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Abstract. If preferences and beliefs are appropriately parametrized,
different theories of “other-regarding” preferences poses equilibria
that are consistent with experimental results in a variety of setting.
Our goal is to experimentally separate between those theories, by
studying their comparative-static performance in the neighborhood
of the classic Ultimatum Game, whose results are extremely robust.
In order to perform this exercise, we first characterize all Perfect
Bayesian Equilibia in the Ultimatum Game if preferences are inter-
dependent. We then show that in this model, capping the demand
a proposer can make may increase the proposer’s demand and the
responder’s acceptance probability. Outcome-based theories and
intentions-based models have opposite predictions. We then de-
sign and execute an experiment that facilitates almost instanta-
neous learning and convergence by both proposers and responders.
The experimental results are consistent with the predictions of the
interdependent-preferences model. Beyond the evident theoretical
implications, the economic and social implications of this result are
far-reaching: low minimum wage may lower wages, and high price
cap may increase the price a monopolist charges.

1. Introduction

The past twenty years have seen a surge in theories that depart from
the benchmark of selfish preferences, motivated mainly by experimental
evidence and introspection. Since the work of Levine [36] it has been
shown that different theories may have a parametrization that results
in equilibria among which there exists an equilibrium that is consis-
tent with the experimental findings. The goal of the current study is
to design and execute a simple experimental test that can differenti-
ate among those theories. The Ultimatum Game (Güth et al [27]) is
used as a benchmark, since it is a well studied game, with very robust
outcomes. The ultimatum game has motivated many of the theories
of “other-regarding” preferences, and all of them can account for its
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stylized properties. The experiment we conduct is a small perturba-
tion of the original game: we study how offers made by proposers and
responders’ acceptance rate change when offers must be higher than
some exogenously determined minimum.

The Ultimatum Game describes a simple and natural interactive de-
cision problem that is inherent to almost every bargaining environment:
a proposer makes a demand of p (between 0 and p̄) to a responder. If
the responder accepts, the proposer receives his demand and the re-
sponder receives p̄− p. If the responder rejects then both receive zero.
A well known backwards induction argument predicts that a selfish re-
sponder should accept any positive offer and therefore a selfish proposer
should make a maximal demand. As is now well known, the experimen-
tal evidence refute this prediction. Furthermore, several experimental
regularities have emerged: as the demand increases the probability of
acceptance decreases; the relation between the proposer’s offer and his
expected revenue is hump shaped; and there is a substantial variation
in demands that are made in experiments: proposers do sometimes de-
mand everything (make low offers) even though these offers are often
rejected.

Models of other-regarding preferences that account for the experi-
mental regularities in the ultimatum game and its variants (the dictator
game, trust game, gift exchange game) can be broadly classified into
three classes: outcome-based models (Fehr and Schmidt [21], Bolton
and Ockenfels [11]) assume that a player’s utility may be a function of
the resources allocated to other agents as well as to herself. These mod-
els incorporate heterogeneity across agents. Interdependent preferences
models (Levine [36]) allow the agent’s preferences to depend not only
on her opponent’s resources but also on her type. Since players are het-
erogeneous, the opponent’s action affects both the material allocation
and the inference the agent makes about the opponent type.1 Intention-
based (reciprocity) models (Rabin [40]) assume the agent cares about
her opponent’s intentions (beliefs) and motives. The latter models use
the “psychological games” (Geanakoplos, Pearce and Stacchetti [25])
framework.2 There exists some experimental evidence that points to

1Gul and Pesendorfer [26] provide a non-strategic foundation for reduce-form
behavioral interdependence.

2Many hybrid models that combine elements from the above models have been
proposed. Cox et al [15] proposed a nonparametric model of preferences defined
over own and other’s payoffs. In their model, a decision maker will become “more
altruistic” if the budget set he is offered to choose from is “more generous”. The
model has the very nice feature that it naturally extends standard consumer theory
to analyze important issues that arise in a variety of experiments. However, it is
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the importance of intentions (e.g. Camerer [13] pages 110-113; Blount
[10]; Falk et al [17, 18] and McCabe, Rigdon and Smith [39]). How-
ever, this evidence only excludes outcome-based models, which have
their own appeal in their simplicity. The experimental methodology
we employ tests the equilibrium response of the different theories in
close proximity to the most standard (and robust) experiment in this
field, by investigating the effect of setting a lower bound to the of-
fer a proposer can make.3 The equilibrium response of outcome and
intention-based models to our proposed comparative static is straight-
forward. In outcome-based models, proposers that otherwise would
offer below the minimum should make the minimal offer, while the rest
of the offer distribution and the conditional acceptance rates do not
change. In intention-based models, the perceived kindness of each offer
diminishes. As a result, the conditional acceptance rates decrease and
offers should (weakly) increase.

In order to evaluate the implications of the comparative static when
preference are interdependent, it is essential to first characterize the
equilibrium of the ultimatum game. Following the approach of Levine
[36], the game is modeled as a signaling game in which preferences are
‘interdependent’ in the sense that players’ preferences depend on other
players’ types. Levine [36] assumed that proposers and responders are
sampled from an identical distribution and have symmetric utility func-
tion. Although Levine was able to calibrate his model, we are not aware
of a tight characterization of all equilibria in this framework.4 We find
that the rich variety of behavior observed in the ultimatum game can be
accounted for by a simple structure of interdependence, which we term
negative interdependence. This means that the more eager the pro-
poser is to have his demand accepted, the less interested the responder
is to accept that demand.5 Traditional explanations of behavior in the
ultimatum game can be recast in terms of interdependence. For exam-
ple, the type of the proposer could represent his greed. A responder

not suitable to analyze environments like the ultimatum game where the choice set
available to the responder is not convex (although one can consider generalizations
of the game, as in Andreoni et al [1] which fit into Cox et al’s framework). Other
explanations are based on evolutionary arguments and deemphasize backwards in-
duction reasoning (Binmore et al [24, 8, 7, 9]).

3An alternative approach would be to suggest a completely new environment,
and to study whether the different models can account for equilibrium behavior in
that experiment.

4Appendix A includes a characterization of equilibrium in an environment similar
to Levine’s.

5Negative interdependence corresponds to Gruocho Marx’s philosophy of not
belonging to a club who would accept him as a member.
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will receive some utility from rejecting an offer from a greedy proposer
rather than being concerned per se with the payoff difference. Similarly,
the view that subjects employ in simple experimental settings rules of
thumb that have developed in more complex but more common en-
vironments (as in Aumann [3] and Frank’s [23] “rule rationality”) can
be formalized using the framework of interdependence. For example,
responders and proposers may employ in a one-shot ultimatum game
rules that were developed in an offer-counteroffer game that they usu-
ally play. A rejection of an unfair offer is the response that would work
best in everyday bargaining situations in which the rejection would be
followed up with a counteroffer. How effective it would be to reject
such an offer depends on characteristics of the proposer that the re-
sponder can’t know - his discount rate for example. The proposer’s
initial offer signals information about his unknown type. It should be
emphasized that the current paper does not take a stand on the inter-
pretation of negative interdependence, but allows a unified treatment
of various motivations that have been suggested in the past.

Negative interdependence represents a very simple type of prefer-
ence interdependence. The responder’s preferences depend on the pro-
poser’s preference, but not on any higher order consideration since the
proposer’s preferences don’t depend on the responder’s preferences at
all. Despite the fact that this simple formulation supports the rich set
of behavior that has already been observed in ultimatum experiments,
it is restrictive enough to provide testable implications. That is, we
can provide a comparative static result that differs from the results
associated with outcome-based or intention-based models, giving the
objective reader an opportunity to compare the performance of our
model with some well-known alternatives.

When there is negative interdependence, all perfect Bayesian equi-
libria of the ultimatum game involve pooling of proposer types who
are least eager to have their demands accepted, at the highest possible
demand. Different equilibria are characterized only by the degree of
separation of the other types. This separation generates the disper-
sion of demands that is so commonly observed in experimental results.
However, there is a strict bound on this dispersion - demands will never
be ‘too’ low (we describe the exact lower bound in what follows). Since
the proposers who are eager to have their offers accepted make low de-
mands, high demands must be accepted with lower probability to sup-
port incentive compatibility. This supports the declining acceptance
probability that is so common in experiments.

However, this declining acceptance probability also presents a puzzle
since the expected return (the demand the proposer makes times the
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probability it is accepted) is not constant as one might expect. Instead,
it has a distinct hump shape, making it something of a mystery why
proposers make very low and high demands. In our model, proposers
differ about the relative value of acceptance and rejection of a demand.
Those proposers who are more eager to have their demands accepted,
act as if they are punished more heavily by a rejection than the less
anxious proposers. As a consequence, the former are willing to accept
a lower expected return (and a very high acceptance probability) than
the latter.

After characterizing all Perfect Bayesian Equilibria, we perform the
comparative static investigation described above: we study how the
equilibrium (distribution of offers and conditional acceptance rates)
changes if we set an upper bound to the demand made by a proposer.
As explained above, outcome and intention-based models predict con-
centration of offers on the lower bound, and decrease or no change (re-
spectively) in the acceptance rate. We show that the equilibrium with
negative interdependence predicts higher demands (lower offers) and
higher acceptance rate. The intuition behind this prediction is that if
the subset of low types who make high demands will not increase, then
responders (who have low marginal utility of rejecting offers made by
low types) would accept these high demand in certainty. To maintain
an equilibrium, the subset of proposers who make high demands must
increase, and in order to satisfy the incentive compatibility constraint
of the new pivotal high type proposer - the acceptance probability must
increase. We find that the experimental results are consistent with the
negative interdependence model proposed here.

One could argue that the experimental results are a consequence of
anchoring: once an external bound is set, all agents (proposers and
responders) adjust their expectations to that bound. Therefore, if the
bound is low - lower offers will be made and they will be accepted
more frequently than in the base treatment. This line of reasoning
assumes that a lower bound of 0 (as in the standard game) has no
such anchoring effect. To test whether the results are a consequence of
equilibrium behavior or simply anchoring, we manipulate the presenta-
tion of the problem to subjects in the following way: the proposer can
make an offer as in the standard ultimatum game, but the payment
to the responder, if she accepts, equals the offer plus a certain amount
(that is equal to the lower bound set before). This treatment is strate-
gically equivalent to the truncation used above, but does not involve
anchoring. We find that the effects on the offer distribution and the
conditional acceptance rate are robust and significant, though smaller
than in the original treatment we considered.
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The economic implications of modeling interdependent preference in
a bargaining environment and the comparative statics performed may
be very important: consider, for example, wage bargaining. Almost ev-
ery bargaining model has an ultimatum component, to which we could
apply the comparative static result. Our theoretical and experimental
results suggest that as a result of setting a minimum wage, the wage
distribution may shift to the left. Similarly, prices are determined in a
bargaining process which induces price dispersion. Setting a maximum
price may shift the price distribution to the right.6 Evidently, these en-
vironments are much more complex than the stylized ultimatum game
studied here, but the latter is an important ingredient in the price (in-
cluding wage) setting process. The current study suggests to apply
caution when analyzing such environments, and to further investigate
the implications of such policies on prices.

2. The Model

Let P be a finite collection of feasible demands (offers) for the pro-
poser. These are normalized to lie between 0 and 1. Suppose these
offers are indexed in such a way that 0 = p1 < p2 < . . . < pn = 1. The
lowest demand p1 is assumed to give all the surplus in the experiment
to the responder. The highest demand pn is assumed to give all the
surplus from the experiment to the proposer. The proposer is of type
s ∈ [s, s] ≡ S, which affects the payoff of both players.7 The distri-
bution of types is given by F, and is assumed to be continuous with
full support. Let α ∈ {0, 1} denote the action of the responder, α = 1
meaning that she accepts the proposal. The payoffs are treated asym-
metrically. The payoff to the proposer is given by up(p, α, s) where s is
his type.

6Some empirical evidence to that effect may be found in Knittel and Stango
[34] who study the credit market market. Their interpretation is that price ceiling
serve as a focal point. Our third treatment shows that the effect may persist even
when focal point is not established. Experimental studies by Isaac and Plott [32]
and Smith and Williams [49] do not support the hypothesis that price controls
away from the competitive equilibrium serve as focal points in a double auction
environment, but find that controls close to the equilibrium may affect convergence.
Other experimental papers are discussed below in 10.

7The case of negative interdependence does not require heterogeneity on the re-
sponder side, though it could be added without affecting the main conclusions of the
analysis that follows. The case of positive interdependence, studied in Appendix A,
required heterogeneity on both sides in order to accommodate the standard exper-
imental results. The Appendix also demonstrates the technical changes required to
introduce two-sided heterogeneity.
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Assumption 1. For all s ∈ S:

(1) up(p
′, 1, s) > up(p, 1, s) for all p′ > p.

(2) up(p
′, 0, s) = up(p, 0, s) for all p, p′ ∈ P .

The first part of the assumption states that if his demand is accepted,
the proposer is better off with higher demand (lower offer). The second
part assumes that he is indifferent among all rejected demands. We
maintain the monotonicity assumption incorporated in the first part,
to minimize the departure from a benchmark of selfish preferences,
and to highlight the importance of interdependence in the comparative
statics to follow. One natural way to generalize the model is to relax
it.

The following assumption is also used repeatedly.

Assumption 2. Let s′ and s be such that

up(p, 0, s)− up(p, 1, s) < up(p, 0, s
′)− up(p, 1, s′)

and suppose that for some pj > pk and qj < qk,

qjup(pj, 1, s) + (1− qj)up(pj, 0, s) ≥ qkup(pk, 1, s) + (1− qk)up(pk, 0, s)

Then the same inequality holds strictly for type s′.

This“single-crossing”assumption states that if proposer of type s utility
loss as a result of being rejected is lower than the utility loss of type s′,
and if type s expected utility from a high demand (pj) with probability
of acceptance (qj) is not lower than his expected utility of a lower
demand (pk < pj) with higher probability of acceptance qk > qj), then
proposer of type s′ strictly prefers the higher demand.

The payoff to the responder also depends on the proposer’s type.
This payoff function is given by ur(p, α, s). We assume that:

Assumption 3. The function ur(p, 0, s)− ur(p, 1, s) is monotonically
increasing and supermodular in p and s. For every s there is a p > 0
such that ur(p, 0, s) − ur(p, 1, s) < 0; ur(p, 0, s) − ur(p, 1, s) > 0 for
some p, and ur(p, 0, s)− ur(p, 1, s) < 0 for all p ∈ P .

The assumption is made on the responder’s marginal utility of rejection,
if she knew the proposer’s type s. It is assumed that the marginal utility
of rejection is increasing and supermodular in the proposer’s demand
and type. That is, if the responder would know the proposer’s type, for
higher proposer’s type the change in the marginal utility of rejecting a
higher demand is higher. No matter what are the responder’s beliefs
about the proposer’s type, there is some demand the responder would
accept. A responder who believes the proposer’s type is s will reject
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some offer, while a responder who believes the proposer’s type is s will
accept any offer.

This game has many equilibrium outcomes. The nature of these
outcomes depends on the function up(p, 0, s)−up(p, 1, s). In Appendix
A we analyze the case where this function is strictly increasing. Since
this function is always increasing for the responder, we refer to this as a
situation of positive interdependence. Since in the case were there is no
responder heterogeneity the equilibrium can contain no more than two
distinct demands, we characterize in the Appendix a similar model with
responder heterogeneity. We show that for every sequence of demands,
there exist distributions of subjects that will support that sequence as
a perfect Bayesian equilibrium. Since this model cannot be refuted, we
turn below to analyze an alternative structure of interdependence.

2.1. Equilibrium with Negative Interdependence. We now con-
sider the case where up(p, 0, s)− up(p, 1, s) is monotonically decreasing
in s. We refer to this as negative interdependence. Without committing
to a specific interpretation, the higher the proposer’s type, the greater
is the utility loss due to a responder’s rejection. The responder’s mar-
ginal utility of rejection continues to increase in the proposer’s type.
As discussed in the Introduction, this formulation unifies the fairness
and “rule-rationality” interpretations. Roughly speaking, the proposer
now has an incentive to try to hide his information from the responder
because their interests are not aligned.

The following assumption is required to construct an equilibrium:

Assumption 4. For any demand p let s be such that ur(p
′, 1, s) <

ur(p
′, 0, s) for each p′ > p. Then

up(p, 1, s) > up(p, 0, s)

That is, if for every p′ > p, a responder who knows the proposer’s
type prefers to reject p′, then the proposer prefers p to be accepted. In
other words: let ŝ be the solution to ur(p, 0, s) = ur(p, 1, s). This is the
proposer’s type such that if the responder believed the proposer had
that type for sure, she would be just indifferent between accepting and
rejecting the demand p. Roughly the Assumption above states that
provided a type s isn’t too much lower than ŝ, the proposer of type s
would strictly prefer to have the demand p accepted.

Under these assumptions, all perfect Bayesian Nash equilibria exhibit
the property that higher demands are accepted with lower probability.

Theorem 5. Let p′ > p be two demands made on the equilibrium path.
The probability with which the demand p is accepted is at least as large
as the probability with which p′ is accepted.
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We now identify all the equilibrium outcomes for the game with neg-
ative interdependence. We first prove that a sequence of demands can
be supported in a Perfect Bayesian Nash Equilibrium only if the high-
est demand is the whole pie, and the demands partition the proposer’s
types in a way that if the responder knows that a certain offer is made
by an interval of proposer’s types - she is just indifferent between ac-
cepting and rejecting the offer (except possibly the lowest demand).

Theorem 6. Suppose negative interdependence, that Assumptions 1,
2, 3, 4 hold and that that up(1, 0, s) > up(1, 1, s). Then an ascend-
ing sequence of demands (π1, . . . , πK) can be supported as a Perfect
Bayesian Nash Equilibrium demands if

(1) πK = 1; and
(2) there exists a strictly descending sequence of K+1 types (s1, . . . , sK , sK+1)

with s1 = s and sK+1 = s satisfying∫ sk

sk+1

{ur (πk, 0, s)− ur (πk, 1, s)} dF (s) ≤ 0

with equality holding for all k except possibly for k = 1.

We verify below that the theorem isn’t vacuous in the sense that
interesting equilibria of this kind always exist. We next show that all
equilibria must look like this.

Theorem 7. Under the Assumptions of Theorem 6, the ascending se-
quence of demands {π1, . . . , πK} can be supported as equilibrium offers
in some Perfect Bayesian Nash Equilibrium in which every demand is
accepted with positive probability only if Conditions 1 and 2 of Theorem
6 hold.

The proofs of Theorems 6 and 7 are contained in Appendix B.8 The
equilibrium with negative interdependence has a very simple characteri-
zation: From (1), some proposer types must demand 1 and this must be
weakly acceptable given responders beliefs when they see this demand.
So there must be an interval of types [s, sm] who demand 1. Let p be
the lowest demand that a responder, who believes that the proposer
type is sm, prefers to reject. No demand between p and 1 will be made
with positive probability. At the other extreme, from Assumption 3,
there is a demand p such that ur

(
p, 1, s

)
> ur

(
p, 0, s

)
. This demand is

acceptable to the responder independently of her beliefs. No demand
below this can be sustained in any Perfect Bayesian Nash Equilibrium.
In every PBNE the demands are a weakly decreasing functions of the

8Subsection 3.1 contains demonstration of the equilibrium for K = 3.
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proposer’s type. That is, the less eager the proposer is that his demand
will be accepted, the higher will be his demand.

Appendix C describes the most informative equilibrium - the Maxi-
mally Dispersed Equilibrium, in which beyond the partial pooling at the
highest demand (made by the lowest type proposers), the equilibrium
virtually separates all proposers in (sm, s̄].

One property of particular interest is the expected payoff to pro-
posers associated with different offers. In a collection of experimental
results, for example, one might check empirically how often an offer
pk is accepted, then compute the product of pk and the observed ac-
ceptance probability in order to compute an expected payoff. Many
experimental studies have shown that the expected revenue to the pro-
poser is hump shaped (e.g. Roth et al [43], Slonim and Roth[47]).9 The
following Theorem states sufficient conditions for the expected revenue
to the proposer to be hump-shaped in the case that the proposer’s pay-
off if his demand is accepted is linear in demand (proof in Appendix
B.)

Theorem 8. Suppose that up (p, 1, s) = pφ (s) for some strictly posi-
tive function φ and that there is some proposer type s < s such that
up (0, 0, s) < 0. Then the function qkpk is decreasing when up (p, 0, s)
is positive and increasing otherwise.

3. A Comparative Static Experiment: Capping the Demand

We now turn to an experimental investigation of the proposed equi-
librium with negative interdependence. As demonstrated in the pre-
vious section, a Perfect Bayesian Nash Equilibrium of the ultimatum
game with negative interdependence can account for the known ex-
perimental regularities of the game. We were able to characterize the
equilibrium based on basic assumptions of the underlying preferences,
without assuming specific utility function. In this section we provide
a testable implication that can differentiate it from other models of
other-regarding preferences, and in particular models of intention-based
reciprocity.

3.1. Theoretical Predictions. Consider the following slight varia-
tion of the ultimatum game: instead of allowing the proposer to de-
mand anything between 0 and p̄, only demands between 0 and kp̄ are
allowed (k < 1). That is, an upper bound on the demand is a propor-
tion k of the surplus. It is well known from the existing experimental

9Note that the fact that the probability of acceptance is decreasing in demand
is not sufficient for the revenue to have a unique maximum.
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literature that for high enough k (e.g. 90%), only very few demands
are made in the excluded interval. 10

The effect of truncating the range of offers within the models of social
preference (outcome based) is straightforward: proposers who would
otherwise demand more than kp̄ would demand kp̄, and the acceptance
probability should not change.

Any model of intention-based reciprocity would predict that the con-
ditional acceptance probability would (weakly) fall, and equilibrium
demands would (weakly) fall. The intuition is simple: any demand (es-
pecially close to kp̄) reflects lower kindness of the proposer, since the
set of alternative low demands is smaller. Therefore the responder will
reciprocate to a given demand with a lower probability of acceptance.

The effect of setting an upper bound on the proposer’s demand (a
lower bound on his offer) in any Perfect Bayesian Nash Equilibrium
with negative interdependent preferences is more subtle. We demon-
strate the arguments in Figure 3.1 using K = 3. The top part corre-
sponds to the standard PBNE: start with π3 = 1 and choose s3 such
that a responder who receives a demand of 1 will believe that it came
from a proposer whose type is in the interval [s, s3) and will be indif-
ferent between accepting and rejecting the offer. The responder will
choose q3 (the probability of accepting a demand of 1) such that a pro-
poser of type s3 will be indifferent between demanding 1 and π2 < 1.
This latter demand is made by proposers whose type is in [s3, s2), so
the responder is indifferent between accepting and rejecting π2. Now
q2, the probability of accepting π2, is determined by making a proposer
of type s2 indifferent between demanding π2 and π1 < π2. Finally, π1 is
made by proposer whose type is in [s2, s], and a responder who observes
this demand would weakly prefer to accept.

When the proposer’s demand is capped at π2, a proposer of type
lower than s3 can demand at most π2. Remembering that the respon-
der’s marginal utility of rejecting is increasing in the proposer’s type, if
a responder who receives such a demand had believed that it came only

10This situation is quite different from Falk, Fehr and Zehnder [19] who study
the effects of setting a upper bound on demand (using a minimum wage) that is
lower than most demands made in its absence. Furthermore, their experiment is
much more involved than the simple comparative static exercise performed here
(simultaneous uniform wage offers to up to three potential employees). In another
work, Falk and Kosfeld [20] study the effect of allowing the receiver in a Dictator
game to set a lower limit on the dictator’s transfer. This is a considerably different
problem than the game studied in this paper, although interdependent preferences
could be applied there as well: in her decision whether to constrain the dictator,
the receiver is able to signal her type, that affects the dictator’s payoff.
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Figure 3.1. Perfect Bayesian Nash Equilibrium and
Capped Demand

from proposers in [s, s2), she would strictly prefer to accept π2. There-
fore, to make the responder indifferent between accepting and rejecting
π2, the set of proposers who demand π2 must be [s, s′) where s′ > s2.
That is, the subset of proposers [s2, s

′), who demanded π1 before set-
ting the cap, would demand now π2>π1. Moreover, the probability of
accepting π2 is now determined by the new pivotal proposer type s′.
From the construction of the original PBNE, s′ strictly preferred to
demand π1 to demand π2, when the probability of acceptance of π2 is
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q2. In order to make q′ indifferent between the two demands, the prob-
ability of accepting π2 must increase to q′ > q2. The same argument
can be made when the grid of demands is finer, and the effect continues
beyond the upper bound itself. Similarly, if the cap is set between π2

and 1, if only proposers in the interval [s, s3] had demanded the upper
demand, then a responder would strictly prefer to accept it (since the
responder’s marginal utility of rejection is increasing in p). Hence the
set of proposers who demand the lower bound must increase, and the
argument continues as above.

To summarize, the predictions for any PBNE with negative interde-
pendent preferences, is that when a maximal demand (minimal offer) is
set then: higher demands (lower offers) will be made, and the probabil-
ity of acceptance of these demands will increase relative to the base.11

These predictions are in opposite directions to the predictions derived
from models of social preferences and intention-based reciprocity, and
serve as a simple experimental method to differentiate between these
theories.

3.2. Experimental Design and Implementation. Subjects were
undergraduate students at the University of British Columbia who were
recruited by an e-mail message sent from the Student Service Centre to
a random group of students. After signing a consent form, the subjects
received a detailed explanation about the experiment. After the sub-
jects read the instructions, they were asked to answer some questions
to verify that they understood how the payment will be implemented.
Those subjects who didn’t fully understand the implementation (see
below), received a detailed explanation from a research assistant. Only
after confirming that all subjects understood the procedures, the ex-
periment started.

In order to allocate the subjects to a“proposer”and“responder” role,
they all participated in an “I Spy” contest. The contest treatment was
implemented in earlier studies in order to legitimize the position of a
proposer (e.g. Hoffman et al [30], Bolton and Zwick [12], List and
Cherry [38]). Subjects who scored higher in the contest were desig-
nated a “proposer” and received $5. The rest were asked to move to a

11Notice that the comparative static is performed on a single equilibrium. We
don’t have an equilibrium selection rationale that will suggest which equilibrium is
being played. However, the interdependence (both positive and negative) frame-
work is the only model that is consistent with increase in demand and conditional
acceptance rate as a response to capping the demand. Furthermore, since all PBE
share identical pooling on the highest possible demand, if the cap on demand is
high enough the effect on all equilibria will be similar.
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nearby room and were designated a “responder.” The motivation be-
hind paying the proposers was to mitigate the property rights effect
created by the contest: we didn’t want the contest treatment to in-
terfere in creating a baseline comparable to previous ultimatum game
experiments, but we felt that a random assignment (which is used in
many studies) may be problematic as well, as it creates substantial
ex-post asymmetries between ex-ante identical subjects.

The bargaining was over $55, that were to be paid on top of the
$5 (a total of $60). Although convergence to equilibrium strategies in
ultimatum game is not the main focus of the current study, we acknowl-
edge it is a non-trivial process. Previous studies (e.g. Roth et al [43],
Slonim and Roth [47], List and Cherry [38]) used a sequence of random
matching (without replacement) between proposers and responders. As
there is learning on both sides, it creates a complex learning problem
(Roth and Erev [42]). We decided to implement a new learning tech-
nology: each group (proposers and responders) was divided into two.
In the first round, each proposer made offers12 to half of the responders
(those offers could have been different). Each responder received offers
from half of the proposers and chose whether to accept or reject each
offer. Then each proposer learned whether the offers he made were
accepted or not (he didn’t know the offers made by other responders,
and the responses they received). In the second round, each proposer
made offers to the second half of the responders, and each responder re-
ceived offers from the proposers he had not interacted with before. This
method allows a proposer to experiment in the first round offers, an in-
stantaneous learning among responders (who received various offers in
the first round), and full learning by proposers in the second round. If
the conditional acceptance rate of responders does not change between
the first and the second round, it would confirm the hypothesis that
they fully learned in the first round. Therefore, we should not expect
additional experience to alter the responders or proposers strategies.
This conjecture is crucial for consistency with the common prior as-
sumption incorporated in the Bayesian equilibrium.13 This design also

12Note that throughout the experimental part of the work we use“offer”, in order
to maintain consistency with the way the problem was presented to subjects.

13Harrison and McCabe [29] used one-to-one matching but allowed the proposers
to observe the distribution of the minimal acceptable offer of responders in the pre-
vious round. This strategic information is finer (and less costly) than the informa-
tion proposers receive in the current design. Bellemare, Kröger and van Soest [6]
showed recently that utilizing subjective-stated probabilities of rejection allows an
econometrician to better fit of the data than by using observed frequencies of rejec-
tion from the game played. The current design is able to overcome this challenge
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allowed to see whether proposers mixed among offers, and to see how
much of the mixing is strategic and how much is due to experimenta-
tion. The payment was determined by choosing at random one match
(out of the two rounds), and implementing the outcomes for each pair
in the match. In the baseline treatment the offers were allowed to vary
between $0 and $55, and in the limit treatment the offers were between
$5 and $55 (that is, demands were capped at $50).14

The design maintained anonymity between proposers and responders
(responders didn’t know who made each offer, and proposers couldn’t
know the identity of the responder who received a specific offer). Fur-
thermore, the recruiting strategy guaranteed that the probability that
a subject will know other subjects was extremely low. The design
kept the strategy and payoff of the subjects hidden from the experi-
menters: experimenters in the rooms could not see the offers and accep-
tance/rejection decisions of subjects, and the payment was distributed
by a third group of experimenters (not present in the rooms where
the experiment took place) who placed the money in numbered sealed
envelops.

3.3. Results. Table 1 reports summary statistics of the baseline treat-
ment and the limit treatment. A total of 52 subjects took part in the
two sessions: 24 in the baseline (B) treatment and 28 in the limit (L)
treatment. Each proposer in the baseline treatment made 12 offers: 6
in each round, when the offers in round 2 (R2) were made after observ-
ing the acceptance/rejection of his offers in round 1 (R1). Similarly,
each proposer in the limit treatment made 14 demands - half in the
second round.

B-R1 B-R2 L-R1 L-R2

Average offer 19.07 21.21 15.31 15.00
Average acceptance rate 0.63 0.88 0.87 0.90
Within SD of demand 2.26 1.47 3.18 2.09
Total SD of demands 8.15 6.64 6.45 5.78

Table 1. Summary Statistics

Table 1 indicates the main finding of the investigation: setting a
lower bound on the offer (capping the demand) caused the offer to

by allowing proposers to estimate the (stable) probabilities of rejection in the first
round.

14No show-up fee was paid since we felt it could distort the ultimatum structure
of the game: with a positive show-up fee a responder who rejects still leaves the
experiment with a positive payment.
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Figure 3.2. The Effect of Setting a Lower Limit on
Offers and Acceptance Rate

fall by almost 30% from $21.21 to $15 (mean demand increased from
$33.79 to $40). In spite of the lower offers, the average acceptance rate
was marginally higher (90% in the limit treatment and 88% in the base
treatment), implying that the conditional acceptance rate increased
substantially. The learning and experimentation from the first to the
second round could be seen by the decrease of about 35% of the within
proposer standard deviation: many proposers experimented in the first
round by submitting different offers, but used a single offer in the second
round.

Figure 3.2 demonstrates graphically the effect of setting a lower limit:
the columns height represents the conditional acceptance rate for every
interval, and curve approximates the distribution of offers under the two
treatments.

Table 2 reports the distribution of offers and acceptance rate. Al-
though Table 2 reports the results for intervals, it is important to note
that about 90% of offers were made in multiples of $5. The table re-
veals the effect of setting a lower limit to the offers: the conditional
acceptance rate increases and the frequency of low offers increases.
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offer % Base-R1 Base-R2 Limit-R1 Limit-R2

$0 to $4 offers 0 0 0 0
acceptance

$5 to $9 offers 8 8 12 5
acceptance 33 17 50 60

$10 to $14 offers 25 0 31 34
acceptance 17 80 76

$15 to $19 offers 8 13 17 33
acceptance 50 78 94 100

$20 to $24 offers 18 39 28 20
acceptance 77 93 100 100

$25+ offers 39 40 12 8
acceptance 96 100 100 100

Table 2. Distribution of Offers and Acceptance Rate
by Treatment and Round

It is very important to note that although we introduced some new
and unconventional design methods in the experiment, the results in
the baseline treatment are comparable to existing experimental findings
in the literature: offers below 25% of the pie (up to $14) are accepted
only 20% of the time, and 79% of offers are higher than $20 (which
is accepted most of the time). Furthermore, statistical tests that in-
vestigated the effect of the offer’s rank on its acceptance probability,
showed that receiving several offers at once (and being able to compare
between them) had no significant effect on the conditional acceptance
probability.

3.3.1. Acceptance Rate. As noted above, 90% of offers are made at
multiples of $5. This implies that using parametric assumptions, would
extends those observations to intervals were offers have rarely been
made. Instead, we compare (non-parametrically, using Fisher exact
test) the acceptance rate at offers of $5, $10, $15, $20 between the base
treatment and the limit treatment. We use both rounds since there
is no significant difference between the conditional acceptance rates at
different rounds, within the same treatment (for both the base and the
limit treatments). As noted above, this result indicates that the first
round offers had sufficient variation to allow responders to learn the
type distribution of proposers instantaneously. Since we simultaneously
test four hypotheses, care should be taken not to reject the joint null
hypothesis of “no limit treatment effect” when it is true. That is, the
p-values need to be adjusted such that the probability that at least
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one of the tests in the family would exceed the critical value under the
joint null hypothesis of no effect is less than 5%. We use the most
conservative approach - the Bonferroni adjustment (Savin [45, 46]), in
which each p-value is multiplied by the number of tests (four in our
case). It should be noted that we take a very conservative approach of
using the Fisher exact test and the Bonferroni adjustment, that treats
the acceptance rate at different offers as independent.

offer B accept B reject L accept L reject p-value

5 2 6 6 5 0.208263
10 3 15 49 14 0.000003
15 6 2 46 1 0.052297
20 35 5 39 0 0.029196

Table 3. Fisher Exact p-value (one-sided) for the effect
of Limit Treatment on conditional acceptance probability

As Table 3 clearly reveals, the null hypothesis that limiting the of-
fer (capping the demand) did not have an effect on the acceptance
probability is rejected at 1%. The strongest and most dramatic effect
occurred at $10: in the first round, 25% and 31% of the offers in the
baseline and the limit treatments, respectively, were made at that level.
However, the acceptance rate in the base treatment was only 17% while
in the limit treatment the acceptance rate of those offers was 80%. The
experimental design allowed the proposers to learn this behavior, and
in the second round there were no offers of $10 in the base treatment,
while 34% of the offers in the limit treatment were made at $10.

It is of interest to note that the proposer’s expected revenue in the
base treatment is maximized at an offer of $20 ($30.625) - which is the
mode of the offer distribution, while in the limit treatment the expected
revenue are maximized at an offer of $15 ($39.15), although the mode
of the offer distribution is at $10.

3.3.2. Offers. In order to test whether capping the demands has a sig-
nificant effect on offers we conduct a feasible GLS regression. We used
second-round offers since after the first round, proposers learned the
conditional acceptance probability (as established above, the respon-
ders used the same acceptance probability in the two rounds). There-
fore, the second round is consistent with the common prior assumption
underlying the Bayesian signaling game. The negative effect of the
limit treatment on second-round offers is significant at 1%.

As noted above, the standard deviation of offers decreased signif-
icantly between the first and the second round in both treatments
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# of observation= 170 Obs per group
# of Groups= 26 min= 6
Estimated covariances= 26 max= 7
Panels: heteroskedastic; Wald χ2 (1) = 228.19
no auto-correlation Prob > χ2 = 0.0000
offer coef SE z P > |z| [95% CI]
Limit treatment -5.404759 0.35778 -15.11 0.000 -6.10601 -4.703506
Constant 20.42277 0.25102 81.36 0.000 19.9308 20.91476

Table 4. Second-Round Offers: Feasible GLS

(p<0.0001 in a random effect GLS controlling for treatment and round
without interaction). This result is consistent with the hypothesis that
proposers experimented in the first round, and after estimating the ac-
ceptance probability made less dispersed offers in the second round.15

3.4. Equilibrium or Anchoring? A skeptical reader may wonder
whether the results of the experiment had anything to do with interde-
pendent preferences, and may conjecture they are due to the“anchoring
and adjustment” bias identified in the behavioral decision theory liter-
ature (e.g. Slovic and Lichtenstein [48], Kahneman and Tversky [33],
Tversky and Kahneman [50]). According to this explanation, impos-
ing a minimum offer simply provides an anchor to the players, making
low offers seem more “fair”, thereby increasing their incidence and the
respective acceptance probability. This conjecture is inconsistent with
the experimental instructions and procedures: if providing a minimum
of $5 in the limit treatment created an anchor, then the $0 in the base-
line treatment should have created an even lower anchor (the wording of
the instructions are almost identical in the two treatments). However,
the argument may go that the $0 does not provide an anchor. More-
over, the results are inconsistent with this conjecture as well: as clearly
shown in Table 2 and Table 3 most of the response to setting a minimum
offer of $5 occurred at higher offers ($10 and $15). Furthermore, Table
2 reveals that the dramatic effect of setting a low bound to offers was on
responders’ acceptance rate (especially at $10) in the first round. The
proportion of proposers who offered this amount in the first round of
the two treatments differed only slightly (25% in the baseline and 31%
in the limit treatment), but the acceptance rate differed significantly
(17% in the baseline and 80% in the limit treatment). As a result, pro-
posers in the baseline treatment, didn’t make any offers in the interval

15In the base treatment 67% of the proposers made 6 identical offers in the second
round, and in the limit treatment 35% of proposers made 7 identical offers in the
second round. We didn’t find a treatment effect on the standard deviation of offers.
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B-R1 B-R2 I-R1 I-R2

Average offer 19.07 21.21 16.82 17.81
Average acceptance rate 0.63 0.88 0.75 0.82
Within SD of demand 2.26 1.47 1.19 1.03
Total SD of demands 8.15 6.64 7.96 6.45

Table 5. Summary Statistics: the Incentive vs. Base Treatments

of $10-$14 during the second round (the proportion of offers made in
this interval in the limit treatment increased only marginally to 34%
in the second round). The model of negative interdependence can ac-
count for this change in acceptance probability: in the limit treatment,
lower types (relative to the baseline treatment) made low offers, which
decreased the responders’ marginal utility of rejecting them. There-
fore, the decrease in offers between the two treatment is due to lower
acceptance rate of low offers by responders (results consistent with
many other studies) and learning by proposers, both occurring in the
baseline treatment. One of the general lessons from the anchoring and
adjustment literature is that an initial high demand in a bargaining
interaction will increase the proposer’s final payoff. The conclusions
from the experiment are the exact opposite: limiting the bargaining
power of the proposer increases his expected payoff substantially.

However, in order to convince even the most skeptic reader (and
ourselves) of the importance of interdependent preferences and equilib-
rium reasoning, we conducted a third treatment, that was strategically
equivalent to the limit treatment, but did not provide an anchor. As
argued above the anchoring rationale can be applied only if a minimum
offer of $0 does not set an anchor. We therefore allowed the proposer to
make an offer between $0 and $50, and paid the responder an additional
$5 if she accepted an offer (an “incentive”). 36 subjects participated in
this treatment, that otherwise was identical to the base treatment. As
is evident from Table 5 average offer in the incentive treatments was
lower by $3.40 than in the base treatment, and the average acceptance
rate was about the same.

Table 6 compares the effect of the incentive design (that did not
provide an anchor) on the conditional acceptance probability. As in
the limit treatment, the conditional acceptance probability is higher in
the incentive treatment, and the effect is especially strong at offers of
$10 (less than 20% of the pie).

The effect on offers is significant as well. A feasible GLS finds that an
incentive lowers offers by $2.5 relative to the base treatment (significant
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offer B accept B reject I accept I reject p-value

5 2 6 4 10 0.63
10 3 15 41 24 0.000947
15 6 2 36 10 0.5754
20 35 5 71 3 0.099

Table 6. The Effect of the Incentive Treatment on Con-
ditional Acceptance Probability: Fisher Exact one sided
p-values

Figure 3.3. Effects of the Limit and Incentive treat-
ments on CDF of offers

at 0.01%). Figure 3.3 shows that there is almost a first order stochas-
tic dominance between the offer distributions in the three treatments.
That is, for almost any offer, the probability of receiving an equal or
lower offer is highest in limit treatment, followed by the incentive treat-
ment and is lowest in the base treatment. Similar ranking is evident in
the conditional probability of acceptance.

Our conclusion from the three treatments is that the limit treatment
incorporates two effects: the equilibrium reasoning of interdependent
preferences which is the focus of the current paper (the incentive treat-
ment compared to the baseline treatment), and the anchoring effect -
which explains the lower offers and higher probability of acceptance in
the limit treatment compared to the incentive treatment.
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3.5. Conclusion from the experiment. We conclude that the out-
come of the experiment is consistent with a Perfect Bayesian Nash
Equilibrium of the model with negative interdependence, while being
inconsistent with models of outcome and intention-based preference.

Although we are not aware that this type of argument has been
used before in the bargaining literature in Economics, it seems that
economic agents are well aware of this phenomenon. For example, an
incentive contract structure is quite common in labor agreements and
other contracts, and allows the proposer (employer, retailer, marketing
agent) to achieve higher expected revenue. In particular, posting of
a very low minimum wage (unlike [19] where the minimum wage is
set higher than 92% of the offers) may lead to a decrease in wages.
Similarly, government intervention in the form of maximum price where
price dispersion exists, may lead to an increase in average price of a
good.

An even more doubtful reader may question the robustness of our
results. We acknowledge that replication of every experimental result
is important in order to draw general conclusions. We tried our best
to design the experiment thoughtfully and carefully. The stakes were
significant: subjects could have earned $60 in less than an hour, and
our results are highly significant even with a modest sample size. But
even more important than the specific results in the specific experiment
we performed, is the modeling exercise we executed: we suggested a re-
vealed choice-based model of the ultimatum game, whose equilibria can
account for the known experimental findings. We then suggested an
out-of-sample comparative static experiment on these equilibria, that
can differentiate our model from existing models of other-regarding
preferences. Therefore, the study contributes new insights to the ongo-
ing research and debate of how to model other-regarding preferences,
and to the question whether game theory can provide the appropriate
tools to study those preferences. More generally, it provides an exam-
ple how economic theory can be silent of the psychological motives of
the economic actors, and yet provide testable predictions.

4. Concluding comments

The arguments above illustrate that it is possible to interpret the re-
sults of the ultimatum game experiments using standard game-theoretic
reasoning. We believe that it points to further complication that ex-
perimenters are well aware off, but theorist have not paid sufficient
attention to: an experiment is actually a Bayesian game between three
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players - the proposer, the responder, and the experimenter. The ex-
perimenter is the one for whom the stakes in the game are actually
highest. The same sort of type dependencies ought to exist between
the experimenter and subjects. Of course, a single experiment con-
tains no variation in experimenter behavior that would make it possi-
ble to uncover this information, so the subjects’ interpretation of the
experimental design and its influence on them presents a much more
complicated problem.

4.1. The Dictator Game. With this in mind, one may ask how the
proposers modeled in the current study would play the Dictator game
in which the proposer selects a demand then gets it for sure, and the
‘responder’ simply receives whatever the proposer offers. Since our
proposers are better off with higher demands conditional on them be-
ing accepted, they should presumably demand all the surplus from
the experiment for themselves.16 As noted above, the reason that this
doesn’t happen is that the same type dependence exists between the
proposer and the experimenter - both the fact that the experimenter
suggests a Dictator game, and the other characteristics of the experi-
ment alter the proposer’s perception of the payoffs in the experiment.
For example, Hoffman, McCabe and Smith [31] and Cherry, Frykblom
and Shogren [14] showed that implementing a subject-experimenter
anonymity and generating the surplus through effort, led almost all
dictators to make minimal transfers. These results stand in a sharp
contrast to standard dictator experiments (without contest/earned in-
come and experimented-dictator anonymity) where at least some of the
dictators give substantial amounts. Those “standard” dictator games,
stand also in contrast to the social-economic reality, were anonymous
charitable giving is quite rare (after all, how frequently do people share
the content of their bank accounts with complete strangers and with-
out anyone else knowing about that?) It is not a coincidence that
already in the twelve century, when Maimonides [41] enunciated eight
distinctive levels of charitable giving, anonymous giving occupied the
second-highest level of giving to the poor.17 We believe that the ap-
parent inconsistency between experimental outcomes (with random-
assignment and without subject-experimenter anonymity) and actual
charitable giving calls into doubt the main criticism of the monotonicity

16One may want to relax this assumption, but it is essential for the construction
of the PBE we study in the current paper

17The highest level of giving is someone who establishes a personal relationship
with the needy person, helping him with a loan or a partnership in a way that
doesn’t make the latter a subordinate.
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assumptions in the interdependent preference model (both in Levine’s
positive interdependent specification 18 and our model of negative inter-
dependence). This inconsistency led us to adopt the contest-anonymity
treatments in our experiment.19 Furthermore, Bardsley [4] and List [37]
showed that changing the dictator’s strategy set to include negative
giving (taking) caused almost all dictators to behave selfishly. Dana,
Weber and Kuang [16] showed that many dictators were willing to leave
the experimenter part of the surplus, instead of facing the choice of how
much to allocate to a passive responder - possibly showing preference
to share with the experimenter rather than with the other subject (see
also Lazear, Malmendier and Weber [35]). It may be impossible to
control all aspects, but using the theoretical methods described in this
study, it would presumably be possible to interpret the impact that the
experimental design has on outcomes. Recently, Andreoni and Bern-
heim [2] proposed a model of the dictator game that employs exactly
this type of reasoning to explain transfers in the dictator game. In their
framework, the dictator’s payoff depends on an audience (which may
include the receiver, the experimenter and possibly other parties) belief
about his type. They analyze the signaling equilibrium in the standard
game as well as in a game where the transfer may be determined by
an external mechanism, and show that in the standard game there is
pooling of dictators on the “fair” transfer, while when the probability
of forced external transfer increases, more proposer types pool on that
offer. Their model is an excellent example of the richness available in
the Bayesian model of interdependent preferences to study important
aspects of giving in experimental and real world setting.20

4.2. Beyond experiments. The interpretation of the ultimatum game
as a Bayesian game between agents with interdependent preferences has
applications beyond the experiments themselves. For example, it would
seem possible to incorporate negative interdependence into a standard
principal-agent incentive problem. Another possible application can be

18Rotemberg [44] adds the responder beliefs into the dictator’s payoff function
to rationalize positive dictator offers.

19It is important to note that our baseline results, as previous experiments that
implemented contest and anonymity (e.g. Hoffman et al [30], Bolton and Zwick
[12]), fall within the standard range of outcomes in ultimatum experiments. That
is, the strategic bargaining environment in the ultimatum game is robust to these
manipulations, while the charitable giving environment studied in the dictator game
is very sensitive to these treatments (see also Fershtman et al [22]).

20The audience effect may be responsible to lower giving reported recently by
Hamman et al [28] when dictators can delegate transfer decisions to agents who
represent their interests.
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in an auction design. In this case it is reasonable to expect that the
seller has some private information that is of interest to the buyers.
Conditional on this private information which is of common interest,
the buyers may have independent private valuations. The seller sets a
reservation price, that acts similarly to the demand in the ultimatum
game. If a buyer accepts this reservation price, she can bid in the auc-
tion. The structure of negative interdependence lends itself naturally
to this problem. The insights suggested by the analysis of the ultima-
tum game, and in particular the equilibrium played, can be applied to
this problem.

Even more importantly, the direct economic implications of mod-
eling interdependent preference in a bargaining environment and the
comparative statics performed in the current study have immediate
implications for understanding price (including wage) negotiations and
consequences of policy. As argued above, setting minimum wage in an
environment where wage dispersion exists, may shift the wage distri-
bution to the left. Similarly, setting a maximum price for a commodity
whose price is not unique may shift the price distribution to the right.
These examples suggest that policymakers should incorporate the fact
that agents are not selfish and have interdependent preferences when
considering alternative policy tools.

Appendix A. Equilibrium with Positive Interdependence

In this appendix, we analyze a model with positive interdependence.
Positive interdependence means that as the proposer’s type increases,
both the proposer and the responder become less interested in hav-
ing any given demand accepted. One example might be when the
proposer’s type is inversely related to his altruism. A less altruistic
(higher type) proposer gets less utility from the payoff received by the
responder, and therefore cares less about whether a demand is accepted.
Responders are less inclined to accept demands by less altruistic pro-
posers, especially when they are themselves less altruistic.
It is not difficult to show that if we simply replace negative interdepen-
dence with positive interdependence in our model, no more than two
distinct demands can be supported in equilibrium. So we also use this
Appendix to illustrate how our approach is extended to one in which
responders have private types.
The simplest example of positive interdependence is perhaps the model
of Levine [36], who interprets the proposer’s type as a measure of his
altruism. More altruistic proposers in Levine’s model obtain higher
utility from the payoff received by the responder. So for any given
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offer, the higher the proposer’s type, the higher is the cardinal utility
of acceptance. Responder’s payoff in Levine’s model increases the more
altruistic the responder thinks that the proposer is.21 The payoff to
rejection is normalize to zero, so proposers’ and responders’ desire to
have an offer accepted move in the same direction as the proposer’s
type changes, which corresponds to positive interdependence. For this
reason, this Appendix also clarifies the relationship between our paper
and Levine’s.

For the rest of this appendix, we assume that the responder has a
privately known type t ∈

[
t, t
]
. We will assume that the proposer’s

payoff, as in the main body of the paper, depends on his own type
s ∈ [s, s]. To be consistent with the argument in the main body of the
paper, the proposer of type s is the most altruistic proposer, while the
proposer of type s is the least altruistic. The proposer’s payoff when
the proposal π is accepted is up (π, 1, s). In this appendix we normalize
the payoff of a rejection to zero, as in [36].

The responder’s payoff depends on both his own type, and the pro-
poser’s type, and is given by ur (π, 1, s, t). The responder of type t is the
most altruistic responder, the type t is the least altruistic responder.
As with the proposer, the payoff to rejection is normalized to zero.

Levine’s payoff function for the responder is given by

ur (π, 1, s, t) = (1− π) +
t̃+ λs̃

1 + λ
π

where 0 < λ < 1 and t̃ and s̃ measures the responder and the proposer
altruism respectively. This is equivalent to our payoff function when
types are transformed as

s̃ = −2s− s− s
s− s

and

t̃ = −2t− t− t
t− t

.

In [36], the payoff to the proposer is given by the same formula with

the share and types interchanged, i.e., π + s̃+λt̃
1+λ

(1− π).
As mentioned above, we will impose the additional assumption that

the proposer’s payoff is independent of t̃. We maintain the single cross-
ing Assumption 2 and add the following:

21It is interesting to compare to the rationale used by Cox et al [15]: in their
model higher (more generous) offers make the responder more altruistic. Hence
interdependence provides a structure through this assumption can be justified.
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Assumption 9. The function −ur(p, 1, s, t) is monotonically increas-
ing and supermodular in s and p uniformly in t. For every s, there is
a p > 0 and a t such that ur(p, 1, s, t) > 0; ur(p, 1, s, t) < 0 for some p;
and ur(p, 1, s, t) > 0 for all p ∈ P .

An increase in the proposer’s demand has a bigger impact on the
responder’s payoff the higher the responder thinks the proposer’s type
is. The other parts of Assumption 9 simply require the type space
to be large enough to accommodate different behavior. For instance,
no matter what the responder thinks of the proposer, there is some
demand she will want to accept. Alternatively if a responder thinks
the proposer has the highest type, there is some demand she will want
to reject. Finally, the most altruistic responder dealing with the most
altruistic proposer will want to accept any demand. Levine’s payoff
function satisfies these.

As with negative interdependence, there are multiple equilibria. How-
ever, unlike negative interdependence, these equilibria can’t be unam-
biguously interpreted with respect to the information conveyed by equi-
librium demands. So we focus on the kind of equilibrium Levine ‘cal-
ibrated’. In such an equilibrium, higher demands are made by less
altruistic proposers (or higher type proposers in our formalism). Even
under this assumption, there are many equilibrium outcomes. To hone
in a little more, we take Levine’s approach, and assume that we al-
ready know the distribution of demands made in equilibrium, and the
probability with which each demand is accepted (possibly because we
have access to experimental data).

Let π∗ be an interval such that for each π ∈ π∗, ur
(
π, 1, s, t

)
<

0 < ur (π, 1, s, t) for each type s of the proposer. Demands that don’t
satisfy this property will never appear in equilibrium. By Assumption
9, all demands are accepted by some types of responders. If demands
are always accepted, they won’t appear in equilibrium, since proposer’s
payoff is assumed to increase in demand.

We can now characterize a class of equilibria that resemble those in
[36]. A sequence of demands is supported as an altruistic equilibrium
if there is a perfect Bayesian equilibrium in which each demand in the
sequence is made and accepted with strictly positive probability on the
equilibrium path, and no other demand is made with positive proba-
bility on the equilibrium path; and in which the equilibrium demand
is a weakly increasing function of the proposer’s type. An altruistic
equilibrium is one in which higher demands are made by less altruistic
proposers.
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Let π1, . . . , πK be any increasing finite sequence of demands from
π∗. Suppose that the proportion Qk of all demands are equal to πk.
Then we’ll construct an equilibrium in which proposers whose types
lie below sk make a demand that is no larger than πk where sk is
chosen to satisfy F (sk) =

∑k
i=1Qi. If the demand πk is accepted with

probability qk, then qk must be the proportion of types who find the
demand acceptable.

Theorem 10. Let π = {π1, . . . , πK} be such that each πk ∈ π∗. There
exist distributions F and G of proposer and responder types respectively
such that the sequence is supported as an altruistic equilibrium if and
only if the system

(A.1) qkup (πk, 1, sk) = qk+1up (πk+1, 1, sk)

has an increasing solution for each k = 1, . . . , K.

Proof. We deal with two directions.
If part of the theorem: Let {s1, . . . , sK} be a solution to (A.1). Since

the proportion of all demands equal to πk is given by Qk, we have some
distribution F of proposer types such that F (sk) =

∑k
n=0Qn. Since K

is finite, we can assume F is continuous. From Lemma 11 below, each
array of types {s1, . . . , sK} can then be associated with a set of types
{t1, . . . , tk} that satisfy (A.2). This means that given the distribution
F , responder type tk is just indifferent between accepting and rejecting
the demand πk. Since the payoff to acceptance is decreasing in respon-
der type, it is a best reply for responder types t′ > tk to reject πk and
for types t′ < tk to accept it. If the system (A.1) has a solution, then
qk+1 < qk, and so there is some continuous distribution G such that
G (tk) = qk for each k.

It remains to show that proposers whose types are in the interval
[sk−1, sk] should demand πk. It follows immediately from the single
crossing assumption 2, that types in this interval prefer πk to any other
demand that occurs on the equilibrium path. So let πk < π < πk+1.
Since π ∈ π∗, there is some type s such that ur (π, 1, s, tk+1) = 0.
Suppose that responders believe that a proposer who deviates to π has
exactly this type. Then the probability with which the proposal will be
accepted is the same as the probability with which the proposal πk+1 is
accepted. Then all proposer types prefer the demand πk+1 to πk, and
according to the previous argument, they must prefer their equilibrium
demands.

Only if part of the theorem: Let sk be the highest type who makes
the demand πk in equilibrium. Since proposer’s demands are weakly
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increasing in type, and each demand occurs with strictly positive prob-
ability, the types sk are strictly ordered, and sK = s. If equality fails
at any sk then by continuity, some types will want to change their
demands. �

Lemma 11. For any continuous distribution F of proposer types, any
increasing sequence {πk}k=1,...K of demands from π∗, and any increas-

ing sequence {s1, . . . , sK} of proposer types with sk = s, there is a
decreasing sequence {t1, . . . , tK} such that

(A.2) Es∈[sk−1,sk]ur (πk, 1, s, tk) = 0

for each k, where s0 = s.

Proof. Begin with π1. Since π1 ∈ π∗

Es∈[s,s1]ur (π1, 1, s, s) < 0 < Es∈[s,s1]ur (π1, 1, s, s)

as the assumption holds uniformly in s. By the mean value theorem,
there is a t1 such that

Es∈[s,s1]ur (π1, 1, s, t1) = 0.

Now replace π1 with π2, and the interval [s, s1] with [s1, s2]. Since both
these changes reduce the acceptance payoff to the responder of type t1,
we have

Es∈[s1,s2]ur (π2, 1, s, t1) < 0 < Es∈[s1,s2]ur (π2, 1, s, t1) ,

since π2 ∈ π∗. The mean value theorem then gives t2 such that

Es∈[s1,s2]ur (π2, 1, s, t2) = 0.

Repeat this procedure for the other demands. �

Whether the system (A.1) has a solution or not depends jointly on
the demands πk, the acceptance probabilities Qk, and the payoff func-
tion up. For example, with Levine’s formulation of the payoff function

qkup (πk, 1, s) = qk

(
πk −

2s− s− s
s− s

(1− πk)
)

which is linear in proposer type. This function is flatter the lower is πk
(at least as long as qk is lower the higher is πk). Apparently (A.1) can
have a solution in this case only if the sequence qkπk is decreasing.
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Appendix B. Proofs of Theorems in Section 2.1

Proof of Theorem 5.

Theorem. Let p′ > p be two demands made on the equilibrium path.
The probability with which the demand p is accepted is at least as large
as the probability with which p′ is accepted.

Proof. Let q and q′ be the acceptance probabilities associated with
p and p′ respectively, and suppose to the contrary that q′ > q. In
particular, this means that q < 1. Let S (p) be the set of proposer
types who make the demand p with positive probability on the equi-
librium path. Since q < 1 there must be some type s ∈ S (p) such
that ur (p, 0, s) > ur (p, 1, s). Since the responder’s marginal utility of
rejection is increasing in p, this same inequality must be true for every
p′′ > p. Then by Assumption 4, up (p, 1, s) > up (p, 0, s). This is a
contradiction since a proposer of type s could then strictly increase his
payoff by demanding p′ which is accepted with higher probability. �

Proof of Theorem 6.

Theorem. Suppose negative interdependence, that Assumptions 1, 2,
3, 4 hold and that that up(1, 0, s) > up(1, 1, s). Then an ascending se-
quence of demands (π1, . . . , πK) can be supported as a Perfect Bayesian
Nash Equilibrium demands if

(1) πK = 1; and
(2) there exists a strictly descending sequence of K+1 types (s1, . . . , sK , sK+1)

with s1 = s and sK+1 = s satisfying∫ sk

sk+1

{ur (πk, 0, s)− ur (πk, 1, s)} dF (s) ≤ 0

with equality holding for all k except possibly for k = 1.

Proof. The proof involves constructing a Perfect Bayesian Nash Equi-
librium. Begin with the lowest demand π1. Since∫ s1

s2

{ur (π1, 0, s)− ur (π1, 1, s)} dF (s) ≤ 0

this demand is acceptable to a responder who believes that the proposer
who makes it has a type in the interval [s2, s1]. Set q1 = 1 so that the
lowest demand is surely accepted. Proposers whose types are in the
interval [s2, s1] will make demand π1 and responders will accept this
offer with probability 1.

Now for each k > 1, select qk such that
(B.1)
qkup(πk, 1, sk)+(1−qk)up(πk, 0, sk) = qk−1up(πk−1, 1, sk)+(1−qk−1)up(πk−1, 0, sk)
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That is, qk is chosen such that a proposer of type sk is indifferent
between demanding πk and πk−1.

We need to show that (B.1) has a positive solution. Observe that
the inequalities∫ sk−1

sk

{ur (πk−1, 0, s)− ur (πk−1, 1, s)} dF (s) ≤ 0

and ∫ sk

sk+1

{ur (πk, 0, s)− ur (πk, 1, s)} dF (s) ≤ 0

imply that a responder who believes that the offer comes from a pro-
poser of type sk must want to accept πk−1 and reject πk and every
higher demand. Then by Assumption 4,

up (πk, 1, sk) > up (πk, 0, sk) = up (πk−1, 0, sk)

So from Assumption 1, (B.1) has a positive solution. Let proposers
whose type is in the interval [sk+1, sk] make the demand πk, and suppose
this is accepted with probability qk.

From this construction, a proposer whose type is sk is just indifferent
between demanding πk and πk−1. By the single crossing Assumption 2,
proposers whose types are below sk strictly prefer the demand πk to the
demand πk−1. On the other hand, if a proposer whose type exceeds sk
strictly prefers to make the demand πk instead of πk−1, then a proposer
whose type is sk must also by Assumption 2. Applying this argument
at each value of k, it follows that the best equilibrium path offer for a
proposer whose type is in the interval (sk+1, sk] is the demand πk.

To deal with off equilibrium offers, observe that the lowest offer π1

that is made on the equilibrium path leads responders to believe that
the proposer has a type in some interval [s2, s] such that∫ s

s2

{ur(π1, 0, s)− ur(π1, 1, s)} dF (s) ≤ 0

If this inequality is strict, then the offer is accepted with probability
1. In that case, suppose that lower offers are treated the same way -
i.e., they lead to the same inference about the proposer’s type, and are
accepted with probability 1. Since proposer’s payoff is strictly increas-
ing as the size of an accepted demand increases, it will not pay any
proposer to make a demand below π1.

On the other hand, let p′ be an off equilibrium demand that exceeds
π1. Suppose that πk is the highest equilibrium path offer that is less
than p′. By assumption, a responder who thinks that the proposer’s
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type is sk+1 is willing to accept the offer πk but wants to reject every
higher equilibrium path offer. Let [s′, s′′] be any interval such that∫ s′′

s′
{ur(p′, 0, s)− ur(s′, 1, s)} dF (s) = 0

Now choose q′ as above such that

qkup(πk, 1, sk+1)+(1−qk)up(πk, 0, sk+1) = q′up(p
′, 1, sk+1)+(1−q′)up(p′, 0, sk+1)

Then as along the equilibrium path, if responders believe the proposer’s
type is in the interval [s′, s′′] when p′ is offered, and accept the demand
with probability q′, then proposers will all find higher payoffs with
equilibrium path offers. �

Proof of Theorem 7.

Theorem. Under the Assumptions of Theorem 6, the ascending se-
quence of demands {π1, . . . , πK} can be supported as equilibrium offers
in some Perfect Bayesian Nash Equilibrium in which every demand is
accepted with positive probability only if Conditions 1 and 2 of Theorem
6 hold.

Proof. Condition 1: Let πK be the highest demand and suppose it is
accepted with probability qK . If πK < 1, then the off equilibrium
demand 1 must be accepted with probability at least qK to prevent
the proposer with type s (who prefers every demand to be rejected)
from deviating. This requires that for every proposer type s in the
set of proposer types S (πK) who make the offer πK in equilibrium,
up (1, 0, s) > up (1, 1, s), else one of these proposer types would deviate.

Now from Condition 4, ur (πK , 1, s) > ur (πK , 0, s) for every s ∈
S (πK) (if equality holds for some s then a responder who believed
the proposer’s type were s would reject any higher demand requiring
a proposer of that type to want the demand 1 to be accepted). As a
consequence, the proposal πK , and also pn = 1, must be accepted for
sure. Since the payoff to acceptance is increasing as the demand rises,
every type in S (πK) will want to deviate which is inconsistent with
equilibrium.

Condition 2: Any array of K distinct offers made on the equilibrium
path partitions the interval [s, s] into K subsets through the inference
that the responder makes from price. No two distinct demands which
are accepted with positive probability can be accepted with the same
probability in equilibrium, because proposers prefer higher demands.
The single crossing condition can then be used as in the proof of The-
orem 6 to show that all the subsets in the partition are intervals. The
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requirement that all demands are accepted with positive probability
then gives Assumption 2. �

Proof of Theorem 8.

Theorem. Suppose that up (p, 1, s) = pφ (s) for some strictly posi-
tive function φ and that there is some proposer type s < s such that
u (0, 0, s) < 0. Then the function qkpk is decreasing when up (p, 0, s) is
positive and increasing otherwise.

Proof. From (B.1) in the proof of Theorem 6

qk+1pk+1φ (sk+1) + (1− qk+1)up (pk+1, 0, sk+1) =

= qkpkφ (sk+1) + (1− qk)up (pk, 0, sk+1)

Re-arranging and using Assumption 1 gives

{qk+1pk+1 − qkpk}φ (sk+1) = (qk+1 − qk)up (pk, 0, sk+1)

By Theorem 6, qk+1 ≤ qk. The sign of qk+1pk+1 − qkpk is then deter-
mined by the sign of u (pk, 0, sk+1). �

Appendix C. The Maximally Dispersed Equilibrium

In spite of the partial pooling present in every equilibrium, the dis-
cussion in this Appendix focuses on one particular equilibrium which
is the most informative. The Maximally Dispersed Equilibrium is con-
structed by generating a particular sequence of demands, and the in-
tervals associated with them. Begin by setting πm = pn = 1. Select an
interval [s, sm) with sm < s such that∫ sm

s

{ur(πm, 0, s)− ur(πm, 1, s)} dF (s) = 0

if such an sm exists. If the expression above is non-positive for all sm,
then the equilibrium is complete and all proposer types demand pn = 1
(the whole pie) in the Maximally Dispersed Equilibrium.

Otherwise, assume a sequence {(πm, sm), (πm−1, sm−1), . . . , (πk+1, sk+1)}
has been constructed form,m−1, . . . , k+1, with πk+1 > 0 and sk+1 < s.
Let πk be defined to be

(C.1) πk := max {P 3 p < πk+1 : ur(p, 0, sk+1)− ur(p, 1, sk+1) < 0}
This price exists because by Assumption 3, there is some offer that is
acceptable to the responder no matter what her beliefs. Now select sk
such that ∫ sk

sk+1

{ur(πk+1, 0, s)− ur(πk+1, 1, s)} dF (s) = 0

33



if such an sk exists. Otherwise set sk = s and stop the construction.
Repeat this procedure until sk = s. Then re-index the demands and

cutoffs such that m is the number of demands in the sequence.
The demands and cutoffs satisfy the Conditions of Theorem 6 by

construction. The construction itself illustrates that such a sequence
always exists. If responders want to reject the highest demand given
their prior beliefs, then this sequence has at least two demands. At each
step in the construction, the next highest demand is always chosen to
be the highest demand that is consistent with conditions (1) and (2).

Figure C.1 illustrates how these demands are constructed.

mπ=1

1−mπ

kπ

1−kπ

1ss =

1π

kss ms 1−ms 12 +− = km ss

Figure C.1. Construction of Demands in Equilibrium

To make any more progress characterizing the equilibrium, we need
to put a little more structure on the feasible offers. Specifically

Assumption 12. For any feasible offer pk, let θ (pk) be the type for
the proposer such that

ur (pk, 1, θ(pk)) = ur (pk, 0, θ (pk))
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Then ∫ θ(pk)

θ(pk+2)

{ur (pk+1, 1, s)− ur (pk+1, 0, s)} dF (s) ≤ 0

If the function θ (p) is monotonically decreasing, then it will always
be possible to construct a grid that satisfies this assumption. Let [s, sm]
be the interval described in the construction of the Maximally Dis-
persed equilibrium such that∫ sm

s

{ur (1, 0, s)− ur (1, 1, s)} dF (s) = 0

Now choose any price pm−1 such that

ur (pm−1, 0, sm)− ur (pm−1, 1, sm) < 0

This price is the first important element in the grid, since offers between
pm−1 and 1 will be strictly dominated in equilibrium.

Now ∫ θ(pm−1)

sm

{ur (pm−1, 0, s)− ur (pm−1, 1, s)} dF (s) > 0

So pick s′ > θ (pm−1) such that∫ s′

sm

{ur (pm−1, 0, s)− ur (pm−1, 1, s)} dF (s) = 0

and select any price pm−1 < p : θ (p) = s′ as the next point in the
grid of feasible demands. Repeating this procedure for lower demand
generates a set of feasible demands satisfying Assumption 12. So this
Assumption imposes a restriction on the set of feasible demands, not
on the preferences or beliefs of the players.

Theorem 13. If the grid of feasible demands satisfies Assumption 12,
and the Assumptions of Theorem 6 hold, then the Maximally Dispersed
Equilibrium supports the demand 1 and every feasible demand in the
interval

(
p, p
)

being made with positive probability on the equilibrium
path.

Proof. The proof simply involves showing that the sequential construc-
tion of demands in the definition of the Maximally Dispersed Equi-
librium must cover every price in the interval. First note that if the
demand 1 is acceptable to the proposer given his prior beliefs, then p
and p coincide. Then the theorem follows trivially since there aren’t

any feasible demands in the interval
(
p, p
)
.

Now consider the second highest demand πm−1. This is the highest
feasible demand that is strictly acceptable to a responder who believes
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the proposer’s type is sm. Since p is defined such that a responder who
believes the proposer’s type is sm is just indifferent between accepting
and rejecting, a responder with the same belief will strictly accept the
highest demand in the grid that is less than p.

So let πk be a feasible demand, and suppose that for each of the
feasible demands above πk there is an interval of types satisfying (2).
In particular, there is some type sk+1 such that proposer types above
sk+1 are assigned to demands above πk, and if πk+1 is the next highest
feasible demand, then

ur (πk+1, 1, sk+1) < ur (πk+1, 0, sk+1)

Then by Assumption 12∫ θ(πk−1)

sk+1

{ur (πk, 1, s)− ur (πk, 0, sk)} dF (s) < 0

Hence sk > θ (πk−1), so that

ur (πk−1, 1, sk) > ur (πk−1, 0, sk)

This means that πk−1 is the next demand used in construction of the
Maximally Dispersed equilibrium.

Since this construction continues until sk hits the boundary s, every
feasible demand above p will appear in this construction. �
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