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ABSTRACT
We propose the following model of a random graph on n

vertices. Let F be a distribution in R
n(n−1)/2
+ with a coor-

dinate for every pair ij with 1 ≤ i, j ≤ n. Then GF,p is
the distribution on graphs with n vertices obtained by pick-
ing a random point X from F and defining a graph on n
vertices whose edges are pairs ij for which Xij ≤ p. The
standard Erdős-Rényi model is the special case when F is
uniform on the 0-1 unit cube. We determine basic prop-
erties such as the connectivity threshold for quite general
distributions. We also consider cases where the Xij are the
edge weights in some random instance of a combinatorial
optimization problem. By choosing suitable distributions,
we can capture random graphs with interesting properties
such as triangle-free random graphs and weighted random
graphs with bounded total weight.

Categories and Subject Descriptors: F.2

General Terms: Algorithms.

Keywords: Random Graphs, LogConcave Functions.

1. INTRODUCTION
Probabilistic combinatorics is today a thriving field bridging
the classical area of probability with modern developments
in combinatorics. The theory of random graphs, pioneered
by Erdős-Rényi [6] has given us numerous insights, surprises
and techniques and has been used to count, to establish
structural properties and to analyze algorithms.
In the standard unweighted model Gn,p, each pair of vertices
ij of an n-vertex graph is independently declared to be an
edge with probability p. Equivalently, one picks a random
number Xij for each ij in the interval [0, 1], i.e., a point
in the unit cube, and defines as edges all pairs for which
Xij ≤ p. To get a weighted graph, we avoid the thresholding
step.
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In this paper, we propose the following extension to the
standard model. We have a distribution F in R

N
+ where

N = n(n − 1)/2 allows us a coordinate for every pair of
vertices. A random point X from F assigns a non-negative
real number to each pair of vertices and is thus a random
weighted graph. The random graph GF,p is obtained by
picking a random point X according to F and applying a
p-threshold to determine edges, i.e., the edge set EF,p =
{ij : Xij ≤ p}. It is clear that this generalizes the standard
model Gn,p which is the special case when F is uniform over
a cube.
In the special case where F (x) = 1x∈K is the indicator func-
tion for some convex subset K of R

N
+ we use the notation

GK,p and EK,p. Thus to obtain GK,p we let X be a random
point in K. It includes the restriction of any Lp ball to the
positive orthant. The case of the simplex

K = {X ∈ R
N : ∀e, Xe ≥ 0,

X
e

αixe ≤ L}

for some set of coefficients α appears quite interesting by it-
self and we treat it in detail in Section 1.4. In the weighted
graph setting, it corresponds to a random graph with a
bound on the total edge weight. In general, F be could
be any distribution, but we will consider a further general-
ization of the cube and simplex, namely, F has a logconcave
density f . We call this a logconcave distribution. A function
f : R

n → R+ is logconcave if for any two points x, y ∈ R
n

and any λ ∈ [0, 1],

f(λx + (1− λ)y) ≥ f(x)λf(y)1−λ,

i.e., log f is concave.
The model appears to be considerably more general than
Gn,p. Nevertheless, can we recover interesting general prop-
erties including threshold phenomena?
The average case analysis of algorithms for NP-hard prob-
lems was pioneered by Karp [12] and in the context of graph
algorithms, the theory of random graphs has played a crucial
role (see [8] for a somewhat out-dated survey). To improve
on this analysis, we need tractable distributions that pro-
vide a closer bridge between average case and worst-case.
We expect the distributions described here to be a signifi-
cant platform for future research.
We end this section with a description of the model and a
summary of our main results.

1.1 The generalized model
We consider logconcave density functions whose support lies
in the positive orthant. Let F be a distribution with such a
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density and mean μ. The second moment along each axis,
σ2

ij(F ) will be important. We just use σij when F is fixed
and simply σ when the standard deviation is the same along
every axis.
Fixing only the second moments along the axes allows highly
restricted distributions, e.g., the line from the origin to the
vector of all 1’s. To ensure greater ”spread”, we require that
the density is down-monotone, i.e., for any x, y ∈ R

N such
that x ≤ y, we have f(x) ≥ f(y). When f corresponds to
the uniform density over a convex body K, this means that
when x ∈ K, the box with 0 and x at opposite corners is also
in K. It also implies that f can be viewed as the restriction
to the positive orthant of a 1-unconditional distribution for
which the density f(x1, . . . , xn) stays fixed when we reflect
on any subset of axes, i.e., negating subset of coordinates
keeps f the same. Such distributions include, e.g., the Lp

ball for any p but also much less symmetric sets, e.g., the
uniform distribution over any down-monotone convex body.
We note that sampling such distributions efficiently requires
only a function oracle, i.e., for any point x, we can compute
a function proportional to the density at x (see e.g., [16]).

1.2 Results

1.3 Logconcave densities.
Our first result estimates the point at which GF,p is con-
nected in general in terms of n and σ, the standard devia-
tion in any direction. Our main result is that after fixing
the standard deviation σ along every axis, the threshold for
connectivity can be narrowed down to within a constant fac-
tor.

Theorem 1.1. Let F be distribution in the positive or-
thant with a down-monotone logconcave density and second
moment σ2 along every axis. There exist absolute constants
c1 < c2 such that

lim
n→∞

P(GF,p is connected) =

(
0 p < c1σ ln n

n

1 p > c2σ ln n
n

F being so general makes this theorem quite difficult to
prove. It requires several results that are trivial in Gn,p.
Having proven them, it becomes easy to prove similar re-
sults e.g.

Theorem 1.2. Let F be distribution in the positive or-
thant with a down-monotone logconcave density and second
moment σ2 along every axis. There exist absolute constants
c3 < c4 such that

lim
n→∞

n even

P(GF,p has a perfect matching) =

(
0 p < c3σ ln n

n

1 p > c4σ ln n
n

Finally, for this section, we mention a result on Hamilton
cycles that can be obtained quite simply from a result of
Hefetz, Krivelevich and Szabó [9].

Theorem 1.3. Let F be distribution in the positive or-
thant with a down-monotone logconcave density and second
moment σ2 along every axis. There exists an absolute con-
stant c5 such that if

p ≥ c5σ ln n

n
· ln ln ln n

ln ln ln ln n

then GF,p is Hamiltonian whp.

1.4 Random Graphs from a Simplex
We now turn to a specific class of K for which we can prove
fairly tight results. We consider the special case where X is
chosen uniformly at random from the simplex

Σ = Σn,L,α =

(
X ∈ R

N
+ :

X
e∈En

αeXe ≤ L

)
.

Here N =
`

n
2

´
and En =

`
[n]
2

´
and L is a positive real number

and αe > 0 for e ∈ En.
We observe first that GΣn,L,α,p and GΣn,N,αN/L,p have the
same distribution and so we assume, unless otherwise stated,
that L = N . The special case where α = 1 (i.e. αe = 1 for
e ∈ En) will be easier than the general case. We will see
that in this case GΣ,p behaves a lot like Gn,p.
Although it is convenient to phrase our theorems under the
assumption that L = N , we will not always assume that
L = N in the main body of our proofs. It is informative
to keep the L in some places, in which case we will use the
notation ΣL for the simplex. In general, when discussing the
simplex case, we will use Σ for the simplex. On the other
hand, we will if necessary subscript Σ by one or more of the
parameters α, L, p if we need to stress their values.
We will not be able to handle completely general α. We will
restrict our attention to the case where

1

M
≤ αe ≤M for e ∈ En (1)

where M = M(n). An α that satisfies (1) will be called
M-bounded.
This may seem restrictive, but if we allow arbitrary α then
by choosing E ⊆ En and making αe, e /∈ E very small and
αe = 1 for e ∈ E then GΣ,p will essentially be a random
subgraph of G = ([n], E), perhaps with a difficult distribu-
tion.
We first discuss the connectivity threshold: We need the
following notation.

αv =
X
w �=v

αvw for v ∈ [n].

Theorem 1.4.

(a) Let p = ln n+cn
n

. Then if α = 1,

lim
n→∞

P(GΣ,p is connected) =

8><
>:

0 cn → −∞
ee−c

cn → c

1 cn →∞
.

(b) Suppose that α is M-bounded and M ≤ (ln n)1/4. Let
p0 be the solution toX

v∈[n]

ξv(p) = 1
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where ξv(p) =
`
1− αvp

N

´N
. Then for any fixed ε > 0,

lim
n→∞

P(GΣ,p is connected) =

(
0 p ≤ (1− ε)p

1 p ≥ (1 + ε)p
.

Our proof of part (a) of the above theorem relies on the
following:

Lemma 1.5. If α = 1 and m is the number of edges in
GΣ,p. Then

(a) Conditional on m, GΣ,p is distributed as Gn,m i.e. it is
a random graph on vertex set [n] with m edges.

(b) Whp m satisfies

E(m) +
p

E(m)ω ≤ m ≤ E(m) +
p

E(m)ω

for any ω = ω(n) which tends to infinity with n.

So to prove part (a) all we have to verify is that E(m) ∼
1
2
n(ln n+cn) and apply known results about the connectivity

threshold for random graphs, see for example Bollobás [3] or
Janson, �Luczak and Ruciński [10]. (We do this explicitly in
Section 3.2). Of course, this implies much more about GΣ,p

when α = 1. It turns out to be Gn,m in disguise, where
m = m(p).
Our next theorem concerns the existence of a giant compo-
nent i.e. one of size linear in n. It is somewhat weak.

Theorem 1.6. Let ε > 0 be a small positive constant.

(a) If p ≤ (1−ε)
Mn

then whp the maximum component size in
GΣ,p is O(ln n).

(b) If p ≥ (1+ε)M
n

then whp there is a unique giant compo-
nent in GΣ,p of size ≥ κn where κ = κ(ε, M).

Let P be a monotone increasing graph property. p0 is a
threshold for P if p/p0 → 0 implies that P(GΣ,p ∈ P) →
0 and p/p0 → ∞ implies that P(GΣ,p ∈ P) → 1. It is
an open question as to whether every monotone property
has a threshold. We can make the following rather weak
statement.

Theorem 1.7. If M = O(1) and α is M-bounded then ev-
ery monotone property P has a threshold in the model GΣ,p.

We say that α is decomposable if there exist dv, v ∈ [n] such
that αvw = dvdw. In which case we define

dS =
X
v∈S

dv for S ⊆ V and D = dV .

Our next theorem concerns spanning trees. Let ΛX be
weight of the minimum length spanning tree of the complete
graph Kn when the edge weights are given by X.

Theorem 1.8. If α is decomposable and dv ∈ [ω−1, ω],

ω = (ln n)1/10 for v ∈ V and X is chosen uniformly at
random from Σn,α then

E[ΛX ] ∼
∞X

k=1

(k − 1)!

Dk

X
S⊆V
|S|=k

Q
v∈S dv

d2
S

.

(The notation an ∼ bn means that limn→∞(an/bn) = 1,
assuming that bn > 0 for all n.)

Note that if dv = 1 for all v ∈ [n] then the expression in the
theorem yields E[ΛX ] ∼ ζ(3).
We turn our attention next to the diameter of in GΣ,p.

Theorem 1.9. Let k ≥ 2 be a fixed integer. Suppose that
α is M-bounded and for simplicity assume only that M =
no(1). Suppose that θ is fixed and satisfies 1

k
< θ < 1

k−1
.

Suppose that p = 1
n1−θ . Then whp diam(GΣ,p) = k.

1.5 Random Travelling Salesman Problems
We will also consider the use of X as weights for an optimisa-
tion problem. In particular, we will consider the Asymmetric
Traveling Salesman Problem (ATSP) in which the weights
X : [n]2 → R+ are randomly chosen from a simplex. We
will need to make an extra assumption about the simplex.
We assume that

αv1,w = αv2,w for all v1, v2, w.

Under this assumption, the distribution of the weights of
edges leaving a vertex v is independent of of the particular
vertex v. We call this row symmetry. We show that a simple
patching algorithm based on that in [13] works whp.

Theorem 1.10. Suppose that the cost matrix X of an in-
stance of the ATSP is drawn from a row symmetric simplex
where M ≤ nδ, for sufficiently small δ. Then there is an
O(n3) algorithm that whp finds a tour that is asymptoti-
cally optimal. I.e. whp the ratio of cost of the tour found
to the optimal tour cost tends to one.

2. PROOFS: LOGCONCAVE DENSITIES
We consider logconcave distributions restricted to the posi-
tive orthant. We also assume they are down-monotone, i.e.,
if x ≥ y then the density function f satisfies f(y) ≥ f(x).
We begin by collecting some well-known facts about logcon-
cave densities and proving some additional properties. The
new properties will be the main tools for our subsequent
analyses and allow us to deal with the nonindependence of
edges.

2.1 Properties
The following classical theorem summarizing basic prop-
erties of logconcave functions was proved by Dinghas [4],
Leindler [14] and Prékopa [18, 19].

Theorem 2.1. All marginals as well as the distribution
function of a logconcave function are logconcave. The con-
volution of two logconcave functions is logconcave.

We will need the following results, Lemmas 5.5(a) and 5.6(a)
from [15]: A logconcave function f : R

n → R+ is isotropic
if (i) it has mean 0 and (ii) its co-variance matrix is the
identity.

Lemma 2.2. Let g : R → R+ be an isotropic logconcave
density function. Then g(x) ≤ 1 for all x.

�

Lemma 2.3. Let X be a random point drawn from a log-
concave density function g : R→ R+. For every c > 0,

P(g(X) ≤ c) ≤ c

Mg
.
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We prove the next six lemmas with our theorems in mind.

Lemma 2.4. Let X be a random variable with a
non-increasing logconcave density f , support in R+, max f =
f(0) = Mf and E(X2) = σ2.

(a) 1√
3σ
≤Mf ≤ 2

σ
.

(b) For any p ≥ 0,

P(x ≤ p) ≤ pMf ≤ 2p

σ
.

(c) For any 0 ≤ p ≤ σ,

P (x ≤ p) ≥ pMf

2
≥ p

2
√

3σ
.

Proof Let g be the symmetric density with g(x) =
g(−x) = σf(σx)/2. Then g has mean 0 and variance 1.
Lemma 2.2(a) implies that g(x) ≤ 1 andthe upper bound in
part (a) follows.
For the lower bound, we claim that Mf is minimized by the
constant density on an interval. Let us assume w.l.o.g. that
σ = 1. Suppose f satisfies the conditions of the lemma, has
minimum Mf and is not constant. Then we can replace f
by another function g that has the same integral as f and
Mg = Mf but g is constant. Since this effectively moves
mass closer to the origin, the second moment w.r.t. to g is
smaller than that w.r.t. f . To make the second moment
one, we scale up along the x-axis and scale down along the
y-axis (the density). This gives a function with σ = 1 and
smaller maximum, contradicting the assumption. For the
constant function, it follows the interval must have length
1/
√

3 and therefore Mf = 1/
√

3.
For part (b) use P(x ≤ p) =

R p

x=0
f(x)dx ≤ pMf .

To obtain part (c) let p0 = p/3 and f(p0) = αMf . As ln f
is concave let h(x) = c − γx be a tangent line to the graph
of ln f(x) at the point x = p0. Then c = γp0 + ln(αMf ) and
c−γx ≥ ln f(x) for all x ≥ 0. Considering the secant to ln f
through the points (0, ln(Mf )) and (p0, ln(αMf )) we obtain

that γ ≥ ln(1/α)
p0

.

For part (c), we check the value of f(p). If f(p) ≥ Mf/2,
then the claim follows. If not, by Lemma 2.3,

P

„
f(X) ≤ Mf

2

«
≤ 1

2

and so

P(X ≤ p) ≥ P

„
f(X) ≥ Mf

2

«
≥ 1

2
≥ p

2σ

as required. �

Lemma 2.5. Let f be a down-monotone logconcave func-
tion in R

2. Let C = f(0, 0) and suppose that p1, p2 ≥ 0 are
such that Cp1p2 ≤ 1/2. ThenZ

x1≥0

Z
x2≥0

f(x1, x2) dx1 dx2×Z
x1≥p1,x2≥p2

f(x1, x2) dx1 dx2 ≤

(1 + cp1p2)

Z
x1≥p1,x2≥0

f(x1, x2) dx1 dx2×Z
x1≥0,x2≥p2

f(x1, x2) dx1 dx2

where c is an absolute constant.

Proof Let

F0 =

Z
x1≥0

Z
x2≥0

f(x1, x2) dx1 dx2.

Let A1 = [0, p1]×[0, p2], A2 = [0, p2]×[p1,∞], A3 = [p1,∞]×
[0, p2] and A4 = [p1,∞]×[p2,∞]. We note that A1 ≤ Cp1p2.
Define

Fi = F−1
0

Z
Ai

f(x, y) dx dy

as the integrals in each of these four disjoint regions. Note
that F1 +F2 +F3 +F4 = 1. The inequality we want to prove
is

F4(F1 + F2 + F3 + F4) ≤ (1 + cp1p2)(F2 + F4)(F3 + F4)

which is implied by

F4F1 ≤ cp1p2F4(F2 + F3 + F4)

and this in turn by,

F1 ≤ cp1p2(1− Cp1p2).

We choose c = 2C so that

F1 ≤ Cp1p2 ≤ cp1p2(1− Cp1p2).

�

We extend Lemma 2.5 to

Lemma 2.6. Let f be a down-monotone logconcave func-
tion in R

m and let p1, p2, . . . , pm ≥ 0. Let ρ = maxi,j pipj.
Let C = f(0, . . . , 0) and suppose that Cρ ≤ 1/2. Suppose
that φi = 1xi≥pi , i = 1, 2, . . . , m For S ⊆ [m] let

g(S) =

Z
x1,...,xm≥0

Y
i∈S

φi(xi) f(x1, x2, . . . , xm)

mY
i=1

dxi.

Suppose that t ∈ [m] and T = [t] and T̄ = [m] \ T . Then
there exists c > 0 such that

g(∅)g([m]) ≤ (1 + cρ)2mg(T )g(T̄ ). (2)

Proof We prove the lemma by induction on m. The
base case m = 1 is trivial and m = 2 follows from Lemma
2.5. Applying Lemma 2.5 to the logconcave function

h(x1, xt+1) =

Z
xi≥0,i�=1,t+1

f(x1, . . . , xm)
Y

i�=1,t+1

φi(xi)dxi

we see that if T1 = {2, . . . , t} and T̄1 = {t + 2, . . . , m} then

g(T1 ∪ T̄1)g([m]) ≤ (1 + cρ)g(T1 ∪ T̄ )g(T ∪ T̄1). (3)

We can apply Lemma 2.5 inductively to each of the terms
on the RHS of (3). We apply it to the coordinates 2, t + 1
and 1, t + 2 respectively. We obtain, with T2 = T1 \ {2},
T̄2 = T̄1 \ {t + 2},

g(T1 ∪ T̄1)g([m]) ≤

(1 + cρ)3
g(T2 ∪ T̄ )g(T1 ∪ T̄1)

g(T2 ∪ T̄1)

g(T1 ∪ T̄1)g(T ∪ T̄2)

g(T1 ∪ T̄2)
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which implies

g([m]) ≤ (1 + cρ)3
g(T2 ∪ T̄ )

g(T2 ∪ T̄1)

g(T ∪ T̄2)

g(T1 ∪ T̄2)
g(T1 ∪ T̄1)

...

≤ (1 + cρ)m+1 g(T̄ )

g(T̄1)

g(T )

g(T1)
g(T1 ∪ T̄1),

where the final inequality is derived by a repeated use of the
inequality

g(A ∪B)

g(A ∪B′)
≤ g(A′ ∪B)

g(A′ ∪B′)
. (4)

Here A, B are disjoint and A′ and B′ are obtained from A, B
respectively by deleting a single element.
Inequality (4) follows directly from Lemma 2.5. Now the
inequality

g(∅)g(T1 ∪ T̄1) ≤ g(T1)g(T̄1)

follows from the inductive hypothesis for R
m−2 (after inte-

grating over x1, xt+1). Using this in the previous inequality
completes the proof.

�

One can also prove the following generalisation of Lemma
2.6

Corollary 2.7. Let f be a down-monotone logconcave
function in R

m. Suppose that φi, i = 1, 2, . . . , m are mono-
tone increasing functions. Then

E

 
mY

i=1

φi(xi)

!
≤

(1 + cρ)2mE

 
tY

i=1

φi(xi)

!
E

 
mY

i=t+1

φi(xi)

!

≤ (1 + cρ)2m log2 m
mY

i=1

E (φi(xi)) . (5)

Proof We can approximate each φi by a non-negative
linear combination of indicator functions and then use lin-
earity of expectation to obtain the result. �

We remark next that using the full power of Lemma 2.7
enables us to prove some strong upper tail bounds. In par-
ticular,

Lemma 2.8. If 0 ≤ ε ≤ 1 then

P(eS,p−E(eS,p) ≥ εE(eS,p)) ≤ (1+cρ)2|S| log2 |S|e−ε2E(eS,p)/3.

�

Lemma 2.9. Let F : R
s
+ → R+ be a distribution with a

down-monotone logconcave density function f with support
in the positive orthant. Let E(X2

i ) = σ2
i for coordinate i and

let σΠ =
Qs

i=1 σi. Let v = (v1, . . . , vs) be the centroid of F .

Then vi ≥ σi/4 for all i ≤ s and f(v) ≥ e−A1s/σΠ for some
absolute constant A1 > 0.

Proof Omitted �

Lemma 2.10. Let F be as in Lemma 2.9. Let σmin =
min σi and σmax = max σi. Let G = (V,E) be a random
graph from GF,p and S ⊆ V × V with |S| = s. Then

e−a1ps/σmin ≤ P(S ∩E = ∅) ≤ e−a2ps/σmax

where a1, a2 are some absolute constants and the lower bound
requires p < σmin/4.

Proof We consider the projection of F to the subspace
spanned by S. Let fS be the resulting density function. It
is logconcave by Theorem 2.1. For a point x ∈ R

s
+, let B(x)

be the positive orthant at x, i.e.,

B(x) = {y ∈ R
s
+ : y ≥ x}.

Let g(x) be integral of fS over B(x). Then by Theorem 2.1,
g is also logconcave. The function h(x) = ln g(x) is concave
and

∂h(x)

∂xi
=

∂g(x)
∂xi

g(x)

is nonincreasing. Therefore, it achieves its maximum at xi =
0, i.e.,

∂h(x)

∂xi
≤ ∂g(0)

∂xi

since g(0) = 1. The derivative of g at xi = 0 is simply the
probability mass at xi = 0, i.e.,

−
Z

xi=0

fS(x) dx ≤ − 1√
3σmax

where the inequality is from Lemma 2.4(a). Thus,

h(x) ≤ h(0)− 1√
3σmax

sX
i=1

xi

and so

g(x) ≤ e−
Ps

i=1 xi/
√

3σmax .

Setting xi = p, we get the first inequality of the lemma.
For the lower bound, first assume that σmax = σmin = σ. Let
fS be the marginal of f in RS

+ and let v = (v1, . . . , vs) be
the centroid of Fs. Consider the box induced by the origin
and v. From Lemma 2.9,

g(σ/4, σ/4, . . . , σ/4) ≥ fS(v)(σ/4)s ≥ e−(A1+2)s.

For p < σ/4, by the logconcavity of g along the line from 0
to (σ/4, . . . , σ/4),

g(p, . . . , p) ≥ g(0)1−4p/σg(σ/4, . . . , σ/4)4p/σ

= g(σ/4, . . . , σ/4)4p/σ ≥ e−A2ps/σ.

We now remove the assumption σmax = σmin using scaling.
Define

ĝ(y1, y2, . . . , ys) = σΠf(σ1y1, σ2y2, . . . , σsys).

ĝ is the density of the vector Y defined by Ye = Xe/σe for
all e ∈ S. Thus E(Y 2

i ) = 1 for all i ≤ s and

P(Xe ≥ p, e ∈ S) = P(Ye ≥ p/σe, e ∈ S) ≥
P(Ye ≥ p/σmin, e ∈ S) ≥ e−A2ps/σmin .

�

Lemma 2.11. Let F be as in Lemma 2.10. Let G = (V,E)
be a random graph from GF,p and S ⊆ V × V with |S| = s.
There exist constants b1 < b2 such that„

b1p

σmax

«s

≤ P(S ⊆ E) ≤
„

b2p

σmin

«s

.

The lower bound requires p ≤ σmin/4.
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Proof We prove the lemma in the case where σmin =
σmax = σ. The general case follows by scaling as at the end
of the proof of Lemma 2.10. Consider the projection to the
span of S and the induced density fS . From Lemma 2.9,
we see that for p ≤ σ/4, for any point x with 0 ≤ xi ≤ p,
fS(x) ≥ (4eA1σ)−s. The lower bound follows.
For the upper bound, assume σmin = σmax = s and project
to S as before. Then consider the origin symmetric function
g obtained by reflecting f on each axis and scaling to keep
it a density, i.e.,

g(x1, . . . , xn) = 2−sf(|x1|, . . . , |xn|).
This function is 1-unconditional (i.e., reflection-invariant for
the axis planes) and its covariance matrix is σ2I. By a
theorem of Bobkov and Nazarov [2], its maximum, g(0) ≤ cs

for an absolute constant c. The bound follows. �

2.2 Proof of Theorem 1.1
For a set S, |S| = k, the probability that it forms a compo-

nent of GF,p, is by Lemma 2.10, at most e−a2pk(n−k)/σmax .
Therefore,

P(G is not connected) ≤
�n/2�X
k=1

 
n

k

!
e−a2pk(n−k)/σmax .

It follows that for p ≥ 3σmax ln n/(a2n), the random graph
is connected with probability 1− o(1).
Assume next that p ≤ (1− ε)σmin ln n/(a1(n− 1)) where a1

is as in Lemma 2.10. Now fix a vertex v. Then we have,

P(v is isolated) ≥ nε−1. (6)

Now consider two vertices v, w. Then,

P(v, w isolated) = (7)

P(v is isolated and w has no edges to V \ {v})
≤ (1 + O(p2))2nP(v is isolated)

× P(w has no edges to V \ {v}), by Lemma 2.6

≤ (1 + o(1))P(v is isolated)(P(w is isolated)+

P(xvw ≤ p))

≤ (1 + o(1))P(v is isolated)×
(P(w is isolated) + 2p/σmin) from Lemma 2.4

≤ (1 + o(1))P(v is isolated)(P(w is isolated)+

2 ln n/n)

= (1 + o(1))P(v is isolated)P(w is isolated). (8)

Let Z1 denote the number of isolated vertices of GF,p. It
follows from (6) that E(Z1) ≥ nε and from (8) that E(Z2

1 ) ≤
E(Z1)+(1+o(1))E(Z1)2 = (1+o(1))E(Z1)2. The Chebyshev
inequality implies that Z1 �= 0 whp. �

2.3 Proof of Theorem 1.2
Omitted

2.4 Proof of Theorem 1.3
We use the following result from [9]: Let G = (V,E) with n

vertices and let d = d(n) ∈ [12, eln1/3 n] be a parameter such
that with n0 = n ln ln n ln d

ln n ln ln ln n
:

P1 For every S ⊂ V , if |S| ≤ n0/d then |N(S) ≥ d|S|.
(N(S) denotes the set of vertices not in S that have at
least one neighbor in S).

P2 There is an edge in G between any two disjoint subsets
A, B ⊂ V such that |A|, |B| ≥ n0/4130.

If G satisfies P1,P2 then G is Hamiltonian.
Let d = ln ln ln n

ln ln ln ln n
and γ = Ω(d/ ln d) and p = γσ ln n

n
to

obtain the theorem

3. PROOFS: SIMPLEX
The following lemma represents a sharpening of Lemmas
2.10 and 2.11 for the simplex case.

Lemma 3.1.

(a) If S ⊆ En and Ep = E(GΣL,p),

P(S ∩Ep = ∅) =

„
1− α(S)p

L

«N

.

(b) If S, T ⊆ En and S ∩ T = ∅ and |T | = o(n) and
α(S)|T |p, α(T )Np, MNp = o(L) then

P(S ∩ Ep = ∅, T ⊆ Ep) =

(1 + o(1))

 Y
e∈T

αe

!„
Np

L

«|T | „
1− α(S)p

L

«N

.

Proof Omitted. �

3.1 Coupling GΣ,p and Gn,m when α = 1: Proof
of Lemma 1.5.

The distribution GΣ,p conditioned on any fixed number of
edges m is uniform over graphs with m edges i.e. is dis-
tributed as Gn,m. Rest of proof is omitted. �

3.2 Connectivity for GΣ,p when α = 1: Proof of
Theorem 1.4 (a)

Omitted

3.3 Connectivity for GΣ,p: Proof of Theorem
1.4 (b)

Applying Lemma 3.1 we see that for v, w ∈ [n],

P(v is isolated) = ξv(p) (9)

where ξv = ξv(p) =
`
1− αvp

N

´N
and

P(v, w are isolated) =

„
1− (αv + αw − αvw)p

N

«N

. (10)

Let p = (1− ε)p0. We observe first that

1

2M2
ln n ≤ αvp0 ≤ 2M2 ln n for all v ∈ [n]. (11)

If the upper bound breaks for some v ∈ V , then we have
αwp0 ≥ 2 ln n and ξw(p0) ≤ n−2 for all w ∈ [n] and this
contradicts the definition of p0. On the other hand, if the
lower bound for some v ∈ V breaks then αwp0 ≤ 1

2
ln n

and ξw(p0) ≥ (1 − o(1))n−1/2 for all w ∈ [n] and this also
contradicts the definition of p0. It follows that ξv(p0) =
n−av where

1

3M2
≤ av ≤ 3M2 for v ∈ [n]. (12)

Consider the function

φ(x) =
X

v∈[n]

n−xav .
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We know that φ(1) = 1 and φ′(1) = − ln n
P

v avn−av ≤
− ln n/3M2. It follows that φ(1−ε) = Ω((ln n)1/2) for small
ε and this implies that if Z0 is the expected number of iso-
lated vertices in GΣ,p then E(Z0) = Ω((ln n)1/2).

Since M = o(ln n), (9) and (10) imply that

P(v, w are isolated) ∼ P(v is isolated)P(w is isolated)

and then the Chebyshev inequality implies that Z0 �= 0 whp
and hence whp Sn,p,α is not connected.

Suppose now that p = (1 + ε)p0. It follows from (12) that
the expected number of isolated vertices A1 in GΣ,p satisfies

A1 =
X

v∈[n]

ξv(p) ≤ n−ε/6M2 X
v∈[n]

ξv(p0) = n−ε/6M2
.

Thus whp GΣ,p has no isolated vertices. Let Ak denote the
expected number of components of size 1 ≤ k ≤ n/2 in GΣ,p.
Let πk = P(Ak �= 0) and k0 = n/M6(ln n)2. Then for k ≥ 2,

πk ≤
X
|S|=k

„
1− α(S : S̄)p

N

«N

(13)

≤ ek2Mp
X
|S|=k

exp

(
−
X
v∈S

αvp

)

≤ ek2Mpeo(k)Ak
1

k!

≤
 

ekM(1+ε)(2M3 ln n/n)n−ε/6M2
e1+o(1)

k

!k

≤
 

e1+o(1)n−εk/6M2

k

!k

for k ≤ k0, after using p0 ≤ 2M3 ln n/n from (11). ThusPk0
k=1 Ak = o(1) and so whp there are no components of

size 1 ≤ k ≤ k0 in GΣ,p.
For k > k0 we use

n/2X
k=k0

πk ≤
n/2X

k=k0

X
|S|=k

„
1− knp

2MN

«N

≤
n/2X

k=k0

 
n

k

!
e−k ln n/(4M3)

≤
n/2X

k=k0

“ne

k
· n−1/4M3

”k

≤
n/2X

k=k0

(M6(ln n)2n−1/4M3
)k

= o(1).

Thus whp there are no components of size 1 ≤ k ≤ n/2 in
GΣ,p. This completes the proof of part (b) of Theorem 1.4.

�

3.4 Giant Component in GΣ,p: Proof of Theo-
rem 1.6

Omitted

3.5 Thresholds: Proof of Theorem 1.7
Omitted

3.6 Diameter of GΣ,p: Proof of Theorem 1.8
Recall that p = 1

n1−θ where 1
k

< θ < 1
k−1

. We show first
that whp the diameter exceeds k − 1. Let Zt denote the
number of paths of length t ≤ k− 1 from vertex 1 to vertex
2. We consider the existence of t edges making up a path.
Applying Lemma 3.1(b): S = ∅ and |T | = k,

E[Zt] ≤ (1 + o(1))nt−1(Mp)t

≤ 2nt−1

„
M

n1−θ

«t

= 2M tnθt−1

= o(1).

Case 1: k ≥ 3.
We must now show that the diameter is at most k. The
following lemma provides some structure:

Lemma 3.2. The following hold whp:

(a) The maximum degree Δ ≤ Δ0 = 10Mnθ.

(b) If S ⊆ V with |S| ≤ n1−θ−ε for some fixed ε. Then
|N(S)| ≥ nθ|S|/(10M ln n) where N(S) is the set of
vertices, not in S, that are neighbors of S.

Proof (a) We consider the existence of t = 10Mnθ

edges incident with a fixed vertex. Applying Lemma 3.1(b):
S = ∅ and |T | = Δ0. (k ≥ 3 is needed here to ensure that
α(T )p = o(1)).

P[Δ ≥ Δ0] ≤ (1 + o(1))n

 
n

Δ0

!
(Mp)Δ0 ≤

2n
“ e

10

”Δ0
= o(1).

(b) Using Lemma 3.1(a) we see that the probability that
this fails to hold can be bounded by

n1−θ−εX
|S|=1

nθs/(10M ln n)X
|T |=0

„
1− |S|(n− |S| − |T |)p

MN

«N

≤

n1−θ−εX
s=1

nθs/(10M ln n)X
t=0

ns+t exp
n
−s(n− s− t)nθ−1/M

o

≤
n1−θ−εX

s=1

nθs/(10M ln n)X
t=0

ns+te−snθ/2M = o(1).

�

For a vertex v let Nr(v) be the set of vertices at distance
r from v. Let r0 =

¨
k−1
2

˝
and r1 =

¨
k
2

˝
. It follows from

Lemma 3.2 that whp we have for 1 ≤ r ≤ r1,

(nθ/(10M ln n))r ≤ |Nr(v)| ≤ (10Mnθ)r.

Furthermore, we have r0+r1 ≤ k−1. So suppose that v, w ∈
V and Nr0(v)∩Nr1(w) = ∅. (If the intersection is non-empty
then their distance is already ≤ k). Now condition on the
sets T, S of edges and non-edges exposed in the construction
of Nr0(v), Nr1(w). Then whp we have |S| = O(n(MΔ0)r1)
and |T | = O((MΔ0)r1).
Let νv = |Nr0(v)|, νw = |Nr1(w)|. Given S, T let R =
{xy : x ∈ Nr0(v), y ∈ Nr1(w)}. Using Lemma 3.1(b), the
conditional probability that there is no edge between Nr0(v)
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and Nr1(w) is bounded as follows: |R|+|S| = O(nr1θ+1+o(1))

and |T | = O(nr1θ+o(1)).

P((R ∪ S) ∩ Ep = ∅, T ⊆ Ep)

P(S ∩Ep = ∅, T ⊆ Ep)

= (1 + o(1))(1− α(R)p)N ≤ 2e−νvνwp/M =

exp
n
−Ω(n(r0+r1+1)θ−1−o(1))

o
. (14)

Now (r0 + r1 + 1)θ− 1 = Ω(1) and this completes the proof
for the case k ≥ 3.
Case 2: k = 2.
This is much simpler. We show that if p = n−β where
β = 1/2 − ε then diam(GΣ,p) = 2 whp. Here ε is an
arbitrarily small positive constant.
We first argue that the minimum degree in GΣ,p is at least
Δ1 = n1/2+ε/(10M ln n). Indeed, if δ denotes minimum
degree then from Lemma 3.1(a),

P[δ ≤ Δ1] ≤ n

 
n

n−Δ1

!„
1− (n−Δ1)p

MN

«N

= o(1).

By conditioning on N(v), N(w), we argue as in (14) that
whp every pair of vertices v, w have a common neighbor.

3.7 Minimum Spanning Tree: Proof of Theo-
rem 1.9

Suppose that T is our minimum length spanning tree. Then
we can write its length �(T ) as

�(T ) =
X
e∈T

Xe =
X
e∈T

Z N

p=0

1Xe≥pdp

=

Z N

p=0

X
e∈T

| {e : Xe ≥ p} |dp =

Z N

p=0

(κ(GΣ,p)− 1)dp

where κ denotes the number of components.
So,

ΛX =

Z N

p=0

(E[κ(GΣ,p)]− 1])dp (15)

Going back to (13) (with M = ω2) we see that

πk ≤
 

n

k

!„
1− knp

2ω2N

«N

≤
“ne

k
· e−np/2ω2

”k

(16)

for 1 ≤ k ≤ n/2.
So, if p0 = 5ω2 ln nν then

p ≥ p0 implies P[GΣ,p is not connected] = o(N−2).

So,

ΛX =

Z p0

p=0

(E[κ(GΣ,p)]− 1])dp + o(N−1). (17)

Next let κk,p denote the number of components with k ver-
tices. κ1,p is the number of isolated vertices and

E[τ1,p] =
X
v∈V

„
1− dv(D − dv)p

N

«N

.

It follows that

ΛX ≥ 1

2ω2
. (18)

Using Lemma 3.1(b) to tighten (16), we see that for k ≤ n1/2

and p ≤ p0,

E[κk,p] ≤ 1

ω2p

“
ne · ω2pe−np/2ω2

”k

. (19)

So if p1 = 20ω2 ln ω
n

then for k ≤ n1/2,Z p0

p=p1

(E[κk,p]− 1)dp ≤ 1

ωk+2
.

It follows from (17) and (18) that

ΛX =

ω5X
k=1

Z p1

p=0

E[κk,p]dp, (20)

Now let τk,p denote the number of components of GΣ,p that
are isolated trees with k vertices For X ⊆ V we let Ak =n

a ∈ [1, k]k :
Pk

j=1 aj = 2k − 2
o

. Then, where q = e−Dp,

for k ≤ ω5

E[τk,p] ∼ (k − 2)!pk−1
X

a∈Ak

X
f :[k]→V

f an injection

kY
j=1

d
aj

f(j)q
df(j)

(aj − 1)!

(21)
Putting dS =

P
v∈S dv, this can be re-expressed

E[τk,p] ∼ (k − 2)!pk−1
X

a∈Ak

kY
i=1

nX
v=1

dai
v qdv

(ai − 1)!

∼ (k − 2)!pk−1[x2k−2]

 
nX

v=1

∞X
r=1

qdvdr
v

(r − 1)!
xr

!k

= (k − 2)!pk−1[xk−2]

 
nX

v=1

qdv dvedvx

!k

= (k − 2)!pk−1
X
S⊆V
|S|=k

qdS
dk−2

S

(k − 2)!

Y
v∈S

dv. (22)

So,

ω5X
k=1

Z p1

p=0

E[τk,p]dp ∼
∞X

k=1

(k − 1)!

Dk

X
S⊆V
|S|=k

Q
v∈S dv

d2
S

(23)

It only remains to show that if σk,p = κk,p − τk,p then

ω5X
k=1

Z p1

p=0

E[σk,p]dp = o(ω−2). (24)

But, arguing as in (19) we see that for k ≤ n/2,

E[σk,p] ≤
“
ne · ω2pe−np/2ω2

”k

.

Hence,

ω5X
k=1

Z p1

p=0

E[σk,p]dp ≤
ω5X

k=1

(2eω4)kp1 = no(1)−1

and (24) follows. �

786



4. TSP ALGORITHM: PROOF OF THEO-
REM 1.10

A digraph is a set of edges (i, j) and these can equally well
be viewed as the set of edges of a bipartite graph. So we
consider there to be a digraph view and a bipartite view.
The algorithm consists of the following:

Step 1 Solve the assignment problem with cost matrix X
i.e. find a minimum cost perfect matching in the bi-
partite view. The edges (i,a(i)) of the optimal assign-
ment form a set of vertex disjoint cycles C1, C2, . . . , Ck

in the digraph view.

Step 2 Assume that |C1| ≥ |C2| ≥ · · · ≥ |Ck|.
For i = k down to 2: C1 ← C1 ⊕ Ci. (Patch Ci into
C1).

Here C1 ⊕ Ci is obtained by removing an edge (a, b)
from C1 and an edge (c, d) from Ci and adding edges
(a, d), (c, b) to make one cycle. These two edges are
chosen to minimise the cost Xad + Xcb.

Each patch reduces the number of cycles by one and so the
procedure ends with a tour.
Analysis: (a): The row symmetry assumption implies that
the matching found in Step 1 is uniformly random and so in
the digraph view it has O(ln n) cycles whp. We prove this
as follows: For any two permutations π1, π2 we have

P(a(X) = π1) = P(a(π1π
−1
2 X) = π1)

= P(a(X) = π2).

It follows that whp |C1| = Ω(n/ ln n).
(b): We put a bound on the length of the longest edge in
the solution to Step 1. There are several steps:

(1) We let ω = KM(ln n)2 for some large constant K and
argue that whp every vertex in GΣ,p1 , p1 = ω/n, has
in-degree and out-degree at least ω0 = L ln n where
L = K1/2.

To verify the degree bounds, fix a vertex v and par-
tition [n] \ {v} into sets V1, . . . , Vω0 of size ∼ n/ω0.
Using Lemma 3.1(a) we see that

P(∃i : dp1(v, Vi) = 0) ≤ e−np1/(Mω0) = n−L

where dp(v, Vi) is the number of GΣ,p neighbors of v
in Vi.

Thus with probability at least 1−n−L, v has one out-
neighbor in each part of the partition. This gives an
out-degree of at least L ln n as required. In-degree is
treated similarly. If L ≥ 2 then the failure probability
is sufficient to give the result for all v.

(2) We use Lemma 3.1(b) and a simple first moment ar-
gument to argue that if in the bipartite view we have
two sets S, T contained in different sides of the parti-
tion and |S| ≤ n2/3 and |T | ≤ L|S| ln n/4 then whp
the induced bipartite sub-graph on S ∪ T contains at
most L|S| ln n/2 edges of length ≤ p1. Indeed, if B is

the event that there are S, T with more edges, then

P(B) ≤ (25)

(1 + o(1))

n2/3X
s=1

Ls ln n/4X
t=1

 
n

s

! 
n

t

! 
st

Ls ln n/2

!

×
„

KM2(ln n)2

n

«Ls ln n/2

(26)

= o(1). (27)

(3) Now suppose that the optimum solution to Step 1 con-

tains an edge (x, y) of length greater than 2Mn−1/2.
We grow alternating paths from x, y in a breadth first
manner using edges of length ≤ p1. Using (1) and
(2) we see that the levels grow at a rate L ln n/5 un-

til they are of size at least n3/5 say. This will hap-
pen regardless of the matching a produced by Step
1. Indeed, let S0 = {x} and in general, let Si+1 =
a−1(Np(Si) \ S0 ∪ · · · ∪ Si. Np(S) denotes the neigh-
bors in GF,p1 of a set S contained in one side of the
partition. It follows from (1) and (2) that |Si+1| ≥
L|Si| ln n/5, as long as |Si| ≤ n2/3. So whp there ex-

ists i0 such that |Si0 | ≥ n3/5. Similarly, if T0 = {y}
and Tj+1 = a(Np(Tj)) \ T0 ∪ · · · ∪ Tj then whp there

exists j0 such that |Tj0 | ≥ n3/5.

We can then use Lemma 3.1(a) to argue that whp

there is an edge of length at most Mn−1/2 joining the
final two levels S, T . Indeed

P(∃|S|, |T | ≥ n3/5 : there is no S, T edge of

length ≤Mn1/2) ≤
 

n

n3/5

!2

e−n7/10
= o(1).

Then exchanging along the alternating path adds edges
of total cost at most Mn−1/2 + o(p1 ln n) ≤ 2Mn−1/2

and removes an edge of length strictly greater than
this, a contradiction.

(c): It follows from the above that we can whp ”ignore” the

edges of length > p2 = Mn−1/4 in our construction in Step
1. Let the edges of length ≤ p2 be denoted E1 and the edges
of length in the range [p2, 2p2] be denoted E2. We observe

next that whp |E1| ≤ 10M2n7/4. Indeed, if t = 10M2n7/4

then

P(|E1| ≥ t) ≤
 

N

t

!
M t

„
M

n1/4

«t

exp

j
2M3t2

Nn1/4

ff
≤

„
Ne

t
· M2

n1/4
· exp

j
2M2t

Nn1/4

ff«t

= o(1).

Let us now condition on the exact lengths of the edges in
E1. The distribution of remaining edges can now whp be
written as X ′

e = p2 + Y ′
e where Y ′ is chosen uniformly from

a simplex Σ′ in at least N ′ ≥ N−10M2n7/4 dimensions and
with RHS L′ ≥ N − 10M3n7/4 −Np2.

(1) We can now argue very simply: Choose for each 2 ≤
i ≤ k an edge (ai, bi) of cycle Ci. (If |Ci| = 1 then
ai = bi). Then divide C1 into k paths P1, . . . , Pk of

787



length ∼ |C1|/k. Arguing as in (a1) we can show that
whp

each ai has at least n0

= n3/4/(2(ln n)3) E2 out-neighbors Qi in Pi. (28)

As a check, fix i and divide Pi into
|Pi|/(2n1/4 ln n) ≥ n3/4/(2(ln n)3) disjoint pieces, each

of size ≥ 2n1/4 ln n. The probability that there is no
E2-edge from ai to any one of these pieces is at most
e−(2−o(1)) ln n = n−2+o(1). This follows by applying
Lemma 3.1(a) to Σ′.

Thus (28) holds whp. Now condition on the lengths
of the E2p-edges from the ai to C1. The lengths of
the unconditioned edges are now determined by the
uniform selection from a simplex Σ” with ∼ N coor-
dinates and RSS ∼ N . Let Ri be the in-neighbors of
the Qi on C1. Applying Lemma 3.1(a) once more, we
see that

P(∃i : there is no Ri, bi edge) ≤
(ln n)e−n0p2/M = o(1).

(2) In summary, whp the cost of the patching is
O(p2 ln n) = o(1/M). Finally, the cost of the minimum
tour is Ω(1/M) whp. We can for example show that
if we only consider edges of length at most ε/(Mn) for
small constant ε then whp at least half of the vertices
have out-degree zero. Lemma 3.1(a) shows that the
expected number of isolated vertices is Ω(n). We can
then use the Chebyshev inequality to argue that there
Ω(n) isolated vertices whp.

5. OPEN QUESTIONS

1. Random graphs with prescribed structure We
can generate interesting classes of random graphs with
prescribed structure. For example, let us consider H-
free subgraphs of a fixed graph G. Let PH ⊆ [0, 1]E(G)

be defined as follows: Let H1, H2, . . . , Hs be an enu-
meration of the copies of H in G. Fix some p0. PH is
the set of solutions to a linear program.X

e∈E(Hi)

Xe > |E(H)|p0 for i = 1, 2, . . . , s.

0 ≤ Xe ≤ 1, ∀e ∈ E(G).

GPH ,p0 is H-free and it would be interesting to analyze
important properties of GPH ,p0 . We can for example
generate triangle-free graphs. When H is a path of
length 2, we get matchings (and we can get match-
ings of any fixed graph by including only the edges as
coordinates).

Can we uniformly generate H-free graphs in this way?

2. Thresholds for monotone properties Do monotone
graph properties have sharp thresholds for logconcave
densities as they do for Erdős-Rényi random graphs?

3. Giant Component When does GF,p have a giant com-
ponent. We have barely scratched the surface of this
problem.

4. Smoothed Analysis Smoothed Analysis as proposed
by Spielman and Teng [20] can be viewed as choos-
ing the costs X uniformly from a unit ball. This is a
special case of what we are proposing and it is natural
to see what can be proved about this generalisation,
e.g. for Linear Programming.

5. Hamilton Cycles Can we remove the ln ln ln n
ln ln ln ln n

factor
from the proof of Theorem 1.3.

6. Degree Sequence This is an important parameter but
we know relatively little about it.
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