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Aggregation in Area Yield Crop Insurance:
The Linear Additive Model

Introduction

A classic issue in agricultural economics is the design of schemes that would offer
insurance against production risks in agriculture. The experience with conventional crop
insurance has been disappointing as insurers have struggled to obtain reliable actuarial
data on individual yields (Skees, Black and Barnett). The primary attraction of area yield
insurance schemes is that insurers do not have to contend with the informational
problems of moral hazard and adverse selection (Halcrow). These problems can be
dismissed because indemnities and premiums are based not on a producer’s individual
yield but rather on the aggregate yield of a surrounding geographical area. However, the
key question is how adequate are aggregate yield instruments for reducing the risks faced
by producers?

To address this question, previous studies have expressed individual yields as a
linear stochastic function of area yield (Mahul, Miranda, Vercammen). The approach has
been to use the form of a linear regression model where the dependent variable is the
yield of an individual producer, the only independent variable is area yield and where the
additive random error term measures omitted individual-specific factors uncorrelated
with area yield. Thus, the model decomposes variations in individual yield to variations
in area yield that represents systemic risk and variations in the error term that represents
individual-specific or non-systemic risk. The key parameter of the model is the so-called
beta coefficient, which is the slope coefficient in the relation. It has been shown that the
beta determines the extent of risk reduction as well as the form of the optimal insurance.

As the model combines linearity and additivity (of the error term to area yield), it can be



called the linear additive model (LAM). The literature assumes the LAM and does not
derive it. In principle, the LAM can be useful in any kind of risk analysis where it is
important to distinguish between systemic and non-systemic risk, and thus, it is important
to better understand its underlying conceptual fundamentals..

As the implications for area yield crop insurance flow from the model, this paper
investigates the theoretical foundations of the LAM. On surface, the LAM bears a
striking similarity to the capital asset pricing model (CAPM) of finance. The CAPM
postulates returns on individual assets to be a linear stochastic function of the returns on
the market portfolio. The CAPM beta — the slope coefficient in the model — measures the
sensitivity of asset returns to the returns on the market portfolio. Variations in asset
returns are the sum of variations in systemic risk (as measured by the variation in the
returns to the market portfolio), and variations in individual-specific risk (as denoted by
the random term in the CAPM).

The theoretical basis of the CAPM is well known. It lies in mean variance utility
functions, optimizing investor behaviour, two-fund separation results and the efficiency
of a market portfolio (Merton). However, there is no meaningful way of transferring
these arguments to the context of area yield crop insurance. Clearly, the LAM of area
yield crop insurance is the consequence of aggregation of individual producer
technologies and is not the outcome of optimization. CAPM type arguments are
therefore inapplicable.

This paper derives the precise conditions under which the LAM is valid. The
conditions are two-fold applying to individual technologies and on the extent of

aggregation. We show that if systemic and individual risks are additive in individual



yields and if the aggregation is such that the law of large numbers hold then the LAM
obtains. These are sufficient conditions. The additivity property of systemic and
individual risks is a necessary condition. Interestingly, the LAM is otherwise
independent of assumptions about the functional form of the production function.
Neither does the LAM require assumptions about the functional form of the density
function of the random variables.

These results are important for two reasons. First, they extend the applicability of
LAM to new questions. For instance, what are the underlying factors determining the
individual betas and the additive disturbance term of the LAM? We show these factors
include producer actions as well as features of insurance design. In this paper, we use
this understanding to analyse how the level of aggregation matters to risk reduction and
insurance demand. There are other potential uses as well. The LAM can also be used to
analyse the “nexus between the producer’s insurance choice and his farm-level
production decisions” which otherwise (i.e., in the absence of our results) would not be
possible (Chambers and Quiggin). Second, our results shed light on the circumstances in
which the LAM is not valid. To develop these extensions to and conditions on the LAM

model, we begin with a discussion of the basic model.

Literature

The LAM is of the following form:
(D yi=p+B,(r-pte,
where y; is producer i’s yield, ; is the unconditional mean of y;, i.e., E(y;), y is area yield,

B; is the slope parameter satisfying 3, = Cov(y;,y)/c Jz} , W 1s the unconditional mean of y



and ¢; is a mean zero random variable uncorrelated with area yield. Equation (1)

decomposes individual yield variation into a systemic component 3, (y — ) perfectly

correlated with area yield (since Cov(B;(y — ), 2 /B iQVar( y)? =1)and a non-
systemic or individual-specific componente ; uncorrelated with area yield.
Suppose the indemnity schedule is /(y) = max(y, — y,0) where y. is a yield

trigger fixed exogenously. Then Miranda showed that the extent of variance reduction is
proportional to 3; (and other exogenous parameters that do not vary across producers).
It thus follows that the more highly correlated a producer’s yield is to the area yield, the
greater is the risk reduction.

Mahul considered the choice of an optimal contract /(y). If insurance is

actuarially fair, then the optimal contract is characterized by /(y) = B,(y,, —») where y,,,

the yield trigger, is the maximum possible value of y.' Hence the slope of the optimal
indemnity schedule is -f3;. An aspect of this result, not noted by Mahul but relevant for
us, is that the optimal indemnity schedule is independent of the non-systemic risk and its
moments (such as Var(g;)).

Another implication is that optimal area yield insurance completely eliminates the
systemic risk. To see this, note that a producer’s revenue with insurance (denoted ) is
(2) n=y +I1(y)-P
where P is the premium. When a producer chooses the optimal area yield insurance, (2)

becomes

' For the LAM in (1), Vercammen considers the optimal design of an area yield crop insurance contract
when the yield trigger is constrained, for institutional reasons, to be below the maximum possible value of
area yield.



(3) TE=Hi+Bi(y_H)+si+Bi(ym_y)_P
where we have used (1). But when insurance is actuarially fair, P =p,(y,, — ).

Substituting in (3), we see that the producer bears only the non-systemic risk, i.e.,

(4) T=HtE

Thus optimal area yield insurance fully insures against the systemic risk. Since the
optimal insurance is independent of the riskiness of the non-systemic risk ¢;, we have the
result that the optimal area yield insurance delivers full insurance against the insured
(systemic) risk whatever be the riskiness of the uninsured (non-systemic) risk.

Conventional individual yield crop insurance offers insurance against both
systemic and non-systemic risks; however because of moral hazard such insurance comes
with a deductible. By contrast, optimal area yield crop insurance does not contain a
deductible but insures only against systemic risk. If the deductible in the individual yield
insurance is large enough, area yield insurance would reduce risk more effectively than
individual yield insurance. Miranda demonstrates this possibility empirically.

The LAM is tractable and delivers clear predictions about the design of optimal
insurance and its effectiveness in reducing producer risk. However, several fundamental
questions remain. Although the properties of optimal insurance depend on the LAM
betas, the LAM itself says nothing about how the betas are determined. In terms of their
individual characteristics, why might some producers have higher betas than others? An
even more basic question is why should individual yields be related to area yields linearly
as in the LAM?

Chambers and Quiggin have criticised the LAM because it models yield as a

stochastic variable not subject to control by the producer. As they correctly point out,



this makes the LAM inappropriate for investigating producer response to area-yield
insurance. However, we shall show that if the LAM is derived from the aggregation of
individual technologies, then its parameters can be seen to be functions of individual

choice variables. The criticism of Chambers and Quiggin will then no longer apply.

A Structural Model of Systemic and Non-Systemic Risks

In this section, we derive the LAM from a description of individual production
technologies. As these are the primitives, the specification of production environments
constitutes a structural model.

Consider a region R where there are n producers. Producer i’s yield y;, is given by
©) Vi =B,
where L, is producer i’s mean yield and n; is a unit mean random variable capturing the
risks of farming. (5) is a standard specification of stochastic technologies where risks are

multiplicative to mean yields. The mean yield p,is a function of inputs controlled by the
producer. However, we purposely leave the functional form of this relationship
unspecified. m;is a linear combination of two independent shocks and is given by

(6) n; =oae; +y0

where e; is a shock specific to i and 0 is a shock common to all producers in region R.
We therefore refer to e; as the non-systemic or individual risk and 0 as the systemic or
aggregate risk. The individual and aggregate risks satisfy the following properties:
E®@)=1, E(e)=1, ,Cov(e0)=0 foralli,and Cov(e;e;)=0foralli= j. To ensure
the composite risk 1; has unit mean, we impose the restriction (o +y) = 1. Individual

yields are, therefore,



(7) Vi =n;(y0 +oe;)
We also assume that individual risks are independent of mean yields, i.e., E(e;| W) =

E(ei).

This completes the description of the structural model. In this model, the composite

risk is multiplicative to mean yields and its components are additive. We therefore call it

a model with multiplicative risks and additive components (MRAC). Our goal is to
discover whether the MRAC model can be represented as a LAM. If so, how do the

parameters of the LAM (3, and Var(g,) ) depend on the micro parameters of the

structural model? The answers are not obvious.

The area yield for the region R is

y= ZWiJ/i =[y0 (ZWiHi) +aZ(WiMiei)]

where w; denotes the area share of the ith producer. Let p denote the mean area yield

(i.e., average of the mean yields of producers). Then, p = Z w;u,; and

1

) y=y0u +0€Z(H1Wiei)

Now decompose Z (n;we;)as

1

9) Z(Miwiei) = sz’(ui —n)e; - ;) + M;

where e = z w;e; 1s the area average of individual risks. Note that the first term on the
i
right-hand side of (9) is the sample covariance (weighted) between mean yields and

individual risk. If the region contains a large number of producers, and if the law of

large numbers applies, the sample covariance will approach (in probability) the



population covariance (assumed to be zero). Similarly, e in large samples will be close
to E(e;).

When w; = (1/n), it is straightforward to use the law of large numbers to obtain
large sample results. In the case of weighted averages, however, a restriction on the
weights is necessary. Essentially, we need to assume that the average yield is not
dominated by the yield of any single producer. This requirement is automatically
satisfied by the unweighted sum but needs to be explicitly assumed in the case of
weighted sums.” Assuming this condition to be satisfied, we use large sample

approximations to obtain

(10) Z(Hiwiei)ZCOV(Hisei)"'HE(ei):H

i
Substituting in (8), area yield is
(11) y=[0 +aju
Thus, area yield is random only because of aggregate systemic shocks as individual risks
cancel out in the aggregate. Since area yield is a monotonic function of 0, the inverse
function exists and is given by

0 =[y—pa]/py
Substituting for 0 in (7), we obtain producer yield as a function of area yield, i.e.,

Vi =, /p)(y—pa)+ poe; or

* Consider z a,;x; where x; is i.i.d with mean p and z a; =1. Then E(Z a;x;)=u. By
i i i
. L 2 2 .
Chebychev’s inequality, given any & > 0, Prob][ | z a;x; —puP81<(Var(x;)/d )z a; , the limit of
i i
which tends to zero as long as for every n, there exists a bound ¢ such that @, < c and c¢(n) —> 0 for large

n.



(12) Vo= (/) —p)+pole —1)
which is identical to the LAM in (1) if we denote (i, /p) = B,and p,o(e; —1)=¢

l'-

Hence we have the following result.

Proposition 1: In the MRAC model described by equations (5) to (7), the relationship
between individual yield and area yield follows a LAM. The LAM parameters are

related to the structural parameters in the following manner:

(@) B, =(u,; /1)
(b) &, =pale 1)

From part (a), we see that for any individual producer the § parameter is the ratio
of a producer’s mean yield to the mean of area yield. It follows immediately that

Z w;B; =1. Miranda noted this result earlier. From part (b), we see that the error term

1

in the linear projection of individual yield on area yield is heteroscedastic. In particular,
Var(e,)= p l-zoc ’s 62 which varies across producers even if the non-systemic risk in the

structural model is homoscedastic.

In an empirical analysis of 102 cotton farms in Kentucky, Miranda observed that
the distribution of the empirical betas possesses a regular, bell shape centred on 1. We
now know the conditions under which this result obtains. Proposition 1 says that this
property is inherited from the distribution of average yields. Since the distribution of
average yields depends on the dispersion of soil and climatic conditions in the region,
Proposition 1 provides the formal basis for Miranda’s conjecture that ““..the more

homogenous are the soil and climatic conditions faced by producers in a given area, the



more closely the 3; ‘s will cluster around one.” (pp 236). To this, we can also add that
the dispersion of betas will depend on the heterogeneity in the other factors that
determine yield such as management practices, farming skills and capital assets. In the
extreme when all farmers have the same mean yield, they will also have betas identically
equal to one. As mean yield depends on input application and technology, production
decisions affect the beta parameter and the disturbance term of the LAM. Proposition 1
thus provides the basis for using the LAM to investigate producer behaviour in the
presence of area-yield insurance.’

Interestingly, the LAM is surprisingly general as its parameters are independent of
assumptions about the (a) the functional form of the relationship between input
application and mean yield and about (b) the probability density of the systemic and non-

systemic risks. Recall that these assumptions are left unspecified in the structural model.

Systemic Risks, Non-Systemic Risks and Aggregation

A design problem is the selection of the area that should be used as the basis for
computing area yields. To maximize correlation of producer yield with area yield, it has
been suggested that “the area or zone boundaries for an area yield contract should be
selected so as to group together the largest possible number of farms with similar soils
and climate” (Skees, Black and Barnett). Can this recommendation be evaluated using

the LAM or do we need to turn to an underlying structural model?

* Chambers and Quiggin who examined it within a state-contingent model brought this issue to the fore.
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Suppose producer yields can be averaged at two levels of aggregation.* For
convenience, call the smaller aggregation a cluster and the larger aggregation as a county.
Under the LAM, producer yields are related to cluster yields in the following manner:
(13) Vir = Wik + Bk Vs = M) 8.
where y;. and p, are the individual yield and its expected value of producer i in cluster ¢
of county &, y. and p. are the area yield and its expected value of cluster ¢ in county £,
B., is the slope coefficient and ¢, is a shock specific to producer i in cluster ¢ of county
k. Similarly, by applying the LAM to aggregation at the county level we obtain
(14) i = Wit T B (Ve =) +8.5
where y; and p are the area yield and its expected value of county k, B, is the slope

coefficient and &, is a shock specific to producer i in cluster ¢ of county k. Note that the

notation allows the slope coefficient as well as the individual specific risk to vary with
the level of aggregation.

From (4), we know that when area yield insurance is optimal, the producer bears
only the non-systemic risk. Thus, in the case of cluster yield insurance, the variability of

producer’s profit is Var(e,, ) while it is Var(s,)in the case of county yield insurance.

When is variability lower? The LAM cannot answer this question because it does not
show how the non-systemic risk is determined. For this, we have to turn to the
underlying structural model.

Consider a variant of the MRAC model of the previous section. Yield of

producer i in cluster ¢ of county £ is given by

* Extension to many levels is straightforward.

11



Yiek = MickNick Where

Nick =0 1€jcx +002014 +00305;
where e;. is a shock specific to i, 0, is a shock specific to all producers in cluster ¢ of
county k and 0 is a shock common to all producers in county £. In other words, e;.x is
the individual risk, 0, is the cluster-specific risk and 0, is the county-specific risk. The
risks have unit means, constant variances and are stochastically independent. Also

assume ZOLI- =1. This ensures the mean of y;. is tier. The individual risk e; is

distributed independently of the individual mean yield p;e.

The average yield of cluster ¢ in county & can be calculated as

z Wick Yick =1 z Wick Mick €ick T (OL 2e lek TO 36 2k )z Wick Wick

iec iec iec
where w,, is the share of the ith producer in the area of cluster c. Denote cluster ¢’s
yield as y. and its mean as p. By arguments similar to that in the preceding section,

substitute z Wick Hick €ick DY its large sample approximation px. Hence

1
(15) YV =0y +00,0,, +0a30,, Ju
Thus, cluster yields are random because of cluster-specific risk and county-specific risk.
Area yield insurance schemes at the cluster level would therefore offer protection against

both these risks. Write 0, =(a,0,, +a,0,,). O denotes the systemic risk at the cluster

level. Hence, for the cluster yield insurance scheme, we can write the equations of the

structural model as
(16) Yick = WickNick = Mick(aleick +ek) and

(17) Ve =1 +0 4 )1k

12



By Proposition 1, the relationship between individual and cluster yields follows a LAM

as in (13). Furthermore, the beta of an individual producer can be computed as

B., =W, /1, . By the same proposition, the disturbance term in the LAM model
ise,, =01, (e, —1). Hence, for a producer with cluster yield insurance, the variance of
profits is Var(e.,) = (a1, )’ Var(e,,). The reduction in variance due to cluster yield
insurance is therefore, u> Varm,,)—Var(e,, ) =Var®,).

Consider next area yield insurance schemes where the indemnity is contingent on

county yield rather than cluster yield. The average yield of county & can be calculated by

using (15) to average across clusters within the county. Hence

zwckyck :alzwckuck +a2zwckelck“ck +a362kzwckuck
c c c c

where w, 1s the share of cluster ¢ in area of county k. Denote y; to be county yield and

L to be its mean. Because 0, , is a cluster specific risk, averaging across clusters should

lead this risk to be approximately equal to its expected value. Using this approximation

and arguments similar to that in equations (8) to (10), Z WOk Mer = My - Substituting,

c
Vi =0, +o, +030,, )1,

Denoting oy +a, as o, and oye; + 0,0, as vie, the structural equations for the county

yield insurance scheme are

(18) Vir = Wip Vi +050,,) and

(19) Y =@ +00,)u,

Now, compare (16) and (18). At the county level, the systemic risk is 02, while it is 6 at

the cluster level. The non-systemic individual specific risk changes too. At the county

13



level, what is measured as the non-systemic risk is a,,e,, +a,0,, whileitis ae;. atthe

cluster level. Interestingly, higher aggregation reduces systemic risk and increases non-
systemic individual specific risk. In the extreme, averages at the level of nation or group
of nations may be so stable that the systemic risk component of a producer’s yield might
be close to zero. In such a case, all producer risk would be non-systemic individual
specific risk.

Applying Proposition 1, the relation between individual and county yields can be

represented as a LAM as in (14). Furthermore, B, = 1., /1, and the disturbance term
ise. =u., (v, —a). It follows that for a producer with optimal county yield insurance,
the variability in profits would be Var(s.,) = uicszar(vick) =

(3T )? Var(e;.; )+ (0 ek )2 Var®, ). Consequently, the reduction in variance due

to county yield insurance schemes is Var(m,)—Var(e.,) = ua;Var®,,).

Compared with the reduction achieved by cluster yield insurance, we see that the

cluster yield insurance achieves an additional variance reduction of Var(p,,a,0,., ).

This happens because, while 0, is a systemic risk at the cluster level, it becomes a non-
systemic risk at the county level and is therefore not insured by the county yield
insurance scheme.” It is now clear that the division of producer risk into systemic and
non-systemic risks is dependent on the level of aggregation. The higher is the level of
aggregation, the greater are individual risks, the smaller are systemic risks and hence the

smaller are the risk reduction impacts of area-yield insurance.

> It is easy to show that cluster yields are more correlated with producer yields than county yields.

14



Skees, Black and Barnett are right in emphasizing that farms with similar soils
and climate should be grouped together. In terms of the structural model, such a
grouping would face risks that do not cancel out in the aggregate, and hence qualify as
systemic risks. However, what our analysis has pointed out is that more risks are likely
to survive aggregation (and hence be regarded as systemic) when the farmer groups are
small. Hence, for area yield insurance to have the maximum impact on risk reduction,
the area boundaries for an area yield contract should be selected so as to group together
the smallest (and not the largest) number of farms with similar soils and climate.
However, we now face the problem that large sample approximations will fail in small
aggregations. The implications of this failure are investigated in a later section where we
show that, fortunately, a modified linear model emerges. More importantly, none of the

results on optimal insurance are affected.

A General Structural Model

The earlier sections presented a structural model that led to the LAM used in
evaluations of area-yield insurance. But there might be other structural models as well
which imply a LAM. What are they? Conversely, what are instances of structural
models that do not imply a LAM?

Some examples of popular specifications other than the MRAC model are the
following:

(a) Model of Additive risks with Additive components (ARAC): y, =pu, +e, +0
(b) The Just-Pope model with Additive Components (JPAC): y, =, +5,0 +e¢,)

(c) Model of Multiplicative Risks with Multiplicative Components (MRMC): y, = n,e9 .

15



Do any or all of these models imply the LAM? To answer this, we characterize the entire
class of structural models that imply the LAM. Suppose a general structural model of the

form

yi=/(z;,¢.,0)
where, as before, e¢; and 6 are the random realizations of individual risk and aggregate
shock and f'is a function that maps the individual risk, the aggregate shock and a vector
of parameters z into realized yields. In the MRAC model, z consisted of a single
parameter L, the i’th producer’s mean yield. Suppressing z,, we can write the model as
(20) yi=fi(e;,0)
where the function f; is now specific to producer i.

If the relationship between individual yield and area yield is linear as in a LAM,

then what restrictions must the function f; satisfy?

Proposition 2: If the relationship between individual and area yields is described by a
LAM as in (1), the structural model (20) necessarily satisfies the following:
(a) Foralli, y; = f;(e;,0)=h;(e;) + g;(©) where h; and g; are functions that map
non-systemic shocks and systemic shocks respectively into individual yields.
(b) For all i, there exists a function 4(.) and a parameter A; such that,
g,©)=21%,k®)+c, where c; is a constant of integration.
Proof: The structural model (20) satisfies
(Qy; / Oe;) = (0y; / O, )(0¢,; | De;)

But from (1), 0y, /0e, =1. Hence

16



(ayi /aei): (agi /aei)
Recall that the LAM splits the variation in individual yields into variation in area yield y

and an individual-specific risk €;. By assumption, y and €; are orthogonal. It follows
that area yield y is a function of O alone while ¢; is a function of e; alone. Hence
(0%y,/0e,00) = (0, /e,00) =0
i.e., the cross-partial derivatives of (20) are zero. Since this can be true only if (20) is
additive in the two risks, we have the result in part (a).
We now turn to the proof of part (b) of Proposition 2. Define the parameter d,=

Oy, /00 . §; measures the sensitivity of producer i’s yield to aggregate shocks. Also

define 0 as the sensitivity of area yield to aggregate shocks, i.e., d =0y /00 . Since

oy /00 =2wi(8yi/89),we have & =2w,-81- . Now

i=1
(21) d;= 0y, /00 =(0y,/0y)(0y/00) = 5(0y, /y).
Hence, for all i,

@) o, 10y =

Fix a producer j and define, for all i, A; = (dy; /dy)/(dy ; / 0y). Clearly A;is 1. Using
(22) we obtain, &; =1,8 ;. Using part (a) of Proposition 4, this can be written as
(23) 0g; /00 =h;(0g;/00).

A; does not vary with the aggregate shock 0 . This can be seen from the LAM in equation

(1), where for all ,0y; / Oy is a parameter that is independent of the realization of 0.

Integrating both sides of (22) with respect to 6, we therefore find that, for all 7, the

17



structural model satisfies g;(®)=2,g;(©) + ¢; where ¢; is a constant of integration that

varies with i. Since / is arbitrarily chosen, we define 4(6) to be g ;(®). This proves part

(b).

Proposition 2 specifies the class of structural models implied by the LAM.
Notice that the LAM does not restrict the way in which the risks affect production.
However, the LAM does require that either the components of risk or their effects on
production be additive. As a result, the model of multiplicative risks with multiplicative
components (MRMC) does not satisfy the necessary conditions identified in Proposition
2. We have the important result that the LAM is inappropriate in this case. However,
the ARAC and JPAC structural models meet the conditions of Proposition 2 and are
therefore not inconsistent with a LAM. The next result considers the converse
relationship: does every member of the class identified in Proposition 2 imply the LAM?

The answer is yes, provided the aggregation is large enough.

Proposition 3: The structural model in (20) implies a LAM if (a) the area weighted
average of individual risks can be replaced by its large sample equivalent of population

average and if (b) the structural model satisfies

(24) v, =f,0,e)=a, +bk®)+h, (e,)

where k;(.) and 4;(.) are monotone functions, a; and b; are parameters that possibly
vary with i.

Proof: From (24), mean producer yield is

(25) W, =a, +bE[k@®O)]+ E[h, (e;)]

Adding and subtracting L, to the right-hand side of (24), and using (25), we get

18



(26) Vi =MH; +b;[k®©)— Ek©)]+[h;(e;) — E[h;(¢;)]]

Now using (24), area yield is

(27) y=a+bk®)+> whie,)

where a = z w;a;and b= z w;b;. Using the weak law of large numbers,

z w; h; (e; ) can be approximated in large samples by z w; E[h; (e;)] % Hence
i i

(28) ¥©)=a+bk®)+ Y w;Elh(e;)]
Mean area yield is therefore
(29) n=a+bEk®)+ Y wE[h(e;)]
From (28) and (29), y —n =b[k(©)— Ek(®)]. Substituting in (26) and defining,
(b, /b)=B, and (h,(e,)— Eh.(e,)) =¢,, we get
Vi =+ Bi(y—p) e,
where ¢; is a mean zero random variable uncorrelated with area yield.
The above proof also derives the relationship of the structural parameters to the

parameters of the LAM model. As it is useful to identify this result separately, we have

the next proposition.
Proposition 4: In the general structural model that is equivalent to the LAM, the

parameters satisfy

(a) b, /b=B,.
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(b) h(e;)— Eh;(e;) =€,

Two implications of Proposition 4 are worthy of special mention. b; measures the
sensitivity of producer i’s yield to aggregate shocks while b is the sensitivity of area yield
to aggregate shocks. Part (a) of Proposition 6 therefore states that 3;, the sensitivity of
producer i’s yield to area yield is that producer’s sensitivity to aggregate shocks relative
to the sensitivity of area yield to aggregate shocks. Also recall that when area yield

insurance is optimal, the producer bears only the risk ¢;. From part (b) of Proposition 6,
it can be seen therefore that, with optimal area yield insurance, the variability of producer
profits is Var(h,(e,)).

Given Proposition 4, it is easy to compute the betas for special cases of the
general structural model. We consider a few specifications that were mentioned at the
beginning of this section.

(1) MRAC: y, =p,(y0 +oe,)

This is the multiplicative specification considered earlier. It is additive in the interaction
of systemic and non-systemic shocks. Fix any j and define k®) = ;v0 . Define b; =
(W/Wy) and A, (e;) = poe,. Then, individual yields can be written as y, = b,k(©0) + h,(e;),
which is a special case of the structural model (20). Here, b= p/p ;. Applying
Proposition 4, we compute 3;as 1, /.

(1)) ARAC: y, =p, +e, +0

®In the MRAC model, /;(e;) = p;e;. Hence in large samples, z w;h; converges in probability to

ZWiE(hi) = ZWl-uiE(el-) = Zwiui =W, given the assumption E(e;) =1foralli.
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In this specification, risks are additive to mean yield. It clearly satisfies (20).
Here k£(0) =0, b;=1 and so b= 1. Hence ;=1 for all i. Note this result obtains even
though producers are heterogeneous in mean yields. We can now see that what is
important for there to be heterogeneity in betas is heterogeneity in the way the aggregate
shock affects mean yields.
(i) JPAC: y, =, +0,0 +¢;)
This is the specification of a stochastic production function due to Just and Pope. This is

also a special case of (20) where k(0) = 0, b; = c; and therefore b = ¢ where ¢ = Z W,o; .

1

Therefore B; = o/c.

Small Aggregations

The results in the earlier section point to the fact that a LAM is a consequence of
additive interaction of systemic and non-systemic risks. However, while such structure
of risks is necessary, it is not sufficient to ensure a LAM with conventional properties.
Some structure is also required on the extent of aggregation. For this reason, Proposition
3 assumed it was valid to use large sample approximations. What if this assumption was
seriously violated? What would be the relation between individual yield and area yield in
small aggregations?

Suppose the structural model satisfies (24). The question is interesting only for
this case because we already know that a LAM does not obtain otherwise. Given (24),
equations (25), (26) and (27) are immediate consequences and their derivation does not

involve large sample approximations. Using (27), mean area yield is
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(30) n=a+bEk@®)+Y wElh;(e;)]
From (27) and (30), we can solve for [k(0)— Ek(D)] as
k@©®)-Ek@®)= (y—n)/b—-A4/b
where 4 = ZWihl- (e;)— z w;E[h;(e;)]. If the aggregation is large, the difference 4

could be approximated as zero by Chebychev’s law of large numbers. But otherwise, it is

a non-zero random variable. Substituting for [k(0)— Ek(©)]in (27),
Vi=w —piA+B;(y—p+g;
where we have used the definitions (b, /b) = 3, and (4,(e;) — Eh,(e;)) =€, . Separating

out the quantity A4 into its stochastic and a non-stochastic components and re-arranging

terms, we obtain
yi=(u; + BizWiE(hi (eN+B;(y—p+(; - Zwihi(ei)))
Letting ¢; = (n; + B, D, wiE(h;(e;))and v; = (; = D w;h; (;))) , we get
(31 Yi=0;+B;(y-w)+v;
Surprisingly, a linear relation between producer yield and area yield obtains once again.
However, in other respects, the properties of (31) are different from (1). First, the

intercept term is no longer the mean producer yield. Second, the error term is no longer

uncorrelated across producers even when individual risks are uncorrelated. This happens

because of the common random component z w;h; (e; ) in each of the v;'s. z w;h;(e;)

is nothing but the area average of individual risks. In small aggregations, this is no

longer equal to the population average but is a random quantity. As the area average y is

also a function of Zwihi (e;), the error term v; is correlated with y. The important
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implication of this result is that, if the betas are estimated by an ordinary least squares

regression, they are inconsistent. In particular, since v; is negatively correlated with y,

. . OLS
plim(B ;7)) =PB; = B;Cov(y,v;)/Var(y;) > B;
Even though (31) does not have the properties of a conventional LAM, it is easy
to show that the results of earlier work will continue to hold. In particular, the slope of

the optimal indemnity schedule will be — 3, and such insurance will eliminate the

systemic risk component of a producer’s risk.

Multiplicative Components

As noted earlier, a structural model with multiplicative components cannot be
represented as a LAM. But does that make a difference to the results of Miranda and
Mahul? Suppose, for a given level of aggregation, individual yields are described by
(32) y,=um; andn, =ed
where the variables continue to have the same meaning and properties as before. Such a
specification is natural whenever the yield impacts of one risk depend on the realization
of the other risk as well. For instance, even with a positive systemic shock due to say
timely rainfall, the impact on an individual producer’s yield might be negligible because
of a local risk such a pest or fungal infestation. Conversely, very adverse aggregate
shocks could nullify a good outcome in terms of local risks. Unfortunately, in an additive
structure, the impact of rainfall is invariant to local risks and vice-versa.’

To see how the multiplicative structure makes a difference, we compare it with

the MRAC model. The results of Miranda and Mahul apply to the MRAC model and
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therefore we know that the slope of the optimal indemnity schedule is — 3, = (u, /p) and

that it is invariant to the non-systemic risk and its moments. Furthermore, with the
optimal amount of insurance, all systemic risk is eliminated. To see whether these results
extend to the MRMC model, it is necessary to directly analyze the structural form (31) as

the LAM is unavailable.

The area yield associated with (31)is y =96 z u,e; . By using large sample

approximations, we can express area yield as

(33) y=uo
Substituting in (32),
(34) Yi :(“‘i /M)yei: Biyei

where we have denoted (p, /)by B;. Notice that, when the non-systemic risk is absent

and is equal to its expected value 1, (34) is identical to a LAM (without non-systemic risk
and with zero intercept). From the results that apply to a LAM, we therefore have that
the insurance schedule satisfies /'(y) = —3, whenever there is no non-systemic risk.
Now suppose e; is a random variable that takes values other than one with nonzero
probability. We can write producer i’s revenue with insurance as

n, =y, +1(y)-P=B,ye, +1(y)-P
An actuarially fair optimal insurance contract maximizes expected utility of producer i

subject to the break-even constraint of the insurers. Hence it solves

(35) Max [[U@)dG(y)dF(e,) subject to P = [1(2)dG(y)

1(y) ey y

7 For an analysis of multiplicative structures arising from the interaction of price and quantity risks, see
Mahul (2000) and Ramaswami and Roe (1992).
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where U is an increasing, concave and thrice differentiable utility function, F is the
cumulative density of the non-systemic shock, and G is the cumulative density of area
yield derived from the probability distribution of the systemic shock 0 (from (33)). Note
that since area yield is a function of 6 alone, it is distributed independently of the non-
systemic risk.

Let A be the Lagrange multiplier associated with the break-even constraint. Then

the optimal function /(.) satisfies for every y

(36) [U')f()dGe) =2 ()

where f(y)=dF(y)/dy. Clearly (36) can also be written as
E[U'(m,) | y]=2A
i.e., the optimal insurance equalizes the expected marginal utility in every state of area
yield, y. Differentiating the first order condition with respect to y,
E[U (r,;)(Be; +I'(»)] =0
from which we can solve for the slope of the indemnity schedule as

Cov(U" (m),e;)

(37) I'(y)=-B;[1+ EU" ()

]

Cov(U'' (m),e;) . . . .
EU'" < 0and so the sign of OVZ(ZU”((TC)) %) is opposite to the sign of the covariance
T

term. Since o(U''(w,;)/0e;) =U""(n,)PB,y , the covariance term is positive, equal to zero

or negative as U'" is positive, zero or negative. A risk-averse agent with a positive third
derivative of utility function has been referred to as prudent (Kimball). It is easy to show

that an agent with non-increasing risk-aversion must be prudent. U''" is zero for an agent
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with a quadratic utility function. Since constant or decreasing risk-aversion is a
reasonable restriction on risk-averse behaviour, we concentrate below on the case when

U">0.

Proposition 5: If systemic and non-systemic risks interact multiplicatively, the optimal

insurance for a prudent producer / satisfies —71'(y) < B3, .

The proof is immediate from (37). Recall, that when non-systemic risk is absent,

—1I'(y) = B,. This can also be seen directly from (37). Thus, we obtain the important

result that in the presence of an uninsured non-systemic risk, it is optimal for a producer
to choose a lower level of coverage as compared to the case where non-systemic risk is
absent. This is unlike the additive case where the demand for insurance against the
systemic risk is unaffected by non-systemic risk.
To analyse local changes in risk, consider a one-term expansion of U'" as
U'(n)=U"(E(m))+(n —E(m))U"' (E(r)) or
U'"(m)=U"(E(m))+ B, y(e; —DU"'(E(m))
Substituting in (37),

U'(E(m))

U"(E(ﬂ))]

(38) I'(y)=—B;[1+B;yVar(e;)

Greater is the riskiness of the non-systemic risk, smaller is the optimal coverage for a
prudent producer. The demand for area yield insurance depends therefore on the
uninsured non-systemic risks faced by an individual producer. As seen earlier, the
classification of risks as either systemic or non-systemic changes with the area size used

for computing area yields. In a multiplicative model, therefore, the demand for area yield
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insurance will depend on the level of aggregation at which area yields are determined.
Since higher aggregations increase non-systemic risk, they thus reduce the demand for
area yield insurance.

To see this, denote /; and /> as the optimal insurance contracts at the cluster and
county levels of aggregation. Suppose also that the mean yields of all producers are
equal. Then B; = 1, irrespective of the level of aggregation. In an additive model, the

optimal coverage would satisfy —7,'(y,, ) =-1,"'(y,) =1 where y. and yy are cluster and

county yields.

In a multiplicative model, individual yields, cluster yields and county yields are
givenby yiex = Wick€ick®10k9 2k > Yor = MO 104924 and yy =10, . Hence the non-
systemic risk for cluster insurance is e;.;0 . but is only e, for a county yield insurance.

The variance of non-systemic risk is therefore greater with county yield insurance. From
Proposition 5 and (38), it follows that the optimal coverage for a prudent producer

satisfies 1> —11" (¥ ) > 12" (Vi) -

Conclusions

The linear additive model (LAM) decomposes individual producer yield into a
systemic component due to area yield variation and to an independent additive producer-
specific component. While previous work has established its convenience for analyzing
area-yield insurance, its theoretical justification has been neglected. Inspite of its
likeness to the CAPM model of finance, the LAM cannot be validated in a similar

manner.
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This paper has derived the LAM from aggregation of micro production functions.
The basis for LAM rests on two conditions. First, the aggregation must be large enough
that all individual risk is eliminated in the area aggregate. Second, in the individual
production functions, the systemic and non-systemic individual risk components must be
additive.

Knowledge of the underlying “structural” model enables analysis of the factors
that determine the parameters of the LAM model. This was used in the paper to examine
the relation between producer risk and the level of aggregation. Other uses are possible
such as the analysis of the relation between area-yield insurance and production
decisions.

To design insurance schemes, an analysis based on the law of large numbers can
be misleading. We find that dropping the large numbers restriction alone does not alter
the linear relationship between individual and area yield. Neither does it affect the
central results that have been obtained using the LAM. The major outcome is that the
decomposition now consists of two correlated risk components. An important result is
that it is not valid to estimate the beta parameter by ordinary least squares procedures.

The consequences are more serious if the assumption of additive components is
dropped. Then a LAM representation does not exist. Further, previous results obtained
in the literature are not likely to be valid. This was shown for the important case of
multiplicative components. In such a set-up, area-yield insurance does not eliminate all
systemic risk. Moreover, the demand for insurance is not independent of the non-

systemic risk. The greater is non-systemic risk, the lower is the demand for insurance.
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As aresult, the demand for area-yield insurance varies with the level of aggregation

unlike the case in the additive components model.
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