paper to examine 

the relation between producer risk and the level of aggregation.  Other uses are possible 

such as the analysis of the relation between area-yield insurance and production 

decisions.   

 To design insurance schemes, an analysis based on the law of large numbers can 

be misleading.   We find that dropping the large numbers restriction alone does not alter 

the linear relationship between individual and area yield.  Neither does it affect the 

central results that have been obtained using the LAM.  The major outcome is that the 

decomposition now consists of two correlated risk components.  An important result is 

that it is not valid to estimate the beta parameter by ordinary least squares procedures.   

 The consequences are more serious if the assumption of additive components is 

dropped.  Then a LAM representation does not exist.  Further, previous results obtained 

in the literature are not likely to be valid.  This was shown for the important case of 

multiplicative components.  In such a set-up, area-yield insurance does not eliminate all 

systemic risk.  Moreover, the demand for insurance is not independent of the non-

systemic risk.  The greater is non-systemic risk, the lower is the demand for insurance.  
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As a result, the demand for area-yield insurance varies with the level of aggregation 

unlike the case in the additive components model.   
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